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1.06.1 Introduction to Bootstrap

The software revolution that has taken place in recent years has led to the development of different statistical
methodologies of data analysis that rely on computer-based calculation. Preeminent among these techniques
are the so-called resampling methods, which consist of generating a large number of samples to study the
behavior pattern of given statistics. There are various procedures for generating artificial samples on the basis of
an initial sample. Possibly the best known of these is the bootstrap method introduced by Efron in 1979,1 a type
of procedure that uses simulation to assess statistical accuracy. At present, bootstrap methods can be regarded as
a general tool for statistical work, tending to be used in combination with other statistical techniques rather than
in isolation. These types of methods are applied to different statistical areas, including the construction of
confidence intervals (CIs), testing of hypotheses, and regression or principal components analysis, among others
(see, for instance, the monograph by Efron and Tibshirani2). The interest that bootstrap methodology has
aroused among the statistics community is reflected in the considerable number of textbooks devoted to
justifying its theoretical bases or to discussing its applications in specific areas such as biology, environment,
or medicine.2–6 In addition, various packages have been developed by implementing a variety of bootstrap
methods applied to different statistical methods, and most of these packages are in languages such as Fortran, R,
or S-plus.

In many practical situations, the goal of research is to make inferences about a given characteristic (or
parameter), �, of a variable of interest, X. Estimation of this parameter is obtained on the basis of a statistic,

�̂ ¼ �̂ X1; . . . ;Xnð Þ, calculated as a function of a sample of size n X1; . . . ;Xnð Þ, for example, a statistical inference
about the mean population � ¼ � is based on the sample mean statistic �̂ ¼ �X ¼

Pn
i¼1 Xi=n.

A good part of conventional statistics is based on laws that enable the sample distribution of a statistic �̂ to be
approximated for sufficiently large sample sizes, e.g., where n is large enough, then, in accordance with the
central limit theorem, the distribution of sample mean �X approximately follows the distribution N �; S=

ffiffiffi
n
pð Þ,

where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Xi – �Xð Þ2=n

q
is the standard sample deviation. For instance, if one were seeking to construct

a 95% CI for the population mean, this would be given by �X � 1:96S=
ffiffiffi
n
p� �

.
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Procedures of this type based on an asymptotic approach may display certain limitations in practice, as their
performance will depend on the information furnished about the population by the sample. Hence, when not
enough data are available, a good approximation of the distribution of �̂ will not be obtained, and so the
asymptotic method will not produce good results. At other times, moreover, one has to work with statistics that
have no asymptotic laws governing their sample distribution. This is the case, for example, of difference in
sample medians, or of sample asymmetry the sampling distribution of which is unknown. In the face of these
types of limitations, various alternative procedures that enable the sample distribution of the target statistic to
be obtained have emerged, by simulating a large number of random samples directly constructed on the basis of
initially observed data. Among these resampling techniques is the bootstrap method, which is described in detail
below.

As an alternative to the asymptotic method, the simplest version of the bootstrap method approximates the
distribution of the statistic �̂ ¼ TðX 1; . . . ;X nÞ, in accordance with the following procedure:

1. Based on sample X ¼X1; . . . ;Xn; a random sample X�b ¼ X �b1 ; . . . ;X �bn is artificially simulated by resam-
pling with replacement. In other words, after the extraction of an element, this is replaced in the original
sample such that it can be chosen again.

2. For each sample obtained, the value of the statistic T �b ¼ T ðX �b1 ; . . . ;X �bn Þ is calculated.
3. Steps 1 and 2 are repeated a large number (B) of times so as to obtain bootstrap values T �1; . . . ;T �B . At this

stage in its development, computer software allows for the computational cost entailed in the generation of a
large number of samples to be estimated.

4. Finally, the distribution of T and its corresponding quantiles is approximated by means of a histogram
obtained on the basis of values T �1; . . . ;T �B , that is, an empirical approach to the sample distribution of
statistic T is obtained, without any assumptions having been made as to the theoretical distribution to which
the latter conforms.

The bootstrap resampling method outlined above is known as naive bootstrap. In step 1, the bootstrap
samples are simulated by means of resampling with replacement, that is, based on the empirical
distribution F̂n xð Þ ¼ n – 1

Pn
i¼1 I Xi�xf g of the sample. Other resampling approaches have also been con-

sidered: When the form of the population distribution is known, the use of parametric bootstrap allows
for a better approximation of the sampling distribution of the test statistic. That is to say, if F is known
to belong to a parametric family F� : �PYf g and �̂ is an estimator of � (e.g., the estimator of maximum
likelihood), then X� can be taken as a random sample from F�̂. For instance, assuming one knows that the
observations came from a normal distribution XPN �;�ð Þ, then one would draw repeated bootstrap
samples from a normal distribution N �X ; Sð Þ. Where the variable X is assumed to be continuous with
the density function, f, the use of smoothed bootstrap might be more appropriate. Instead of resampling
directly from the empirical distribution F̂n xð Þ, one first smoothes it out. This smoothed version is then
used to generate new samples from the smoothed distribution F̃n xð Þ ¼

R x

–1 f̂n xð Þ dx, where f̂n xð Þ is an
estimate of density function f (x).

As previously pointed out, rather than being perceived as an isolated method, bootstrap is instead used in
combination with other statistical techniques. As a review of all bootstrap applications published in recent years
would prove extremely difficult, the main thrust of this chapter will focus on how bootstrap works in a
regression context. In particular, the possibilities of bootstrap will be analyzed in the context of generalized
additive models (GAMs). These types of models were proposed by Hastie and Tibshirani7 as a unifying family
of flexible models covering a wide range of regression models with different types of responses (e.g., Gaussian,
binomial, and Poisson).

Rather than seeking to provide a comprehensive overview of all bootstrap applications in this regression
context, this chapter will confine itself to discussing bootstrap resampling methods for achieving two different
goals in a GAM context, namely (1) construction of CIs for covariate effects on response and (2) implementa-
tion of tests capable of detecting the statistical significance of interaction among the effects of the different
covariates.

This chapter is laid out as follows: Section 1.06.2 presents different bootstrap resampling methods for
regression; Section 1.06.3 introduces GAMs and briefly discusses the process of estimating these models; and
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Section 1.06.4 addresses the construction of bootstrap-based CIs for covariate effects in GAMs. The advantage
of bootstrap methodology versus a classical method of constructing asymptotic intervals is illustrated in Section
1.06.4.1, by reference to air pollution time-series studies.8

The effect of a given covariate on response may often vary with the values taken by another covariate,
something that in turn leads to the concept of interaction. Section 1.06.5 introduces GAMs that include
interactions among covariate effects. Section 1.06.6 poses the problem of test hypotheses for the detection of
significant interactions in GAMs. Finally, Section 1.06.6.1 contains an application to real SO2 binary pollution
time-series data.9

1.06.2 Bootstrap Resampling Methods for Regression

In many fields of research, it is important to establish the relationship between a response variable of interest
and one or more explanatory covariates. Regression studies enable mathematical models to be obtained that
link the conditional mean � Xð Þ ¼ E Y jXð Þ of response Y to p covariates X ¼ X1; . . . ;Xp

� �
. This section sets

out different bootstrap resampling procedures for regression data sets X1;Y1

� �
; . . . ; Xn;Ynð Þ of (X,Y). These

procedures will be used in Section 1.06.4 to construct CIs for covariate effects, and in Section 1.06.6 to test the
significance of interaction terms.

Let us assume that the relationship between covariate X and response variable Y can be expressed as

Y ¼ � Xð Þ þ ", where " is an error variable having zero mean E "jXð Þ ¼ 0. Bootstrap samples X�1;Y
�
1

� �
; . . . ;

X�n;Y
�
n

� �
are generated by being drawn from some estimated distribution R̂n of the true distribution of (X,Y). If

R̂n is chosen as the empirical distribution of X1;Y1ð Þ; . . . ; Xn;Ynð Þ, then the bootstrap samples are generated by
being drawn with replacement from the original sample. This bootstrap procedure is called pairwise resam-
pling.10,11 Another alternative is the use of smooth bootstrap described above, where the bootstrap samples are
drawn from a smoothed distribution estimate of the joint density of X and Y. For a more detailed discussion of
this bootstrap, the reader should refer to Cao-Abad and González-Manteiga.12

In bootstrap procedures proposed until now, both X and Y are assumed to be random variables. This sample
scheme is known as random design. However, there are applications where the researcher is able to control the
values of the covariates X, and Y is the only random variable. The scheme known as fixed design will now be
discussed. The first point to be borne in mind here is that the error variables "i are independently and
identically distributed (i.i.d.) with zero mean. In this case, the bootstrap samples X1;Y

�
1

� �
; . . . ; Xn;Y

�
n

� �
can

be obtained with Y �i ¼ �̃ Xið Þ þ "̂i
�, where �̃ Xið Þ is a pilot estimate of � Xið Þ and "̂1

�; . . . ; "̂n
� is a random sample

drawn from the empirical distribution of the centered residuals "̂i ¼ Y i – �̃ Xið Þ. This bootstrap procedure is
called residual resampling. Errors cannot be assumed to be i.i.d. in all cases, for example, this condition is not
fulfilled when the response variance depends on covariate X. In a situation of this kind, possibly the most
popular resampling method is the so-called wild bootstrap13–15 introduced by Wu.16 It allows for heterogeneous
variance in the residuals. In wild bootstrap, each residual "̂i

� is drawn from a distribution that seeks to imitate
the distribution of "̂i up to the first three moments, namely, E "̂i

�½ � ¼ 0, E "̂i
�2½ � ¼ "̂i

2, and E "̂i
�3½ � ¼ "̂i

3. These
conditions are met if "�i is drawn from the two-point distribution, with probability mass at a ¼ 0:5 1 –

ffiffiffi
5
p� �

"̂i

and b ¼ 0:5 1þ
ffiffiffi
5
p� �

"̂i occurring with probabilities q ¼ 0:1 5þ
ffiffiffi
5
p� �

and 1�q, respectively. A fuller review of
resampling methods in regression can be found in Schimek.17

The resampling methods proposed thus far have basically been designed for continuous response regression
models. Yet this type of resampling does not adapt to other types of distribution, for example, for binary
response models, values other than zero or one, Y �i , will be obtained, with the result that the model will perform
in quantitative but not qualitative terms. Similarly, should there be a Poisson response, there is no guarantee
that the values Y �i will not be negative. A general way of approaching these types of situations is to consider the
exponential family,18 which includes the majority of distributions in statistics, that is, Gaussian, binomial, or
Poisson. In the exponential family, the conditional density function f Y jXð Þ is given by

f Y jXð Þ ¼ exp
y� – b �ð Þ

a �ð Þ þ c y; �ð Þ
� �

ð1Þ
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where � denotes the natural parameter, � is the scale or dispersion parameter, and a, b, and c are known
specific functions in the exponential family. The natural parameter � depends on the conditional mean
of the response � Xð Þ ¼ E Y jXð Þ, and so one can write � ¼ � � Xð Þð Þ. Moreover, the conditional variance
of the response, VarðY jXÞ, depends on � Xð Þ, via the relationship VarðY jXÞ ¼ �̂V ð�ðXÞÞ, where V is
the so-called variance function, which is known and is determined by the exponential distribution
chosen.

Bootstrap resampling techniques for obtaining bootstrap samples are based on the conditional distribution of
Y|X, determined by � Xð Þ and �, with the result that the density function f Y jXð Þ given in Equation (1) can
therefore be written as f � Xð Þ; �ð Þ. The bootstrap technique consists of generating a large number (B) of

bootstrap replicates X1;Y
�b
1

� �
; . . . ; Xn;Y

�b
n

� �
(b¼ 1, . . . , B), with Y �bi � f �̃ Xið Þ�ð Þ being based on the original

sample X1;Y1ð Þ; . . . ; Xn;Ynð Þ, and �̃ Xið Þ being the pilot estimates obtained on this basis.19,20 In special
situations, the dispersion parameter � is known and the conditional distribution of Y is specified by
� Xð Þ. For instance, for binary response Yi � Bernoulli � Xið Þð Þ, the bootstrap replicates will be generated
in line with Y �i � Bernoulli �̃ Xið Þð Þ. Likewise, for Poisson response Yi � Poisson � Xið Þð Þ, the bootstrap
replicates will be generated in line with Y �i � Poisson �̃ Xið Þð Þ. Otherwise, if � is unknown, an estimate �̂ for
parameter � can be obtained, in line with Var Y jXð Þ ¼ �̂V � Xð Þð ÞVar Y jXð Þ ¼ �̂V � Xð Þð Þ or equivalently
� ¼ Var Y jXð Þ=V � Xð Þð Þ, from

�̂ ¼
Xn

i¼1

Yi – �̂ Xið Þð Þ2

nV �̂ Xið Þð Þ

where �̂ Xið Þ are the estimates of � Xið Þ obtained on the basis of the original sample Xi ;Yið Þf gn
i¼1. For

instance, in the case of Gaussian response Yi –N ð�ðXiÞ;�Þ the parameter � is unknown and coincides with
�2. In such a case, the bootstrap responses will be generated in line with Y �i –Nð�̃ðX iÞ;�̂Þ, where �̂2 ¼ n
– 1
Pn

i¼1 Yi – �̃ ðX iÞð Þ2 is the estimation of �2. It should be noted that in this approach, the variance �2 is a

constant and the regression model is thus assumed to be homoscedastic. Nevertheless, our interest also lies
in heteroscedastic regression models, where the variance �2 ¼ �2ðXÞ depends on the vector of the
covariates X. To estimate �2(X), a nonparametric regression model can be fitted to Ri ¼ Yi – �̃ Xið Þð Þ2
on X. Another alternative is to use the wild bootstrap method outlined above.

1.06.3 Generalized Additive Models

The models that will be studied here can be viewed as a generalization of the well-known generalized
linear model (GLM).18 In these GLMs, the conditional mean � Xð Þ ¼ E Y jX½ � of response Y depends on
the covariates X ¼ X1; . . . ;Xp

� �
via �ðXÞ ¼ H �þ �1X1 þ � � � þ �pXp

� �
, where H is a known monotone

link function and �; �1; . . . ; �p

� �
is a vector of coefficients. In some instances, GLMs can be very

restrictive, because they assume linearity in the covariates. This constraint can be avoided by replacing
the linear index � ¼ �þ �1X1 þ � � � þ �pXp with a nonparametric structure. Accordingly, here we will
concentrate on the GAM7, which is a generalization of the GLM, by introducing one-dimensional,
nonparametric functions in lieu of linear components. Specifically, GAMs express the conditional mean
�(X) as

�ðXÞ ¼ H �þ f1ðX1Þ þ � � � þ fpðXpÞ
� �

ð2Þ

where H is a known link function, � is a constant, and f1; . . . ; fp are unspecified, unknown, zero-mean functions.
In the case of an identity function, H, one speaks of an additive model. On assuming that effects are additive,
GAMs maintain the interpretability of GLMs.18,21 Yet, at the same time, they incorporate the flexibility of
nonparametric smoothing methods because, rather than following a fixed parametric form, the effect of each of
the covariates, Xj, depends on a totally unknown function, fj, which is only required to possess a certain degree
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