Digital Modeling of Material Appearance

THE MORGAN KAUFMANN SERIES IN COMPUTER GRAPHICS

Visualization in Medicine BERNHARD PREIM and DIRK BARTZ

Geometric Algebra for Computer Science: As Object-oriented Approach to Geometry Leo Dorst, Daniel Fontijne, Stephen Mann

Point-Based Graphics MARKUS GROSS and HANSPETER PFISTER, Editors

High Dynamic Range Imaging: Data Acquisition, Manipulation, and Display ERIK REINHARD, GREG WARD, SUMANTA PATTANAIK, and PAUL DEBEVEC

Complete Maya Programming Volume II: An In-depth Guide to 3D Fundamentals, Geometry, and Modeling DAVID A. D. GOULD

MEL Scripting for Maya Animators, Second Edition MARK R. WILKINS and CHRIS KAZMIER

Advanced Graphics Programming Using OpenGL

TOM MCREYNOLDS and DAVID BLYTHE

Digital Geometry Geometric Methods for Digital Picture Analysis REINHARD KLETTE and AZRIEL ROSENFELD

Digital Video and HDTV Algorithms and Interfaces CHARLES POYNTON

Real-Time Shader Programming RON FOSNER

Complete Maya Programming: An Extensive Guide to MEL and the C++ API DAVID A. D. GOULD

Texturing & Modeling: A Procedural Approach, Third Edition David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley *Geometric Tools for Computer Graphics* PHILIP SCHNEIDER and DAVID H. EBERLY

Understanding Virtual Reality: Interface, Application, and Design WILLIAM B. SHERMAN and ALAN R. CRAIG

Jim Blinn's Corner: Notation, Notation, Notation JIM BLINN

Level of Detail for 3D Graphics DAVID LUEBKE, MARTIN REDDY, JONATHAN D. COHEN, AMITABH VARSHNEY, BENJAMIN WATSON, and ROBERT HUEBNER

Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling RON GOLDMAN

Non-Photorealistic Computer Graphics: Modeling, Rendering, and Animation THOMAS STROTHOTTE and STEFAN SCHLECHTWEG

Curves and Surfaces for CAGD: A Practical Guide, Fifth Edition GERALD FARIN

Subdivision Methods for Geometric Design: A Constructive Approach JOE WARREN and HENRIK WEIMER

Computer Animation: Algorithms and Techniques RICK PARENT

The Computer Animator's Technical Handbook

LYNN POCOCK and JUDSON ROSEBUSH Advanced RenderMan: Creating

CGI for Motion Pictures Anthony A. Apodaca and Larry Gritz

Curves and Surfaces in Geometric Modeling: Theory and Algorithms JEAN GALLIER

Andrew Glassner's Notebook: Recreational Computer Graphics Andrew S. GLASSNER Warping and Morphing of Graphical Objects JONAS GOMES, LUCIA DARSA, BRUNO COSTA, and LUIZ VELHO

Jim Blinn's Corner: Dirty Pixels JIM BLINN

Rendering with Radiance: The Art and Science of Lighting Visualization GREG WARD LARSON and ROB SHAKESPEARE

Introduction to Implicit Surfaces Edited by JULES BLOOMENTHAL

Jim Blinn's Corner: A Trip Down the Graphics Pipeline JIM BLINN

Interactive Curves and Surfaces: A Multimedia Tutorial on CAGD ALYN ROCKWOOD and PETER CHAMBERS

Wavelets for Computer Graphics: Theory and Applications

ERIC J. STOLLNITZ, TONY D. DEROSE, and DAVID H. SALESIN

Principles of Digital Image Synthesis ANDREW S. GLASSNER

Radiosity & Global Illumination FRANÇOIS X. SILLION and CLAUDE PUECH

Knotty: A B-Spline Visualization Program JONATHAN YEN

User Interface Management Systems: Models and Algorithms DAN R. OLSEN, Ir.

Making Them Move: Mechanics, Control, and Animation of Articulated Figures Edited by NORMAN I. BADLER, BRIAN A. BARSKY, and DAVID ZELTZER

Geometric and Solid Modeling: An Introduction

CHRISTOPH M. HOFFMANN

An Introduction to Splines for Use in Computer Graphics and Geometric Modeling RICHARD H. BARTELS, JOHN C. BEATTY, and BRIAN A. BARSKY

Digital Modeling of Material Appearance

JULIE DORSEY HOLLY RUSHMEIER FRANÇOIS SILLION

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Publisher	Denise E. M. Penrose
Senior Acquisitions Editor	Tiffany Gasbarrini
Publishing Services Manager	George Morrison
Project Manager	Marilyn E. Rash
Marketing Manager	Ian Seager
Assistant Editors	Michele Cronin, Matthew Cater
Copyeditor	Jodie Allen
Proofreader	Daniel Stone
Indexer	Ted Laux
Cover Design	Molly Bigelow
Typesetting/Illustration Formatting	diacriTech
Interior/Cover Printer	1010 Printing International Ltd.

Morgan Kaufmann Publishers is an imprint of Elsevier. 30 Corporate Drive, Burlington, MA 01803-4255

This book is printed on acid-free paper.

Copyright © 2008 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

Library of Congress Cataloging-in-Publication Data

Dorsey, Julie
Digital modeling of material appearance / Julie Dorsey, Holly Rushmeier, François Sillion.
p. cm. — (The Morgan Kaufmann series in computer graphics)
Includes bibliographical references and index.
ISBN 978-0-12-221181-2 (alk. paper)
1. Computer graphics. 2. Visualization. 3. Image processing—Digital techniques.
I. Rushmeier, Holly E. II. Sillion, François X. III. Title.
T385.D6824 2007
006.6—dc22
2007036188

For information on all Morgan Kaufmann publications, visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in China

08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

Contents

	Acknowledgments	іх
СНА	APTER 1. INTRODUCTION	1
CH/	APTER 2. BACKGROUND	5
2.1	Light	7
2.2	Human Perception and Judgments	12
	2.2.1 Luminance and Brightness	12
	2.2.2 Color	15
	2.2.3 Directional Effects 2.2.4 Textures and Patterns	18
2.2		20
2.3	Image Synthesis	21 22
	2.3.1 Shape 2.3.2 Incident Light	22 23
	2.3.3 Material	23
2.4	Summary and Further Reading	24
СНА	APTER 3. OBSERVATION AND CLASSIFICATION	27
3.1	A Tour of Materials	28
3.2		44
3.Z	Examples of Modeling Classes of Materials	44
CH /	APTER 4. MATHEMATICAL TERMS	47
4.1	Energy as a Function of Time, Position, and Direction	48
	4.1.1 Position	49
	4.1.2 Direction	50
4.2	Radiance	54
4.3	Reflectance and BRDF	55
	4.3.1 Distribution Functions	56
	4.3.2 Energy Conservation and BRDF	58
	4.3.3 Reciprocity and BRDF	59

CH/	APTER 5. GENERAL MATERIAL MODELS	<mark>61</mark>
5.1	Reflection and Refraction from a Smooth Surface	62
5.2	Empirical Models	69
	5.2.1 Lambertian Reflectance	69
	5.2.2 Phong Reflectance	70
	5.2.3 Ward Reflectance	76
	5.2.4 Lafortune Reflectance	79
	5.2.5 Ashikhmin–Shirley Anisotropic Phong Reflectance	82
5.3	Analytical First Principles Models	83
	5.3.1 Microfacet Distributions	84
	5.3.2 Models Based on Geometric Optics	86
	5.3.3 Blinn and Cook–Torrance Reflectance	88
	5.3.4 Oren–Nayar Reflectance	89
	5.3.5 Models Based on Wave Optics	92
5.4	Simulation from First Principles	93
5.5	Spectral Effects	95
	5.5.1 Dispersion	95
	5.5.2 Thin Film Interference	96
	5.5.3 Diffraction from Regular Structures	97
5.6	Other Effects	97
	5.6.1 Polarization	98
	5.6.2 Phosphorescence and Fluorescence	100
5.7	Scattering in Volumes	101
	5.7.1 Radiance	103
	5.7.2 Measured Properties	113
	5.7.3 Solid Volumetric Media: Subsurface Scattering	114
5.8	Spatial Variations	120

CHAPTER	6. SPECIALIZED MATERIAL MODELS	123
6.1 Natur	al Organic Materials	124
6.1.1	Humans and Other Mammals	124
6.1.2	Birds, Reptiles, Amphibians, Fish, and Insects	135
6.1.3	Plants	138
6.2 Natur	al: Inorganic	144
6.2.1	Porous Materials	145
6.2.2	Water in Other Materials: Wet/Dry Appearance	145
6.2.3	Snow	147
6.3 Mater	ials in Manufactured Goods	147
6.3.1	Fabrics	147
6.3.2	Paints, Coatings, and Artistic Media	150
6.3.3	Gems	157

CHAPTER 7. MEASUREMENT		161
7.1	Traditional Measurement	162
	7.1.1 Gonioreflectometers	163
	7.1.2 Nephelometers	166
	7.1.3 Industrial Measurement Devices	166
7.2	Image-Based BRDF Measurements of Sample Materials	169
	7.2.1 Cameras as Sensors	169
	7.2.2 Measuring Prepared Homogeneous Material	
	Samples	171
7.3	Measurement of Existing Objects	174
	7.3.1 Large Objects and Buildings	181
7.4	Simultaneous Shape and Reflectance Capture	182
7.5	Small-Scale Geometric Structures	183
	7.5.1 Normal and Bump Maps	183
	7.5.2 Bidirectional Texture Functions	185
7.6	Alternative Representations	188
7.7	Subsurface Scattering and Volumetric Media	189
7.8	Additional Dimensions	191

CHA	APTER 8. AGING AND WEATHERING	193
8.1	Weathering Taxonomy	193
	8.1.1 Chemical	194
	8.1.2 Mechanical	199
	8.1.3 Biological	203
	8.1.4 Combined Processes	206
8.2	Simulation of Weathering Effects	207
	8.2.1 Patination	207
	8.2.2 Impacts	210
	8.2.3 Scratches	211
	8.2.4 Cracking and Peeling	212
	8.2.5 Flow and Deposition	215
	8.2.6 Dust Accumulation	217
	8.2.7 Weathering Systems	218
8.3	Replication of Aged Appearance	220
	8.3.1 Manual Application	220
	8.3.2 Accessibility Shading/Ambient Occlusion	221
8.4	Capture, Analysis, and Transfer of Effects	222
	8.4.1 Context-Aware Textures	222
	8.4.2 Appearance Manifolds	225

CHA	PTER	9. SPECIFYING AND ENCODING APPEARANCE	
		DESCRIPTIONS	227
9.1	Practio	cal Techniques for Appearance Specification	227
	9.1.1	Visual Interfaces for Analytic Models	228
	9.1.2	3D Painting	230
	9.1.3	Textual and Programming Interfaces	232
	9.1.4	Composition from Basic Building Blocks	234
9.2	Encod	ing Local Appearance Attributes	235
	9.2.1	Parameterized Models	236
	9.2.2	Tabular Data	236
	9.2.3	Basis Functions	237
9.3	Assoc	iation of Material and Shape	238
	9.3.1	Discussion of Surface Parameterization	238
	9.3.2	Representation of Light and View Dependence	239

CHA	APTER 10. RENDERING APPEARANCE	243
10.1	An Overview of Image Creation Techniques	243
	10.1.1 Object Projection Techniques	244
	10.1.2 Image Sampling Techniques	248
	10.1.3 Local and Global Calculations	249
10.2	Simulating Global Illumination	251
	10.2.1 Monte Carlo Evaluation of the Rendering Equations	252
	10.2.2 Caching Mechanisms	256
	10.2.3 Finite Elements Methods	262
10.3	Rendering Local Appearance	264
	10.3.1 Texture Mapping and Detail Management	265
	10.3.2 BRDF and BTF Sampling	266
	10.3.3 Subsurface Scattering and Participating Media	267
10.4	Color and Tone	270
	10.4.1 Spectral Rendering	270
	10.4.2 Dynamic Range and Tone Mapping	272
10.5	Precomputed Rendering Elements	273
	Bibliography	277
	Index	303

Index

Acknowledgments

We would like to thank our colleagues, friends, and family for their comments and support while we wrote this book. In particular, Anne Pardoen provided invaluable moral support. We are grateful to our fellow researchers who gave their consent to have images from their works included here. Cyril Soler contributed several new illustrative images.

We were helped a great deal by comments and suggestions on draft versions by Russell Rushmeier and by anonymous reviewers. We benefited from the rich intellectual environments we work in at Yale and INRIA. We are indebted to Tiffany Gasbarrini, Michele Cronin, and the production team at Elsevier for their persistence and hard work in turning our early drafts into a polished publication.

Each of us spent several years early in our careers working at the Program of Computer Graphics at Cornell University. Our work, including this book, has been inspired by the vision and example of our mentors at Cornell, Professor Donald Greenberg and Professor Kenneth Torrance.