Engineering Materials 1

Engineering Materials 1

An Introduction to Properties, Applications, and Design

Fourth Edition

Michael F. Ashby

Royal Society Research Professor Emeritus, University of Cambridge and Former Visiting Professor of Design at the Royal College of Art, London

David R. H. Jones

President, Christ's College Cambridge

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Butterworth-Heinemann is an imprint of Elsevier

Butterworth-Heinemann is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB UK 225 Wyman Street, Waltham, MA 02451 USA

First published 1980 Second edition 1996 Reprinted 1998 (twice), 2000, 2001, 2002, 2003 Third edition 2005 Reprinted 2006 (twice), 2007, 2008, 2009

Copyright © 2012, Michael F. Ashby and David R. H. Jones. Published by Elsevier Ltd. All rights reserved.

The right of Michael F. Ashby and David R. H. Jones to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: *www.elsevier.com/ permissions*.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data Application submitted.

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.

ISBN: 978-0-08-096665-6

For information on all Butterworth-Heinemann publications, visit our website at www.books.elsevier.com

Printed in the United States

Contents

PREFACE TO	THE FOURTH EDITIONxi	ii
GENERAL IN	FRODUCTIONx	v
CHAPTER 1	Engineering Materials and Their Properties	1
	1.1 Introduction	1
	1.2 Examples of Materials Selection	3

Part A Price and Availability

CHAPTER 2	The Price and Availability of Materials	15
	2.1 Introduction	15
	2.2 Data for Material Prices	15
	2.3 The Use-Pattern of Materials	18
	2.4 Ubiquitous Materials	19
	2.5 Exponential Growth and Consumption	
	Doubling-Time	20
	2.6 Resource Availability	21
	2.7 The Future	23
	2.8 Conclusion	24

Part B The Elastic Moduli

CHAPTER 3	The Elastic Moduli	29
3	3.1 Introduction	29
3	3.2 Definition of Stress	30
3	3.3 Definition of Strain	34
3	3.4 Hooke's Law	36
3	3.5 Measurement of Young's Modulus	.36
3	3.6 Data for Young's Modulus	38
	Worked Example	38
	A Note on Stresses and Strains in 3 Dimensions	.42

	Elastic Bending of Beams	47
	Mode 1 Natural Vibration Frequencies	50
	Elastic Buckling of Struts	52
CHAPTER 4	Bonding between Atoms	55
	4.1 Introduction	55
	4.2 Primary Bonds	56
	4.3 Secondary Bonds	61
	4.4 The Condensed States of Matter	62
	4.5 Interatomic Forces	63
CHAPTER 5	Packing of Atoms in Solids	67
	5.1 Introduction	67
	5.2 Atom Packing in Crystals	68
	5.3 Close-Packed Structures and Crystal Energies	68
	5.4 Crystallography	70
	5.5 Plane Indices	72
	5.6 Direction Indices	72
	5.7 Other Simple Important	
	Crystal Structures	74
	5.8 Atom Packing in Polymers	75
	5.9 Atom Packing in Inorganic Glasses	77
	5.10 The Density of Solids	77
CHAPTER 6	The Physical Basis of Young's Modulus	83
	6.1 Introduction	83
	6.2 Moduli of Crystals	83
	6.3 Rubbers and the Glass Transition	
	Temperature	86
	6.4 Composites	
	Worked Example	90
CHAPTER 7	Case Studies in Modulus-Limited Design	95
	7.1 Case Study 1: Selecting Materials for Racing	05
	Yacht Masts	95
	7.2 Case Study 2: Designing a Mirror for a Large	
	Reflecting Telescope	98
	7.3 Case Study 3: The <i>Challenger</i> Space	
	Shuttle Disaster	
	Worked Example	108

vi

Part C	Yield Strength,	Tensile Strength ,
	and Ductility	

CHAPTER 8	Yield Strength, Tensile Strength, and Ductility	115
	8.1 Introduction	
	8.2 Linear and Nonlinear Elasticity	
	8.3 Load-Extension Curves for Nonelastic (Plastic)	
	Behavior	
	8.4 True Stress–Strain Curves for Plastic Flow	
	8.5 Plastic Work	
	8.6 Tensile Testing	
	8.7 Data	
	8.8 A Note on the Hardness Test	
	Revision of Terms and Useful Relations	129
CHAPTER 9	Dislocations and Yielding in Crystals	135
	9.1 Introduction	135
	9.2 The Strength of a Perfect Crystal	135
	9.3 Dislocations in Crystals	137
	9.4 The Force Acting on a Dislocation	140
	9.5 Other Properties of Dislocations	143
CHAPTER 10	Strengthening Methods and Plasticity	
	of Polycrystals	147
	10.1 Introduction	
	10.2 Strengthening Mechanisms	
	10.3 Solid Solution Hardening	
	10.4 Precipitate and Dispersion Strengthening	
	10.5 Work-Hardening	
	10.6 The Dislocation Yield Strength	
	10.7 Yield in Polycrystals	
	10.8 Final Remarks	154
CHAPTER 11	Continuum Aspects of Plastic Flow	157
	11.1 Introduction	
	11.2 The Onset of Yielding and the Shear Yield	
	Strength. k	
	11.3 Analyzing the Hardness Test	
	11.4 Plastic Instability: Necking in Tensile	
	Loading	
	Plastic Bending of Beams, Torsion of Shafts	
	and Buckling of Struts	

CHAPIER 12	Case Studies in Yield-Limited Design	171
	12.1 Introduction	
	12.2 Case Study 1: Elastic Design—Materials	
	for Springs	
	12.3 Case Study 2: Plastic Design—Materials	
	for Pressure Vessels	
	12.4 Case Study 3: Large-Strain Plasticity—	
	Metal Rolling	178
Part D Fa	st Fracture. Brittle Fracture.	
an	d Toughness	
CHAPTER 13	Fast Fracture and Toughness	187
	13.1 Introduction	
	13.2 Energy Criterion for Fast Fracture	
	13.3 Data for $G_{\rm c}$ and $K_{\rm c}$	
	Y Values	198
	K Conversions	203
CHAPTER 14	Micromechanisms of Fast Fracture	205
	14.1 Introduction	205
	14.2 Mechanisms of Crack Propagation 1:	
	Ductile Tearing	206
	14.3 Mechanisms of Crack Propagation 2:	
	Cleavage	208
	14.4 Composites, Including Wood	210
	14.5 Avoiding Brittle Alloys	211
	Worked Example	212
CHAPTER 15	Probabilistic Fracture of Brittle Materials	219
	15.1 Introduction	219
	15.2 The Statistics of Strength	220
	15.3 The Weibull Distribution	222
	15.4 The Modulus of Rupture	224
	Worked Example	225
CHAPTER 16	Case Studies in Fracture	229
	16.1 Introduction	229
	16.2 Case Study 1: Fast Fracture of an Ammonia	
	Tank	229
	16.3 Case Study 2: Explosion of a Perspex Pressure	
	Window During Hydrostatic Testing	233

viii

16.4	Case Study 3: Cracking of a Foam Jacket	
	on a Liquid Methane Tank	235
	Worked Example	240

Part E Fatigue Failure

CHAPTER 17	Fatigue Failure	249
	17.1 Introduction	249
	17.2 Fatigue of Uncracked Components	250
	17.3 Fatigue of Cracked Components	254
	17.4 Fatigue Mechanisms	255
	Worked Example	259
CHAPTER 18	Fatigue Design	
	18.1 Introduction	
	18.2 Fatigue Data for Uncracked	
	Components	
	18.3 Stress Concentrations	
	18.4 The Notch Sensitivity Factor	
	18.5 Fatigue Data for Welded Joints	
	18.6 Fatigue Improvement Techniques	270
	18.7 Designing Out Fatigue Cycles	272
	Worked Example	274
CHAPTER 19	Case Studies in Fatigue Failure	
	19.1 Case Study 1: The Comet Air Disasters	
	19.2 Case Study 2: The Eschede	
	Railway Disaster	
	19.3 Case Study 3: The Safety of the Stretham	
	Engine	

Part F Creep Deformation and Fracture

CHAPTER 20	Cree	ep and Creep Fracture	.311
	20.1	Introduction	.311
	20.2	Creep Testing and Creep Curves	.315
	20.3	Creep Relaxation	.318
	20.4	Creep Damage and Creep Fracture	.319
	20.5	Creep-Resistant Materials	.320
		Worked Example	.321

х

CHAPTER 21	Kinetic Theory of Diffusion	325
	21.1 Introduction	325
	21.2 Diffusion and Fick's Law	
	21.3 Data for Diffusion Coefficients	
	21.4 Mechanisms of Diffusion	
CHAPTER 22	Mechanisms of Creep and Creep-Resistant	
	Materials	337
	22.1 Introduction	337
	22.2 Creep Mechanisms: Metals and Ceramics	338
	22.3 Creep Mechanisms: Polymers	343
	22.4 Selecting Materials to Resist Creep	345
	Worked Example	345
CHAPTER 23	The Turbine Blade—A Case Study	
	in Creep-Limited Design	351
	23.1 Introduction	351
	23.2 Properties Required of a Turbine	
	Blade	352
	23.3 Nickel-Based Super-Alloys	354
	23.4 Engineering Developments—Blade	
	Cooling	357
	23.5 Future Developments: High-Temperature	
	Ceramics	359
	23.6 Cost Effectiveness	359
	Worked Example	
Part G Ox	idation and Corrosion	
	Ovidation of Matarials	267
CHAPIER 24		

	 24.1 Introduction 24.2 The Energy of Oxidation 24.3 Rates of Oxidation 24.4 Data 24.5 Micromechanisms 	.367 .368 .368 .371 .372
CHAPTER 25	Case Studies in Dry Oxidation	377 .377
	25.2 Case Study 1: Making Stainless Alloys	.377
	25.3 Case Study 2: Protecting Turbine Blades	.378
	25.4 A Note on Joining Operations	.382

CHAPTER 26	Wet	Corrosion of Materials	
	26.1	Introduction	
	26.2	Wet Corrosion	
	26.3	Voltage Differences as the Driving Force for	
		Wet Oxidation	
	26.4	Pourbaix (Electrochemical Equilibrium)	
		Diagrams	
	26.5	Some Examples	
	26.6	A Note on Standard Electrode Potentials	
	26.7	Localized Attack	
		Rates of Uniform Metal Loss	399
CHAPTER 27	Cas	e Studies in Wet Corrosion	
	27.1	Case Study 1: Protecting Ships' Hulls	
		from Corrosion	401
	27.2	Case Study 2: Rusting of a Stainless Steel	
		Water Filter	405
	27.3	Case Study 3: Corrosion in Reinforced	
		Concrete	408
	27.4	A Note on Small Anodes and Large Cathodes	410
		Worked Example	411

Part H Friction, Abrasion, and Wear

CHAFIER 20	Friction and Wear	
	28.1 Introduction	417
	28.2 Friction between Materials	418
	28.3 Data for Coefficients of Friction	420
	28.4 Lubrication	
	28.5 Wear of Materials	423
	28.6 Surface and Bulk Properties	425
CHAPTER 29		
CHAPTER 29	Case Studies in Friction and Wear	431
CHAPTER 29	Case Studies in Friction and Wear 29.1 Introduction	431 431
CHAPTER 29	Case Studies in Friction and Wear 29.1 Introduction 29.2 Case Study 1: The Design of Journal	431 431
CHAPTER 29	Case Studies in Friction and Wear 29.1 Introduction 29.2 Case Study 1: The Design of Journal Bearings	431 431 431
CHAPTER 29	 Case Studies in Friction and Wear	431 431 431
CHAPTER 29	 Case Studies in Friction and Wear	431 431 431 437

CHAPTER 30	Final Case Study: Materials and Energy	
	in Car Design	
	30.1 Introduction	
	30.2 Energy and Carbon Emissions	
	30.3 Ways of Achieving Energy Economy	
	30.4 Material Content of a Car	
	30.5 Alternative Materials	
	30.6 Production Methods	
	30.7 Conclusions	453
APPENDIX	Symbols and Formulae	
REFERENCES		
INDEX		

Preface to the Fourth Edition

In preparing this fourth edition of *Engineering Materials 1*, I have taken the opportunity to make significant changes, while being careful not to alter the essential character of the book. At the most obvious level, I have added many new photographs to illustrate both the basic coursework and also the case studies—many of these have been taken during my travels around the world investigating materials engineering problems. These days, the Internet is the essential tool of knowledge and communication—to the extent that textbooks should be used alongside web-based information sources.

So, in this new edition, I have given frequent references in the text to reliable web pages and video clips—ranging from the Presidential Commission report on the space shuttle *Challenger* disaster, to locomotive wheels losing friction on Indian Railways. And whenever a geographical location is involved, such as the Sydney Harbour Bridge, I have given the coordinates (latitude and longitude), which can be plugged into the search window in Google Earth to take you right there. Not only does this give you a feel for the truly global reach of materials and engineering, it also leads you straight to the large number of derivative sources and references, such as photographs and web pages, that can help you follow up your own particular interests.

I have added Worked Examples to many of the chapters to develop or illustrate a point without interrupting the flow of the chapter. These can be what one might call "convergent"—like putting numbers into a specific data set of fracture tests to calculate the Weibull modulus (you need to be able to do this, but it is best done offline)—or "divergent," such as recognizing the fatigue design details in the traffic lights in Manhattan and thus challenging you to look around the real world and think like an engineer.

I have made some significant changes to the way in which some of the subject material is presented. So, in the chapters on fatigue, I have largely replaced the traditional stress-based analysis with the total strain approach to fatigue life. In the creep chapters, the use of creep maps is expanded to show strain-rate contours and the effect of microstructure on creep régimes. In the corrosion

chapters, Pourbaix diagrams are used for the first time in order to show the regions of immunity, corrosion, and passivation, and how these depend on electrochemical potential and pH.

In addition, I have strengthened the links between the materials aspects of the subject and the "user" fields of mechanics and structures. Thus, at the ends of the relevant chapters, I have put short compendia of useful results: elastic bending, vibration, and buckling of beams after Chapter 3; plastic bending and torsion after Chapter 11; stress intensity factors for common crack geometries after Chapter 13; and data for calculating corrosion loss after Chapter 26. A simple introductory note on tensor notation for depicting stress and strain in three dimensions has also been added to Chapter 3.

Many new case studies have been added, and many existing case studies have either been replaced or revised and updated. The number of examples has been significantly expanded, and of these a large proportion contain case studies or practical examples relevant to materials design and avoidance of failure. In general, I have tried to choose topics for the case studies that are interesting, informative, and connected to today's world. So, the new case study on the *Challenger* space shuttle disaster—which derives from the earlier elastic theory (Hooke's law applied to pressurized tubes and chain sliding in rubber)—is timeless in its portrayal of how difficult it is in large corporate organizations for engineers to get their opinions listened to and acted on by senior management. The *Columbia* disaster 17 years later, involving the same organization and yet another materials problem, shows that materials engineering is about far more than just materials engineering.

Materials occupy a central place in all of engineering for without them, nothing can be made, nothing can be done. The challenge always is to integrate an intimate knowledge of the characteristics of materials with their applications in real structures, components, or devices. Then, it helps to be able to understand other areas of engineering, such as structures and mechanics, so that genuine collaborations can be built that will lead to optimum design and minimum risk. The modern airplane engine is one of the best examples, and the joints in the space shuttle booster one of the worst. In-between, there is a whole world of design, ranging from the excellent to the terrible (or not designed at all). To the materials engineer who is always curious, aware and vigilant, the world is a fascinating place.

Acknowledgments

The authors and publishers are grateful to a number of copyright holders for permission to reproduce their photographs. Appropriate acknowledgments are made in the individual figure captions. Unless otherwise attributed, all photographs were taken by Dr. Jones.

General Introduction

To the Student

Innovation in engineering often means the clever use of a new material—new to a particular application, but not necessarily (although sometimes) new in the sense of recently developed. Plastic paper clips and ceramic turbine blades both represent attempts to do better with polymers and ceramics what had previously been done well with metals. And engineering disasters are frequently caused by the misuse of materials. When the plastic bristles on your sweeping brush slide over the fallen leaves on your backyard, or when a fleet of aircraft is grounded because cracks have appeared in the fuselage skin, it is because the engineer who designed them used the wrong materials or did not understand the properties of those used. So, it is vital that the professional engineer should know how to select materials that best fit the demands of the design—economic and aesthetic demands, as well as demands of strength and durability. The designer must understand the properties of materials, and their limitations.

This book gives a broad introduction to these properties and limitations. It cannot make you a materials expert, but it can teach you how to make a sensible choice of material, how to avoid the mistakes that have led to difficulty or tragedy in the past, and where to turn for further, more detailed, help.

You will notice from the Contents that the chapters are arranged in *groups*, each group describing a particular class of properties: elastic modulus; fracture toughness; resistance to corrosion; and so forth. Each group of chapters starts by *defining the property*, describing how it is *measured*, and giving *data* that we use to solve problems involving design with materials. We then move on to the *basic science* that underlies each property and show how we can use this fundamental knowledge to choose materials with better properties. Each group ends with a chapter of *case studies* in which the basic understanding and the data for each property are applied to practical engineering problems involving materials.

At the end of each chapter, you will find a set of examples; each example is meant to consolidate or develop a particular point covered in the text. Try to do the examples from a particular chapter while this is still fresh in your mind. In this way, you will gain confidence that you are on top of the subject.

No engineer attempts to learn or remember tables or lists of data for material properties. But you *should* try to remember the broad orders of magnitude of these quantities. All food stores know that "a kg of apples is about 10 apples"—salesclerks still weigh them, but their knowledge prevents someone from making silly mistakes that might cost the stores money.

In the same way an engineer should know that "most elastic moduli lie between 1 and 10^3 GN m⁻² and are around 10^2 GN m⁻² for metals"—in any real design you need an accurate value, which you can get from suppliers' specifications; but an order of magnitude knowledge prevents you from getting the units wrong, or making other silly, possibly expensive, mistakes. To help you in this, we have added at the end of the book a list of the important definitions and formulae that you should know, or should be able to derive, and a summary of the orders of magnitude of materials properties.

To the Lecturer

This book is a course in Engineering Materials for engineering students with no previous background in the subject. It is designed to link up with the teaching of Design, Mechanics, and Structures, and to meet the needs of engineering students for a first materials course, emphasizing design applications.

The text is deliberately concise. Each chapter is designed to cover the content of one 50-minute lecture, 30 in all, and allows time for demonstrations and graphics. The text contains sets of worked case studies that apply the material of the preceding block of lectures. There are examples for the student at the end of the chapters.

We have made every effort to keep the mathematical analysis as simple as possible while still retaining the essential physical understanding and arriving at results, which, although approximate, are useful. But we have avoided mere description: most of the case studies and examples involve analysis, and the use of data, to arrive at solutions to real or postulated problems. This level of analysis, and these data, are of the type that would be used in a preliminary study for the selection of a material or the analysis of a design (or design failure).

It is worth emphasizing to students that the next step would be a detailed analysis, using *more precise mechanics* and *data from the supplier of the material or from in-house testing*. Materials data are notoriously variable. Approximate tabulations like those that are given here, though useful, should never be used for final designs.

Accompanying Resources

The following web-based resources are available to teachers and lecturers who adopt or recommend this text for class use. For further details and access to these resources, please go to *http://www.textbooks.elsevier.com*

Instructor's Manual

A full Solutions Manual with worked answers to the exercises in the main text is available for downloading.

Image Bank

An image bank of downloadable figures from the book is available for use in lecture slides and class presentations.

Online Materials Science Tutorials

A series of online materials science tutorials accompanies *Engineering Materials* 1 and 2. These were developed by Alan Crosky, Mark Hoffman, Paul Munroe, and Belinda Allen at the University of New South Wales (UNSW) in Australia; they are based on earlier editions of the books. The group is particularly interested in the effective and innovative use of technology in teaching. They realized the potential of the material for the teaching of Materials Engineering to their students in an online environment and have developed and then used these very popular tutorials for a number of years at UNSW. The results of this work have also been published and presented extensively.

The tutorials are designed for students of materials science as well as for those studying materials as a related or elective subject—for example, mechanical and/or civil engineering students. They are ideal for use as ancillaries to formal teaching programs and also may be used as the basis for quick refresher courses for more advanced materials science students. In addition, by picking selectively from the range of tutorials available, they will make ideal subject primers for students from related faculties.

The software has been developed as a self-paced learning tool, separated into learning modules based around key materials science concepts.

About the authors of the tutorials

Alan Crosky is a Professor in the School of Materials Science and Engineering, University of New South Wales. His teaching specialties include metallurgy, composites, and fractography.

Belinda Allen is an educational designer and adjunct lecturer in the Curriculum Research, Evaluation and Development team in the Learning and Teaching Unit, UNSW. She contributes to strategic initiatives and professional development programs for curriculum renewal, with a focus on effective integration of learning technologies.

Mark Hoffman is a Professor in the School of Materials Science and Engineering, UNSW. His teaching specialties include fracture, numerical modeling, mechanical behavior of materials, and engineering management.

Paul Munroe has a joint appointment as Professor in the School of Materials Science and Engineering and Director of the Electron Microscope Unit, UNSW. His teaching specialties are the deformation and strengthening mechanisms of materials and crystallographic and microstructural characterization.