Drug-like Properties: Concepts, Structure Design and Methods
Drug-like Properties: Concepts, Structure Design and Methods:

from ADME to Toxicity Optimization

Edward H. Kerns

and

Li Di
Contents

Preface xviii
Dedication xx

Part 1 Introductory Concepts 1

1 Introduction 3
Problems 5
References 5

2 Advantages of Good Drug-like Properties 6

2.1 Drug-like Properties Are an Integral Part of Drug Discovery 6

2.1.1 Many Properties Are of Interest in Discovery 7

2.1.2 Introduction to the Drug Discovery and Development Process 8

2.1.3 Development Attrition is Reduced by Improving Drug Properties 9

2.1.4 Poor Drug Properties Also Cause Discovery Inefficiencies 9

2.1.5 Marginal Drug Properties Cause Inefficiencies During Development 10

2.1.6 Poor Properties Can Cause Poor Discovery Research 11

2.2 Changing Emphasis on Properties in Discovery 12

2.3 Property Profiling in Discovery 14

2.4 Drug-like Property Optimization in Discovery 15
Problems 15
References 16

3 Barriers to Drug Exposure in Living Systems 17

3.1 Introduction to Barriers 17

3.2 Drug Dosing 18

3.3 Barriers in the Mouth and Stomach 19

3.4 Gastrointestinal Tract Barriers 20

3.4.1 Permeation of the Gastrointestinal Cellular Membrane 22

3.4.2 Passive Diffusion at the Molecular Level 23

3.4.3 Metabolism in the Intestine 24

3.4.4 Enzymatic Hydrolysis in the Intestine 24

3.4.5 Absorption Enhancement in the Intestine 26

3.5 Barriers in the Bloodstream 27

3.5.1 Plasma Enzyme Hydrolysis 27

3.5.2 Plasma Protein Binding 27

3.5.3 Red Blood Cell Binding 28
7.3 Effects of Physiology on Solubility and Absorption
7.3.1 Physiology of the Gastrointestinal Tract 68
7.3.2 Species Differences in Gastrointestinal Tract 68
7.3.3 Food Effect 69
7.4 Structure Modification Strategies to Improve Solubility
7.4.1 Add Ionizable Groups 71
7.4.2 Reduce Log P 73
7.4.3 Add Hydrogen Bonding 73
7.4.4 Add Polar Group 74
7.4.5 Reduce Molecular Weight 74
7.4.6 Out-of-Plane Substitution 75
7.4.7 Construct a Prodrug 76
7.5 Strategies for Improving Dissolution Rate
7.5.1 Reduce Particle Size 77
7.5.2 Prepare an Oral Solution 78
7.5.3 Formulate with Surfactants 78
7.5.4 Prepare a Salt Form 78
7.6 Salt Form 78
7.6.1 Solubility of Salts 78
7.6.2 Effect of Salt Form on Absorption and Oral Bioavailability 80
7.6.3 Salt Selection 81
7.6.4 Precautions for Using Salt Forms 82
Problems 82
References 84

8 Permeability
8.1 Permeability Fundamentals 86
8.1.1 Passive Diffusion Permeability 87
8.1.2 Endocytosis Permeability 89
8.1.3 Active Uptake Permeability 89
8.1.4 Paracellular Permeability 89
8.1.5 Efflux Permeability 89
8.1.6 Combined Permeability 89
8.2 Permeability Effects 90
8.2.1 Effect of Permeability on Bioavailability 90
8.2.2 Effect of Permeability on Cell-Based Activity Assays 91
8.3 Permeability Structure Modification Strategies 92
8.3.1 Ionizable Group to Non-ionizable Group 92
8.3.2 Add Lipophilicity 92
8.3.3 Isosteric Replacement of Polar Groups 93
8.3.4 Esterify Carboxylic Acid 93
8.3.5 Reduce Hydrogen Bonding and Polarity 94
8.3.6 Reduce Size 94
8.3.7 Add Nonpolar Side Chain 96
8.3.8 Prodrug 96
Problems 97
References 98
Part 3 Disposition, Metabolism, and Safety

9 Transporters

9.1 Transporter Fundamentals
9.2 Transporter Effects
 9.2.1 Transporters in Intestinal Epithelial Cells
 9.2.2 Transporters in Liver Hepatocytes
 9.2.3 Transporters in Kidney Epithelial Cells
 9.2.4 Transporters in Blood–Brain Barrier Endothelial Cells
 9.2.5 Consequences of Chirality on Transporters
9.3 Efflux Transporters
 9.3.1 P-glycoprotein (MDR1, ABCB1) [Efflux]
 9.3.2 Breast Cancer Resistance Protein (BCRP, ABCG2) [Efflux]
 9.3.3 Multidrug Resistance Protein 2 (MRP2, ABCC2) [Efflux]
 9.3.4 Efflux Transporters in the BBB
9.4 Uptake Transporters
 9.4.1 Organic Anion Transporting Polypeptides (OATPs, SLCOs) [Uptake]
 9.4.2 Di/Tri Peptide Transporters (PEPT1, PEPT2) [Uptake]
 9.4.3 Organic Anion Transporters (OATs) [Uptake]
 9.4.4 Large Neutral Amino Acid Transporter (LAT1) [Uptake]
 9.4.5 Monocarboxylic Acid Transporter (MCT1) [Uptake]
 9.4.6 Other Uptake Transporters
 9.4.7 Structure Modification Strategies for Uptake Transporters

Problems

References

10 Blood–Brain Barrier

10.1 BBB Fundamentals
10.2 Effects of Brain Penetration
10.3 Structure–BBB Penetration Relationships
10.4 Structure Modification Strategies to Improve Brain Penetration
 10.4.1 Reduce Pgp Efflux
 10.4.2 Reduce Hydrogen Bonds
 10.4.3 Increase Lipophilicity
 10.4.4 Reduce MW
 10.4.5 Replace Carboxylic Acid Groups
 10.4.6 Add an Intramolecular Hydrogen Bond
 10.4.7 Modify or Select Structures for Affinity to Uptake Transporters

Problems

References
13.3 Structure Modification Strategies to Improve Solution Stability

13.3.1 Eliminate or Modify the Unstable Group
13.3.2 Add an Electron-Withdrawing Group
13.3.3 Isosteric Replacement of Labile Functional Group
13.3.4 Increase Steric Hindrance

13.4 Applications of Solution Stability Data

Problems

References

14 Plasma Protein Binding

14.1 Plasma Protein Binding Fundamentals
14.1.1 Consequences of Chirality on PPB
14.2 PPB Effects
14.2.1 Impact of PPB on Distribution
14.2.2 Effect of PPB on Clearance
14.2.3 Effect of PPB on Pharmacology

14.3 PPB Case Studies
14.4 Structure Modification Strategies for PPB
14.5 Strategy for PPB in Discovery

14.6 Red Blood Cell Binding

Problems

References

15 Cytochrome P450 Inhibition

15.1 CYP Inhibition Fundamentals
15.2 Effects of CYP Inhibition
15.3 CYP Inhibition Case Studies
15.3.1 Consequences of Chirality on CYP Inhibition

15.4 Structure Modification Strategies to Reduce CYP Inhibition

15.5 Reversible and Irreversible CYP Inhibition
15.6 Other DDI Issues
15.6.1 Candidate as Victim to a Metabolism Inhibition Perpetrator
15.6.2 Candidate as a Victim or Perpetrator at a Transporter
15.6.3 Candidate as a Victim or Perpetrator of Metabolic Enzyme Induction

Problems

References

16 hERG Blocking

16.1 hERG Fundamentals
16.2 hERG Blocking Effects
16.3 hERG Blocking Structure–Activity Relationship

16.4 Structure Modification Strategies for hERG

Problems

References

Additional Reading
Part 4 Methods

22 Methods for Profiling Drug-like Properties: General Concepts

- **22.1** Property Data Should be Rapidly Available
- **22.2** Use Relevant Assay Conditions
- **22.3** Evaluate the Cost-to-Benefit Ratio for Assays
- **22.4** Choose an Ensemble of Key Properties to Evaluate
- **22.5** Use Well-Developed Assays

23 Lipophilicity Methods

- **23.1** In Silico Lipophilicity Methods
- **23.2** Experimental Lipophilicity Methods
 - 23.2.1 Scaled-Down Shake Flask Method for Lipophilicity
 - 23.2.2 Reversed-Phase HPLC Method for Lipophilicity
 - 23.2.3 Capillary Electrophoresis Method for Lipophilicity
- **23.3** In-Depth Lipophilicity Methods
 - 23.3.1 Shake Flask Method for Lipophilicity
 - 23.3.2 pH-Metric Method for Lipophilicity

24 \(pK_a \) Methods

- **24.1** In Silico \(pK_a \) Methods
- **24.2** Experimental \(pK_a \) Methods
 - 24.2.1 Spectral Gradient Analysis Method for \(pK_a \)
 - 24.2.2 Capillary Electrophoresis Method for \(pK_a \)
- **24.3** In-Depth \(pK_a \) Method: pH-Metric

25 Solubility Methods

- **25.1** Literature Solubility Calculation Methods
- **25.2** Commercial Software for Solubility
- **25.3** Kinetic Solubility Methods
 - 25.3.1 Direct UV Kinetic Solubility Method
 - 25.3.2 Nephelometric Kinetic Solubility Method
 - 25.3.3 Turbidimetric In Vitro Solubility Method
 - 25.3.4 Customized Kinetic Solubility Method
- **25.4** Thermodynamic Solubility Methods
 - 25.4.1 Equilibrium Shake Flask Thermodynamic Solubility Method
 - 25.4.2 Potentiometric In Vitro Thermodynamic Solubility Method
 - 25.4.3 Thermodynamic Solubility in Various Solvents

Problems

References
Contents xi

26 Permeability Methods 287
26.1 In Silico Permeability Methods 287
26.2 In Vitro Permeability Methods 288
26.2.1 IAM HPLC 288
26.2.2 Cell Layer Method for Permeability 288
26.2.3 Artificial Membrane Permeability Assay 292
26.2.4 Comparison of Caco-2 and PAMPA Methods 293
26.3 In Depth Permeability Methods 294
Problems 295
References 296

27 Transporter Methods 299
27.1 In Silico Transporter Methods 299
27.2 In Vitro Transporter Methods 300
27.2.1 Cell Layer Permeability Methods for Transporters 300
27.2.2 Uptake Method for Transporters 304
27.2.3 Oocyte Uptake Method for Transporters 304
27.2.4 Inverted Vesicle Assay for Transporters 305
27.2.5 ATPase Assay for ATP Binding Cassette Transporters 305
27.2.6 Calcein AM Assay for Pgp Inhibitor 306
27.3 In Vivo Methods for Transporters 307
27.3.1 Genetic Knockout Animal Experiments for Transporters 307
27.3.2 Chemical Knockout Experiments for Transporters 308
Problems 308
References 308

28 Blood–Brain Barrier Methods 311
28.1 In Silico Methods for BBB 312
28.1.1 Classification Models 312
28.1.2 Quantitative Structure–Activity Relationship Methods 312
28.1.3 Commercial Software 313
28.2 In Vitro Methods for BBB 314
28.2.1 Physicochemical Methods for BBB 314
28.2.2 Cell-based In Vitro Methods [BBB Permeability] 317
28.3 In Vivo Methods for BBB 319
28.3.1 B/P Ratio or Log BB [Brain Distribution] 319
28.3.2 Brain Uptake Index [BBB Permeability] 320
28.3.3 In Situ Perfusion [BBB Permeability, Log PS, μL/min/g] 321
28.3.4 Mouse Brain Uptake Assay [BBB Permeability and Brain Distribution] 322
28.3.5 Microdialysis Method for BBB 323
28.3.6 Cerebrospinal Fluid Method for BBB 324
28.4 Assessment Strategy for Brain Penetration 325
Problems 325
References 325

29 Metabolic Stability Methods 329
29.1 In Silico Metabolic Stability Methods 331
29.2 In Vitro Metabolic Stability Methods 331
29.2.1 General Aspects of Metabolic Stability Methods 331
37 Pharmacokinetic Methods 409
 37.1 PK Dosing 409
 37.1.1 Single-Compound Dosing 409
 37.1.2 Cassette Dosing 409
 37.2 PK Sampling and Sample Preparation 410
 37.3 Instrumental Analysis 411
 37.4 Example Pharmacokinetic Data 412
 37.5 Tissue Uptake 413
 Problems 414
 References 414

Part 5 Specific Topics 417

38 Diagnosing and Improving Pharmacokinetic Performance 419
 38.1 Diagnosing Underlying Property Limitations from PK Performance 420
 38.1.1 High Clearance After IV Injection 420
 38.1.2 Low Oral Bioavailability 421
 38.2 Case Studies on Interpreting Unusual PK Performance 421
 38.2.1 PK of CCR5 Antagonist UK-427,857 421
 38.2.2 PK of Triazole Antifungal Voriconazole 422
 Problems 424
 References 424

39 Prodrugs 426
 39.1 Using Prodrugs to Improve Solubility 428
 39.2 Prodrugs to Increase Passive Permeability 430
 39.2.1 Ester Prodrugs for Carboxylic Acids 431
 39.2.2 Ester Prodrugs for Alcohols and Phenols 432
 39.2.3 Prodrugs Derived from Nitrogen-Containing Functional Group 433
 39.3 Transporter-Mediated Prodrugs to Enhance Intestinal Absorption 434
 39.4 Prodrugs to Reduce Metabolism 435
 39.5 Prodrugs to Target Specific Tissues 436
 39.6 Soft Drugs 437
 Problems 437
 References 438

40 Effects of Properties on Biological Assays 439
 40.1 Effects of Insolubility in DMSO 441
 40.2 Dealing with Insolubility in DMSO 443
 40.3 Effects of Insolubility in Aqueous Buffers 443
 40.4 Dealing with Insolubility in Aqueous Buffers 445
 40.4.1 Modify the Dilution Protocol to Keep Compounds in Solution 445
 40.4.2 Assess Compound Solubility and Concentrations 446
 40.4.3 Optimize Assays for Low Solubility Compounds 447
 40.4.4 Effects of Permeability in Cell-Based Assays 448
 40.4.5 Dealing with Permeability in Cell-Based Assays 448
 40.4.6 Effects of Chemical Instability in Bioassays 448
 40.4.7 Dealing with Chemical Instability in Bioassays 449
Preface

Drug research is a fulfilling career, because new drugs can improve human health, quality of life, and life span. For scientists dedicated to drug research, it can also be a supremely challenging mission, owing to the numerous attributes that must be simultaneously optimized to arrive at an efficacious drug-like compound. ADME/Tox (absorption, distribution, metabolism, elimination, toxicity) is one of these challenges. Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. This book is devoted to providing you, the drug research scientist or student, with an introduction to ADME/Tox property concepts, structure design, and methodology to help you succeed with these challenges.

Chemists will be aided by the case studies, structure-property relationships, and structure modification strategies in this book. These assist in diagnosing the substructures of a lead structure that are not drug-like and suggest ideas for ADME/Tox structure design. Overviews of property methods provide the background needed to accurately interpret and apply the data for informed decisions. For ADME/Tox scientists, insights on property assays assist with selecting methods and generating data that impacts projects.

Biologists/pharmacologists will benefit from an increased understanding of ADME/Tox concepts. This is especially important, because in recent years the application of property data has expanded from optimizing *in vivo* pharmacokinetics and safety to biological assays. Low solubility, chemical instability, and low permeability can greatly affect bioassay data. Equipped with this understanding, biologists are better able to optimize bioassays and include property affects in data interpretation.

Accordingly, understanding ADME/Tox is important for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. ADME/Tox properties are a crucial aspect of clinical candidate quality. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. ADME/Tox has become integrated in the drug discovery process and is a tremendous asset in guiding selection and optimization of precious leads. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors wish you success in creating the pharmaceuticals of the future that will benefit all people.

In preparing this book, the authors had the support and counsel of many drug research colleagues. The leadership of Magid Abou-Gharbia, Guy T. Carter, and Oliver J. McConnell of Wyeth Research, Chemical and Screening Sciences are greatly appreciated. The careful manuscript review and feedback by Christopher P. Miller was highly beneficial. The thoughtful comments of several anonymous reviewers are greatly appreciated. LD thanks...
Preface

Prof. Donald M. Small, Prof. Bruce M. Foxman, and Prof. Ruisheng Li for guidance. EK thanks Prof. David M. Forkey, William L. Budde, and Charles M. Combs for mentorship. We thank Prof. Ronald T. Borchardt and Christopher A. Lipinski for their friendship, collaboration, and leadership in the ADME/Tox and medicinal chemistry fields. The enthusiastic feedback of students in the American Chemical Society short course on Drug-like Properties was highly valuable. The collaborative adventure of understanding drug-like properties in drug discovery was shared with numerous Wyeth Research colleagues in Pharmaceutical Profiling and Medicinal Chemistry and their respectful, innovative collaboration is greatly appreciated.
Dedication

Ed Kerns dedicates this book to:
William, Virginia, Nancy, Chrissy, and Patrick: for your love and support.

Li Di dedicates this book to:
My parents: I am infinitely in debt to you.
My sisters, Ning and Qing: for being my best friends.
My children, Kevin and Sophia: I am very proud of you.