
e x a m p l e 2.20 a n N - r e s i s t o r c u r r e n t d i v i d e r Now
consider the more general current divider having N resistors, as shown in Figure 2.38.
It can be analyzed in the same manner as the two-resistor current divider. To begin, the
element laws are

i0 = −I (2.101)

vn = Rnin, 1 ≤ n ≤ N. (2.102)

Next, the application of KCL to either node yields

i0 + i1 + · · · iN = 0 (2.103)

and the application of KVL to the N − 1 internal loops yields

vn = vn−1, 1 ≤ n ≤ N. (2.104)

Finally, Equations 2.101 through 2.104 can be solved to yield

i0 = −I (2.105)

in = Gn

G1 + G2 + · · · GN
I, 1 ≤ n ≤ N (2.106)

vn = 1

G1 + G2 + · · · GN
I, 0 ≤ n ≤ N (2.107)

where Gn ≡ 1/Rn. This completes the analysis.

As was the case for the two-resistor current divider, the preceding analysis shows that
parallel resistors divide current in proportion to their conductances. This follows from
the Gn in the numerator of the right-hand side of Equation 2.106. Additionally, the
analysis again shows that parallel conductances add. To see this, let GP be the equivalent
conductance of the N parallel resistors. Then, from Equation 2.107 we see that

GP = I

vn
= G1 + G2 + · · · GN (2.108)

from which it also follows that

1

RP
= 1

R1
+ 1

R2
+ · · · 1

RN
(2.109)

where RP ≡ 1/GP is the equivalent resistance of the N parallel resistors. The latter result
is summarized in Figure 2.40.
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F IGURE 2.40 The equivalence
of parallel resistors; for N = 2,
RP = R1R2/(R1 + R2).
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Finally, the two current-divider examples illustrate an important point, namely that
parallel elements all have the same voltage across their terminals because their terminals
are connected directly across one another. This results in the KVL seen in Equations 2.80,
2.81, and 2.104, which state the equivalence of the terminal voltages.
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