Companion Web Site:
http://books.elsevier.com/companions/9780123739759

Basic Medical Endocrinology, Fourth Edition
by H. Maurice Goodman

Resources for Professors:

- All figures from the book available as PowerPoint slides
- Links to web sites carefully chosen to supplement the content of the textbook

TOOLS FOR ALL YOUR TEACHING NEEDS
textbooks.elsevier.com

ACADEMIC PRESS

To adopt this book for course use, visit http://textbooks.elsevier.com.
Basic Medical Endocrinology

Fourth Edition

H. Maurice Goodman
Department of Psychology
University of Massachusetts Medical School
Cover Credits:

Background: **FIGURE 3-2** Histology of the human thyroid. Simple cuboidal cells (arrows) make up the follicles. C _ thyroid colloid (thyroglobulin), which fills the follicles. (From Borysenko, M. and Beringer, T. (1979) Functional Histology, 312. Little, Brown, Boston by permission of Lippincott, Williams and Wilkins, Philadelphia.)

Black/green: **FIGURE 7-11** Confocal fluorescent microscope images of cultured mouse adipocytes that were transfected with a GLUT4-enhanced green fluorescent protein fusion construct and then incubated in the absence (A) or presence (B) of insulin for 30 min. Insulin stimulation results in the translocation of GLUT4 from intracellular storage sites to the plasma membrane. (From Watson, R.T., Kanzaki, M., and Pessin, J. (2004) Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr. Revs. 25: 177–204, by permission of The Endocrine Society.)

Blue figure: **FIGURE 10-14** Low-power photomicrograph of a portion of the thyroid gland of a normal dog. Parafollicular (C) cells are indicated in the walls of the follicles. (From Ham, A.W. and Cormack, D. H. (1979) Histology, 8th Edition, 802, by permission of Lippincott, Williams and Wilkins, Philadelphia.)

Academic Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

Copyright © 2009, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application Submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-373975-9

For information on all Academic Press publications visit our Web site at www.elsevierdirect.com

Printed in China
08 09 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

ELSEVIER BOOK AID International Sabre Foundation
This volume is dedicated to my children's children:
Dylan, Adam, Rebecca, and Joshua
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>Preface to the Fourth Edition</td>
<td>xxvii</td>
<td></td>
</tr>
<tr>
<td>Preface to the First Edition</td>
<td>xxix</td>
<td></td>
</tr>
<tr>
<td>Preface to the Second Edition</td>
<td>xxxi</td>
<td></td>
</tr>
<tr>
<td>Preface to the Third Edition</td>
<td>xxxiii</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosynthesis of Hormones</td>
<td>4</td>
</tr>
<tr>
<td>Storage and Secretion</td>
<td>8</td>
</tr>
<tr>
<td>Hormones in Blood</td>
<td>8</td>
</tr>
<tr>
<td>Hormone Degradation</td>
<td>10</td>
</tr>
<tr>
<td>Mechanisms of Hormone Action</td>
<td>10</td>
</tr>
<tr>
<td>Specificity</td>
<td>10</td>
</tr>
<tr>
<td>Characteristics of Receptors</td>
<td>11</td>
</tr>
<tr>
<td>Hormonal Actions Mediated by Intracellular Receptors</td>
<td>12</td>
</tr>
<tr>
<td>Hormonal Actions Mediated by Surface Receptors</td>
<td>14</td>
</tr>
<tr>
<td>The G-protein Coupled Receptors</td>
<td>14</td>
</tr>
<tr>
<td>Receptors that Signal through Tyrosine Kinase</td>
<td>19</td>
</tr>
<tr>
<td>Regulation of Hormone Secretion</td>
<td>21</td>
</tr>
<tr>
<td>Negative Feedback</td>
<td>21</td>
</tr>
<tr>
<td>Positive Feedback</td>
<td>23</td>
</tr>
<tr>
<td>Feed Forward</td>
<td>23</td>
</tr>
<tr>
<td>Measurement of Hormones</td>
<td>23</td>
</tr>
<tr>
<td>Immunoassays</td>
<td>24</td>
</tr>
<tr>
<td>Hormone Levels in Blood</td>
<td>26</td>
</tr>
<tr>
<td>Suggested Reading</td>
<td>26</td>
</tr>
</tbody>
</table>

Chapter 2: Pituitary Gland

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology</td>
<td>29</td>
</tr>
<tr>
<td>Physiology of the Anterior Pituitary Gland</td>
<td>31</td>
</tr>
<tr>
<td>Glycoprotein Hormones</td>
<td>31</td>
</tr>
<tr>
<td>Growth Hormone and Prolactin</td>
<td>33</td>
</tr>
<tr>
<td>Adrenocorticotropic Family</td>
<td>33</td>
</tr>
<tr>
<td>Development of the Anterior Pituitary Gland</td>
<td>34</td>
</tr>
<tr>
<td>Regulation of Anterior Pituitary Function</td>
<td>35</td>
</tr>
<tr>
<td>Hypophysiotropic Hormones</td>
<td>35</td>
</tr>
<tr>
<td>Thyrotropin-releasing hormone (TRH)</td>
<td>36</td>
</tr>
<tr>
<td>Gonadotropin Releasing Hormone</td>
<td>37</td>
</tr>
<tr>
<td>Control of GH Secretion</td>
<td>37</td>
</tr>
<tr>
<td>Corticotropin Releasing Hormone</td>
<td>37</td>
</tr>
<tr>
<td>Dopamine and control of Prolactin Secretion</td>
<td>38</td>
</tr>
<tr>
<td>Secretion and Actions of Hypophysiotropic Hormones</td>
<td>38</td>
</tr>
<tr>
<td>Feedback Control of Anterior Pituitary Function</td>
<td>38</td>
</tr>
<tr>
<td>Physiology of the Posterior Pituitary</td>
<td>39</td>
</tr>
<tr>
<td>Regulation of Posterior Pituitary Function</td>
<td>40</td>
</tr>
<tr>
<td>Suggested Reading</td>
<td>41</td>
</tr>
</tbody>
</table>

Chapter 3: Thyroid Gland

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology</td>
<td>43</td>
</tr>
</tbody>
</table>
Contents

Thyroid Hormones 44
Biosynthesis 45
Iodine Trapping 45
Thyroglobulin Synthesis 45
Incorporation of Iodine 46
Hormone Storage 46
Secretion 46
Control of Thyroid Function 48
Effects of Thyroid-Stimulating Hormone 48
Effects of the Thyroid-Stimulating Immunoglobulins 49
Autoregulation of Thyroid Hormone Synthesis 49
Thyroid Hormones in Blood 49
Metabolism of Thyroid Hormones 50
Physiological Effects of Thyroid Hormones 52
Growth and Maturation 52
Skeletal System 52
Central Nervous System 52
Autonomic Nervous System 52
Cardiovascular System 53
Metabolism 53
Oxidative Metabolism and Thermogenesis 53
Carbohydrate Metabolism 55
Lipid Metabolism 55
Nitrogen Metabolism 56
Regulation of Thyroid Hormone Secretion 56
Mechanism of Thyroid Hormone Action 57
Suggested Reading 59

CHAPTER 4 ADRENAL GLANDS 61

Morphology 61
Adrenal Cortex 62
Adrenocortical Hormones 62
Control of Adrenal Cortical Hormone Synthesis 66
Adrenal Steroid Hormones in Blood 69
Postsecretory Metabolism of Adrenal Cortical Hormones 69
Physiology of the Mineralocorticoids 71
Effects of Aldosterone on the Kidney 71
Regulation of Aldosterone Secretion 74
Physiology of the Glucocorticoids 75
Effects on Energy Metabolism 75
Effects on Water Balance 76
Effects on Lung Development 76

CHAPTER 5 PRINCIPLES OF HORMONAL INTEGRATION 91

Integration of Hormonal Signals at the Cellular and Molecular Level 91
Augmentation, Antagonism, and Synergy 91
Permissiveness 93
Maintaining Signal Fidelity 93
Modulation of Responding Systems 93
Sensitivity and Capacity 94
Spare Receptors 96
A Hormonal Integration at the Whole Animal Level 97
Redundancy 97
Reinforcement 98
Push–Pull Mechanisms 99

CHAPTER 6 HORMONES OF THE GASTROINTESTINAL TRACT 101

Functional Anatomy of the GI Tract 101
Overview of Digestion and Absorption 104
Hormones of the Gastrointestinal Tract 104
The Gastrin/Cholecystokinin Family 105
Physiological Actions of Gastrin 106
Regulation of Gastrin Secretion 108
Cholecystokinin (CCK) 109
The Secretin/Glucagon Superfamily 112
Secretin 114
GIP (Glucose-dependent Insulinotropic Polypeptide/Gastric Inhibitory Peptide) 116
Glucagon-like Peptides 1 and 2 (GLP-1 and GLP-2) 118
CHAPTER 7 THE PANCREATIC ISLETS 129

Morphology of the Endocrine Pancreas 129

Glucagon 130

Biosynthesis, Secretion, and Metabolism 130

Physiological Actions of Glucagon 130

Glucose Production 131

Glycogenolysis 131

Gluconeogenesis 132

Lipogenesis and Ketogenesis 133

Ureogenesis 133

Regulation of Glucagon Secretion 134

Insulin 134

Biosynthesis, Secretion, and Metabolism 134

Physiological Actions of Insulin 135

Effects of Insulin Deficiency 135

Effects on Adipose Tissue 137

Effects on Muscle 138

Effects on Liver 140

Mechanism of Insulin Action 143

Regulation of Insulin Secretion 144

Glucose 144

Other Circulating Metabolites 145

Hormonal and Neural Control 146

Cellular Events 146

Somatostatin 149

Suggested Reading 149

CHAPTER 8 HORMONAL REGULATION OF FUEL METABOLISM 151

General Features of Energy Metabolism 151

Body Fuels 151

Glucose 151

Glycogen 152

Protein 152

Fat 152

Problems Inherent in the Use of Glucose and Fat as Metabolic Fuels 152

Fuel Consumption 153

The Glucose Fatty Acid Cycle 153

AMP Activated Kinase (AMPK) 154

Overall Regulation of Blood Glucose Concentration 155

Short-term Regulation 156

Long-term Regulation 156

Integrated Actions of Metabolic Hormones 157

Adipose Tissue 157

Muscle 158

Liver 158

Pancreatic Islets 159

Regulation of Metabolism During Feeding and Fasting 159

Postprandial Period 159

Postabsorptive Period 160

Fasting 160

Hormonal Interactions During Exercise 162

Short-term Maximal Effort 163

Sustained Aerobic Exercise 163

Long-term Regulation of Fuel Storage 164

Adipogenesis 165

Hypothalamic Control of Appetite and Food Intake 166

Peripheral Input to Hypothalamic Feeding and Satiety Neurons 168

Adiposity Signals 168

Leptin 168

Insulin as an Adiposity Signal 170

Adipokines 171

Satiety Signals 172

Perspective 173

Suggested Reading 174

CHAPTER 9 REGULATION OF SALT AND WATER BALANCE 175

General Considerations 175

Salt and Water Balance 176

Antidiuretic Hormone (ADH) 178

Antidiuretic Effect 179

Effects on Blood Pressure 180

Regulation of ADH Secretion 181

Plasma Osmolality 181

Blood Volume 181

Dysfunctional States 182

The Renin-Angiotensin-Aldosterone System 183

Actions of Angiotensin II 184
Contents

Actions on the Adrenal Cortex 184
Actions on the Kidney 185
Cardiovascular Effects 185
Central Nervous System Effects 185
Regulation of the Renin-Angiotensin-Aldosterone System 186
Atrial Natriuretic Factor (ANF) 186
PHYSIOLOGICAL ACTIONS 188
Cardiovascular Actions 188
Renal Actions 189
Effects on Aldosterone Secretion 189
Other Effects 190
REGULATION OF ANF SECRETION 190
Integrated Compensatory Responses to Changes in Salt and Water Balance 190
HEMORRHAGE 192
Response of the Renin Angiotensin System 192
Response of the ADH System 193
Response of Aldosterone 193
Response of ANF 193
DEHYDRATION 193
SALT LOADING AND DEPLETION 194
Suggested Reading 195

CHAPTER 10 HORMONAL REGULATION OF CALCIUM BALANCE 197

General Features of Calcium Balance 197
DISTRIBUTION OF CALCIUM IN THE BODY 198
CALCIUM BALANCE 198
Intestinal Absorption 199
Bone 199
Kidney 201
Phosphorus Balance 202
Parathyroid Glands and Parathyroid Hormone (PTH) 202
BIOSYNTHESIS, STORAGE, AND SECRETION OF PTH 203
MECHANISMS OF PARATHYROID HORMONE ACTIONS 204
PHYSIOLOGICAL ACTIONS OF PTH 204
Actions on Bone 204
Actions on Kidney 205
Effects on Intestinal Absorption 207
PTH FRAGMENTS 207
PARATHYROID HORMONE-RELATED PEPTIDE (PTHRP) 207
REGULATION OF PTH SECRETION 208
Calcitonin 209
CELLS OF ORIGIN 209
BIOSYNTHESIS, SECRETION, AND METABOLISM 209
PHYSIOLOGICAL ACTIONS OF CALCITONIN 210
Actions on Bone 210
Actions on Kidney 210
REGULATION OF SECRETION 210
The Vitamin D-Endocrine System 211
SYNTHESIS AND METABOLISM 211
PHYSIOLOGICAL ACTIONS OF 1,25(OH)2D3 211
Actions on Intestine 212
Actions on Bone 213
Actions on Kidney 213
Actions on Parathyroid Glands 213
REGULATION OF 1,25(OH)2D3 PRODUCTION 214
Calcium Regulation of Plasma Calcium Concentrations 214
Integrated Actions of Calcitropic Hormones 215
RESPONSE TO A HYPOCALCEMIC CHALLENGE 215
RESPONSE TO A HYPERCALCEMIC CHALLENGE 216
Other Hormones That Influence Calcium Balance 216
Suggested Reading 217

CHAPTER 11 HORMONAL CONTROL OF GROWTH 219

Growth Hormone 219
SYNTHESIS, SECRETION, AND METABOLISM 221
MODE OF ACTION 221
PHYSIOLOGICAL ACTIONS OF GROWTH HORMONE 222
Effects on Skeletal Growth 222
Effects of GH/IGF-I on Body Composition 226
Regulation of GH Secretion 227
Effects of Age 228
Regulators of GH Secretion 229
ACTIONS OF GHRH, SOMATOSTATIN, IGF-I, AND GHRELIN ON THE SOMATOTROPE 231
Thyroid Hormones 231
DEPENDENCE OF GH SYNTHESIS AND SECRETION ON T3 233
IMPORTANCE OF T3 FOR EXPRESSION OF GH ACTIONS 233
Insulin 233
Gonadal Hormones 234
EFFECTS OF ESTROGENS ON EPiphySEAL GROWTH PLATES 235
EFFECTS ON GROWTH HORMONE SECRETION AND ACTION 235
EFFECTS OF ANDROGENS 236
Glucocorticoids 237
Suggested Reading 238

CHAPTER 12 HORMONAL CONTROL OF REPRODUCTION IN THE MALE 239

Morphology of the Testes 239
LEYDIG CELLS AND SEMINIFEROUS TUBULES 239
MALE REPRODUCTIVE TRACT 241
Control of Testicular Function 242
LEYDIG CELLS 242
GERMINAL EPITHELIUM 244
Testosterone 245
SECRETION AND METABOLISM 245
MECHANISM OF ACTION 246
EFFECTS ON THE MALE GENITAL TRACT 246
EFFECTS ON SECONDARY SEXUAL CHARACTERISTICS 247
Sexual Differentiation 247
DEVELOPMENT OF INTERNAL REPRODUCTIVE DUCTS AND THEIR DERIVATIVES 248
DEVELOPMENT OF THE EXTERNAL GENITALIA 250
TESTICULAR DESCENT INTO THE SCROTUM 250
POSTNATAL DEVELOPMENT 251
ANOMALIES OF SEXUAL DIFFERENTIATION 251
Regulation of Testicular Function 251
GONADOTROPIN RELEASING HORMONE AND THE HYPOTHALAMIC PULSE GENERATOR 252
NEGATIVE FEEDBACK REGULATORS 254
Inhibin and Testosterone 254
PREPUBERTY 255
PUBERTY 255
Suggested Reading 256

CHAPTER 13 HORMONAL CONTROL OF REPRODUCTION IN THE FEMALE: THE MENSTRUAL CYCLE 257

Female Reproductive Tract 257
OVARIANS 257
Folliculogenesis 258
OVIDUCTS AND UTERUS 260
Ovarian Hormones 261
ESTROGENS 261
PROGESTERONE 263
INHIBIN 263
RELAXIN 263
Control of Ovarian Function 263
EFFECTS OF FSH AND LH ON THE DEVELOPING FOLLICLE 264
Estradiol Production 264
Follicular Development 265
Cellular Actions of FSH and LH 265
EFFECTS ON OVULATION 266
EFFECTS ON CORPUS LUTEUM FORMATION 266
EFFECTS ON OOCYTE MATURATION 267
EFFECTS ON CORPUS LUTEAL FUNCTION 267
EFFECTS ON OVARIAN BLOOD FLOW 267
Physiological Actions of Ovarian Steroid Hormones 267
EFFECTS ON THE REPRODUCTIVE TRACT 267
MENSTRUATION 267
EFFECTS ON THE MAMMARY GLANDS 269
OTHER EFFECTS OF OVARIAN HORMONES 269
MECHANISM OF ACTION 269
Regulation of the Reproductive Cycle 270
PATTERN OF HORMONES IN BLOOD DURING THE OVARIAN CYCLE 270
REGULATION OF FSH AND LH SECRETION 271
Negative Feedback Aspects 271
Selection of the Dominant Follicle 272
Positive Feedback Aspects 273
Neural Control of Gonadotropin Secretion 273
Sites of Feedback Control 273
Timing of Reproductive Cycles 275
Suggested Reading 275

CHAPTER 14 HORMONAL CONTROL OF PREGNANCY AND LACTATION 277

Fertilization and Implantation 277
GAMETE TRANSPORT 277
ROLE OF THE OVIDUCTS 278
IMPLANTATION AND THE FORMATION OF THE PLACENTA 279
The Placenta 280
Placental Hormones 281
HUMAN CHORIONIC GONADOTROPIN (HCG) 282
HUMAN CHORIONIC SOMATOMAMMOTROPIN (HCS) 283
PROGESTERONE 284
ESTROGENS 284
The Role of the Fetal Adrenal Cortex 285
The Role of Progesterone and Estrogens in Sustaining Pregnancy 286
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal Adaptations to Pregnancy</td>
<td>287</td>
</tr>
<tr>
<td>CARDIOVASCULAR ADAPTATIONS</td>
<td>287</td>
</tr>
<tr>
<td>RENAL ADAPTATIONS</td>
<td>288</td>
</tr>
<tr>
<td>Osmoregulation and Thirst</td>
<td>289</td>
</tr>
<tr>
<td>RESPIRATORY ADJUSTMENTS</td>
<td>290</td>
</tr>
<tr>
<td>Gas Exchange</td>
<td>290</td>
</tr>
<tr>
<td>METABOLIC ADJUSTMENTS</td>
<td>291</td>
</tr>
<tr>
<td>CALCIUM BALANCE</td>
<td>291</td>
</tr>
<tr>
<td>Parturition</td>
<td>292</td>
</tr>
<tr>
<td>THE ROLE OF CORTICOTROPIN RELEASING HORMONE (CRH)</td>
<td>293</td>
</tr>
<tr>
<td>THE ROLE OF OXYTOCIN</td>
<td>295</td>
</tr>
<tr>
<td>Lactation</td>
<td>295</td>
</tr>
<tr>
<td>GROWTH AND DEVELOPMENT OF THE MAMMARY GLANDS</td>
<td>296</td>
</tr>
<tr>
<td>MILK PRODUCTION</td>
<td>296</td>
</tr>
<tr>
<td>LACTATION AND MATERNAL CALCIUM BALANCE</td>
<td>296</td>
</tr>
<tr>
<td>MECHANISM OF PROLACTIN ACTION</td>
<td>297</td>
</tr>
<tr>
<td>NEUROENDOCRINE MECHANISMS</td>
<td>298</td>
</tr>
<tr>
<td>Milk Let-Down Reflex</td>
<td>298</td>
</tr>
<tr>
<td>Cellular Actions of Oxytocin</td>
<td>298</td>
</tr>
<tr>
<td>Control of Prolactin Secretion</td>
<td>298</td>
</tr>
<tr>
<td>CELLULAR REGULATION OF PROLACTIN SECRETION</td>
<td>300</td>
</tr>
<tr>
<td>PROLACTIN IN BLOOD</td>
<td>300</td>
</tr>
<tr>
<td>LACTATION AND RESUMPTION OF OVARIAN CYCLES</td>
<td>301</td>
</tr>
<tr>
<td>Suggested Reading</td>
<td>301</td>
</tr>
<tr>
<td>Index</td>
<td>303</td>
</tr>
</tbody>
</table>
CHAPTER 1

Fig. 1. Chemical communication between cells.
Fig. 2. Levels at which hormone actions are considered.
Fig. 3. Composition of DNA.
Fig. 4. Complementary base pairing.
Fig. 5. Transcription and RNA processing.
Fig. 6. Alternative splicing.
Fig. 8. Post-translational processing.
Fig. 9. Exocytosis.
Fig. 10. Hormone binding to plasma proteins.
Fig. 11. Specificity of hormone signaling.
Fig. 12. Receptor components.
Fig. 13. General scheme of steroid hormone action.
Fig. 14. Schematic view of a nuclear receptor.
Fig. 15. Activation of steroid hormone receptors.
Fig. 16. An unactivated G-Protein coupled receptor.
Fig. 17. Activation of G-protein coupled receptor.
Fig. 18. Formation and degradation of cyclic adenosine monophosphate (cyclic AMP).
Fig. 19. Formation of inositol 1,4,5 triphosphate (IP3) and diacylglycerol (DAG).
Fig. 20. Effects of cyclic AMP.
Fig. 21. (IP3) diacylglycerol/(DAG) second messenger system.
Fig. 22. DAG lipase to releases precursors of the prostaglandins and leukotrienes.
Fig. 23. Signaling through tyrosine kinase.
Fig. 24. Signaling through JAK/Stat.
Fig. 25. Components of a hormone response system.
Fig. 26. Negative feedback of hepatic glucose production by glucagon.
Fig. 27. Negative feedback regulation of blood glucose concentration by insulin and glucagon.
Fig. 28. Positive feedback regulation of oxytocin secretion.
Fig. 29. Competing reactions that form the basis of the radioimmunoassay.
List of Figures

Fig. 30. Sandwich type assay.

CHAPTER 2

Fig. 3. The glycoproteins.
Fig. 4. The growth hormone/prolactin family.
Fig. 5. Proteolytic processing of pro-opiomelanocortin (POMC).
Fig. 6. Development of the principal cell types of the anterior pituitary gland.
Fig. 8. Regulation of anterior pituitary hormone secretion.
Fig. 9. Structures of the neurohypophysial hormones.
Fig. 10. Regulation of oxytocin secretion.
Fig. 11. Regulation of vasopressin secretion.

CHAPTER 3

Fig. 2. Histology of the human thyroid.
Fig. 3. Thyroid hormones: Braverman, L.E., and Utiger, R.D., eds. *Werner and Ingbar’s The Thyroid*, 8th ed., Lippincott Williams and Wilkins, Philadelphia; reprinted by permission of Lippincott, Williams and Wilkins, Philadelphia.
Fig. 4. Thyroid hormone biosynthesis and secretion: Balasse, P.D., Rodesch, F.R., Neve, P.E. et al. (1972) *C. R. Acad. Sci. [D] (Paris)*, 274: 2332; reprinted by permission of Publies Avec Le Concours Du Centre National.
Fig. 5. Hypothetical coupling scheme for intramolecular formation of T4.
Fig. 6. Scanning electron micrographs of the luminal microvilli of dog thyroid.
Fig. 7. Rate of loss of serum radioactivity after injection of labeled T4 or T3.
Fig. 8. Metabolism of thyroxine.
Fig. 10. Effects of thyroxine on oxygen consumption by various tissues: Barker, S.B. and Kleitgaard, H.M. (1952) Metabolism of tissues excised from thyroxine-injected rats. *Am. J. Physiol.* 170: 81; reprinted by permission of the American Physiological Society.
Fig. 12. Feedback regulation of thyroid hormone secretion.
Fig. 13. Effects of TRH, T3, and T4 on the thyrotrope.
Fig. 15. Models of the Effects of thyroid hormone receptor (TR) on gene transcription.

CHAPTER 4

Fig. 1. Anatomy and histology of the adrenal glands.
Fig. 2. The principal adrenal steroid hormones.
Fig. 3. Conversion of cholesterol to pregnenolone.
Fig. 5. The principal estrogens.
Fig. 6. Stimulation of steroidogenesis by ACTH in zona fasciculata cells.
Fig. 7. Plasma concentrations of cortisol and dehydroepiandrosterone sulfate.
Fig. 8. Stimulation of aldosterone synthesis by angiotensin II (AlI).
Fig. 9. The cortisol-cortisone shuttle.
Fig. 10. Oxidation of cortisol to cortisone prevents binding to mineralocorticoid receptor.
Fig. 11. Hemiacetal protects aldosterone from oxidation by HSD.
Fig. 12. Extra-adrenal synthesis of aldosterone and estrogens from DHEAS.
Fig. 14. Proposed mechanisms of action of aldosterone in the kidney.
Fig. 15. Dual negative feedback control of aldosterone secretion.
Fig. 16. Effects of glucocorticoids on metabolism of body fuels.
Fig. 17. Synthesis and structures of some arachidonic acid metabolites.
Fig. 18. Effects of interleukin -1(IL-1).
Fig. 19. Anti-inflammatory actions of cortisol.
Fig. 20. Cortisol inhibits proliferation of T cells.
Fig. 21. Negative feedback control of glucocorticoid secretion.
Fig. 22. Hormonal interactions that regulate ACTH secretion by pituitary corticotrope.
Fig. 24. Feedback regulation of the hypothalamic-pituitary-adrenal axis by cytokines.
Fig. 25. Consequences of a partial block of cortisol production.
Fig. 26. Biosynthesis of epinephrine and norepinephrine in adrenal medullary cells.
CHAPTER 5

Fig. 1. Integration at the cellular level.
Fig. 3. Determinants of the magnitude of a hormonal response.
Fig. 4. Determinants of the duration of a hormonal response.
Fig. 5. Relationship between concentration and response at different sensitivities.
Fig. 6. Concentration response relationships showing different capacities to respond.
Fig. 7. Effects of receptor number on sensitivity to hormonal stimulation.
Fig. 8. Spare receptors.
Fig. 9. Redundant mechanisms to stimulate hepatic glucose production.
Fig. 10. Redundant mechanisms to activate glycogen phosphorylase.
Fig. 11. Effects of epinephrine and growth hormone on plasma free fatty acids.
Fig. 12. Push:pull mechanism.
Fig. 13. Push:pull mechanism on glycogen phosphorylase and glycogen synthase.

CHAPTER 6

Fig. 1. The gastrointestinal tract.
Fig. 2. Gastric glands.
Fig. 4. Vago-vagal reflexes.
Fig. 5. Progastrin, procholecystokinin(CCK), and their posttranslational processing.
Fig. 6. Stimulation of gastric acid secretion.
Fig. 7. Cellular actions of gastrin, acetylcholine and histamine on the parietal cell.
Fig. 8. Actions of gastrin and PACAP in ECL cells.
Fig. 9. Direct and indirect feedback regulation of gastrin secretion.
Fig. 10. Somatostatin (SST) secretion in the gastric mucosa.
Fig. 12. Actions of CCK on pancreatic secretion and bile flow.
Fig. 13. Regulation of CCK secretion.
Fig. 14. The secretin/glucagon family of peptides.
Fig. 15. Effects of secretin on bicarbonate secretion by pancreatic and bile ducts.
Fig. 16. Synergistic effects of secretin and CCK on bicarbonate secretion: Refeld, J.F., Best Practice and Research in Clinical Endocrinology and Metabolism 18: 569–586, 2004; reprinted by permission of Elsevier.
Fig. 17. Actions of secretin and feedback regulation of its secretion.

Fig. 20. Post-translational processing of proglucagon.

Fig. 22. The ileal brake.

Fig. 23. Amino acid sequences of the PPY (PPfold) family of peptides.

Fig. 24. Effects of test meals on plasma concentrations of neurotensin.

Fig. 27. Average plasma ghrelin concentrations during a 24-h period: Cummings, D.E., Purnell, J.Q., Frayo, R.S., Schmidova, K., Wisse, B.E., and Weigle, D.S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. *Diabetes* 50: 1714–1719, 2001; reprinted by permission of Elsevier.

CHAPTER 7

Fig. 2. Biochemical pathways of glucose metabolism in hepatocytes.

Fig. 3. Role of protein kinase A in glycogen metabolism.

Fig. 4. Regulation of fructose-1,6-bisphosphate metabolism by protein kinase A.

Fig. 5. Regulation of phosphoenol pyruvate (PEP) formation by protein kinase A.

Fig. 6. Protein kinase A indirectly stimulates ketogenesis.

Fig. 7. Stimulatory and inhibitory signals for glucagon secretion.

Fig. 8. Post-translational processing of preproinsulin.

Fig. 9. Idealized glucose tolerance tests in normal and diabetic subjects.

Fig. 11. Confocal fluorescent microscope images of cultured mouse adipocytes.

Fig. 12. Metabolism of carbohydrate and lipid in muscle.

Fig. 13. Effects of insulin on protein turnover in muscle.

Fig. 14. Insulin limits availability of glucose and ketone precursors.
“List of Figures

Fig. 16. Effects of insulin on glucose metabolism in hepatocytes.

Fig. 17. Effects of insulin on lipogenesis in hepatocytes.

Fig. 19. Simplified model of insulin signaling pathways.

Fig. 20. Changes plasma glucose, glucagon, and insulin throughout the day: Tasaka, Y., Sekine, M., Wakatsuki, M., Ohgawara, H., and Shizume, K. (1975) Levels of pancreatic glucagon, insulin and glucose during twenty-four hours of the day in normal subjects. *Horm. Metab. Res.* 7: 205–206; reprinted by permission of Thieme Medical Publishers Inc.

Fig. 22. Metabolic, hormonal, and neural influences on insulin secretion.

Fig. 23. Triggering of insulin secretion by glucose.

Fig. 24. Acute cellular actions of incretins.

CHAPTER 8

Fig. 1. Storage and utilization of biological fuels.

Fig. 2. Intra-organ flow of substrate and the glucose-fatty acid cycle.

Fig. 3. Actions of AMP activated protein kinase (AMPK) in muscle

Fig. 4. Multiple effects of AMP activated kinase (AMPK).

Fig. 5. Interaction of hormones to maintain the blood glucose concentration.

Fig. 8. Hormonal effects on FFA production.

Fig. 9. Effects of metabolic hormones on adipose tissue.

Fig. 10. Effects of metabolic hormones on skeletal muscle.

Fig. 11. Effects of metabolic hormones on the liver.

Fig. 12. Substrate turnover in the basal state after fasting for 24 hr [-1800 Calories]: Cahill, G.F. Jr. (1970) Starvation in man. *N. Eng. J. Med.* 282: 668–675; Copyright 1970: Massachusetts Medical Society. All rights reserved.

Fig. 13. Changes in plasma glucose and metabolic hormones during fasting.

Fig. 19. Adipocyte differentiation.

Fig. 21. Changes in energy expenditure after increase or decrease of body weight.

Fig. 22. Hypothetical system for maintaining constancy of adipose mass.

Fig. 23. Principal neurons that control fuel consumption and energy utilization.

Fig. 27. Overall regulation of energy balance.

Fig. 28. Major routes of communication in the regulation of energy balance.

CHAPTER 9

Fig. 1. Distribution of body water and principal electrolytes.

Fig. 3. The countercurrent multiplier in the loop of Henle.

Fig. 4. Vasopressin signaling via V1 and V2 receptors.

Fig. 5. Principal cells of the collecting duct before and after ADH.

Fig. 6. Relation between ADH and osmolality in plasma of unanesthetized rats.

Fig. 7. Relation of the circumventricular organs to ADH-producing cells: A. Netter, F.H. In: *Netter’s Atlas Of Human Neuroscience*, David L. Felten and Ralph Jozefowicz, eds., Icon Learning Systems; Teterboro, NJ, 2003; reprinted by permission of Elsevier.

List of Figures

Fig. 10. Two step formation of angiotensin II.

Fig. 12. Angiotensin II increases sodium reabsorption by proximal tubular cells.

Fig. 13. Actions of angiotensin.

Fig. 14. Negative feedback control of renin and angiotensin secretion.

Fig. 16. The natriuretic peptides.

Fig. 17. Actions of atrial natriuretic factor.

Fig. 18. Direct and indirect actions of ANF on the kidney.

Fig. 19. Negative feedback regulation of ANF secretion.

Fig. 20. Hormonal responses to hemorrhage.

Fig. 21. Hormonal responses to dehydration.

Fig. 22. Responses of normal subjects to low or high intake of sodium chloride.

CHAPTER 10

Fig. 1. Daily calcium balance in a typical adult.

Fig. 3. Cross section through a bony trabecula.

Fig. 5. Daily phosphorus balance in a typical adult.

Fig. 6. Drawing of a section through a human parathyroid gland: Borsenker and Beringer (1984) Functional Histology 2nd ed. Little, Brown, Boston; reprinted by permission of Lippincott, Williams and Wilkins, Philadelphia.

Fig. 7. A. Post-translational metabolism of PTH.

Fig. 8. Effects of PTH on bone.

Fig. 9. Effects of PTH on the principal cells in the distal nephron.

Fig. 10. Effects of PTH on proximal tubule cells.

Fig. 12. Regulation of PTH secretion.

Fig. 13. Regulation of parathyroid hormone secretion by calcium (Ca²⁺).

Fig. 14. Low-power photomicrograph of a portion of the thyroid gland.

Fig. 15. Alternate splicing of calcitonin/calcitonin gene related peptide (CGRP).

Fig. 16. Biosynthesis of 1α,25 dihydroxycholecalciferol (1,25(OH)₂D₃).

Fig. 17. Effects of 1,25(OH)₂D₃ on intestinal transport of calcium.

Fig. 18. Multiple negative feedback loops regulating of 1,25(OH)₂D₃ synthesis.

Fig. 19. Overall regulation of calcium balance by PTH, calcitonin and 1,25(OH)₂D₃.
List of Figures

Fig. 20. Regulation of calcium reabsorption in the thick limb of Henle’s loop.
Fig. 21. Relation of estrogens to cytokines and growth factors in bone.

CHAPTER 11

Fig. 1. Hormonal regulation of growth at different stages of life.
Fig. 2. Typical growth curves for boys and girls.
Fig. 3. The tibial epiphyseal growth plate: Nilsson, O., Marino, R., De Luca, F., Phillip, M., and Baron, J. (2005) Endocrine regulation of the Growth Plate, Hormone Research 64: 157–165; reprinted by permission of S. Karger AG, Basel.
Fig. 5. Roles of GH and IGF-I in promoting growth.
Fig. 6. Structures of proinsulin and the insulin-like growth factors.
Fig. 11. Acute changes in plasma GH in response to insulin-induced hypoglycemia: Roth, J., Glick, S.M., Yalow, R.S., and Berson, S. (1963) Hypoglycemia: A potent stimulus to secretion of growth hormone. Science 140: 987–989; reprinted with permission from AAAS.
Fig. 13. Regulation of growth hormone (GH) secretion.
Fig. 14. Effects of GHRH, IGF-I, somatostatin, and ghrelin on the somatotrope.
Fig. 16. Effects of thyroxine on the plasma concentrations of IGF-I and IGF-II: Mieli, J.P., Zini, M., Quin, J.D., Jones, J., Portioli, I., and Valcavi, R. (1994) Reversible effects of cessation and recommencement of thyroxine treatment on insulin-like growth factors (IGFs) and IGF-Binding proeins in patients.
List of Figures

Fig. 23. Effects of hormones on the epiphyseal growth plate.

CHAPTER 12

Fig. 2. Diagrammatic representation of the human testicular tubules: Netter, F.H. *Atlas of Human Anatomy*, 2nd ed., Novartis, East Hanover, 1997; reprinted by permission of Elsevier.

Fig. 3. The formation of mammalian germ cells.

Fig. 5. Biosynthesis of testicular steroids.

Fig. 6. Actions of FSH and LH on the testis.

Fig. 7. Metabolism of testosterone.

Fig. 8. Action of testosterone.

Fig. 9. Development of the testes and ovaries from common precursors.
List of Figures

Fig. 12. Anti Müllerian hormone (AMH) signaling pathway.

Fig. 13. Anomalies in male sexual development due to single gene mutations.

Fig. 16. Structures of activins and inhibins.

Fig. 17. Negative feedback regulation of testicular function.

CHAPTER 13

Fig. 1. Human ovary showing progression of follicular and luteal development: Netter, F.H. Atlas of Human Anatomy, 2nd ed., Novartis, Hanover, NJ. 1997; reprinted by permission of Elsevier.

Fig. 6. Biosynthesis of ovarian hormones.

Fig. 7. Theca and granulosa cell cooperation in estrogen synthesis.

Fig. 8. Proliferation of granulosa cells during follicular development.

Fig. 9. Endometrial changes during a typical menstrual cycle: Netter’s Atlas of Human Physiology, Hansen, J.T., and Koeppen, B.W., eds., Icon Learning Systems, Teterboro, N.J., 2002; reprinted by permission of Elsevier.

Fig. 11. Ovarian-pituitary interactions at various phases of the menstrual cycle.

Fig. 12. Concentrations of reproductive hormones at the luteal-follicular transition: Welt, C.K., Martin, K.A., Taylor, A.E., Lambert-Messerlian, G.M., Crowley, W.F. Jr., Smith J.A., Schoenfeld, D.A., Hall, J.E., Frequency modulation of follicle-stimulating hormone (FSH) during the luteal-follicular

CHAPTER 14

Fig. 1. Actions of estrogen to promote gamete transport: Netter, F.H. Atlas of Human Anatomy, 2nd ed., Novartis, Hanover, NJ, 1997; reprinted by permission of Elsevier.

Fig. 2. Relation of events of early pregnancy and steroid hormone concentrations.

Fig. 4. Schematic representation of the human placenta.

Fig. 5. Maternal responses to hCG.

Fig. 7. Progesterone synthesis by the trophoblast.

Fig. 8. Biosynthesis of estrogens during pregnancy.

Fig. 9. Effects of estrogens on production of placental steroid hormones.

Fig. 10. Cardiovascular changes in normal pregnancies.

Fig. 11. Relation of plasma osmolality to ADH concentrations in pregnant women: Goodman, H.M. in Johnson, L.R. Essential Medical Physiology 3rd ed., Academic Press, reprinted by permission of Elsevier.

Fig. 12. Summary of cardiovascular and renal changes in pregnancy.

Fig. 13. Regulation of calcium balance during pregnancy.

Fig. 14. Summary of maternal adaptations to pregnancy.

Fig. 15. Effects of cortisol in late pregnancy.

Fig. 17. Positive feedback cycles that contribute to initiation of parturition.

Fig. 18. Schematic views of the breast.

Fig. 19. Relation of hormonal events in lactation to calcium metabolism.
Fig. 20. Control of oxytocin secretion during lactation.

Fig. 23. Control of prolactin secretion.

Fig. 24. Cellular events in the regulation of prolactin secretion.

Preface to the Fourth Edition

The body of knowledge in endocrinology has expanded enormously since the first edition of this text appeared two decades ago, and the pace of discovery has been no less robust since the appearance of the third edition. Research in endocrinology continues to produce new revelations and insights, sometimes deepening our level of understanding of well-established phenomena, and sometimes leading us to reevaluate and reinterpret long-held doctrines. This edition of Basic Medical Endocrinology endeavors to capture these advances and integrate them into the general discourse without unduly expanding the length of the text or overloading it with unmanageable details. The text continues to focus on the integrative and regulatory roles of the endocrine system in humans, and in this context, to incorporate present understanding of underlying cellular and molecular mechanisms.

Endocrinology has evolved from the study of special functions at the whole body level, through studies of functions of organs, tissues, cells, organelles, and now individual genes and their products. The advent of molecular biology has driven major progress toward uncovering the cellular and molecular bases for hormonal actions and introduced new tools and new strategies for studying phenomena that have been known for a half century or longer. Genomic mapping, among other things, inspired the quest for ligands for “orphan receptors” and predicted functions of newly identified gene products. The technologies for knocking out, knocking in, or knocking down expression of particular genes in particular cells have revolutionized ways to explore signaling pathways within cells and to define functions of individual proteins within intact animals. Though knowledge is still incomplete, we now can describe hormone actions in exciting, and sometimes bewildering molecular detail. I have tried to keep the excitement of these new discoveries in perspective and not let them overshadow the importance of classic findings in the overall understanding of how the body works.

Every chapter has been revised, though some more than others. Progress in endocrine research is uneven, driven by novel discoveries, technological advances, or the infusion of financial support in response to human health needs. In this regard the growing epidemic of obesity, diabetes, and the metabolic syndrome coupled with the discovery of leptin and other adipocyte secretions has fueled perhaps the most significant advances in recent years. Driven in part by continuing fallout from the discovery of the calcium receptor, and in part by improvements in assays for parathyroid hormone and its metabolites, understanding of calcium homeostasis also has progressed significantly since the last edition of this text. Finally, increased understanding of postsecretory events that produce local modifications in hormone concentrations and actions, and the finding of hormone receptors in unexpected places stimulated reassessment of long-held views and fueled progress in several areas.

Although study of gastrointestinal physiology has a prominent place in the history of endocrinology, the physiology of the hormones of the gastrointestinal tract traditionally has been omitted from textbooks of endocrinology, and has been covered instead in texts of gastroenterology. However, it is increasingly apparent that, as is true for many other hormones, the actions of GI hormones are not limited to the roles that we traditionally have assigned to them. It is apparent also that the GI hormones are closely related structurally, functionally, and ancestrally to the hormones that reside in the traditional realms of endocrinology and neuroendocrinology. I therefore have reunited the
hormones of the GI tract with their brethren. Chapter 6 is devoted to their physiology and Chapter 8 integrates them in the discussion of metabolic regulation.

Finally, as must be obvious, the appearance of the fourth edition is dramatically different from its predecessors thanks to technological advances that allow affordable introduction of color. Virtually all the figures have been redrawn in color, which hopefully enhances their value in illustrating the text. In addition, following the premise that “a picture is worth a thousand words,” more than 75 new figures have been added. Once again, I have chosen to avoid burdening the text with countless references to original literature, but instead end each chapter with a list of relevant review articles that can direct the interested student to primary literature. It remains my hope that this text will provide students with somewhat more than sufficient understanding of contemporary endocrine physiology to pass required examinations, and, more importantly perhaps, to provide them with a solid foundation for continuing study of human biology.

H. Maurice Goodman
Worcester, Massachusetts
2008
Preface to the First Edition

This volume is the product of more than 25 years of teaching endocrine physiology to first-year medical students. Its focus is human endocrinology with an emphasis on cellular and molecular mechanisms. In presenting this material, I have tried to capture some of the excitement of a dynamic, expanding discipline that is now in its golden age. It is hoped that this text provides sufficient understanding of normal endocrine physiology to prepare the student to study not only endocrine diseases but the cellular and molecular derangements that disrupt normal function and must therefore be reversed or circumvented by rational therapy. It is further hoped that this text provides the necessary background to facilitate continuing self-education in endocrinology.

Endocrinology encompasses a vast amount of information relating to at least some aspect of virtually every body function. Unfortunately, much of the information is descriptive and cannot be derived from first principles. Thorough, encyclopedic coverage is neither appropriate for a volume such as this one nor possible at the current explosive rate of expansion. On the other hand, limiting the text to the bare minimum of unadorned facts might facilitate memorization of what appear to be the essentials this year but would preclude acquisition of real understanding and offer little preparation for assimilating the essentials as they may appear a decade hence. I therefore sought the middle ground and present basic facts within enough of a physiological framework to foster understanding of both the current status of the field and those areas where new developments are likely to occur while hopefully avoiding the pitfall of burying key points in details and qualifications.

The text is organized into three sections. The first section provides basic information about organization of the endocrine system and the role of individual endocrine glands. Subsequent sections deal with complex hormonal interactions that govern maintenance of the internal environment (Part II) and growth and reproduction (Part III). Neuroendocrinology is integrated into discussions of specific glands or regulatory systems throughout the text rather than being treated as a separate subject. Although modern endocrinology has its roots in gastrointestinal (GI) physiology, the gut hormones are usually covered in texts of GI physiology rather than endocrinology; therefore, there is no chapter on intestinal hormones. In the interests of space and the reader's endurance, a good deal of fascinating material was omitted because it seemed either irrelevant to human biology or insufficiently understood at this time. For example, the pineal gland has intrigued generations of scientists and philosophers since Descartes, but it still has no clearly established role in human physiology and is therefore ignored in this text.

Human endocrinology has its foundation in clinical practice and research, both of which rely heavily on laboratory findings. Where possible, points are illustrated in the text with original data from the rich endocrine literature to give the reader a feeling for the kind of information on which theoretical and diagnostic conclusions are based. Original literature is not cited in the text, in part because such citations are distracting in an introductory text, and in part because proper citation might well double the length of this volume. For the reader who wishes to gain entrée to the endocrine literature or desires more comprehensive coverage of specific topics, review articles are listed at the end of each chapter.

H. Maurice Goodman
1988
Preface to the Second Edition

In the five years that have passed since the first edition of this text, the information explosion in endocrinology has continued unabated and may have even accelerated. Application of the powerful tools of molecular biology has made it possible to ask questions about hormone production and action that were only dreamed about a decade earlier. The receptor molecules that initiate responses to virtually all of the hormones have been characterized and significant progress has been made in unraveling the events that lead to the final cellular expression of hormonal stimulation. As more details of intracellular signaling emerge, the complexities of parallel and intersecting pathways of transduction have become more evident. We are beginning to understand how cells regulate the expression of genes and how hormones intervene in regulatory processes to adjust the expression of individual genes. Great strides have been made in understanding how individual cells talk to each other through locally released factors to coordinate growth, differentiation, secretion, and other responses within a tissue. In these regards, endocrinology and immunology share common themes and have contributed to each other’s advancement.

In revising the text for this second edition of Basic Medical Endocrinology, I have tried to incorporate many of the exciting advances in our understanding of cellular and molecular processes into the discourse on integrated whole body function. I have tried to be selective, however, and include only those bits of information that deepen understanding of well-established principles or processes or that relate to emerging themes. Every chapter has been updated, but not surprisingly, progress has been uneven, and some have been revised more extensively than others. After reviewing the past five years of literature in as broad an area as encompassed by endocrinology, one cannot help but be humbled by the seemingly limitless capacity of the human mind to develop new knowledge, to assimilate new information into an already vast knowledge base, and to apply that knowledge to advancement of human welfare.

H. Maurice Goodman
1993
Preface to the Third Edition

Nearly a decade elapsed between publication of the second and third editions of Basic Medical Endocrinology due in large part to the turmoil in the publishing industry brought on by massive consolidation. Although this edition is new and the publisher is new, the aims of earlier editions of this work are unchanged. Its focus remains human endocrinology with an emphasis on cellular and molecular mechanisms presented in the context of integration of body functions. The intent is to provide a sufficient level of understanding of normal endocrine physiology to prepare students to study not only endocrine diseases, but also the cellular and molecular alterations that disrupt normal function. Such understanding is a prerequisite for institution of rational diagnostic procedures, therapeutic interventions, and research strategies. It is further hoped that this text provides the necessary background to facilitate continuing self-education in endocrinology.

A decade is a long time in this remarkable era of modern biology. Whole new vistas of inquiry have been opened since the previous edition of this text appeared, and new discoveries have mandated reinterpretation of many areas that were once thought to be solidly understood. Much of the progress of the past decade must be credited to ingenious application of rapidly evolving technology in molecular biology. Studies of gene expression and the charting of the genomes of several species, including our own, has provided a deluge of new information and new insights. The exquisite sensitivity and versatility of this technology has uncovered both hormone production and hormone receptors in unexpected places and revealed hitherto unappreciated roles for classical hormones. Classical techniques of organ ablation and extract injection have been reapplied using the once unthinkable technology of gene ablation or overexpression to explore the functions of individual proteins instead of individual glands. The decade has also witnessed the discovery of new hormones and expanded our appreciation of the physiological importance of extraglandular metabolism of hormones. The understanding of hormone actions has grown enormously and spawned the quest for "designer drugs" that target particular, critical, biochemical reactions in combating disease.

In light of these and many other developments, every chapter of this text has been extensively revised to present the well-established factual basis of endocrinology enriched by exciting, rapidly unfolding new information and insights. The challenge has been to digest and reduce the massive literature to illuminate the regulatory and integrative roles of the endocrine system without overloading the text with arcane detail. However, the text is designed to provide somewhat more than the minimum acceptable level of understanding and attempts to anticipate and answer some of the next level of questions that might occur to the thoughtful student.

Looking back over 40 years of teaching endocrine physiology, one cannot fail but to marvel at how far we have come and how resourceful is the human mind in probing the mysteries of life. As has always been true of scientific inquiry, obtaining answers to long-standing questions inevitably raises a host of new questions to challenge a new generation of endocrinologists. It is my hope that this text will provide a foundation for students to meet that challenge both in the clinic and in the laboratory.

H. Maurice Goodman
2002