Network Routing
The Morgan Kaufmann Series in Networking

Series Editor, David Clark, M.I.T.

Computer Networks: A Systems Approach, 4e
Larry L. Peterson and Bruce S. Davie

Network Routing: Algorithms, Protocols, and Architectures
Deepankar Medhi and Karthikeyan Ramasamy

Deploying IP and MPLS QoS for Multiservice Networks: Theory and Practice
John Evans and Clarence Filsfils

Traffic Engineering and QoS Optimization of Integrated Voice and Data Networks
Gerald R. Ash

IPv6 Core Protocols Implementation
Qing Li, Tatuya Jinmei, and Keiichi Shima

Smart Phone and Next-Generation Mobile Computing
Pei Zheng and Lionel Ni

GMPLS: Architecture and Applications
Adrian Farrel and Igor Bryskin

Network Security: A Practical Approach
Jan L. Harrington

Content Networking: Architecture, Protocols, and Practice
Markus Hofmann and Leland R. Beaumont

Network Algorithmics: An Interdisciplinary Approach to Designing Fast Networked Devices
George Varghese

Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP, and MPLS
Jean Philippe Vasseur, Mario Pickavet, and Piet Demeester

Routing, Flow, and Capacity Design in Communication and Computer Networks
Michał Pióro and Deepankar Medhi

Wireless Sensor Networks: An Information Processing Approach
Feng Zhao and Leonidas Leonidas

Communication Networking: An Analytical Approach
Anurag Kumar, D. Manjunath, and Joy Kuri

The Internet and Its Protocols: A Comparative Approach
Adrian Farrel

Modern Cable Television Technology: Video, Voice, and Data Communications, 2e
Walter Ciciora, James Farmer, David Large, and Michael Adams

Bluetooth Application Programming with the Java APIs
C. Bala Kumar, Paul J. Kline, and Timothy J. Thompson

Policy-Based Network Management: Solutions for the Next Generation
John Strassner

Network Architecture, Analysis, and Design, 2e
James D. McCabe

MPLS Network Management: MIBs, Tools, and Techniques
Thomas D. Nadeau

Developing IP-Based Services: Solutions for Service Providers and Vendors
Monique Morrow and Kateel Vijayananda

Telecommunications Law in the Internet Age
Sharon K. Black

Optical Networks: A Practical Perspective, 2e
Rajiv Ramaswami and Kumar N. Sivarajan

Internet QoS: Architectures and Mechanisms
Zheng Wang

TCP/IP Sockets in Java: Practical Guide for Programmers
Michael J. Donahoo and Kenneth L. Calvert

TCP/IP Sockets in C: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

Multicast Communication: Protocols, Programming, and Applications
Ralph Wittmann and Martina Zitterbart

MPLS: Technology and Applications
Bruce S. Davie and Yakov Rekhter

High-Performance Communication Networks, 2e
Jean Walrand and Pravin Varaiya

Internetworking Multimedia
Jon Crowcroft, Mark Handley, and Ian Wakeman

Understanding Networked Applications: A First Course
David G. Messerschmitt

Heinz-Gerd Hegering, Sebastian Abeck, and Bernhard Neumair

Virtual Private Networks: Making the Right Connection
Dennis Fowler

Networked Applications: A Guide to the New Computing Infrastructure
David G. Messerschmitt

Wide Area Network Design: Concepts and Tools for Optimization
Robert S. Cahn

For further information on these books and for a list of forthcoming titles, please visit our Web site at http://www.mkp.com.
Network Routing
Algorithms, Protocols, and Architectures

Deepankar Medhi
Karthikeyan Ramasamy
To Karen, Neiloy, and Robby: the core routers in our dynamic network where the distance cost varies instantaneously and over time, and where alternate routing and looping occur . . .

Love,

Deep/Dad

To my parents, R. Chellammal and N. Ramasamy—backplane of my life.

Love and regards,

Karthik
Contents

Foreword xxiii
Preface xxv
About the Authors xxxi

Part I: Network Routing: Basics and Foundations 1

1 Networking and Network Routing: An Introduction 2
1.1 Addressing and Internet Service: An Overview 4
1.2 Network Routing: An Overview 5
1.3 IP Addressing 7
1.3.1 Classful Addressing Scheme 8
1.3.2 Subnetting/Netmask 9
1.3.3 Classless Interdomain Routing 10
1.4 On Architectures 11
1.5 Service Architecture 12
1.6 Protocol Stack Architecture 13
1.6.1 OSI Reference Model 13
1.6.2 IP Protocol Stack Architecture 14
1.7 Router Architecture 19
1.8 Network Topology Architecture 20
1.9 Network Management Architecture 21
1.10 Public Switched Telephone Network 21
1.11 Communication Technologies 22
1.12 Standards Committees 24
1.12.1 International Telecommunication Union 24
1.12.2 Internet Engineering Task Force 25
1.12.3 MFA Forum 25
1.13 Last Two Bits 25
1.13.1 Type-Length-Value 25
1.13.2 Network Protocol Analyzer 26
1.14 Summary 26
Further Lookup 27
Exercises 27

2 Routing Algorithms: Shortest Path and Widest Path 30
2.1 Background 31
2.2 Bellman–Ford Algorithm and the Distance Vector Approach 33
 2.2.1 Centralized View: Bellman–Ford Algorithm 33
 2.2.2 Distributed View: A Distance Vector Approach 36
2.3 Dijkstra’s Algorithm 38
 2.3.1 Centralized Approach 38
 2.3.2 Distributed Approach 40
2.4 Comparison of the Bellman–Ford Algorithm and Dijkstra’s Algorithm 42
2.5 Shortest Path Computation with Candidate Path Caching 43
2.6 Widest Path Computation with Candidate Path Caching 45
2.7 Widest Path Algorithm 47
 2.7.1 Dijkstra-Based Approach 47
 2.7.2 Bellman–Ford-Based Approach 49
2.8 k-Shortest Paths Algorithm 49
2.9 Summary 51
Further Lookup 53
Exercises 53

3 Routing Protocols: Framework and Principles 56
3.1 Routing Protocol, Routing Algorithm, and Routing Table 57
3.2 Routing Information Representation and Protocol Messages 59
3.3 Distance Vector Routing Protocol 60
 3.3.1 Conceptual Framework and Illustration 60
 3.3.2 Why Timers Matter 66
 3.3.3 Solutions 70
 3.3.4 Can We Avoid Loops? 74
 3.3.5 Distance Vector Protocol Based on Diffusing Computation with Coordinated Update 74
3.4 Link State Routing Protocol 82
 3.4.1 Link State Protocol: In-Band Hop-by-Hop Disseminations 83
 3.4.2 Link State Protocol: In-Band Based on End-to-End Session 91
 3.4.3 Route Computation 92
3.5 Path Vector Routing Protocol 93
 3.5.1 Basic Principle 93
 3.5.2 Path Vector with Path Caching 97
3.6 Link Cost 102
 3.6.1 ARPANET Routing Metrics 102
 3.6.2 Other Metrics 103
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>Summary</td>
</tr>
<tr>
<td>Further Lookup</td>
<td>105</td>
</tr>
<tr>
<td>Exercises</td>
<td>105</td>
</tr>
<tr>
<td>4</td>
<td>Network Flow Modeling</td>
</tr>
<tr>
<td>4.1</td>
<td>Terminologies</td>
</tr>
<tr>
<td>4.2</td>
<td>Single-Commodity Network Flow</td>
</tr>
<tr>
<td>4.2.1</td>
<td>A Three-Node Illustration</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Formal Description and Minimum Cost Routing Objective</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Variation in Objective: Load Balancing</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Variation in Objective: Average Delay</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Summary and Applicability</td>
</tr>
<tr>
<td>4.3</td>
<td>Multicommodity Network Flow: Three-Node Example</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Minimum Cost Routing Case</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Load Balancing</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Average Delay</td>
</tr>
<tr>
<td>4.4</td>
<td>Multicommodity Network Flow Problem: General Formulation</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Background on Notation</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Link-Path Formulation</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Node-Link Formulation</td>
</tr>
<tr>
<td>4.5</td>
<td>Multicommodity Network Flow Problem: Non-Splittable Flow</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary</td>
</tr>
<tr>
<td>Further Lookup</td>
<td>139</td>
</tr>
<tr>
<td>Exercises</td>
<td>139</td>
</tr>
<tr>
<td>Part II: Routing in IP Networks</td>
<td>141</td>
</tr>
<tr>
<td>5</td>
<td>IP Routing and Distance Vector Protocol Family</td>
</tr>
<tr>
<td>5.1</td>
<td>Routers, Networks, and Routing Information: Some Basics</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Routing Table</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Communication of Routing Information</td>
</tr>
<tr>
<td>5.2</td>
<td>Static Routes</td>
</tr>
<tr>
<td>5.3</td>
<td>Routing Information Protocol, Version 1 (RIPv1)</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Communication and Message Format</td>
</tr>
<tr>
<td>5.3.2</td>
<td>General Operation</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Is RIPv1 Good to Use?</td>
</tr>
<tr>
<td>5.4</td>
<td>Routing Information Protocol, Version 2 (RIPv2)</td>
</tr>
<tr>
<td>5.5</td>
<td>Interior Gateway Routing Protocol (IGRP)</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Packet Format</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Computing Composite Metric</td>
</tr>
<tr>
<td>5.6</td>
<td>Enhanced Interior Gateway Routing Protocol (EIGRP)</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Packet Format</td>
</tr>
<tr>
<td>5.7</td>
<td>Route Redistribution</td>
</tr>
<tr>
<td>5.8</td>
<td>Summary</td>
</tr>
</tbody>
</table>
6 OSPF and Integrated IS-IS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 From a Protocol Family to an Instance of a Protocol</td>
<td>167</td>
</tr>
<tr>
<td>6.2 OSPF: Protocol Features</td>
<td>168</td>
</tr>
<tr>
<td>6.2.1 Network Hierarchy</td>
<td>168</td>
</tr>
<tr>
<td>6.2.2 Router Classification</td>
<td>168</td>
</tr>
<tr>
<td>6.2.3 Network Types</td>
<td>169</td>
</tr>
<tr>
<td>6.2.4 Flooding</td>
<td>170</td>
</tr>
<tr>
<td>6.2.5 Link State Advertisement Types</td>
<td>171</td>
</tr>
<tr>
<td>6.2.6 Subprotocols</td>
<td>171</td>
</tr>
<tr>
<td>6.2.7 Routing Computation and Equal-Cost Multipath</td>
<td>172</td>
</tr>
<tr>
<td>6.2.8 Additional Features</td>
<td>176</td>
</tr>
<tr>
<td>6.3 OSPF Packet Format</td>
<td>177</td>
</tr>
<tr>
<td>6.4 Examples of Router LSAs and Network LSAs</td>
<td>183</td>
</tr>
<tr>
<td>6.5 Integrated IS-IS</td>
<td>185</td>
</tr>
<tr>
<td>6.5.1 Key Features</td>
<td>186</td>
</tr>
<tr>
<td>6.6 Similarities and Differences Between IS-IS and OSPF</td>
<td>189</td>
</tr>
<tr>
<td>6.7 Summary</td>
<td>191</td>
</tr>
</tbody>
</table>

7 IP Traffic Engineering

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Traffic, Stochasticity, Delay, and Utilization</td>
<td>195</td>
</tr>
<tr>
<td>7.1.1 What Is IP Network Traffic?</td>
<td>195</td>
</tr>
<tr>
<td>7.1.2 Traffic and Performance Measures</td>
<td>195</td>
</tr>
<tr>
<td>7.1.3 Characterizing Traffic</td>
<td>196</td>
</tr>
<tr>
<td>7.1.4 Average Delay in a Single Link System</td>
<td>197</td>
</tr>
<tr>
<td>7.1.5 Nonstationarity of Traffic</td>
<td>199</td>
</tr>
<tr>
<td>7.2 Applications’ View</td>
<td>200</td>
</tr>
<tr>
<td>7.2.1 TCP Throughput and Possible Bottlenecks</td>
<td>200</td>
</tr>
<tr>
<td>7.2.2 Bandwidth-Delay Product</td>
<td>201</td>
</tr>
<tr>
<td>7.2.3 Router Buffer Size</td>
<td>202</td>
</tr>
<tr>
<td>7.3 Traffic Engineering: An Architectural Framework</td>
<td>203</td>
</tr>
<tr>
<td>7.4 Traffic Engineering: A Four-Node Illustration</td>
<td>204</td>
</tr>
<tr>
<td>7.4.1 Network Flow Optimization</td>
<td>204</td>
</tr>
<tr>
<td>7.4.2 Shortest Path Routing and Network Flow</td>
<td>206</td>
</tr>
<tr>
<td>7.5 Link Weight Determination Problem: Preliminary Discussion</td>
<td>211</td>
</tr>
<tr>
<td>7.6 Duality of the MCNF Problem</td>
<td>213</td>
</tr>
<tr>
<td>7.6.1 Illustration of Duality Through a Three-Node Network</td>
<td>213</td>
</tr>
<tr>
<td>7.6.2 General Case: Minimum Cost Routing</td>
<td>215</td>
</tr>
<tr>
<td>7.6.3 Minimization of Maximum Link Utilization</td>
<td>219</td>
</tr>
<tr>
<td>7.6.4 A Composite Objective Function</td>
<td>221</td>
</tr>
<tr>
<td>7.6.5 Minimization of Average Delay</td>
<td>222</td>
</tr>
</tbody>
</table>
Contents

7.7 Illustration of Link Weight Determination Through Duality
- 7.7.1 Case Study: I
- 7.7.2 Case Study: II

7.8 Link Weight Determination: Large Networks

7.9 Summary

Further Lookup

Exercises

8 BGP

- **8.1** BGP: A Brief Overview
- **8.2** BGP: Basic Terminology
- **8.3** BGP Operations
 - 8.3.1 Message Operations
 - 8.3.2 BGP Timers
- **8.4** BGP Configuration Initialization
- **8.5** Two Faces of BGP: External BGP and Internal BGP
- **8.6** Path Attributes
- **8.7** BGP Decision Process
 - 8.7.1 BGP Path Selection Process
 - 8.7.2 Route Aggregation and Dissemination
 - 8.7.3 Recap
- **8.8** Internal BGP Scalability
 - 8.8.1 Route Reflection Approach
 - 8.8.2 Confederation Approach
- **8.9** Route Flap Dampening
- **8.10** BGP Additional Features
 - 8.10.1 Communities
 - 8.10.2 Multiprotocol Extension
- **8.11** Finite State Machine of a BGP Connection
- **8.12** Protocol Message Format
 - 8.12.1 Common Header
 - 8.12.2 Message Type: OPEN
 - 8.12.3 Message Type: UPDATE
 - 8.12.4 Message Type: NOTIFICATION
 - 8.12.5 Message Type: KEEPALIVE
 - 8.12.6 Message Type: ROUTE–REFRESH
 - 8.12.7 Path Attribute in UPDATE message
- **8.13** Summary

Further Lookup

Exercises

9 Internet Routing Architectures

- **9.1** Internet Routing Evolution
- **9.2** Addressing and Routing: Illustrations
 - 9.2.1 Routing Packet: Scenario A
9.2.2 Routing Packet: Scenario B 286
9.2.3 Routing Packet: Scenario C 288

9.3 Current Architectural View of the Internet 290
9.3.1 Customers and Providers, Peering and Tiering, and Exchange Points 291
9.3.2 A Representative Architecture 294
9.3.3 Customer Traffic Routing: A Geographic Perspective 297
9.3.4 Size and Growth 298

9.4 Allocation of IP Prefixes and AS Number 301
9.5 Policy-Based Routing 304
9.5.1 BGP Wedgies 306
9.6 Point of Presence 307
9.7 Traffic Engineering Implications 309
9.8 Internet Routing Instability 311
9.9 Summary 312

Further Lookup 312
Exercises 313

Part III: Routing in the PSTN 315

10 Hierarchical and Dynamic Call Routing in the Telephone Network 316
10.1 Hierarchical Routing 317
10.1.1 Basic Idea 317
10.1.2 A Simple Illustration 318
10.1.3 Overall Hierarchical Routing Architecture 320
10.1.4 Telephone Service Providers and Telephone Network Architecture 321
10.2 The Road to Dynamic Routing 322
10.2.1 Limitation of Hierarchical Routing 322
10.2.2 Historical Perspective 323
10.2.3 Call Control and Crankback 325
10.2.4 Trunk Reservation 326
10.2.5 Where Does Dynamic Routing Fit with Hierarchical Routing? 326
10.2.6 Mixing of OCC and PCC 327
10.2.7 Summary 327
10.3 Dynamic Nonhierarchical Routing 328
10.4 Dynamically Controlled Routing 330
10.5 Dynamic Alternate Routing 333
10.6 Real-Time Network Routing 334
10.7 Classification of Dynamic Call Routing Schemes 336
10.8 Maximum Allowable Residual Capacity Routing 337
10.9 Dynamic Routing and Its Relation to Other Routing 339
10.9.1 Dynamic Routing and Link State Protocol 339
10.9.2 Path Selection in Dynamic Routing in Telephone Networks and IP Routing 339
10.9.3 Relation to Constraint-Based Routing 340
10.10 Recap
Further Lookup
Exercises

11 Traffic Engineering in the Voice Telephone Network 344
11.1 Why Traffic Engineering? 345
11.2 Traffic Load and Blocking
11.2.1 Computing Erlang-B Loss Formula 349
11.3 Grade-of-Service and Trunk Occupancy 350
11.4 Centi-Call Seconds and Determining Offered Load 352
11.5 Economic CCS Method 354
11.6 Network Controls for Traffic Engineering
11.6.1 Guidelines on Detection of Congestion 356
11.6.2 Examples of Controls 357
11.6.3 Communication of Congestion Control Information 361
11.6.4 Congestion Manifestation 361
11.7 State-Dependent Call Routing 362
11.8 Analysis of Dynamic Routing
11.8.1 Three-Node Network 363
11.8.2 \(N \)-Node Symmetric Network 364
11.8.3 \(N \)-Node Symmetric Network with Trunk Reservation 365
11.8.4 Illustration Without and with Trunk Reservation 367
11.9 Summary 371
Further Lookup
Exercises

12 SS7: Signaling Network for Telephony 374
12.1 Why SS7? 375
12.2 SS7 Network Topology
12.2.1 Node Types 376
12.2.2 SS7 Links 376
12.3 Routing in the SS7 Network 378
12.4 Point Codes: Addressing in SS7
12.4.1 North American Point Code 380
12.4.2 ITU Point Code 381
12.5 Point Code Usage 382
12.5.1 Address Assignment 382
12.5.2 Relationship Between a Telephone Switch and an SSP 382
12.5.3 Interworking of SS7 Networks with Different Addressing Schemes 383
12.6 SS7 Protocol Stack
12.6.1 Lower-Layer Protocols: MTP1, MTP2, and MTP3 384
12.6.2 Upper-Layer Protocols 388
12.7 SS7 Network Management 388
12.8 ISUP and Call Processing
12.8.1 Called/Calling Party Number Format 395
Part IV: Router Architectures

14 **Router Architectures**

14.1 Functions of a Router
- 14.1.1 Basic Forwarding Functions
- 14.1.2 Complex Forwarding Functions
- 14.1.3 Routing Process Functions
- 14.1.4 Routing Table versus Forwarding Table
- 14.1.5 Performance of Routers

14.2 Types of Routers

14.3 Elements of a Router

14.4 Packet Flow
- 14.4.1 Ingress Packet Processing
- 14.4.2 Egress Packet Processing

14.5 Packet Processing: Fast Path versus Slow Path
- 14.5.1 Fast Path Functions
- 14.5.2 Slow Path Operations

14.6 Router Architectures
- 14.6.1 Shared CPU Architectures
- 14.6.2 Shared Forwarding Engine Architectures
- 14.6.3 Shared Nothing Architectures
- 14.6.4 Clustered Architectures

14.7 Summary

15 IP Address Lookup Algorithms

15.1 Impact of Addressing on Lookup
- 15.1.1 Address Aggregation

15.2 Longest Prefix Matching
- 15.2.1 Trends, Observations, and Requirements

15.3 Naïve Algorithms

15.4 Binary Tries
- 15.4.1 Search and Update Operations
- 15.4.2 Path Compression

15.5 Multibit Tries
- 15.5.1 Prefix Transformations
- 15.5.2 Fixed Stride Multibit Trie
- 15.5.3 Search Algorithm
- 15.5.4 Update Algorithm
15.5.5 Implementation 505
15.5.6 Choice of Strides 506
15.5.7 Variable Stride Multibit Trie 506
15.6 Compressing Multibit Tries 507
15.6.1 Level Compressed Tries 507
15.6.2 Lulea Compressed Tries 510
15.6.3 Tree Bitmap 514
15.7 Search by Length Algorithms 519
15.7.1 Linear Search on Prefix Lengths 520
15.7.2 Binary Search on Prefix Lengths 520
15.8 Search by Value Approaches 522
15.8.1 Prefix Range Search 522
15.9 Hardware Algorithms 525
15.9.1 RAM-Based Lookup 525
15.9.2 Ternary CAM-Based Lookup 526
15.9.3 Multibit Tries in Hardware 528
15.10 Comparing Different Approaches 530
15.11 Summary 531
Further Lookup 531
Exercises 532

16 IP Packet Filtering and Classification 534
16.1 Importance of Packet Classification 535
16.2 Packet Classification Problem 537
16.2.1 Expressing Rules 538
16.2.2 Performance Metrics 538
16.3 Packet Classification Algorithms 540
16.4 Naïve Solutions 540
16.5 Two-Dimensional Solutions 541
16.5.1 Hierarchical Tries: Trading Time for Space 541
16.5.2 Set Pruning Tries: Trading Space for Time 544
16.5.3 Grid-of-Tries: Optimizing Both Space and Time 545
16.6 Approaches for d Dimensions 548
16.6.1 Geometric View of Classification: Thinking Differently 549
16.6.2 Characteristics of Real-Life Classifiers: Thinking Practically 551
16.7 Extending Two-Dimensional Solutions 552
16.7.1 Naïve Extensions 552
16.7.2 Native Extensions 553
16.8 Divide and Conquer Approaches 555
16.8.1 Lucent Bit Vector 556
16.8.2 Aggregated Bit Vector 558
16.8.3 Cross-Producing 560
16.8.4 Recursive Flow Classification 562
16.9 Tuple Space Approaches 568
Part V: Toward Next Generation Routing

17 Quality of Service Routing
 17.1 Background
 17.2 QoS Attributes
 17.3 Adapting Shortest Path and Widest Path Routing: A Basic Framework
 17.3.1 Single Attribute
 17.3.2 Multiple Attributes
 17.3.3 Additional Consideration
 17.4 Update Frequency, Information Inaccuracy, and Impact on Routing
 17.5 Lessons from Dynamic Call Routing in the Telephone Network
 17.6 Heterogeneous Service, Single-Link Case
 17.7 A General Framework for Source-Based QoS Routing with Path Caching
 17.7.1 Routing Computation Framework
 17.7.2 Routing Computation
 17.7.3 Routing Schemes
 17.7.4 Results
 17.8 Routing Protocols for QoS Routing
 17.8.1 QOSPF: Extension to OSPF for QoS Routing
 17.8.2 ATM PNNI
 17.9 Summary
 Further Lookup
 Exercises

18 MPLS and GMPLS
 18.1 Background
 18.2 Traffic Engineering Extension to Routing Protocols
 18.3 Multiprotocol Label Switching
 18.3.1 Labeled Packets and LSP
 18.3.2 Label Distribution
 18.3.3 RSVP-TE for MPLS
 18.3.4 Traffic Engineering Extensions to OSPF and IS-IS
Contents

18.4 Generalized MPLS
- 18.4.1 GMPLS Labels
- 18.4.2 Label Stacking and Hierarchical LSPs: MPLS/GMPLS
- 18.4.3 RSVP-TE for GMPLS
- 18.4.4 Routing Protocols in GMPLS
- 18.4.5 Control and Data Path Separation and Link Management Protocol

18.5 MPLS Virtual Private Networks
- 18.5.1 BGP/MPLS IP VPN
- 18.5.2 Layer 2 VPN

18.6 Summary

Further Lookup

Exercises

19 Routing and Traffic Engineering with MPLS

19.1 Traffic Engineering of IP/MPLS Networks
- 19.1.1 A Brisk Walk Back in History
- 19.1.2 MPLS-Based Approach for Traffic Engineering

19.2 VPN Traffic Engineering
- 19.2.1 Problem Illustration: Layer 3 VPN
- 19.2.2 LSP Path Determination: Constrained Shortest Path Approach
- 19.2.3 LSP Path Determination: Network Flow Modeling Approach
- 19.2.4 Layer 2 VPN Traffic Engineering
- 19.2.5 Observations and General Modeling Framework

19.3 Routing/Traffic Engineering for Voice Over MPLS

19.4 Summary

Further Lookup

Exercises

20 VoIP Routing: Interoperability Through IP and PSTN

20.1 Background

20.2 PSTN Call Routing Using the Internet
- 20.2.1 Conceptual Requirement
- 20.2.2 VoIP Adapter Functionality
- 20.2.3 Addressing and Routing
- 20.2.4 Service Observations
- 20.2.5 Traffic Engineering
- 20.2.6 VoIP Adapter: An Alternative Scenario

20.3 PSTN Call Routing: Managed IP Approach

20.4 IP-PSTN Interworking for VoIP
- 20.4.1 Gateway Function
- 20.4.2 SIP Addressing Basics
- 20.4.3 SIP Phone to POTS Phone
- 20.4.4 POTS Phone to SIP Phone
- 20.4.5 PSTN-IP-PSTN
- 20.4.6 Traffic Engineering
- 20.4.7 Relation to Using MPLS
21.2 Requirements and Metrics 4
21.3 Shared Backplanes 5
 21.3.1 Shared Bus 5
21.4 Switched Backplanes 7
21.5 Shared Memory 7
 21.5.1 Scaling Memory Bandwidth 9
21.6 Crossbar 10
 21.6.1 Take-a-Ticket Scheduler 12
 21.6.2 Factors That Limit Performance 14
21.7 Head-of-Line Blocking 15
21.8 Output Queueing 16
21.9 Virtual Output Queueing 19
 21.9.1 Maximum Bipartite Matching 20
 21.9.2 Parallel Iterative Matching 22
 21.9.3 iSLIP Scheduling 27
 21.9.4 Priorities and Multicast in iSLIP 30
21.10 Input and Output Blocking 32
21.11 Scaling Switches to a Large Number of Ports 33
21.12 Clos Networks 34
 21.12.1 Complexity of Scheduling Algorithms 37
21.13 Torus Networks 39
 21.13.1 Packaging Using Short Wires 42
21.14 Scaling Switches for High-Speed Links 43
 21.14.1 Bit Slicing 44
 21.14.2 Time Slicing 44
 21.14.3 Distributed Scheduling 45
21.15 Conclusions 46
21.16 Summary 47
Further Lookup 47
Exercises 48

22 Packet Queueing and Scheduling 2
22.1 Packet Scheduling 3
 22.1.1 First-In, First-Out Queueing 3
 22.1.2 Priority Queueing 4
 22.1.3 Round-Robin and Fair Queueing 5
 22.1.4 Weighted Round-Robin and Weighted Fair Queueing 6
 22.1.5 Deficit Round-Robin Queueing 8
 22.1.6 Modified Deficit Round-Robin Queueing 11
22.2 TCP Congestion Control 11
 22.2.1 Slow Start 12
 22.2.2 Additive Increase, Multiplicative Decrease 13
 22.2.3 Fast Retransmit and Fast Recovery 14
22.3 Implicit Feedback Schemes 15
22.3.1 Drop Position
22.3.2 Proactive versus Reactive Dropping
22.4 Random Early Detection (RED)
 22.4.1 Computing Average Length of Queue
 22.4.2 Computing Drop Probability
 22.4.3 Setting Q_{min} and Q_{max}
22.5 Variations of RED
 22.5.1 Weighted Random Early Detection
 22.5.2 Adaptive Random Early Detection
22.6 Explicit Feedback Schemes
 22.6.1 Choke Packets
 22.6.2 Explicit Congestion Notification
22.7 New Class of Algorithms
22.8 Analyzing System Behavior
22.9 Summary
 Further Lookup
 Exercises

23 Traffic Conditioning
 23.1 Service Level Agreements
 23.2 Traffic Conditioning Mechanisms
 23.3 Traffic Shaping
 23.3.1 Leaky Bucket
 23.3.2 Token Bucket
 23.4 Traffic Policing
 23.4.1 Comparing Traffic Policing and Shaping
 23.5 Packet Marking
 23.5.1 Graded Profiles
 23.5.2 Single-Rate Tricolor Marking
 23.5.3 Two-Rate Tricolor Marking
 23.6 Summary
 Further Lookup
 Exercises

24 Transport Network Routing
 24.1 Why Transport Network/Service
 24.2 Timing of Request and Transport Service Provisioning
 24.3 Multi-Time Period Transport Network Routing Design
 24.4 Transport Routing with Varied Protection Levels
 24.5 Solution Approaches
 24.6 Summary
 Further Lookup
 Exercises
25 Optical Network Routing and Multilayer Routing

25.1 SONET/SDH Routing
25.1.1 SONET/SDH Overview
25.1.2 Routing in a SONET Ring
25.1.3 Routing in SONET/SDH Transport Cross-Connect Networks

25.2 WDM Routing
25.2.1 WDM Overview
25.2.2 Routing in WDM with Full Conversion: Transport Mode
25.2.3 No Conversion Case
25.2.4 Protection Routing
25.2.5 On-Demand, Instantaneous WDM services

25.3 Multilayer Networking
25.3.1 Overview
25.3.2 IP Over SONET: Combined Two-Layer Routing Design

25.4 Overlay Networks and Overlay Routing

25.5 Summary
Further Lookup
Exercises
Foreword

My involvement with computer networking started with TheoryNet (1977), an e-mail system for theoretical computer scientists. Later (1981) I helped lead the computer science network (CSNET) project, which eventually connected most academic and many industrial computer research groups. In the early days, our efforts were primarily focused on providing connectivity and being able to use applications such as e-mail, ftp, and telnet. However, even in the simple (by today’s standards) environment of the 1970s and early 1980s (Arpanet, CSNET, and other experimental Internet networks), getting routing “right” turned out to be quite challenging.

I was fortunate to be part of the NSFNET regional/backbone model development. This is when I began to fully understand the significance of routing in a large-scale multi-domain network and, in particular, the central role of policy issues in such a decentralized environment. Over the past decade, as the Internet became ubiquitous and global in scale, routing has become ever more important. Packets must be forwarded efficiently from one end of the world to the other with minimal perception of delay. This has required tremendous efforts on many fronts: how to evolve routing protocols for large-scale loosely-coupled networking environments, how to engineer a network for efficient routing from an operational point of view, how to do efficient packet processing at routers, and how to effectively take into account the complexity of policy issues in the determination of routes. And while there have been many exciting advances over the past two decades, much work remains to be done.

In parallel, we have seen tremendous advances in traditional telephony. The underlying telecommunication system has changed from analog to digital and has incorporated the latest advances in optical technologies and, more recently, voice over IP. Throughout these revolutionary changes, routing has continued to play a critical role.

We are now at a crossroad. Various efforts are underway to determine a framework for next generation networks that allow seamless convergence of services and a platform to more easily create new services. Among other things, this requires a fresh look at routing. To be successful, it is important that we understand what has worked to date. To better understand the issues and complexities, we should look at this broadly, considering a variety of different network architectures, not just for the Internet. For each such network architecture, we can benefit from understanding its principles, protocols, algorithms, and functions, with a focus on routing. This will help give us perspective as we consider how to design routing for the next-generation network.

In this regard, Deepankar Medhi and Karthikeyan Ramasamy’s book, *Network Routing: Algorithms, Protocols, and Architectures*, is very timely. Departing from most other works, it
is unique in providing an in-depth understanding of routing in a wide variety of types of networks. It includes extensive coverage of the evolution of routing over time. Particularly appealing is its in-depth coverage across a spectrum of algorithmic, technical, experiential, and practical issues. In addition, the detailed coverage of routers and switches is particularly valuable, as it helps the reader gain an understanding of why different approaches and components are needed to address packet processing, especially for scalability. In this regard, it is uniquely successful in drawing an important connection between routing and routers.

Medhi and Ramasamy’s presentation is clear and approachable, allowing a wide audience to understand and gain an appreciation of network routing. I believe that it will become a core reference book on routing for router developers, network providers, students, and researchers for both today’s practitioners and those who are interested in next-generation routing.

LAWRENCE LANDWEBER
Past John P. Morgridge Chair and Past Department Chairman
Computer Science Department, University of Wisconsin–Madison
Fellow, Association for Computing Machinery and
Recipient of IEEE Award on International Communication
Former President and Chair of the Board of Trustees, Internet Society
Preface

In the span of a quarter-century, network routing in communication networks has evolved tremendously. Just a quarter-century ago, the public switched telephone network (PSTN) was running hierarchical routing, ARPANET routing was operational, and the telecommunication infrastructure had fixed static transport routes. In the 1980s, we saw the first tremendous growth in routing: Internet routing was deployed under the TCP/IP stack starting, first with the RIP protocol; the telephone network started deploying dynamic call routing schemes; and the telecommunication transport network deployed SONET transport mechanisms, which could reroute in a ring topology in 40 millisec in the event of a failure. In the past fifteen years, we have seen the need for policy routing because of multiprovider settings, and the need to develop fast lookup algorithms for packet processing that enables efficient routing. We have also seen interdependency between addressing and routing as first addressed through classless interdomain routing (CIDR) and more recently, because of number portability in the PSTN. More importantly, we saw how the way an addressing scheme is deployed can impact routing and lookup algorithms.

Network routing can be broadly divided into three basic fundamental categories: packet routing, circuit-switched routing, and transport routing; certainly, a combination is possible. The evolution over the past quarter-century has brought to the foreground the need to understand and examine where and how different dimensions of routing, from algorithms to protocols to architectures, can differ for different types of networks, and where they intersect. Certainly, the goal is to learn from our past experiences and prepare ourselves for next generation networks and routing.

While numerous papers have been written on the subject of network routing, and several books are now available on routing for specific networks, the field still lacks a comprehensive or systematic guide that encompasses various routing paradigms. Second, even in discussions of a single routing type (for example, either the Internet or PSTN), the focus often appears to be either on protocols or algorithms without tying them together with analysis and implementation; or, the work delves more into router command-line for router configuration; or, being informational without explaining the whys. Furthermore, how the addressing mechanism can affect routing decisions is yet another important topic that is rarely discussed. For efficient routing, how routers are architectured—and why—is yet another mystery. Finally, the relation between traffic engineering and efficient routing is also another topic. In the end, one needs to be somewhat of an “expert” in different routing paradigms to get a well-rounded view.
Last, after investigating routing in different networks for a number of years, we have come to the conclusion that network routing is like an economy. Similar to macroeconomics and microeconomics, network routing also has macro- and micro-centric issues. In addition, seemingly different and conflicting systems can and do co-exist. Not all of the issues are purely technical; business relations and regulatory issues are also important to recognize and consider. This book is an attempt to paint a broad picture that encompasses various aspects of network routing in one place.

AUDIENCE

Our goal has been to create a book that can be used by a diverse set of audiences, with varied levels of background. Specifically, we set out to create a book that can be used by professionals, as well as students and researchers. In general, this is intended as a self-study. We assume that the reader already has some basic knowledge of networking. Among professionals, the intent has been to cover two broad groups: router developers, including protocol designers and router architects, and network designers and operators, with the overall goal to bring out issues that one group might want to understand that the other group faces. For students, this book is intended to help learn about routing in depth, along with the big picture and lessons from operational and implementation experience. For researchers who want to know what has been done so far and what critical issues to address for next-generation routing, this is intended as a helpful reference. In general, this book has been intended as a one-stop treat for all interested in network routing in different networks.

ORGANIZATION AND APPROACH

The book is organized into six parts. Each part starts with a chapter-level summary. We present below a brief overview of each part:

- **Part I (four chapters):** We cover the basic foundations of routing from algorithms to protocols, along with network flow modeling.
- **Part II (five chapters):** This part is about IP network routing, from standardized protocols for both intra- and inter-domain routing, to IP traffic engineering and Internet routing architectures.
- **Part III (four chapters):** This part covers PSTN routing, from hierarchical routing to dynamic routing, and from addressing to traffic engineering, including the role of signaling in routing, along with the impact of number portability in routing.
- **Part IV (three chapters):** In this part, we cover router architectures for different scale routers for efficient packet processing, along with address lookup algorithms and packet filtering and classification mechanisms.
- **Part V (four chapters):** As impetuses for next generation routing, we present quality-of-service routing, multiprotocol label switching, generalized multiprotocol label switching, and routing at the intersection of IP-PSTN for voice over IP.
- **Part VI (five chapters):** This bonus material (available on the CD-ROM) is made up of two sub-parts: the first three chapters continue beyond Part IV by delving more into routers by
presenting efficient switching, packet queueing and scheduling, and traffic conditioning; the remaining two chapters extend Part V by covering transport network routing, optical network routing, and multi-layer routing.

At the beginning of each chapter, a reading guideline is provided. This gives a brief description on the background needed to read the chapter; it also discusses which other chapters this chapter is connected to or has dependency on. In general, it is not necessary to read the chapters in sequential order. Furthermore, the chapters are organized in a way so that the reader who has familiarity with a particular topic can move on and read other chapters of interest. Similarly, there are a few chapters on traffic engineering that require a certain level of mathematical background. They can be read independently if the reader has the background, or can be skipped for later reading, without missing the broad picture. Regardless, each chapter contains a Further Lookup section, which includes a brief discussion on additional reading; followed by a set of exercises that is meant for a wide audience. Notations, conventions, and symbols used in the book are summarized in Appendix A. Miscellaneous refresher topics that are helpful in understanding the material presented in this book are included in Appendix B.

In general, we have given special attention to being concise about describing each topic, while ensuring that the material is approachable for a wider audience. The book is still hefty in size in order to cover routing in different networks. Despite our keen interest, we needed to make the decision to leave out certain important topics instead of cutting corners on the topics presented. The topics not covered in the book (except for cursory remarks) are: multicast routing, routing in ATM networks, routing in cellular/wireless networks, routing in sensor networks, and security vulnerabilities in routing. The router command-line–based configuration of protocols is not included in this book, because there are many detailed books available on this aspect for various Internet routing protocols. Finally, there is a direct connection between routing and capacity design and planning. For an in-depth treatment of capacity design and planning, the reader is referred to the companion book [564].

BONUS MATERIALS AND ONLINE RESOURCES

The book, in its printed form, has 20 chapters. A CD-ROM is provided with the book that contains an additional five chapters labeled “Advanced Topics.” Of these five chapters, three chapters are related to router architectures: switching packets (Chapter 21), packet queueing and scheduling (Chapter 22), and traffic conditioning (Chapter 23). The remaining two chapters are related to transport and next-generation routing: transport network routing (Chapter 24), and optical network routing and multilayer routing (Chapter 25).

Additional support materials (for example, instructional materials and additional exercises) will be available at http://www.mkp.com/?isbn=9780120885886 and http://www.NetworkRouting.net. The latter site will also serve as a resource site and will provide links to materials available on the web on network routing.
ACKNOWLEDGMENTS

To quote Jeff Doyle, “An author of a technical book is just a front man for a small army of brilliant, dedicated people.” We could not have said it better.

Our official technical reviewers did a tremendous job of reading carefully and providing detailed comments. We thank Jennifer Rexford (Princeton University), Ibrahim Matta (Boston University), K. R. Krishnan (Telcordia Technologies), and Kannan Varadhan (Juniper Networks) for lending their expertise, time, and effort.

In addition, many afforded their expertise by reading one or more chapters and by providing valuable feedback; we gratefully acknowledge Amit Shukla (Microsoft), Arthi Ayyangar (Nuova Systems), Caterina Scoglio (Kansas State University), Chelian Pandian (Juniper Networks), Dana Blair (Cisco Systems), David Walden (BBN, retired), Debashis Talukdar (Embarq), Dock Williams (Juniper Networks), Driss Benhaddou (University of Houston), Hua Qin (Beijing University of Technology), Hui Zhang (Carnegie Mellon University), Jeff Naughton (University of Wisconsin–Madison), Jignesh M. Patel (University of Michigan), Johannes Gehrke (Cornell University), John Strand (AT&T Labs), Mario Baldi (Politecnico di Torino), Prasad Deshpande (IBM), Prosper Chemouil (France Telecom R&D), Rahul Agrawal (Juniper Networks), Ravi Chandra (Sona Systems), Raymond Reeves (Sprint), Saad Siddiqi (Sprint), Shachi Sharma (Alcatel), Srinivas Seshadri (Kosmix), Steve Dispensa (Positive Networks), Vamsi Valluri (Cisco Systems), Venkatesh Iyengar (Sun Microsystems), and Vijay Talati (Juniper Networks).

The first author’s colleagues in the Networking group at the University of Missouri–Kansas City, Appie van de Liefvoort, Baek-Young Choi, Cory Beard, Jerry Place, Ken Mitchell, and Khosrow Sohraby, served as great resources. They read one or more chapters, were around to have a quick discussion and to provide their theoretical as well as practical expertise when needed. Appie van de Liefvoort and Khosrow Sohraby, in their roles as administrators, provided a much-needed environment for the first author to carry out a project of this magnitude without too many distractions. More than a decade ago, a former colleague, Adrian Tang, was instrumental and believed in the importance of creating a separate course on network routing; with his interest and the nod from Richard Hetherington (the then director), the first author developed and taught a course on network routing encompassing different networks for the first time in fall 1995; he also benefited from the publication of [667] in 1995 that helped jump-start this course. Since then, he has been teaching this course every fall (except when he was on a sabbatical leave). The content has changed significantly in this short span of time to keep up with what has been happening in the field, providing an exciting challenge and opportunity. He gratefully acknowledges having a sabbatical in 2004 to plan for the initial preparation for this book.

The current and recent PhD students of the first author also read many chapters and provided valuable feedback. Many thanks to Amit Sinha, Balaji Krithikaivasan, Dijiang Huang, Gaurav Agrawal, Haiyang Qian, Plarent Tirana, and Shekhar Srivastava.

Several students who took the course, Network Routing, from the first author, in the fall of 2005, read the initial version of the first few chapters. When he taught it again in the fall 2006 semester, the entire manuscript was ready in its draft form; the entire class helped debug it by carefully reading various chapters and providing detailed feedback. For their help, we would like to thank Aditya Walavalkar, Ajay Karanam, Amol Rege, Dong Yoo, Francisco Jose Landeras, Hafeez Razzaq, Haiyang Qian, Hui Chang, Jignesh K. Patel, Jin-Ho Lee,
Jorge Rodriguez, Palani Ramalingam, Phaneesh Gururaj, Ravi Aute, Rehan Ishrat, Ron McManaman, Satoru Yamashita, Sreeram Gudipudi, Swapnil Deshmukh, Shanthini Kengeri, Shashank Manchireddy, Sundeep Udutha, Tongan Zhao, and Venkat Pagadala. Needless to say, the first author greatly benefited from many questions and discussions from teaching this course over the past decade that altogether attracted more than 300 students. The second author also benefited from his many interactions with colleagues while working at Juniper Networks. As a result, a range of interrelated topics is included in the book to give a broader perspective of network routing.

Over the years, we have both benefited from informative and enlightening discussions on routing in different domains and related topics from many individuals; many also answered queries during the preparation of this book. We like to thank the following: Aekkachai Rattanadilokchaisri (Cisco Systems), Åke Arvidsson (Ericsson), Amarnath Mukherjee (Clarifyre), Ananth Nagarajan (Juniper Networks), André Girard (INRS-EMT), Bharani Chadalavada (Juniper Networks), Brion Feinberg (Sereniti), Brunilde Sansô (University of Montréal), David DeWitt (University of Wisconsin–Madison), David Mills (University of Delaware), David Walden (BBN, retired), Debasis Mitra (Bell Labs), Di Yuan (Linköping Institute of Technology), Fu Chang (Academia Sinica), Gerald Ash (AT&T Labs), Gerald Combs (CACE Technologies, creator of Etherereal/Wireshark), Geoff Huston (APNIC), Götz Gräfe (HP Labs), Hadriel Kaplan (Acme Packet), Indrajanti (Yanti) Sukiman (Cisco Systems), Iraj Saniee (Bell Labs), Jean-François Labourdette (Verizon), Jeff Naughton (University of Wisconsin–Madison), Jim Pearce (Sprint), John Strand (AT&T Labs), Keith Ross (Polytechnic University), Larry Landweber (University of Wisconsin–Madison), Lindsay Hiebert (Cisco Systems), Lorne Mason (McGill University), Michał Pióro (Warsaw University of Technology and Lund University), Mikkel Thorup (AT&T Labs–Research), Mostafa Ammar (Georgia Tech), Mukesh Kacker (NetApp), Nitin Bahadur (Juniper Networks), Oscar González-Soto (ITU), Philip Smith (Cisco Systems), Pramod Srinivasan (Juniper Networks), Prosper Chemouil (France Telecom R&D), Rajat Monga (Attributor), Ravi Chandra (Sona Systems), Richard Harris (Massey University), Robert Doerspike (AT&T Labs–Research), Ron Skoog (Telcordia Technologies), Saad Siddiqi (Sprint), Samir Shah (Cisco Systems), Saravan Rajendran (Cisco Systems), Sergio Beker (France Telecom R&D), Shankar Satyanarayanan (Cisco Systems), Srinivasa Thirumalasetty (Ciena Corporation), Steve Dispensa (Positive Networks), Steve Robinson (University of Wisconsin–Madison), Toshikane Oda (Nippon Ericsson), Ulka Ranadive (Cisco Systems), Vamsi Valluri (Cisco Systems), Villy Bæk Iversen (Technical University of Denmark), Wayne Grover (TR-Labs & University of Alberta), Wen-Jung Hsin (Park University), Wesam Alanqar (Sprint), Yufei Wang (VPI Systems), and Zhi-Li Zhang (University of Minnesota). Furthermore, the first author benefited from Karen Medhi’s insight and expertise in transport network routing and design.

Folks at AS3390 often provided their perspective from the viewpoint of running a stub AS by answering our questions. Our sincere thanks to the following individuals at AS3390: David Johnston, George Koffler, Jim Schonemann, II, and Justin Malyn.

We thank David Clark (M.I.T.), Series Editor for the Morgan Kaufmann series in Networking, for recognizing the importance of having a book that spans network routing in different networks, and for greenlighting our book proposal. We are honored that Larry Landweber
(University of Wisconsin–Madison) gladly accepted our request to write the Foreword for this book.

The first author would like to thank the Defense Advanced Research Project Agency, the National Science Foundation, the University of Missouri Research Board, and Sprint Corporation for supporting his networking research.

Two individuals deserve special note: (1) Jane Zupan took Network Routing from the first author in 2000. She typed his scattered notes, which gave the initial idea for planning this book. Then, at a conference in 2003, the three of us casually joked about doing this book, and the plan finally started. Jane was an initial partner in this project but could not continue to work on it because of time constraints. She, however, continued to provide much help, even at the last stage, by reading and editing, despite her busy schedule. We sincerely thank her for her great help. (2) Balaji Krithikaivasan, who completed a Ph.D. under the first author, passionately read many chapters of the book and provided feedback despite his deteriorating health. Unfortunately, he did not live long enough to see the final publication of the book. Thank you, Bala, wherever you are.

It has been a pleasure to work with Rick Adams and Rachel Roumeliotis of Morgan Kaufmann Publishers/Elsevier. From the initial proposal of the book to final production, they provided guidance in many ways, not to mention the occasional reminder. We appreciate their patience with us during the final stages of the manuscript preparation. Arline Keithe did a nice job of copyediting. In the pre-production phase, we received help from Project Managers Dawnmarie Simpson and Tracy Grace. Folks at VTEX did an excellent job of taking our \LaTeX files and transforming them to production quality, and Judy Ahlers did great work on the final proofread. We thank them all.

Our immediate family members suffered the most during our long hours of being glued to our laptops. Throughout the entire duration, they provided all sorts of support, entertainments, and distractions. And often they queried “Are you ever going to get this done?” Deep would like to thank his wife, Karen, and their sons, Neiloy and Robby, for love and patience, and for enduring this route (for the second time). He would also like to thank cc76batch—you know who you are—for their friendship. Karthik would like to thank his wife, Monika, for her love and patience. He would also like to acknowledge his family members, Sudarshan Kumar and Swarn Durgia, Sonu and Rajat Monga, and Tina and Amit Babel for keeping him motivated. In addition, he would like to thank his many friends for their support. Finally, we like to thank our parents and our siblings for their support and encouragement.

Deepankar (Deep) Medhi
Kansas City, Missouri, USA
dmedhi@umkc.edu

Karthikeyan (Karthik) Ramasamy
Santa Clara, California, USA
karthik@cs.wisc.edu
About the Authors

Deepankar Medhi is Professor of Computer Networking in the Computer Science & Electrical Engineering Department at the University of Missouri–Kansas City, USA. Prior to joining UMKC in 1989, he was a member of the technical staff in the traffic network routing and design department at the AT&T Bell Laboratories. He was an invited visiting professor at Technical University of Denmark and a visiting research fellow at the Lund University, Sweden. He is currently a Fulbright Senior Specialist. He serves as a senior technical editor of the Journal of Network & Systems Management, and is on the editorial board of Computer Networks, Telecommunication Systems, and IEEE Communications Magazine. He has served on the technical program committees of numerous conferences including IEEE INFOCOM, IEEE NOMS, IEEE IM, ITC, and DRCN. He received B.Sc. (Hons.) in Mathematics from Cotton College, Gauhati University, India, an M.Sc. in Mathematics from the University of Delhi, India, and an M.S. and a Ph.D. in Computer Sciences from the University of Wisconsin–Madison, USA. He has published more than 70 papers, and is co-author of the book Routing, Flow, and Capacity Design in Communication and Computer Networks, also published by Morgan Kaufmann (July 2004).

Karthikeyan Ramasamy has 15 years of software development experience, including working with companies such as Juniper Networks, Desana Systems, and NCR. His primary areas of technical expertise are networking and database management. As a member of the technical staff at Juniper, he developed and delivered a multitude of features spanning a diverse set of technologies including protocols, platforms, databases, and high availability solutions for the JUNOS routing operating system. As a principal engineer at Desana Systems, he was instrumental in developing and delivering many fundamental components of an L7 switch for managing data centers. While pursuing his doctorate, he worked on a parallel object relational database system, which was spun off as a company and later acquired by NCR. Subsequently, he initiated a project in data warehousing which was adapted by NCR. As a consulting software engineer at NCR, he assisted in the commercialization of these technologies. Currently, he serves as an independent consultant. He received a B.E. in Computer Science and Engineering with distinction from Anna University, India, an M.S. in Computer Science from the University of Missouri–Kansas City, USA, and a Ph.D. in Computer Sciences from the University of Wisconsin–Madison, USA. He has published papers in premier conferences and holds 7 patents.