EXAMPLE 2.33 VOLTAGE-CONTROLLED RESISTOR Thus far we have dealt with resistors that have a fixed resistance. However, like dependent sources, we can also have resistors whose values depend on other parameters. As an example, Figure 2.71 depicts a voltage-controlled resistor whose resistance R_X is a function of v_I .

Let us suppose we are interested in determining $v_{\rm O}$ as a function of v_I for

$$R_X = f(v_I) = R_o v_I$$

where R_o is some known constant. Let $R_o = 5 \text{ k}\Omega/\text{V}$.

First, R_1 and R_2 form a simple voltage divider, and since $R_1 = R_2$, we have $\nu_I = V/2$. Second, R_L and R_X also form a voltage divider. Therefore,

$$v_{O} = V \frac{R_{X}}{R_{L} + R_{X}}$$

$$= V \frac{R_{o}v_{I}}{R_{L} + R_{o}v_{I}}$$

$$= V \frac{5 \text{ k}\Omega/v_{I}}{10 \text{ k}\Omega + 5 \text{ k}\Omega/v_{I}}$$

$$= V \frac{v_{I}}{2 + v_{I}}$$

$$= V \frac{\frac{V}{2}}{2 + \frac{V}{2}}$$

$$= \frac{V^{2}}{4 + V}.$$

Substituting V = 5 V, we find that $v_{\rm O} = 25/9$ V.

FIGURE 2.71 Circuit with voltage-dependent resistor.

107a