Contents

Acknowledgments xiii
Preface xv

I
PRELIMINARIES

1. Introduction

Understanding Human Motor Control 2
Levels of Analysis 4
Fields Contributing to Research on Human Motor Control 6
 Physics 6
 Engineering 6
 Statistics 7
 Behavioral Science, Cognitive Science, and Human Factors 7
 Physiology, Neuroscience, Medicine, and Allied Fields 7
Organization of the Book 7
Summary 9

2. Core Problems

The Degrees of Freedom Problem 12
 Whose Problem Is the Degrees of Freedom Problem? 13
 Why the Term “Degrees of Freedom”? 14
 Synergies 14
 Relying on Mechanics 18
 Efficiency 18
The Sequencing and Timing Problem 20
 Speech Errors 20
 Coarticulation 22
 Timing 23
The Perceptual-Motor Integration Problem 25
 Feedback 25
 Feedforward 26
 Movement Enhances Perception 28
 Movement Informs Perception 29
 Mirror Neurons 31
The Learning Problem 32
 Learning by Doing 33
 Learning by Practicing Deliberately 34
 Learning Through Specificity of Practice 35
 Learning Through Neural Plasticity 37
3. Physiological Foundations

Muscle 46
- The Length-Tension Relation 47
- Motor Units and Recruitment 49

Proprioception 50
- Muscle Spindles 51
- Golgi Tendon Organs 53
- Joint Receptors 54
- Cutaneous Receptors 54

Spinal Cord 55
- Spinal Reflexes 55
- Servo Theory 55
- α-γ Coactivation 57
- Recurrent Inhibition 57
- Reciprocal Inhibition 58
- The Smart Spinal Cord 60
- Tuning of Spinal Reflexes 61

Cerebellum 61
- Regulation of Muscle Tone 62
- Coordination 63
- Timing 63
- Learning 65

Basal Ganglia 65
- Huntington’s Disease 66
- Parkinson’s Disease 66
- Theories of Basal Ganglia Function 67

Motor Cortex 69
- Force and Direction Control 71
- Whole-Body Movement 73
- Long-Loop Reflexes 74

Premotor Cortex 75
Supplementary Motor Area 76
Parietal Cortex 80
- Apraxia 81
- Cross-Modal Integration 82

Disconnections 84
Concluding Remarks 85
Summary 86
Further Reading 89

4. Psychological Foundations

Theories of Sequencing and Timing 94
- Response Chaining 94
- Element-to-Position Associations 97
- Inter-Element Inhibition 98
- Hierarchies 99
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skill Acquisition</td>
<td>101</td>
</tr>
<tr>
<td>Closed-Loop Theory</td>
<td>101</td>
</tr>
<tr>
<td>Generalized Programs</td>
<td>103</td>
</tr>
<tr>
<td>Hierarchical Learning</td>
<td>106</td>
</tr>
<tr>
<td>Mental Practice and Imagery</td>
<td>109</td>
</tr>
<tr>
<td>Stage Theory</td>
<td>110</td>
</tr>
<tr>
<td>Physical Changes in Skill Acquisition</td>
<td>112</td>
</tr>
<tr>
<td>Codes and Stores</td>
<td>115</td>
</tr>
<tr>
<td>Codes</td>
<td>115</td>
</tr>
<tr>
<td>Procedural and Declarative Knowledge</td>
<td>116</td>
</tr>
<tr>
<td>Long-Term Memory</td>
<td>118</td>
</tr>
<tr>
<td>Short-Term Memory</td>
<td>119</td>
</tr>
<tr>
<td>History Effects</td>
<td>122</td>
</tr>
<tr>
<td>Motor Programs</td>
<td>124</td>
</tr>
<tr>
<td>The Motor Output Buffer</td>
<td>125</td>
</tr>
<tr>
<td>States of Mind</td>
<td>127</td>
</tr>
<tr>
<td>Attention</td>
<td>127</td>
</tr>
<tr>
<td>Intention</td>
<td>128</td>
</tr>
<tr>
<td>Ideo-Motor Theory</td>
<td>129</td>
</tr>
<tr>
<td>Summary</td>
<td>131</td>
</tr>
<tr>
<td>Further Reading</td>
<td>134</td>
</tr>
</tbody>
</table>

II

THE ACTIVITY SYSTEMS

5. Walking

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptions of Walking</td>
<td>136</td>
</tr>
<tr>
<td>Gait Patterns at Different Speeds</td>
<td>136</td>
</tr>
<tr>
<td>Regularities in Gait Patterns</td>
<td>139</td>
</tr>
<tr>
<td>Neural Control of Locomotion</td>
<td>141</td>
</tr>
<tr>
<td>Neural Circuits for Locomotion</td>
<td>143</td>
</tr>
<tr>
<td>The Role of Sensory Feedback</td>
<td>146</td>
</tr>
<tr>
<td>Descending Effects</td>
<td>147</td>
</tr>
<tr>
<td>Anticipatory Postural Adjustments</td>
<td>150</td>
</tr>
<tr>
<td>Walking Machines</td>
<td>151</td>
</tr>
<tr>
<td>The Development of Walking</td>
<td>154</td>
</tr>
<tr>
<td>Neonatal Reflexes</td>
<td>155</td>
</tr>
<tr>
<td>Disappearance and Reappearance of Stepping</td>
<td>156</td>
</tr>
<tr>
<td>Models of Motor Development</td>
<td>158</td>
</tr>
<tr>
<td>Navigating</td>
<td>161</td>
</tr>
<tr>
<td>Visual Kinesthesia</td>
<td>161</td>
</tr>
<tr>
<td>Development of Visual Guidance</td>
<td>163</td>
</tr>
<tr>
<td>Memory</td>
<td>164</td>
</tr>
<tr>
<td>Route Maps and Survey Maps</td>
<td>165</td>
</tr>
<tr>
<td>Memory and Feedback</td>
<td>166</td>
</tr>
<tr>
<td>Summary</td>
<td>168</td>
</tr>
<tr>
<td>Further Reading</td>
<td>171</td>
</tr>
</tbody>
</table>
CONTENTS

6. Looking

Blinking 174
Accommodation 177
Pupil Constriction and Dilation 177
General Features of Eye Movements 179
 Why Moveable Eyes? 179
 Physical Dynamics 180
 Activation of the Extra-Ocular Muscles 182
 Conjugate and Disjunctive Eye Movements 184
 Miniature Eye Movements 184
Saccades 187
 Saccadic Suppression 191
 Saccades and Attention 192
Smooth Pursuit Movements 194
 Optokinetic Nystagmus 195
 Vestibular-Oculo-Motor Reflex 197
Vergence Movements 200
Eye Movements and Space Constancy 201
Development and Plasticity of Oculo-Motor Control 205
Summary 206
Further Reading 209

7. Reaching and Grasping

The Development of Reaching and Grasping 214
 Direction 215
 Distance 215
 Orientation 215
 Size 216
 Functional Tuning of Grasps in Infancy 216
Visual Guidance 217
 Vision and Touch 219
 Vision for Action 221
 Eye-Hand Coordination 222
Aiming 225
 Woodworth's Pioneering Study 227
 Fitts' Law 229
 Iterative Corrections Model 230
 Impulse Variability Model 231
 Optimized Initial Impulse Model 232
Equilibrium Point Hypothesis 233
Discrete Versus Continuous Movements 237
Intersegmental Coordination 238
 Transport and Grasp Phases 240
 Hand-Space versus Joint-Space Planning 241
 Moving Two Hands at Once 244
Summary 248
Further Reading 249
CONTENTS

8. Drawing and Writing

Drawing 254
 Planning of Strokes 254
 The Isogony Principle 257
 Two-Third Power Law 258
 Drawing Smoothly 262
Control of Writing 263
 Error Analyses 263
 Dysgraphia 263
 Reaction Time Evidence for Grapheme Selection 265
 Reaction Time Evidence for Allograph Selection 265
 Writing Size, Relative Timing, and Absolute Timing 266
 Context Effects 268
 Writing and Handedness 270
The Dynamic Dominance Hypothesis 272
Summary 273
Further Reading 275

9. Keyboarding

Reaction Time 279
 Simple Reaction Time 279
 Choice Reaction Time 280
 Stimulus-Response Compatibility 282
 Ideo-Motor Accounts of Stimulus-Response Compatibility 284
 The SNARC Effect 285
 The Simon Effect 286
 The Stroop Effect 286
 Response-Response Compatibility 287
Simultaneous and Sequential Finger Presses 288
 Simultaneous Keystrokes 288
 Sequences of Keypresses 289
 Learning Keyboard Sequences 293
 Control of Rhythm and Timing 294
 Hierarchical Time Keepers 296
 Event Timing 297
 Amodality of Timing 299
 Integration of Serial Order and Timing 300
 Adjusting the Rate of Production for Entire Sequences 301
Typing 303
 Historical Issues 304
 Units of Typing Control 306
 Typing Errors 307
 Timing of Keystrokes in Typewriting 307
 Rumelhart and Norman’s Model of Typewriting 312
Piano Playing 314
Summary 317
Further Reading 321
10. Speaking and Singing

The Issues 324
Overview of the Chapter 326
The Vocal Tract and Articulatory Dynamics 328
 The Respiratory System 328
 Laryngeal Mechanisms 329
 Articulatory Mechanisms 331
 The Pharynx 332
 Vowels 332
 Consonants 333
Variability 335
 The Motor Theory of Speech Perception 336
 The Target Hypothesis 337
 Relative Positions and Acoustic Targets 339
 A Mechanism for Relative Positioning 341
 A Parallel Distributed Processing System for Coarticulation 343
High-Level Control of Speech 346
 Word Games 346
 Laboratory Studies of Speaking Speed 347
 Speech Errors 349
Brain Mechanisms Underlying Speech 353
Bird Song 354
Motor Resonance 357
Summary 359
Further Reading 362

11. Smiling

Physical Control of the Face 364
Neural Control of the Face 366
 Control of the Upper and Lower Face 366
 Volitional and Emotional Control 366
 Left-Right Differences 368
Origins of Emotional Expression 369
 Innateness and Universality 369
 Causal Connections Between Expressions and Emotions 370
 Associations Between Expressions and Emotions 371
Social Interaction 374
 Imitation in Newborns 375
 Imitation in Married Couples 375
Summary 377
Further Reading 378
III

PRINCIPLES AND PROSPECTS

12. Moving On

Integration 379
 Hitting Oncoming Balls 380
 Golf Putting 383
 Walking and Reaching 385
 Enactive Cognition 386
 More Subtle Manifestations of Cognition in Action 388
 Moving with Others 391
 Motion and Emotion 392
Individual Differences 395
Theories of Human Motor Control 397
 Dynamical Systems Theory 400
 Optimization 405
Innovations 412
 Genetics 412
 Technology 415
Concluding Remarks 418
Summary 421
Further Reading 423

References 425
Author Index 467
Subject Index 485
Acknowledgments

One reason this book exists is that a number of colleagues and students urged me to write it. I thank them for their encouragement but refrain from naming all of them here because, honestly, I don’t know who all of them are. Often at conferences, young investigators who had read the first edition of Human Motor Control asked me when I would be coming out with a second edition. I confessed that I didn’t know if I would be preparing a second edition, let alone when I would do so, but I appreciated their inquiries and felt encouraged by them.

Bruce Roberts, then at Elsevier, the parent company of Academic Press, contacted me in August 2006 and invited me to consider a second edition of Human Motor Control. I’m not sure what triggered Bruce’s invitation 15 years after the first edition’s release, but his email was welcome and reassuring. I hadn’t embarked on a second edition because I was so busy with my lab research, with my responsibilities as Editor of Journal of Experimental Psychology: Human Perception and Performance for the 2000–2005 volumes, and with the other textbook I wrote in the interim, MATLAB for Behavioral Scientists (Rosenbaum, 2007). With the editing and other textbook out of the way, I felt more open to embarking on a second edition of this book. Nikki Levy helped seal the deal with Elsevier. I appreciate her patient counsel as I struggled with the decision about whether to undertake a major project like this. I also thank the people associated with Elsevier who helped with aspects of the book’s production: Joanna Dinsmore, Jerome Devaraj Gnanasekar, Paul Gotttehrer, and Barbara Makinster.

In the years intervening between the first and second editions of this book, I was fortunate to receive support for my research from a number of sources. I appreciate the grants I received from the National Science Foundation, the National Institutes of Health, Moss Rehabilitation Research Institute, the Research and Graduate Studies Office of Penn State’s College of Liberal Arts, Penn State’s Children, Youth, and Families Consortium Center, and Penn State’s Science Research Institute.

I owe a great debt of gratitude to my students and colleagues who helped me continue to learn about human motor control. My graduate students at the University of Massachusetts and then at Penn State University (where I moved in 1994) were extraordinarily helpful in helping me see the many areas in which I needed to learn more about motor control. The graduate students with whom I have had the privilege of working at these two institutions were Jason Augustyn, Janey Barnes, Liana Brown, Chase Coelho, Rajal Cohen, Amanda Dawson, Jeff Eder, Cathy Elsinger, Sascha Engelbrecht, Martin Fischer, Bob Gregory, Marc Grosjean, Carrie Harp, Steve Jax, Loukia Loukopoulos, Myro Joy Lee, Esa Rantanen, Joe Santamaria, Jackie Shin, Jim Slotta, Robrecht van der Wel, and Wei Zhang.

Faculty colleagues at the two institutions likewise helped me learn about human motor control. In this regard, I am indebted to Neil Berthier, Frederick Brown, Graham Caldwell, Rich Carlson, Scott Chaiken, John Challis, Chuck Clifton, Rick Gilmore, Joe Hamil, Rachel Keen, Judy Kroll, Mark Latash, Cathleen Moore, Toby Mordkoff, Jerry Myers, Steve Piazza,

Individuals with whom I have collaborated on research are included in the foregoing lists but some were not. I would be remiss in not mentioning them here: Gisa Aschersleben, Adam Boltz, Peter Dixon, Robin Fleckenstein, Matt Gaydos, Scott Glover, Erin Halloran, Frouke Hermens, Chris Jansen, Peter Keller, Iring Koch, Ruud Meulenbroek, Wolfgang Prinz, Brian Rogosky, Andrei Semenov, Bert Steenbergen, Arnold Thomassen, Caroline van Heugten, Jonathan Vaughan, Matt Walsh, Jason Wark, Edmond Wascher, Florian Waszak, and Marty Weigelt. It has been wonderful to work and publish with these individuals. Much of what I have learned about human motor control is directly due to their influence.

Several colleagues helped with aspects of preparation of this second edition. Many of them were kind enough to reply to my emails in which I requested a bit more information about the whereabouts of various references and the like. For their assistance, I thank Karen Adolph, Chris Bertram, Bruce Bridgeman, Jason Friedman, Robert Full, Dexter Gormley, Ron Marteniuk, Dennis Proffitt, and Tim Welsh. I also thank Elina Mainela-Arnold for telling me about the unique gait of Icelandic horses (see Chapter 11).

The first edition of Human Motor Control was dedicated to my wife, Judith F. Kroll. My dedication to Judy has only deepened over the years, so I re-dedicate this second edition to her. Around the time of this writing, Judy and I celebrated our 33rd wedding anniversary, a marriage made all the more blessed by our wonderful daughters, Nora and Sarah Kroll-Rosenbaum, both of whom are successful not only in their careers (music and law, respectively), but also, and more importantly, in the way they treat others, being generous, loving people. I dedicate this book to all three of these special women in my life.
Think of all the things you did to look at this page. If you are in a bookshop, you had to enter the shop, walk down the aisles, locate the section of the bookstore that had this volume, find this book on the shelf, reach for it without yanking off other volumes, open the book, use your fingers to get to this page, and use your eyes to get to this point. For all these activities to occur, you had to draw on your knowledge of the world to make decisions about what to do, and you had to use your brain, muscles, and limbs to carry out the movements needed to bring you to your present position. How all these events came together is the subject of this book. So too are the things that make it possible to do other everyday tasks such as opening soda cans, writing notes, and singing love songs.

Motor control underlies all the activities we engage in: breathing, remaining upright if we wish, walking, reaching for objects, talking, and text messaging, to name a few. We have a vested interest in understanding how we control the motion and stability of our bodies. Many of the technologies we use and the skills we develop are embodied in the capacity to move or hold still. If we can understand how human motor control works, we can design safer workplaces, better tools, smarter robots, and more effective methods for teaching skills to others. Also, we can rehabilitate, cure, or possibly even prevent motorically expressed medical disorders.

The fact that this is the second edition of Human Motor Control means that the first edition was successful enough to warrant a second airing but not complete enough to stand on its own forever. The first edition was indeed successful, or at least as successful as a book on this topic can be. One reason for its success was that it conveyed the fun, excitement, and challenges of the many approaches that contribute to the field of human motor control. The second edition is meant to do the same. The many advances in the field call for an update.

As was true of the first edition of Human Motor Control, the second edition focuses on four core problems that lie at the heart of the field:

1. How are movements selected to achieve particular tasks when, as is almost always the case, infinitely many movements will achieve them (the degrees of freedom problem)?
2. How are behaviors sequenced in time (the sequencing and timing problem)?
3. How are perception and motor control combined (the perceptual-motor integration problem)?
4. How are perceptual-motor skills acquired (the learning problem)?

Throughout this book, these four problems will be at the heart of all that is discussed. The organization of the second edition is similar to the organization of the book in its first incarnation. Part I, Preliminaries, sets the stage for the problems and approaches to
be followed. Part II, *The Activity Systems*, focuses on the major functional systems that we
depend on: Walking, Speaking, Smiling, and so on. The last part of the book, Part III, *Future
Directions*, looks to new, exciting avenues of study, including new forms of therapy, the crea-
tion of closer ties between motor control and psychiatry, advances in genetics, new theoretical
advances, and new methods for this area of study.

A great many advances have been made since the first edition appeared. Some of them
are worth signaling in advance:

1. Schizophrenia and other psychiatric problems may be rooted in malfunctions of basic perceptual-motor circuits.
2. When physical actions are prepared, there is priming for the perceptual consequences that follow. This explains why, among other things, we can’t tickle ourselves.
3. Our ability to understand what others say or do relies on internal modeling of the others’ intentional state.
4. Robots can perform much more adroitly and with much less energy consumption than was true in the 1980’s and early 1990’s.
5. Advances in computational models of motor control have enabled simulated actors—sometimes called *avatars* or *simulacra*—to perform in ways that are much more like human performance than was possible before.
6. Neuroscientists have opened the “black box” of the brain, and have shed new light on neural circuits underlying action, attention, perception, and learning. Such advances have been made possible through a variety of methods that were only beginning to be developed in the early 1990’s, most notably, functional magnetic resonance imaging (fMRI) and transmagnetic stimulation (TMS).
7. Major advances have been made in genetics, and these have provided new insights into the genetic bases of many motorically expressed abilities and disabilities.

Along with these developments have been others, too numerous to mention in this Preface. Suffice it to say, they will be presented in the text.

A minor change in the format of the second edition is to consolidate all the reference lists in one grand end-of-book References section. This avoids redundancy and highlights the fact that though the various topics in this book can be considered separately, all of them, ultimately, belong together.

Writing a second edition of a book affords an author the chance to atone for sins of com-
mission and omission. The first edition had errors of both kinds. All the errors of which the
author is aware have been rectified and new errors are, hopefully, few in number.

Besides these major additions, new material has been added throughout this volume and some old material that seems less critical has been removed. Of necessity, a book like this must be selective in what it includes. A number of new findings are not presented here just because of the way the story unfolded.