1.10 Type I Modular PKS

Alison M. Hill, University of Exeter, Exeter, UK

James Staunton, University of Cambridge, Cambridge, UK

© 2010 Elsevier Ltd. All rights reserved.

1.10.1	Introduction to Polyketides	386
1.10.1.1	Development of the Biosynthetic Theory	386
1.10.2	Fatty Acid Biosynthesis – Reactions and Enzymes	388
1.10.2.1	Synthetic Operations	388
1.10.2.2	Enzymes of Fatty Acid Biosynthesis	389
1.10.3	Polyketide Biosynthesis – Reactions and Enzymes	392
1.10.3.1	Assembly of the Basic Carbon Skeleton	392
1.10.3.2	Biosynthesis of the Polyketide Chain of Erythromycin	392
1.10.3.3	Identification of the Megasynthases Involved in Erythromycin Biosynthesis	395
1.10.3.4	Generation of Truncated Versions of the DEBS	398
1.10.4	Mechanism and Structural Specificity of Precursor Loading within the Modules of the	
	DEBS	399
1.10.4.1	Specificity of Transfer of Acyl Group Building Blocks from External CoA Thioesters	
	onto the DEBS Assembly Lines	399
1.10.4.2	Kinetic Studies of the Structural Specificity of AT Domains	400
1.10.4.3	Mass Spectrometric Studies of the Structural Specificity of AT Domains	401
1.10.5	Experimental Investigation of Stereospecificity of the Reactions of the DEBS Chain-	
	Extension Cycles	403
1.10.5.1	Celmer's Rules	403
1.10.5.2	Deleting Catalytic Activities	404
1.10.5.3	Determination of the Chirality of the Methylmalonate Precursors	405
1.10.5.4	Studies of the Stereochemistry of Reactions using Intact Modules and Isotopically	
	Labeled Precursors	405
1.10.5.5	Studies of the Stereochemistry of Reactions using Reconstructed DEBS Modules	408
1.10.5.6	Conclusion	409
1.10.6	Studies of the Quaternary Structure of the Type I FAS	409
1.10.6.1	Early Investigations of the Type I FAS Structure	410
1.10.6.1.1	The homodimeric character and cross-linking studies	410
1.10.6.1.2	The Wakil head-to-tail model for the type I FAS	410
1.10.6.2	Recent Studies of the Type I FAS Structure	410
1.10.6.2.1	Mutant complementation studies, leading to the Smith structure for the FAS	411
1.10.6.2.2	Direct observations of the complete type I FAS structure by X-ray crystallography: The	
	Ban structure for the animal FAS	412
1.10.6.3	Comparison of the Smith and Ban Proposals for the Type I FAS Structure	414
1.10.7	Studies of the Structure of the DEBS Modules	415
1.10.7.1	Isolation of the DEBS Multienzymes	415
1.10.7.2	Proteolysis Studies on the DEBS Multienzymes	415
1.10.7.3	The Homodimeric Character of the Multienzymes and Individual Domains	416
1.10.7.4	Mutant Complementation Studies	416
1.10.7.5	NMR Studies of Docking Domains	416
1.10.7.6	Characterization of a DEBS Didomain, KS-AT, by X-Ray Crystallography	418
1.10.8	Current Proposals for the Topology of the DEBS Modules and Multienzymes	418
1.10.8.1	Structures Based on X-ray Images	418
1.10.8.2	The Cambridge Topology for the PKS Module	419
1.10.9	Other Polyketide Synthases	423

1.10.9.1	Variation in the Packaging of Modules into Multienzymes	424
1.10.9.2	The Monensin PKS	425
1.10.9.2.1	Origin of the core structure of monensin	425
1.10.9.3	The Rapamycin PKS	427
1.10.9.4	The Rifamycin PKS	430
1.10.9.5	The Mupirocin PKS, an AT-less System with Special Mechanisms for Generating C-1	
	Branch Points	430
1.10.9.6	Methymycin and Pikromycin	434
1.10.9.7	Borrelidin	436
1.10.9.8	Conclusion	438
1.10.10	Commercial Applications of Genetic Engineering of Modular Polyketide Synthases	438
1.10.10.1	Development of New Versatile Super Hosts and Combinatorial Biosynthesis	
	of Aromatic Compounds by Type II PKS Pathways	438
1.10.10.2	Strategies for Engineering the Erythromycin PKS	439
1.10.10.2.1	Creation of hybrid versions of the DEBS	439
1.10.10.2.2	Mutasynthesis experiments with a DEBS 1 containing an inactivated KS1	441
1.10.10.2.3	Genetic engineering of the chain-extension modules of the DEBS	441
1.10.10.3	Generation of Analogues of Rapamycin	442
1.10.10.4	Insertion of a Complete Module into the DEBS Assembly Line	443
1.10.10.5	Prospects for Future Commercial Exploitation	444
1.10.11	Future Perspectives	444
References		447

1.10.1 Introduction to Polyketides

1.10.1.1 Development of the Biosynthetic Theory

The term polyketide (PK) was coined more than 100 years ago by the organic chemist J. Collie to describe a class of aromatic molecules produced synthetically while studying pyrones.¹ For example, in **Scheme 1**, on treatment with aqueous sodium hydroxide, the pyrone (1) was converted into the phenolic compound, orcinol (3). Collie rightly proposed that the triketone (2) was an intermediate. He also noted that the substitution pattern of hydroxyl groups on alternate carbons of the aromatic ring of orcinol was characteristic of many phenolic natural products.² He therefore proposed that such β -polyketones might be produced in living cells as biosynthetic precursors of phenolic natural products with a 1,3 pattern of hydroxyl groups. He also noted that the triketone (4). He therefore coined the term PK for both the polyketones and the derived phenolic natural products.

With these biosynthetic speculations, Collie was well in advance of his contemporaries. His ideas failed to achieve the impact they deserved. They and the term PK therefore became buried in the literature for more than 50 years.

In the mid-1950s, Birch independently had essentially the same idea.³ By this time much more was known about the molecules and chemical processes occurring in living cells, and so Birch was able to extend the proposal with the suggestion that the proposed polyketones might arise in nature by condensation of acetate units. Unaware of the term PK, some natural product chemists coined the term acetogenin for these classes of natural products (See Chapters 2.04, 2.07, 2.17, 2.19, 3.03, 3.06, 3.08).

Working in the 1950s, Birch also had a key technical advantage over Collie in that radiotracer elements including carbon-14 had become commercially available. He therefore was able to test his acetate hypothesis by feeding labeled acetic acid to cells of a fungus that produce 6-methylsalicylic acid (6-MSA).³ The resulting natural product molecules were isotopically labeled as shown in **Scheme 2** in the manner predicted by Birch's acetate hypothesis, thereby vindicating the biosynthetic proposal. Birch went on to justify his hypothesis with many other phenolic systems.

Scheme 2 Biosynthetic study of 6-MSA biosynthesis.³

Later, when Collie's pioneering contributions were rediscovered, the research community had to choose what to call this class of acetate-derived natural products. Both terms, acetogenin and PK, had their adherents for a while, but in the end PK gained universal acceptance.

Since the middle of the last century, there has been a vigorous search for new natural products and as a result, the number and diversity of PK structures has rapidly increased.^{4–11} Some high-profile compounds are shown in **Scheme 3**. As can be seen, some are aromatic compounds whereas others are aliphatic. Collie would have been surprised to see the latter included under his chosen heading, but with the benefit of further knowledge accumulated over half a century, Birch was able to produce a unified hypothesis, which accounted for the genesis of both types of PK. He based his ideas partly on mechanistic reasoning and partly on analogy

Scheme 3 Polyketide structures.

with new knowledge of fatty acid biosynthesis. The relationship between fatty acid biosynthesis and that of PKs continues to influence thinking in the PK field to this day, so it is appropriate to give a brief account of the biosynthetic reactions used in fatty acid biosynthesis.

1.10.2 Fatty Acid Biosynthesis – Reactions and Enzymes

1.10.2.1 Synthetic Operations

Saturated fatty acids such as stearic acid are produced by repeated condensation of units of acetate to give a chain of the requisite length. The detailed steps are shown in **Scheme 4**. On mechanistic grounds, it is not surprising that the carboxyl groups of reacting acyl units are derivatized as thioesters using active thiol groups at the active sites of the participating ketosynthase (KS) enzymes and acyl carrier proteins (ACPs). This derivatization activates the carbonyl toward nucleophilic attack, and so helps to stabilize enolate anion derivatives where they occur in the

Scheme 4 The interactions between proteins and intermediates during the successive cycles of chain extension in fatty acid biosynthesis.