

593

Chapter

The purpose of this chapter is to help you understand and address many of the
issues that affect the graphics performance of your applications. It also provides
tips on how to debug your drawing when things aren’t working as you expect.

Performance is a dynamic topic. Many of the areas discussed in this chapter
evolve and change with each major release of Mac OS X. To understand perfor-
mance, simply reading this chapter isn’t enough. You need to keep up to date
with information as it becomes available from Apple. The Apple Developer Con-
nection website and the references at the end of this chapter will help you get
the latest information about how to improve not only graphics performance but
overall application performance as well.

There are many aspects to achieving excellent performance with drawing code,
some of which are related to the system and some of which are under your con-
trol. The Quartz Compositor, Quartz object and memory management, and per-
formance measurement are all key to understanding graphics performance.

The Quartz Compositor (which is part of the Mac OS X windowing system)
determines how drawing appears in windows on the display. As you’ve seen, cre-
ating and managing Quartz objects is a key aspect of Quartz programming. By
understanding the Quartz memory management and object model, you can ben-
efit from any caching of those objects Quartz performs and avoid creating mem-
ory leaks or other memory problems. Performance measurement helps you to

Optimizing Performance

17

Performance and Debugging

594

Chapter 17

Performance and Debugging

better understand how your code works and to identify places where the code
could be optimized. Apple provides tools that can help, including the Quartz
Debug application—a tool that is specifically for analyzing graphics code.

The Quartz Compositor

Quartz consists of several distinct portions, including the Quartz Compositor
and the Quartz 2D drawing library. So far you’ve read a lot about Quartz 2D
and not much about the role that the Quartz Compositor plays when drawing
graphics. Because the Quartz Compositor plays an important role in window
management and getting the graphics you draw onto the display, it is important
to understand how it works.

The Quartz Compositor provides the windowing system services that the appli-
cation frameworks use to supply the onscreen windows your application draws
into. Every window has its own

backing store

, a piece of memory into which all
drawing to that window is rendered. When your application draws into a given
window, even one that is visible on the display, that drawing is not done directly
to the display but rather to the backing store offscreen memory. The Quartz
Compositor is responsible for moving (or

flushing

) the contents of the backing
store into the display frame buffer at an “appropriate time.”

The Quartz Compositor composites (or alpha blends) the contents of the back-
ing store to the screen, mixing the contents of each window depending on its
opacity. Hence, the name Compositor. In a sense, the Quartz Compositor is a
“video mixer,” where each pixel on the display has a potential contribution from
more than one window—no one window owns a given display pixel. The Exposé
feature—where with one keystroke, each onscreen window temporarily appears
in miniature form—is also made possible by the windowing system architecture
provided by the Quartz Compositor.

The Quartz Compositor does not provide rendering services beyond the com-
positing of the windows it performs. Instead, you draw using the drawing capa-
bilities provided by the high-level drawing libraries such as Quartz 2D,
QuickTime, and OpenGL. Figure 17.1 illustrates the relationship between the
drawing libraries and the Quartz Compositor. On systems that have the neces-
sary supporting hardware, the Quartz Compositor makes use of Quartz
Extreme, a built-in acceleration layer that significantly improves the perfor-
mance of the compositing operations it performs by using the capabilities of the
graphics card driving a given display.

Providing a backing store for each onscreen window has additional benefits
beyond the ability to composite windows together. When windows are resized or
moved, other windows become exposed and their newly exposed content needs

Optimizing Performance

595

to be drawn. With most other operating systems, this usually involves sending
events to applications to redraw the newly exposed content, that is, to repair the
damaged area. In Mac OS X, the newly exposed content is already available
from each window backing store. Each window backing store contains the full
content, unobscured by the way onscreen windows overlap or intersect.

Figure 17.2 shows the relationship between the window backing stores and the
screen display. In the figure, the Finder is the only visible application and it has
three windows associated with its content. Each window has a backing store that
contains the contents of the onscreen window. When you click one window to
bring it above another, the Quartz Compositor uses the window backing stores
to refresh the display, rather than generating an event that causes a redraw event
to be sent to the application.

The Quartz Compositor times its flushing of the window backing store to the
display so that it is synchronized with the display beam sweep, avoiding tearing
and other artifacts that occur when this synchronization is not performed. On
other systems, an application has to perform this kind of careful handling to pro-
duce visually smooth results; in Mac OS X, the Quartz Compositor handles this
for you.

How Quartz Compositor buffers and flushes windows has implications for the
performance of your drawing, as you’ll see in the next two sections.

Window Buffering.

If you’ve used graphics drawing programs or have been pro-
gramming graphics for a number of years, you’re probably familiar with the
notion of “rubber banding” objects while resizing them. This refers to the anima-
tion of a graphical object to produce the effect of interactively changing the size
of the object in response to mouse movement. Many developers have historically
used an

XOR

 drawing mode to erase previous content prior to drawing new con-
tent during graphics resizing. Quartz doesn’t have an

XOR

 drawing mode avail-
able, but there are two strategies that developers typically use instead of

XOR

.

Figure 17.1

Graphics system architecture and the Quartz Compositor

Graphics rendering libraries
(Quartz 2D, QuickTime, OpenGL)

Quartz Compositor

Quartz Extreme

596

Chapter 17

Performance and Debugging

One alternative strategy is to use two buffers for the drawing content along with
techniques that allow for straightforward smooth graphics animation. This strat-
egy is referred to as double buffering. Developers who use double buffering in
Mac OS X need to take into account that the Quartz Compositor buffers the
window contents. This is useful because it allows the application to potentially
use the window backing store buffer as one of its buffers when double buffering,
allowing the Quartz Compositor to do the final rendering from the backing store

Figure 17.2

Every window has a backing store

Window 1
backing store

Window 2
backing store

Window 3
backing store

Optimizing Performance

597

buffer to the display. However, applications that utilize double buffering need to
be careful to avoid unintentionally

triple

 buffering their content. This can happen
when porting code from other platforms (or perhaps code written for Mac OS
prior to Mac OS X). Instead, use the window backing store buffer as one of your
buffers and avoid triple buffering.

An alternative technique to use for the “rubber banding” kind of animation is to
take advantage of alpha compositing and the fact that the Mac OS X window
system is a compositing window system. Rather than double buffering your con-
tent, you can instead use overlay windows, sometimes called transparent win-
dows. By drawing the content you want to animate into a window that is
partially transparent and that can be moved, a single graphic element can be
drawn, erased, and redrawn, all without adversely affecting content in windows
underneath the overlay window.

Cocoa windows have an attibute that determines whether they are opaque or
partially transparent. Carbon provides the window class

kOverlayWindowClass

 for
creating an overlay window. The references at the end of this chapter point to
sample code for Cocoa and Carbon applications that take advantage of this over-
lay technique.

Window Flushing.

The term

flushing

 refers to the process of copying the window
backing store buffer to the display. As part of your application run loop, the
application frameworks together with the Quartz Compositor automatically
perform the flushing that is needed by most applications. Your code draws to the
window and it appears on the screen, without any additional work on your part.
Virtually all the code in this book draws without explicitly flushing the window
backing store to the screen; typically, you don’t need to. Even the Carbon sample
application CarbonSketch uses an overlay window to perform graphics anima-
tion and it works just fine without performing an explicit flushing operation.

However, there may be situations where you need to explicitly flush the window
backing store to the display. For lengthy drawing operations, you may want to
provide incremental display of the drawing. Some types of animation may
require you to flush so that the animation appears in a timely way. Without per-
forming flushing, the graphics you draw appear, but not when you expect. For
these situations, Quartz provides the function

CGContextFlush

. (Cocoa provides
several instance methods in the class

NSWindow

 that flush window contents. Car-
bon provides the function

HIWindowFlush

 for use with an

HIWindowRef

.) Using
these functions tells the Quartz Compositor to schedule the window for flushing
at the next available update interval. As of Tiger, the only context where

CGCon-
textFlush

 has any effect is a window context.

Explicit flushing can adversely impact the performance of your application in
unexpected ways. Because flushing causes the bits from the backing store to be

598

Chapter 17

Performance and Debugging

copied to the display frame buffer, by flushing you are requesting an operation
that may not need to be performed at that time. Because there is an inherent
performance overhead associated with flushing, you always want to perform as
much drawing as possible before you explicitly flush so that you flush as much as
possible.

Explicit flushing has another side effect that can affect code performance. The
Quartz routine

CGContextFlush

 (and the equivalent routines provided by the
application frameworks) sends a message to the Quartz Compositor that it
should flush the backing store at the next available screen update interval. When
you call

CGContextFlush

, it returns immediately and the backing store flush is
performed by the Quartz Compositor at its next screen update. However,
Quartz blocks any further attempts to draw to the window backing store until
the Quartz Compositor finishes performing the actual compositing of the back-
ing store contents. You can’t change the bits in a window backing store while a
flush of that backing store is pending. Calling

CGContextFlush

 directly can limit
your drawing performance because you are blocked from further drawing until
the actual flushing is complete.

For this reason you should be careful not to flush more frequently than the win-
dowing system actually performs its updates, otherwise you are blocking unnec-
essarily. There is no need to flush faster than the rate at which the Quartz
Compositor performs its compositing from the backing store, since the update
doesn’t actually happen until the next display refresh and flushing blocks addi-
tional drawing to the context. The Quartz Compositor flushing occurs at the
refresh rate of the hardware; for hardware such as an LCD monitor that has no
native beam sync, 60 Hz is used.

Generally, there is no need to call

CGContextFlush

 more frequently than every
1/30 of a second since most users can’t perceive updates faster than 30 frames
a second. Flushing more frequently than every 1/60 of a second is counterpro-
ductive. Not only is this beyond human perception, you don’t achieve a faster
frame rate and more likely slow down your performance because much of the
time you are blocking, waiting for the Quartz Compositor flush to occur.

This kind of behavior shows up in Shark or Sampler profiles in a way that might
at first be puzzling. You might find that a Quartz routine or other routine you
are using to draw to a Quartz context shows up in a profile as being far more
time-consuming than you’d expect. This can happen when you explicitly flush
your drawing—the drawing call that

follows

 a call to

CGContextFlush

 will block
until the next beam sync flush is performed by the Quartz Compositor. For
example, you might see the function

CGContextFillRect

 appear in a Shark profile
as a hot point of your application, even though you are only calling it to perform
an erase-type operation after you draw a scene. If you flush the scene, then call

CGContextFillRect

 on that window context,

CGContextFillRect

 blocks until the
flush is complete.

Optimizing Performance

599

The flushing behavior of the Quartz Compositor has evolved as Mac OS X has
evolved and most likely will continue to do so. A full discussion of the topic of
flushing behavior in Mac OS X requires more detail and more timely informa-
tion than can be provided here. See the references for more information from
Apple regarding the topic of application flushing and the Quartz Compositor.

Quartz Object and Memory Model

You’ll get optimal performance and correct results when using Quartz if you
understand its object and memory management model and then use objects
appropriately. Doing so ensures the best performance for your application and
avoids memory leaks and memory corruption.

Quartz uses the Core Foundation (CF) object and memory management model,
in which objects are reference counted. When created or copied, Quartz objects
start out with a reference count of 1. You can increment the reference count by
calling a function to retain the object and decrement the reference count by call-
ing a function to release the object. When the reference count is decremented to
zero, the object is deallocated.

Quartz function names follow the convention introduced in Core Foundation.
Functions with Create or Copy in the name create a new reference that you own
and are responsible for releasing. Quartz has no automatic reclamation of mem-
ory resources (sometimes referred to as “garbage collection”).

Most Quartz types have named retain and release routines that are specific to
the type. In Jaguar and later versions, Quartz opaque types are true CF objects
and you can retain and release an object by using the CF routines

CFRetain

 and

CFRelease

. Some Quartz types introduced in Panther and later versions don’t
have explicitly named retain or release routines; those opaque types as well as
any opaque Quartz object that you own a reference to can be released with

CFRelease

. Note that the

CGxxxRetain

 and

CGxxxRelease

 functions (such as

CGColorSpaceRetain

 and

CGColorSpaceRelease

) ignore a

NULL

 argument, unlike
the Core Foundation functions

CFRetain

 and

CFRelease

, which crash if you pass
them a

NULL

 argument.

The fact that Quartz types are Core Foundation types in Jaguar and later versions
is useful if you want to add a Quartz type to a CFArray or CFDictionary object.
You can use the CFType callbacks when you create one of these CF objects and
use the Quartz objects in the same way you use other CFType objects. Another sit-
uation where it can be useful to treat a Quartz object as a CF object is when using

CFEqual

 to compare objects. In many cases, this is a comparison of the object refer-
ences, but in some cases (such as for CGColorSpace objects), the comparison is
deeper and examines the color space data and returns equality for equivalent color
spaces, even if they are represented by different objects.

600

Chapter 17

Performance and Debugging

Many Quartz routines that take an opaque Quartz object as a parameter retain
the object. Listing 17.1 is an example of a typical pattern of creating an object
that you pass to a Quartz function and then release when you are done with it.
Quartz CGDataProvider, CGDataConsumer, and CGContext objects you create
are generally used for a specific task and then released; they typically do not exist
for the duration of a program’s execution.

 // Create the data consumer.
 CGPDFContextRef pdfContext;
 CGDataConsumerRef consumer = myDataConsumerCreate();
 // ...Error handling if data consumer couldn’t be created...

 // Use the data consumer to create a PDF context. Quartz
 // retains the data consumer so it can write to it as needed.
 pdfContext = CGPDFContextCreate(consumer, &mediaRect, NULL);
 // Once the code uses the data consumer to create the PDF context,
 // it releases the data consumer since it no longer needs it.
 CGDataConsumerRelease(consumer);
 // ...Error handling if PDF context couldn’t be created...

 // ...Use of the PDF context...

 // When done using the PDF context, release it. On all versions
 // of Mac OS X, you can use CGContextRelease. On Jaguar and
 // later versions, you can use either CGContextRelease or CFRelease.
 CGContextRelease(pdfContext);

Some Quartz objects, such as CGColorSpace objects, are typically used repeat-
edly during program execution and so it makes sense to create them once and
make them available thoughout program execution. Listing 17.2 shows one
method of obtaining and using a color space. Listing 17.3 shows another, more
useful method of creating and repeatedly using a color space. The code demon-
strates a best practice; if you obtain a Quartz object and don’t own it, you
shouldn’t release it. (As with Core Foundation, you only own a reference to
Quartz objects that you create, copy, or retain.) Additionally, if you created the
object but plan to reuse it, don’t release it.

Caution

Using Core Foundation functions such as

CFRetain

,

CFRelease

, and

CFEqual

 with
opaque Quartz objects on Mac OS X systems prior to Jaguar will crash your program.

Listing 17.1

The typical pattern of Quartz object creation and release

Optimizing Performance

601

void doColorSpace1(CGContextRef context)
{
 // Create the calibrated generic RGB color space.
 CGColorSpaceRef cs =
 CGColorSpaceCreateWithName(kCGColorSpaceGenericRGB);
 if(cs == NULL){
 // Couldn't create the color space!
 return;
 }
 // Set the fill color space in the context.
 CGContextSetFillColorSpace(context, cs);
 // Release the color space this code created.
 CGColorSpaceRelease(cs);

 // ... Draw to the context ...
}

CGColorSpaceRef getMyRGBColorSpace(void)
{
 static CGColorSpaceRef cs = NULL;
 // Create the color space the first time this code is executed.
 // The expectation is that this function will be called multiple times.
 if(cs == NULL)
 {
 // Create the calibrated generic RGB color space.
 cs = CGColorSpaceCreateWithName(kCGColorSpaceGenericRGB);
 }
 return cs;
}

void doColorSpace2(CGContextRef context)
{
 // Get the calibrated generic RGB color space. This
 // is a 'Get' style function; the reference returned
 // is not owned by the caller.
 CGColorSpaceRef cs = getMyRGBColorSpace();
 if(cs == NULL){
 // Couldn't get the color space!
 return;
 }

Listing 17.2

Code that creates a color space for one-time usage

Listing 17.3

Code that creates a color space for repeated usage

602

Chapter 17

Performance and Debugging

 // Set the fill color space in the context.
 CGContextSetFillColorSpace(context, cs);
 // This code does not release the color space it obtained from
 // getMyRGBColorSpace since it doesn't own a reference.

 // ... Draw to context ...
}

Not releasing an object you created can cause memory leaks. The MallocDebug
application is useful for tracking such leaks. If you don’t intend to keep the
object around, then release it when you are done with it.

Some Quartz objects, such as a CGDataProvider object, have special memory
management characteristics. Those variants of CGDataProvider objects that
have callbacks have a special data release callback that Quartz calls when the
retain count on the object reaches zero and the object is deallocated. Quartz
calls the release function when the object itself goes away. Quartz expects the
data provided to be invariant and to be available at any time until it calls the data
release function. See “Guidelines for Using Data Providers” (page 198) for mem-
ory management guidelines that are specific to data providers.

Most Quartz opaque objects, once created, are immutable. (A

CGMutablePathRef

is one exception to this.) As a general rule, you create the object and use it,
potentially reusing it many times. Because most Quartz objects are immutable,
in many cases Quartz can take advantage of this for caching and other purposes.
Some opaque types have a way to create a copy of a given object, modifying
some aspect of it. For example, from a given

CGColorRef

, you can create a new

CGColorRef

 with the same color space and color components but with a different
alpha value using

CGColorCreateCopyWithAlpha

.

There are some situations in which an object is not released when you might
expect it to be released, for example, when drawing to a PDF context or during
printing. In these situations, Quartz doesn’t release many objects until well after
you might expect, making it especially important to follow the immutability and
data release rules. “Checking for Data Provider Integrity” (page 619) and
“Checking for Immutability Violations” (page 620) discuss this in detail.

The memory address for an object reference is not necessarily unique. That is, if
an object is released and freed, the memory address of that object reference may
be reused for another object reference. However, for the lifetime of a given
object, it has a unique memory address.

Improving Performance

You can get the optimum level of performance from your application in several
ways. This section discusses some of those that are specific to Quartz. However,

Optimizing Performance

603

there are many other factors that affect your graphics performance beyond those
inherent in the Quartz API. For example, your use of memory, the caching
behavior of the system CPU(s), your use (or lack of use) of Altivec or SSE in
your code, and many other factors affect the performance of your application.
The discussion here only scratches the surface of the subject of improving per-
formance. You will want to look at the references at the end of this chapter for
detailed information about measuring and improving performance in Mac OS X.

Reusing Quartz Objects and Performance.

One way to improve the performance of
your application is to appropriately reuse the Quartz objects you create. This
applies to many of the Quartz object types, including CGColor, CGImage,
CGPath, CGColorSpace, CGPDFDocument, CGPattern, CGFont, CGFunc-
tion, and CGShading objects. Reusing objects has a number of benefits both for
onscreen drawing and when creating PDF documents. Each of these types repre-
sents an immutable object and Quartz can take advantage of that immutability,
providing important performance benefits.

Quartz introduced CGColor objects specifically for reusability. Unless you reuse
them, they are not a benefit when compared to the Quartz routines

CGContext-
SetFillColorSpace

 and

CGContextSetFillColor

 (or their equivalents for setting
the stroke color). However, when you reuse CGColor objects, you are setting
color in the most efficient way. See “CGColor Objects (Panther)” (page 152) for
a discussion about creating and using CGColor objects.

One way you can achieve improved performance is to reuse a CGImage object
that corresponds to a given image, rather than creating a new one that represents
the same image. This allows you to take advantage of the image caching scheme
Quartz implements, allowing for better performance. Quartz potentially caches
many types of objects; the only way to take advantage of any caching is to reuse
objects rather than creating a new object that is equivalent.

Reusing objects has important benefits when generating PDF documents. When
drawing to a PDF context, if you reuse Quartz objects such as CGImage, CGPat-
tern, and so on, then Quartz can store one copy of the resource in the PDF docu-
ment and reference that one copy, regardless of how many times you use that
object. This can dramatically reduce the size of the PDF documents your appli-
cation produces.

Avoiding Unnecessary Drawing.

Drawing is easy to do programmatically, but it has
an inherent cost associated with it that you want to avoid if that drawing isn’t
necessary. For this reason, you want to streamline your drawing code so that it
only draws what’s necessary and eliminate unnecessary or redundant drawing.
Apple provides visual tools to aid you in your efforts to identify and eliminate
drawing that is not needed. You can use the Quartz Debug application to
observe and analyze your drawing to windows. See “Using Quartz Debug” (page
608) for details.

604

Chapter 17

Performance and Debugging

The Cocoa and Carbon application frameworks each provide mechanisms to
help you determine what portions of the drawing canvas need drawing, and you
should make sure that you use them. For example, in Cocoa the rectangle passed
to your NSView’s drawRect: method and the getRectsBeingDrawn:count:
method on an NSView allow you to determine the portion of your view that
actually needs to be drawn, allowing you to draw only those portions of your
graphics that intersect the rectangle or list of rectangles that need painting. For
compositing views in Carbon, you can examine the kEventParamRgnHandle or
kEventParamShape event parameter passed to your draw event handler.

Consider the scale of the drawing and draw only what can be resolved. That is, if
an object (such as a graph) is scaled very small, chances are that you don’t need
to draw all parts of it. For example, if you are drawing points in a graph and the
points are spaced so closely together as to be indistinguishable at the current
scale you are drawing, resample your points rather than drawing all of them. This
practice can significantly reduce the amount of drawing you perform without
adversely affecting the final result. “See Also” (page 627) provides a pointer to
sample code from Apple that demonstrates how sampling a data set prior to
drawing it can improve performance.

Avoid resizing a window immediately after you create it. Resizing a window
requires reallocating the memory for the window backing store. When you cre-
ate a new window of the size you want, rather than creating it of a fixed size and
resizing it, you avoid extra work by the Quartz Compositor and the application
frameworks.

It is important to avoid reading from or directly writing to the window backing
store—you should not assume the window backing store is in main memory. It
may not be, and reading the contents of the window backing store in that case
can be quite expensive.

Cocoa provides the “One Shot” attribute on a window that you can set in Inter-
face Builder or by programmatically calling the setOneShot method of the NSWin-
dow class. Windows with this attribute can potentially be disposed of by the
system when hidden, releasing the window backing store and thus freeing mem-
ory. (You can programmatically hide windows and users can also hide them by
minimizing them to the dock.) Marking windows with this attribute makes sense
for windows whose contents are not expensive to redraw. Carbon windows are
always created as “One Shot” windows.

Performance Tips. One way to improve your graphics performance is to use the
Quartz bulk drawing functions when they make sense for your application. The
functions CGContextAddRects, CGContextAddLines, CGContextFillRects, and (in
Tiger) CGContextStrokeLineSegments each allow you to operate on a large set of
data, whereas their singular equivalents (CGContextAddRect, CGContextAddLineTo-

Optimizing Performance 605

Point, and so forth) are potentially slower when used to produce equivalent
results. Use the bulk drawing functions where it makes sense in your application.
“See Also” (page 627) provides a pointer to sample code from Apple that dem-
onstrates the advantages of using CGContextStrokeLineSegments.

Consider caching objects that you use frequently and that are expensive to draw
into CGLayers or, if running prior to Tiger, into a bitmap context. “Caching
Drawing Offscreen” (page 379) discusses strategies for caching content off-
screen. For example, shadowed objects can be expensive to render. If you are
drawing a given object with a shadow lots of times, consider caching the shad-
owed object.

You may have drawing in your application that consists of a single complex path
that is filled repeatedly in different colors. In this situation, caching the shape in
a CGLayer isn’t practical, because you need to draw it in different colors rather
than simply stamp the same colored object in many locations. A CGPath object
is one way to represent such a shape that can be easily used in a repeatable way,
potentially simplifying your code and avoiding the cost of building the path over
and over. Additionally, CGPath objects are transformed as abstract objects, not as
bits, allowing you to use a given CGPath at many sizes and orientations without
loss of fidelity, including to contexts that are not bit-based, such as the PDF and
printing contexts.

When drawing to bit-based contexts, such as the window and bitmap contexts,
you might consider another approach for repeated drawing. If the shape you are
drawing is painted repeatedly at a given orientation and scale, you can cache the
shape as an alpha mask that can be repainted with the fill color as needed. You
can capture drawing as an alpha mask by using the alpha-only context, as shown
in “Using an Alpha-Only Bitmap Context (Panther)” (page 366). The code in
Listing 12.4 (page 367) shows the overall approach. After you have the alpha
mask that corresponds to the drawing of your shape, set the fill color to the color
you want to use to paint the shape and draw the mask at the location that you
want the shape. This approach only makes sense for shapes that you want to
draw many times in various colors, not for content that you can cache in a
CGLayer. Because the intermediate representation in this case is bit-based, this
approach is not appropriate when drawing to a context that is not bit-based,
such as a PDF or printing context.

It is useful to have the ability to conditionally run without your application
caches, including the kinds of caches just mentioned, so that you can do perfor-
mance analysis both with and without them. Quartz caches objects, such as
images, and its caching may interact with the caching you perform. This is espe-
cially important since Apple has found that as it tunes Quartz, application
caches can unintentionally degrade performance rather than enhance it. It’s a
good idea to measure performance without your application caches and reintro-
duce them as necessary. Because the caching behavior of Quartz changes over

606 Chapter 17 Performance and Debugging

time, make sure you can continue to monitor the effectiveness of your caches as
the system evolves.

When drawing to bit-based contexts, drawing on pixel boundaries can avoid anti-
aliasing and potentially speed up performance. The best candidates for this align-
ment are filled shapes and the destination CGRect used for drawing images. See
“Aligning User Space Coordinates on Pixel Boundaries (Tiger)” (page 139) for
more details about how to draw on pixel boundaries.

Whenever you use a bitmap context for drawing content offscreen prior to mov-
ing it onscreen, be sure that the color space of the bitmap context matches that
of the display. This practice avoids expensive imaging operations and performs a
color match only once, during initial drawing, rather than each time you move
the content to the display.

The parameters you use when you create a CGImage object using CGImageCreate
can impact drawing performance. If your image does not contain any alpha infor-
mation, rather than supplying alpha component values in the image that are
fully opaque, you should instead use kCGImageAlphaNone, kCGImageAlphaNone-
SkipLast, or kCGImageAlphaNoneSkipFirst when specifying the CGBitmapInfo
value to CGImageCreate. By properly informing Quartz that the image contains
no alpha data, the image rendering code can execute code that is optimized for
opaque image drawing. For images that contain alpha, Quartz efficiently handles
both premultiplied and nonpremultiplied data. There is no need to adjust your
image data to supply it in one format or the other; instead, use the data format
that is closest to the native format of the data.

When drawing images, the interpolation quality parameter in the graphics state
affects drawing performance. The higher the interpolation quality, the greater
the potential impact on performance. You should choose the interpolation qual-
ity that best suits your needs. For transient drawing, such as that performed dur-
ing window live resize, low-quality interpolation or no interpolation may be
appropriate, followed by better-quality interpolation when drawing the content
after the resize operation is complete.

The process of performing text layout has an inherent cost that you want to pay
as infrequently as possible. Most applications use the framework text facilities—
when doing so you should use the framework text drawing techniques that reuse
the text layout, rather than recomputing it each time you draw your text. If you
are performing your own text layout, you should cache the layout and only draw
the results when you are asked to draw your text, rather than recomputing the
layout each time you are asked to draw.

Measuring Performance

Perhaps the most important aspect to measuring performance is to include it as a
regular step in your development cycle. Apple is working hard to improve

Optimizing Performance 607

Quartz drawing performance with each software release. The same is true for the
application frameworks; they provide inherent performance improvements as
the system is tuned. As Apple optimizes Quartz and the application frameworks,
your performance profile may change. You need to continue to look at the per-
formance bottlenecks in your code as Mac OS X evolves. What appears to have
no effect on performance today (or may even be a performance benefit) might
be revealed as a bottleneck tomorrow.

Apple provides a number of tools to help measure performance, including
Shark, Sampler, MallocDebug, ObjectAlloc, and Quartz Debug. Shark is espe-
cially useful when looking for bottlenecks in your code and in helping you actu-
ally understand where those bottlenecks really are. It’s more effective to use
Shark than to guess.

The tools MallocDebug and ObjectAlloc help you to find memory leaks (and
possibly memory corruption) in your code. Because memory usage has a huge
impact on system performance, it’s important to ensure that your code be as
leak-free as possible, making sure that you aren’t using memory unnecessarily.
The Quartz Debug application has a number of facilities that you can use to get
a view into the drawing you are performing with Quartz. “Using Quartz Debug”
(page 608) has detailed information.

Although you might think that you have an intuitive sense about what the per-
formance bottlenecks are in your code, experience shows that intuition can be
wrong. Using measurement tools is the most effective way to discover your per-
formance bottlenecks; through that understanding you’ll be able to construct
ways to minimize or eliminate them.

Because the drawing you perform may be quite complex and make the overall
performance profile of your application difficult to analyze, one approach is to
simplify your drawing as much as you can for measurement purposes. Then pro-
file the simplified drawing using Shark. (Be sure to explore the different views
that Shark provides. By using the Tree view instead of the Heavy view, you will
be more likely to recognize your code.) By measuring this simplified drawing,
you should have a profile that you can analyze more easily than is possible with
more complex drawing. You may find that you can now see bottlenecks in the
code, unrelated to rendering, that were previously unknown because they were
hidden by the costs of more complex drawing. Apple often finds that application
performance bottlenecks that are attributed to the graphics system are instead in
other code. Make sure you understand your simplified profile before proceeding.
Then progressively add elements into your drawing. Look at the code profile and
optimize as you go, until you are happy with the content and performance.

Adding to the excitement of understanding performance is the fact that different
configurations can have different performance profiles. The performance of your
application on the platform may differ significantly across the spectrum of CPU
architectures—from G3- to Intel-based Macintosh computers. The video hard-
ware can also impact performance, especially as Apple optimizes Quartz further.

608 Chapter 17 Performance and Debugging

Depending on your target audience, you will want to measure and optimize on
the configurations that are most important to your users. They each have differ-
ent cache-to-memory ratios and speed differences. As a result, performance can
vary appreciably due to how you use memory in your code.

Using Quartz Debug. Apple supplies a number of important performance analysis
applications and tools as part of the Developer SDK. The Quartz Debug applica-
tion is useful for helping to debug your application drawing performance and for
eliminating unneeded or redundant drawing that your application performs.
When you install the Developer SDK for Tiger, Quartz Debug is installed in the
directory /Developer/Applications/Performance Tools.

When you launch Quartz Debug, the first thing you’ll notice is the floating win-
dow shown in Figure 17.3. Each of the checkboxes in this window controls a
special debugging mode of the Quartz Compositor. These debugging modes
allow you to visually observe application drawing. Note that these debugging
modes don’t just apply to your application but to all drawing done in every appli-
cation. While this can be useful in observing the drawing in applications other
than your own, it can also radically slow down system performance and usability,
so typically you turn these modes on for observing a given application, then turn
them off.

As you can see from the bottom of the Quartz Debug window in Figure 17.3,
the hot key combination Control-Option-Command-t turns off and on various
debugging modes. To turn on a set of options, check those options in the Quartz
Debug window. To toggle that set of options on and off together, you can then
use the key combination Control-Option-Command-t. When Quartz Debug is
running, this key combination controls the Quartz Debug modes regardless of
what application is currently active and frontmost. This is especially useful when
you turn on a debugging mode that causes drawing to be time-consuming, mak-
ing it difficult to switch from the application you are measuring to another appli-
cation.

Figure 17.3 The Quartz Debug window

Optimizing Performance 609

Turning on the “Autoflush drawing” option causes the Quartz Compositor to
perform a flush operation after every drawing call that draws to a window. With
this checked, you can see virtually every drawing operation as it takes place
(with the corresponding dramatic drag on performance). This can be useful in
observing the order and kind of each of your drawing operations.

Enabling the “Flash screen updates” option causes the Quartz Compositor to
paint with yellow each region of the screen it is about to update, followed by a
short pause and then the actual screen update. This allows you to watch the
screen updates as they occur. If the “No delay after flash” checkbox is also
selected, the short pause between the yellow flash and the screen update is
omitted. Typically the pause is useful since otherwise you may not notice the
drawing.

Watching the screen updates can help you identify unnecessary drawing. For
example, if you find that you are drawing more content than is necessary, you’ll
notice that the yellow portion flashed before your update is larger than is strictly
necessary. You might find ways to eliminate the unnecessary drawing and provide
an overall performance win for your application.

Selecting the “Flash identical updates” option causes the Quartz Compositor to
paint with red any portion of the update area that is drawn with the same pixels
as were already present. This is followed by a pause, then the actual screen
update is performed. Drawing preceded by the red flash is redundant. Observing
the identical update flashes in your application may provide useful clues as to
how to eliminate redundant drawing.

The Quartz Debug application provides some additional controls that can help
you to examine application capabilities and performance. The “Show Frame
Meter” item in the Tools menu displays a frame rate meter that shows in real
time the number of screen updates per second. Recall that frame rates higher
than 60 frames per second are almost certainly counterproductive. When per-
forming animations, you should strive to have your frame rates at the lowest
value possible to produce smooth results, with 30 frames per second a typical
maximum.

The “Show Beam Sync Tools” menu item in the Tools menu opens a window that
lets you control the beam syncing update behavior used by the Quartz Composi-
tor. Over time the Quartz Compositor has been updated so that the methods it
uses to flush the window backing store buffers to the display potentially produce
better-quality results and improve performance. The beam syncing analysis tools
allow you to test and measure your code with different beam syncing behavior
(automatic, forced, or syncing disabled) and evaluate your application with
beam syncing in mind. Apple has written a technical note that discusses beam
syncing and how it might impact your application. See the references at the end
of the chapter for more information.

610 Chapter 17 Performance and Debugging

Using the Quartz Debug Window List. The Quartz Debug application lets you see
how your application uses windows, both those onscreen and those that are hid-
den. The Quartz Debug Window List window opens when you choose the Show
Window List menu item in the Tools menu (see Figure 17.4).

Each window is owned by an application or system process; the connection ID
(CID) is unique for each process. In the figure, the windows are sorted by the
owning application, but you can sort in other ways by clicking the column title
representing your desired sort ordering. In addition, you can drag the columns so
that you locate the columns of most interest where you want them.

Each window has a unique window ID (WID), shown in the third column by
default. The next column is the kBytes column, representing the amount of
memory (in kilobytes) used for the backing store of a given window. As you see
in the figure, some windows have a size followed by the letter C, indicating that
the backing store of the window is compressed. In addition, a row where the
window is compressed appears highlighted in gray in the window list. The back-
ing store for these windows is compressed in order to reduce the amount of
memory used. Compressed windows will be discussed further in a moment.

The Origin column has the x,y coordinates, in pixels, of the top-left corner of
the window, relative to the top-left corner of the display. The Size column con-
tains the width and height of each window in pixels. The Type column indicates
whether a window has a backing store (Buffered) or is another type of window,
available in some application frameworks for specialized purposes. The Encoding
column indicates the window depth and whether the window allows for alpha
data or not. The OnScreen column shows whether a window is visible onscreen
or is hidden.

The Fade column shows the opacity of a window; most windows are fully
opaque and have a fade value of 100 percent but it is possible to create windows

Figure 17.4 The Quartz Debug window list

Optimizing Performance 611

that are partially transparent and are composited on top of other windows.
(“Window Buffering” (page 595) discusses transparent windows and the refer-
ences at the end of this chapter provide pointers to several examples from Apple
that demonstrates them.)

The Level column indicates the ordering level of a window. Windows with a
level value that is lower than other windows are underneath those windows and
cannot be moved above those windows unless the window level value is
changed. Windows with the same level value, such as normal application win-
dows, can be placed on top of one another without changing their level value.
This mechanism allows for tool windows that float above other windows of your
application, even as those windows are reordered amongst themselves. As you
see in the screen shot, the Finder owns several windows with a very low window
level value. These windows are the desktop icons that appear below any other
window on the system, including those of the Dock.

While the origin and size of a window in the window list may help you deter-
mine which onscreen window a given entry is, once there are a large number of
windows involved, it can be difficult to determine which window corresponds to
which entry. If you click on an entry for a given window in the window list and
that window is onscreen, the onscreen window itself is alternately highlighted
and faded to an unhighlighted state. This gives the appearance of the window
“pulsing.” This makes it easy to determine which window a given WID corre-
sponds to.

As mentioned previously, some windows in the list are marked as compressed.
For windows whose contents haven’t changed recently, the Quartz Compositor
compresses the backing store so that it minimizes its memory requirements. The
compositor can composite the contents from a compressed backing store effi-
ciently. However, if there is any drawing to a window that is compressed, the
Quartz Compositor must first decompress the backing store before the drawing
is rendered to it.

Notice that in Figure 17.4 there are two entries associated with the Quartz
Debug application itself. One window is compressed and the other, larger win-
dow, is not. The smaller window is the Quartz Debug window containing the
checkboxes controlling the Quartz Compositor flush highlighting behavior. The
other window is the window list itself. The smaller window is compressed. This
is because there has been no recent interaction with that window that requires it
to redraw itself. If you were to click on one of the checkboxes in that window,
you would see the window change its status to indicate that it is no longer com-
pressed. After a period of time with no additional interaction, the window will
again be compressed and appear in the window list marked accordingly.

You can use the window list to monitor your application windows and verify
that they are compressed at the expected times, such as when there is no recent
drawing to them. If a window in your application is not compressed, it means
there has been recent drawing to the window backing store by either an applica-
tion framework or your code. Make sure the behavior is what you expect.

612 Chapter 17 Performance and Debugging

You can also use the window list to make sure that the number of your applica-
tion windows in the list is what you expect. If the window list contains more
windows than you expect, it means you are probably inadvertantly holding onto
windows you think you have disposed of or released. Since windows take up sig-
nificant resources, you’ll want to make sure you understand your application’s
usage pattern.

Using Quartz Debug to Explore Resolution Independence. Higher-resolution displays and
a high-resolution user interface are an important future direction for Apple.
Quartz is built with high resolution in mind; utilizing Quartz properly in your
application prepares you for the move to a high-resolution user interface.

In Tiger, the Show User Interface Resolution menu item in the Quartz Debug
Tools menu brings up a window that lets you adjust the system-wide user inter-
face resolution scaling factor. In Tiger, by default, the user interface resolution
scaling factor is 1.0, meaning that windows are created so that 1 user space unit
is 1 pixel. Using Quartz Debug, you can change the user interface resolution to
other values to investigate the results you obtain with your application as the
user interface resolution changes.

Figure 17.5 shows setting a scaling factor of 1.75 in the User Interface Resolu-
tion window, corresponding to a user interface resolution of 126 dpi. This means
that if you were to create a window on a display that has a physical resolution of
126 dpi, 72 units in the default Quartz coordinate system would be 126 pixels,
or one inch. This kind of control allows a user to choose how to utilize a high-
resolution display. A user interface resolution of 1.0 produces windows where
each pixel is one Quartz unit. Thus, there is a larger Quartz coordinate space to
draw in, albeit at smaller size and potentially reduced visual acuity. Larger values
for the scaling factor produce windows with a smaller Quartz coordinate space
but with more pixels per coordinate unit. Content drawn in such windows
would have better fidelity at the expense of a reduced drawing canvas.

As of Tiger, the high-resolution user interface is a work in progress. The Tiger
release notes listed in “See Also” (page 627) are a good source of information
about moving your application to a high-resolution user interface. You’ll see
more up-to-date information on the ADC website as it is available.

Figure 17.5 Setting the resolution for the user interface

Debugging Your Drawing 613

One of the advantages of working with graphics systems is that they usually
provide visual feedback on the code you write. Most of the time the visual
feedback is sufficient to help you track down programming errors and correct
them. Of course, there are times when either the visual clues aren’t enough or
you don’t see any drawing! No drawing or incorrect drawing can occur for a
number of reasons.

Table 17.1 lists some typical problems and pointers to debugging tips that can
help you identify the problem.

Examining the Coordinate System

It is not unusual, particularly when you are new to Quartz programming and
coordinate transformations, to sometimes get “lost” in space as you develop an
application. Your graphics don’t appear where you expect, they might appear
deformed, or maybe they don’t appear at all. One frequent cause of these prob-
lems is that the coordinate system origin, scale, or orientation isn’t what you
think it is. There are a number of methods that you can use to help debug situa-
tions where the drawing coordinate space is different than you expect.

A simple, relatively unobtrusive way to determine where you are in the Quartz
coordinate system is to draw a “dot” at a specified user space coordinate. The
drawPoint routine in Listing 17.4 draws a 5-unit circle at the point passed to it.
Frequently it is useful to draw this dot at the current Quartz origin. By seeing
where the origin is relative to your graphics, you can sometimes better deter-
mine the current user space origin and why your drawing is not appearing where
you expect.

It can also be useful to draw coordinate axes at various points in your code so
that you can see the origin, scale, and orientation of the current user space coor-
dinate system. The drawCoordinateAxes routine in Listing 17.4 draws the x and y
coordinate axes with tick marks that are 72 units apart and a dot at the origin of
coordinates. The x axis and tick marks are drawn in red and the y axis and tick
marks are drawn in blue. The coordinate axes make it easy to see the location,
scale, and orientation of the current Quartz user space coordinate system.

In some situations, it is helpful to have a debugging routine that strokes a rectan-
gle and puts crosses through it in different colors. This can help determine the
location, scale, and orientation of a given user space rectangle. The drawDebug-
gingRect routine in Listing 17.4 draws such a rectangle. This rectangle drawing is
especially helpful when debugging the drawing of images and PDF documents. If

Debugging Your Drawing

614 Chapter 17 Performance and Debugging

you think there is a problem with your image or PDF drawing code, replace the
actual CGContextDrawImage or CGContextDrawPDFPage (or CGContextDrawPDFDocu-
ment) call with a call to drawDebuggingRect. This helps to narrow down whether
the problem you encounter is with the coordinate system transformations or
something specific to the type of data you are trying to draw.

Table 17.1 Drawing Problems and Debugging Tips

Problem Debugging Tip

Drawing doesn’t appear. See “Examining the Coordinate System” (page 613),
“Drawing a Debugging Rectangle” (page 617), “Checking
the Clipping Area” (page 617), and “Looking for Console
Messages” (page 618).

Drawing appears in the wrong location. See “Examining the Coordinate System” (page 613) and
“Drawing a Debugging Rectangle” (page 617).

Drawing looks deformed. See “Examining the Coordinate System” (page 613).

Code crashes when drawing to a PDF
context or printing.

See “Checking for Data Provider Integrity” (page 619).

Images look identical, but should be
different.

See “Checking for Immutability Violations” (page 620).

Drawing contains artifacts. See “Checking for Immutability Violations” (page 620)
and “Checking for Improperly Initialized Contexts” (page
620).

Color is wrong. See “Checking for Out-of-Sync Color Setting” (page
620).

Images don’t appear as expected. See “Drawing Images to a PDF Context” (page 621) and
“Drawing a Debugging Rectangle” (page 617).

Drawing PDF source data doesn’t
appear as expected.

See “Drawing a Debugging Rectangle” (page 617).

Quartz-generated PDF document
can’t be opened in any application.

See “Releasing a CGPDFContext Object” (page 621).

Printing fails and Print Preview
reports that the PDF is damaged.

See “Releasing a CGPDFContext Object” (page 621).

Acrobat complains about pages with
patterns in Quartz-generated PDF
documents.

See “Checking Pattern Color Space Usage” (page 622)
and “Looking for Console Messages” (page 618).

PostScript printing of patterns
produces PostScript errors.

See “Checking Pattern Color Space Usage” (page 622).

Generated PDF files are much larger
than expected.

You may not be properly reusing Quartz resources. See
“Using PDF Generation as a Debugging Aid” (page 622).

Debugging Your Drawing 615

void drawPoint(CGContextRef context, CGPoint p)
{
 CGContextSaveGState(context);
 // Set the stroke color to opaque black.
 CGContextSetRGBStrokeColor(context, 0, 0, 0, 1);
 CGContextSetLineWidth(context, 5);
 CGContextSetLineCap(context, kCGLineCapRound);
 CGContextMoveToPoint(context, p.x, p.y);
 CGContextAddLineToPoint(context, p.x, p.y);
 CGContextStrokePath(context);
 CGContextRestoreGState(context);
}

#define kTickLength 5.0
#define kTickDistance 72.0
#define kAxesLength (20*kTickDistance)

void drawCoordinateAxes(CGContextRef context)
{
 int i;
 float t;
 float tickLength = kTickLength;

 CGContextSaveGState(context);

 CGContextBeginPath(context);
 // Paint the x axis in red.
 CGContextSetRGBStrokeColor(context, 1, 0, 0, 1);
 CGContextMoveToPoint(context, -kTickLength, 0.0);
 CGContextAddLineToPoint(context, kAxesLength, 0.0);
 CGContextDrawPath(context, kCGPathStroke);

 // Paint the y axis in blue.
 CGContextSetRGBStrokeColor(context, 0, 0, 1, 1);
 CGContextMoveToPoint(context, 0, -kTickLength);
 CGContextAddLineToPoint(context, 0, kAxesLength);
 CGContextDrawPath(context, kCGPathStroke);

 // Paint the x axis tick marks in red.
 CGContextSetRGBStrokeColor(context, 1, 0, 0, 1);
 for(i = 0; i < 2 ; i++)
 {

Listing 17.4 Helper routines for debugging coordinate system problems

616 Chapter 17 Performance and Debugging

 for(t=0.; t < kAxesLength ; t += kTickDistance){
 CGContextMoveToPoint(context, t, -tickLength);
 CGContextAddLineToPoint(context, t, tickLength);
 }
 CGContextDrawPath(context, kCGPathStroke);
 CGContextRotateCTM(context, M_PI/2.);
 // Paint the y axis tick marks in blue.
 CGContextSetRGBStrokeColor(context, 0, 0, 1, 1);
 }
 drawPoint(context, CGPointZero);
 CGContextRestoreGState(context);
}

void drawDebuggingRect(CGContextRef context, CGRect rect)
{
 CGContextSaveGState(context);
 CGContextSetLineWidth(context, 4.);
 // Draw opaque red from top left to bottom right.
 CGContextSetRGBStrokeColor(context, 1, 0, 0, 1.);
 CGContextMoveToPoint(context, rect.origin.x,
 rect.origin.y + rect.size.height);
 CGContextAddLineToPoint(context,
 rect.origin.x + rect.size.width,
 rect.origin.y);
 CGContextStrokePath(context);
 // Draw opaque blue from top right to bottom left.
 CGContextSetRGBStrokeColor(context, 0, 0, 1, 1.);
 CGContextMoveToPoint(context, rect.origin.x + rect.size.width,
 rect.origin.y + rect.size.height);
 CGContextAddLineToPoint(context, rect.origin.x,
 rect.origin.y);
 CGContextStrokePath(context);
 // Set the stroke color to opaque black.
 CGContextSetRGBStrokeColor(context, 0, 0, 0, 1.);
 CGContextStrokeRect(context, rect);
 CGContextRestoreGState(context);
}

void printCTM(CGContextRef context)
{
 CGAffineTransform t = CGContextGetCTM(context);
 fprintf(stderr, "CurrentCTM is a = %f, b = %f, c = %f, d = %f, \
 tx = %f, ty = %f\n",
 t.a, t.b, t.c, t.d, t.tx, t.ty);
}

Debugging Your Drawing 617

If you get really lost in Quartz user space, you can look directly at the CTM cur-
rently in effect. The printCTM routine in Listing 17.4 writes a message to the con-
sole that contains the entries of the CTM affine transform. The CTM printed by
printCTM for the default Quartz coordinate system in Tiger and earlier versions is
the identity transform: a = 1, b = c = 0, d = 1, and tx = ty = 0. This is a coordi-
nate system where the scaling factor is 1, there are no rotations, and the origin is
at the default origin, the lower-left corner of the window (or bitmap or PDF doc-
ument). The tx and ty values correspond to the current Quartz origin, relative to
the lower-left corner of the window (or bitmap or PDF document). When b and
c are zero, the a and d values specify the scaling in x and y, respectively—negative
values indicate a flipped coordinate system. When b and c are nonzero, this indi-
cates a rotation or skew of the coordinate system, relative to the normal orienta-
tion where the x axis is horizontal and the y axis is vertical. See “The Quartz
Coordinate System and Coordinate Transformations” (page 83) for more infor-
mation about the Quartz coordinate system and the CTM.

Checking the Clipping Area

You may find that your drawing, or a portion of it, is not appearing at all. One
reason your drawing may “disappear” is that the clipping area might be different
than what you expect. You may find that your drawing coordinates are correct
but the clipping area is causing the drawing to be obscured. The function CGCon-
textGetClipBoundingBox, available in Panther and later versions, returns the
bounding rectangle, in current user space coordinates, of the clipping area. By
calling drawDebuggingRect with the clipping rectangle returned by CGContextGet-
ClipBoundingBox, you can visually determine the current clipping bounds. In
some cases, this approach can be quite revealing. See “Clipping with Paths”
(page 129) and “Clipping to a Mask (Tiger)” (page 282) for more information
about clipping.

Drawing a Debugging Rectangle

As your drawing gets more complex, it sometimes becomes more difficult to sort
out problems. In these situations, it is frequently useful to simplify your drawing
to help understand any problems. For example, if you are drawing images or PDF
documents and they aren’t appearing or are appearing incorrectly, it can be help-
ful to substitute drawing a simple rectangle (or use the routine drawDebugging-
Rect in Listing 17.4) to the destination. You know exactly what you should see in
the simplified drawing and if you don’t see what you expect, the issue isn’t with
the image or PDF page, but with some other aspect of your setup and drawing.

618 Chapter 17 Performance and Debugging

Looking for Console Messages

The Quartz philosophy on errors and error codes is simple. In the Quartz 2D
programming API, Quartz functions do not return an error code. Instead of
returning error codes, Quartz functions

� Return NULL for functions that create objects if the object can’t be created. For
example, when you call CGBitmapContextCreate, if Quartz can’t create a bit-
map context that represents the set of parameters you supplied to the func-
tion, it returns a NULL context.

� Log a message to the console log. The message that Quartz writes to the log is
more informative than an error code and indicates the condition that led to
the log message.

� Return a bool that indicates success or failure, such as with functions like
CGPSConverterConvert or CGPDFDictionaryGetStream. In case of failure, a mes-
sage may be logged to the console.

In most cases, Quartz returns a NULL object because the parameters to the func-
tion are incorrect or unsupported in that version of Mac OS X, rather than due
to insufficient resources to satisfy the request. In many cases, Quartz also logs a
console or system log message when it returns a NULL object. Quartz logs other
messages when it encounters inconsistent usage of its API, such as when setting a
colored pattern as the painting color when the current color space is not a pat-
tern color space or if the color space is appropriate for a stencil pattern, not a col-
ored pattern.

These kinds of programming errors can, and should, be found during software
development, not by end users. It is important during your software develop-
ment to look in the console log for log messages from Quartz. These messages
are frequently a useful way of uncovering problems, especially those problems
that you might not detect visually.

Console messages can help identify why your drawing calls produce no drawing
or incorrect drawing. As discussed in “Examining the Coordinate System” (page
613), one typical reason for a lack of visible drawing is that prior to drawing, you
set up the coordinate system incorrectly. Another reason is that you passed a
NULL context to Quartz drawing functions, which can happen if you create a con-
text such as a bitmap context but use incorrect or unsupported parameters. In
these cases, the context returned is NULL. (See Table 12.1 (page 348) in “Bitmap
Graphics Context” (page 346) for the list of bitmap contexts supported up to
and including Tiger.) With most versions of Mac OS X, Quartz logs a message to
the console when you pass a NULL context to its drawing routines. Usage of the

Debugging Your Drawing 619

NULL context generally doesn’t crash. Instead, drawing doesn’t take place but
warning messages are written to the console. The console log is the first place to
look if you don’t see the results you expect.

Checking for Data Provider Integrity

As discussed in “Guidelines for Using Data Providers” (page 198) and “Best Prac-
tices for Working with Images” (page 241), it is important to ensure that a data
provider for an image (or other Quartz object) is prepared to supply its data
until the data provider release function is called by Quartz. Failing to follow this
guideline can cause your code to crash during printing or drawing to a PDF con-
text. This class of crash typically has a backtrace that includes the Quartz func-
tion CGContextRelease or CGContextEndPage. The problem this kind of crash
reveals is a failure to maintain the integrity of a Quartz data provider or other
object that has resources associated with it, such as a CGPattern object.

During printing or when generating a PDF document, Quartz typically retains a
CGImage or CGPattern object well after you have released it, and uses the data
provider or calls the pattern callback when it ends the page or ends the docu-
ment. If you prematurely release resources or other data that you need for your
data provider or other callback that Quartz invokes, Quartz could crash with a
memory access violation when it attempts to use the now nonexistent data.

Another symptom of the same problem is an image that appears to be com-
pletely corrupted or have damaged data. If the image data is released prior to the
time Quartz attempts to access it, the result can be that the memory associated
with the data is in use for another purpose.

A similar crash that can occur when you draw to a PDF context (or print) is
related to how you allocate the info parameter before you pass it to functions
such as CGDataProviderCreate, CGFunctionCreate, and CGPatternCreate. You
should use malloc or another memory allocation function to allocate the info
parameter; don’t allocate it on the stack. CGDataProvider, CGFunction, CGPat-
tern, and other objects are retained by Quartz when you use them and, when
drawing to a context, they can be released well after you “think” they have been.
Just as image data associated with an image needs to be available until Quartz
calls the data provider release function for an image, the info data that you sup-
ply when creating a data provider, function, pattern, or other similar Quartz
object needs to be available until Quartz calls the release function associated
with that object.

Important Check the console frequently during your software development and testing. Correct
usage of the Quartz API does not produce console messages.

620 Chapter 17 Performance and Debugging

Checking for Immutability Violations

One aspect of data provider integrity is that the data it provides is immutable.
During the lifetime of the data provider, Quartz expects that the underlying data
does not change and that it represents the data provided by the data provider.

One way you can accidently violate the immutability of data supplied by a data
provider is when that data is the bitmap raster data from a bitmap context or is
bitmap data from another drawing system such as QuickDraw. If you draw to the
bitmap context that contains the image data after you create the CGImage object,
the image data could change and therefore not represent the original image.

In some cases, this problem exists in your code but it isn’t apparent until you
print or draw to a PDF context. You can diagnose this problem by looking at the
PDF document or printed output and observing that the output isn’t what you
expect. For example, you may have drawn multiple images on the page but one
or more of them are identical instead of being distinct. This is typically caused
because you violated the immutability of a Quartz object—you drew a CGIm-
age object but changed the image data associated with that object.

You might not observe this problem when drawing to a window, but when draw-
ing to a PDF document or during printing, Quartz only generates a single refer-
ence for each CGImage object, even when the object is drawn multiple times.
Using a single reference significantly reduces the size of PDF files it produces but
can produce unexpected results if you violate the immutability of Quartz
objects such as CGImage, CGPattern, CGShading, and CGPDFDocument
objects. “Best Practices for Working with Images” (page 241) discusses the notion
of object immutability as it applies to images.

Checking for Improperly Initialized Contexts

When you create a bitmap graphics context, Quartz does not initialize the mem-
ory you provide as the bitmap raster data. Failing to properly initialize a bitmap
context can be a source of drawing artifacts. The UNIX function malloc returns
memory that contains unknown values. You should be sure to properly initialize
the memory in your bitmap context by using calloc and properly erasing or
clearing the context. “Erasing and Clearing a Context” (page 351) discusses this
in detail.

Checking for Out-of-Sync Color Setting

If you see incorrect colors in your drawing, check that the color space and color
component values in effect at the time you paint your graphics are those you
expect. Because you can set the color space and color component values inde-

Debugging Your Drawing 621

pendently, they can get out of sync. Color component values are always inter-
preted in a color space. If you supply color values for a given color space but use
a different color space, you obtain incorrect colors. Depending on the color space
and color values, the results may be dramatically incorrect. Using a CGColorRef
significantly reduces this possibility because, by setting the color using a CGColor-
Ref, you set the color space and color component values simultaneously. (See
“CGColor Objects (Panther)” (page 152) for information about creating and
using CGColor objects.) You can use the Core Foundation function CFShow to
print out a description of a CGColorSpace object. While CFShow doesn’t produce
useful diagnostic information on many Quartz objects (as of Tiger), it does pro-
duce useful information for CGColorSpace objects.

Drawing Images to a PDF Context

You can debug some image drawing problems by creating a PDF context that is
the size of the image destination and drawing the image to that context. Drawing
an image to a PDF document generally records the image without transforming
or modifying the image, allowing you to examine the PDF document to deter-
mine what image data you are working with. Other ways to examine image data
are to render it to a custom bitmap context and examine those bits or to use the
CGImageDestination functionality to a create a TIFF data file for the image.

Releasing a CGPDFContext Object

If you use a PDF context to create a PDF document and the resulting PDF docu-
ment can’t be opened by Preview or Adobe Acrobat, make sure you are calling
CGContextRelease on the PDF context you created. The symptom produced by
failing to release the PDF context is that the PDF document created is mysteri-
ously incomplete and is considered damaged by applications attempting to use
them. Quartz doesn’t write out the complete contents of the PDF document
associated with a PDF context until the retain count of the context goes to zero.
If you create or retain a PDF context and don’t release your reference to it, the
retain count of the context won’t ever reach zero and the document won’t be
finalized.

You’ll see a similar problem when printing fails and a PDF document you save
through the print dialog or view by using Print Preview reveals that the PDF
document is damaged. This usually means that the PDF context used by the
printing system isn’t being released properly. The typical reason for this is that
you’ve either retained the printing context in your code and haven’t released it,
or you’ve released it but not until after you’re finished printing. The printing
context associated with a given page should not be retained beyond the scope of
that page.

622 Chapter 17 Performance and Debugging

Checking Pattern Color Space Usage

When drawing with colored patterns, you must first set the color space to a pat-
tern color space that has a NULL base color space. If you are drawing with a stencil
pattern (that is, one that has no intrinsic color), you must first set the color space
to a pattern color space that has a base color space that is not NULL. Failing to fol-
low these guidelines may produce no obvious side effect when drawing to the
display but can produce console messages and can cause Quartz to produce PDF
documents that don’t conform to the PDF specification.

Stencil patterns that you create must not set color or draw objects with intrinsic
color in their drawPattern callback. As of Tiger, Quartz doesn’t provide any
warning or console message if you do this. Failure to observe this requirement
can cause Quartz to produce PDF documents that don’t conform to the PDF
specification.

A PDF document produced when drawing with any of these errors in your draw-
ing code can cause problems for Adobe Acrobat and other third-party PDF utili-
ties. When you open such a malformed PDF document in Adobe Acrobat and
navigate to a page in the document that contains the incorrect pattern drawing,
you’ll see that the drawing is incorrect or missing. Acrobat typically generates
warnings and fails to draw a page that contains this type of incorrect drawing.
With these errors in your code, printing to a PostScript printer can also fail when
you draw these incorrectly formed patterns.

See “Creating and Drawing Colored Patterns” (page 485) and “Creating and
Drawing Stencil Patterns” (page 499) for more information about properly creat-
ing and drawing patterns.

Using PDF Generation as a Debugging Aid

For debugging purposes, you can use the fact that the Quartz imaging model and
the Quartz API map quite well onto the PDF imaging model. By performing
your drawing into a PDF context, you produce a recording of your drawing that
can be helpful in finding problems.

For example, you can use a PDF representation of your drawing to evaluate appro-
priate reuse of CGImage and CGPattern objects. If a given image is drawn more
than once but, by inspecting the PDF page content stream, you observe multiple
image objects in the PDF document rather than a single image referenced multiple
times, you are not reusing your objects correctly. Patterns, color spaces, images,
PDF document pages, and fonts all benefit from reuse, both when generating a
PDF document and potentially when rendering onscreen or to other bit-based
contexts. (Note that use of a given pattern but with a different pattern phase gen-
erates a new pattern resource during PDF document generation.)

Debugging Your Drawing 623

You can examine a PDF document in many ways. “Examining PDF Document
Content (Panther, Tiger)” (page 467) introduces the Quartz PDF introspection
functions that you can use to write PDF document analysis tools. There are also
third-party tools that examine PDF documents; some have the ability to detect
duplicate resource usage.

You can also use the PDF page content stream as a debugging tool. By reading it,
you can examine a recording of your graphics drawing. Reading the PDF graph-
ics stream isn’t a debugging approach for everyone; but it is one way to become
more familiar with the PDF file format. Those who already are familiar with the
page content stream and PDF file format might find this approach useful.

The contents of the PDF page content stream are not an exact one-to-one map-
ping with the Quartz drawing calls you make. For example, coordinate transfor-
mations are coalesced and the coordinates that are generated into a Quartz PDF
page content stream are typically transformed into the default PDF coordinate
system, except when explicit changes to the CTM in the PDF stream are neces-
sary. This can be a useful debugging aid since you will see virtually all of your
drawing coordinates in default user space with coordinate transformations
already applied to them.

The sample application Voyeur in the Tiger Developer SDK lets you browse
PDF document structures and their contents. Opening a PDF document in Voy-
eur presents a view of the document that is similiar to that shown in Figure 17.6.
The lower portion of the window presents information about the document,
including the PDF document version number, the number of pages, the title and
author of the document, and so forth. The top portion of the window presents

Figure 17.6 A PDF document just opened in Voyeur

624 Chapter 17 Performance and Debugging

the PDF document catalog, which contains the Pages dictionary that contains
the PDF page objects present in the document.

Clicking the disclosure triangle next to Pages reveals the entries in the dictionary.
Figure 17.7 shows the results of revealing the Pages dictionary contents. This
Pages dictionary contains the entries Type, MediaBox, Count, and Kids. The Kids
entry is an array that contains the page objects that each describe a page in the
document. Clicking on the disclosure triangle for the Kids array reveals the
objects that make up the array. In the case of the PDF document in the figure,
there is only one element in the array, the element labeled 0. This PDF docu-
ment contains only one page so it has only one entry in the Kids array, the Page
object for that page. A Page object is a dictionary and its Contents entry is the
page content stream. By selecting the Contents entry and choosing the File >
Show Info menu item (Command-Shift-I), the Info Window appears, as seen in
the inset in Figure 17.7. The text in the Info Window is the page content stream
that makes up the PDF document page.

Listing 17.5 shows a simple PDF page content stream for drawing the first exam-
ple in this book, the code in Listing 2.1 (page 17) that fills a rectangle with red.
(Note that the page content stream in the listing is formatted for this discussion.)

Figure 17.7 Using Voyeur to examine the PDF content stream

Debugging Your Drawing 625

q Q
q
/Cs1 cs 1 0 0 sc
20 20 130 100 re f
Q

Like the PostScript language, PDF drawing operations use a set of predefined
operators that act on objects. The PDF imaging model has a graphics state that is
similar to the Quartz graphics state and the PDF specification defines the opera-
tor q, which saves the graphics state (similar to the Quartz function CGContext-
SaveGState), and Q, which restores the graphics state (similar to the Quartz
function CGContextRestoreGState). The first line in the content stream is a q
immediately followed by a Q—this saves and restores the PDF graphics state.
This initial portion of the content stream generated by Quartz is an artifact of
the way Quartz currently generates PDF data and can be ignored; it produces no
drawing or persistent changes to the PDF graphics state.

The next operation in the page content stream is the PDF operator q, which
saves the PDF graphics state. Quartz generates a PDF content stream that first
saves the graphics state before performing any drawing so that it can restore to
that graphics state if it needs to do so later. Note that this appears even though
the Quartz drawing that produced this PDF page content stream did not explic-
itly call CGContextSaveGState. As mentioned previously, the PDF content stream
is not a one-to-one mapping to the Quartz API calls you make.

The PDF content stream is a postfix language similar to PostScript—arguments
(called operands) to those PDF operators that take arguments precede the oper-
ator in the content stream. The next PDF operator in the content stream in List-
ing 17.5 is the operator cs, which sets the fill color space. The operand to the cs
operator is the name /Cs1. Objects such as color spaces and images appear in the
page content stream by named reference—this allows objects to be referenced
many times in the document even though the PDF file contains only one copy of
the object itself. In this case, the name /Cs1 refers to a color space object that
represents an RGB color space.

The definition of the /Cs1 color space is not shown in the listing. The PDF speci-
fication requires that objects referenced by name in the page stream, such as
color spaces, images, and patterns, have entries in the Resources dictionary of a
page on which they appear. You can use Voyeur to examine the Resources dictio-
nary of a page and see the color spaces and other objects that are contained in
that dictionary.

Following the setting of the fill color space, the page content stream sets the fill
color with the sc operator. The operands to sc are the color components; in the

Listing 17.5 The page content stream for a simple red rectangle

626 Chapter 17 Performance and Debugging

case of an RGB space, they are the red, green, and blue component values. The
values 1 0 0 that precede the sc operator represent a pure red, no green, no blue.

Next in the page content stream is the drawing of the rectangle. The PDF opera-
tor re creates a rectangular path from coordinates that are the operands to the re
operator. In this case, the coordinates are 20 20 130 100, describing a rectangle
with its origin at (20,20) and a width of 130 units and a height of 100 units. Once
the path is created, the PDF operator f fills the current path. This corresponds to
the drawing performed in Listing 2.1 (page 17).

The PDF specification contains a table listing all the PDF operators and describes
the syntax of PDF documents. As stated earlier, reading PDF data directly isn’t
for everyone, but for those who are comfortable with it, it can be a useful way to
debug drawing problems, including coordinate system issues.

Drawing performance is the result of many interacting factors, some tied to your
code and others related to the system. The Quartz Compositor, Quartz object
and memory management, and performance measurement tools are all key play-
ers. The role that the Quartz Compositor plays in moving your drawing to the
display is important to understand and utilize to your benefit. Using the Quartz
memory and object model properly allows performance gains with object reuse
and avoids memory leaks.

Measuring performance is not a one-time task but is something that you will
want to perform regularly as you develop your code. Shark and Malloc Debug
are important tools that allow you to obtain a performance profile and memory
usage information. You can use the visual features of the Quartz Debug applica-
tion to examine application drawing, enabling you to identify redundant or
unnecessary drawing and window usage.

Many Quartz debugging tasks are made simpler by using Quartz as a debugging
aid. In some cases, adding code to your drawing can help to identify coordinate
system and clipping area problems. Using a PDF context can flush out problems
due to data provider integrity and object immutability. Simplifying troublesome
drawing can help to pinpoint where problems are cropping up.

Performance and debugging are dynamic topics—you need to keep up to date
with information as it becomes available from Apple.

Summary

See Also 627

Apple provides sample code that demonstrates the use of transparent windows.
The Cocoa sample code FunkyOverlayWindow shows how to use partially trans-
parent Cocoa windows to overlay content on top of other content and is avail-
able from the ADC Reference Library at

http://developer.apple.com/samplecode/FunkyOverlayWindow/
FunkyOverlayWindow.html

The Carbon example CarbonSketch is a Quartz-based object drawing applica-
tion that uses Carbon overlay windows for its resizing and moving of object
graphics as a drawing is edited. This example is installed as part of the Tiger
Developer SDK and is installed at

/Developer/Examples/Quartz/CarbonSketch

The Carbon Window Fun sample code demonstrates overlay windows and other
window management–related issues in Carbon. It is available at

http://developer.apple.com/samplecode/WindowFun/WindowFun.html

Apple has a number of performance resources available from the ADC Refer-
ence Library. Some of those relevant to Quartz drawing are

� The sample program QuartzLines shows how to improve drawing perfor-
mance by taking advantage of CGContextStrokeLineSegments and resampling a
data set prior to drawing it:

http://developer.apple.com/samplecode/QuartzLines/QuartzLines.html

� The sample program QuartzCache compares several techniques for caching
drawing and examines the impact excessive flushing can have on performance:

http://developer.apple.com/samplecode/QuartzCache/QuartzCache.html

� Performance Overview is a good starting point for information about looking at
your application’s performance:

http://developer.apple.com/documentation/Performance/Conceptual/
PerformanceOverview/

� Drawing Performance Guidelines provides information about improving draw-
ing performance in Cocoa and Carbon applications and measuring drawing
performance:

http://developer.apple.com/documentation/Performance/Conceptual/Drawing/
index.html

See Also

628 Chapter 17 Performance and Debugging

� Cocoa drawing performance information is available at

http://developer.apple.com/documentation/Cocoa/Conceptual/DrawViews/
Tasks/OptimizingDrawing.html

� Carbon drawing performance information is available at

http://developer.apple.com/documentation/Performance/Conceptual/Drawing/
Articles/CarbonDrawingTips.html

Because the Quartz object and memory management model is based on that of
Core Foundation, the Core Foundation documentation from the ADC Reference
Library is a useful guide.

� Memory Management provides information about the Core Foundation mem-
ory management model:

http://developer.apple.com/documentation/CoreFoundation/Conceptual/
CFMemoryMgmt/

� Design Concepts provides information about the overall design of Core Foun-
dation:

http://developer.apple.com/documentation/CoreFoundation/Conceptual/
CFDesignConcepts/index.html

� A wealth of documentation about Core Foundation can be found at

http://developer.apple.com/documentation/CoreFoundation/
CoreFoundation.html

The ADC Reference Library has useful information discussing the measurement
of drawing performance and using Quartz Debug at

http://developer.apple.com/documentation/Performance/Conceptual/Drawing/
Articles/MeasuringPerformance.html

Apple Technical Note 2133 provides information about how the Quartz Com-
positor interacts with the display refresh rate.

http://developer.apple.com/technotes/tn2005/tn2133.html

Information about the resolution-independent user interface is part of the Tiger
developer release notes installed as part of the Developer SDK for Tiger.

� The overall concepts of the resolution-independent UI are described in

/Developer/ADC Reference Library/releasenotes/GraphicsImaging/
ResolutionIndependentUI.html

See Also 629

� Cocoa-specific documentation is available in

/Developer/ADC Reference Library/releasenotes/Cocoa/AppKit.html

in the section titled “Resolution Independent UI.”

� Carbon-specific documentation is available in

/Developer/ADC Reference Library/releasenotes/Carbon/
CarbonResolutionIndependence.html

PDF Reference: Version 1.6, 5th edition, Adobe Systems, Inc. contains a summary
table that describes the complete set of PDF operators. This version and other
versions of the PDF specification are available at

http://partners.adobe.com/public/developer/pdf/index_reference.html

The Voyeur sample project is installed in

/Developer/Examples/Quartz/PDF/Voyeur

