Cognitive Radio Communications and Networks
Principles and Practice

Edited by

Alexander M. Wyglinski, Ph.D.,
Worcester Polytechnic Institute

Maziar Nekovee, Ph.D.,
BT Research and University College London

Y. Thomas Hou, Ph.D.,
Virginia Polytechnic Institute and State University
To my parents, Ted and Barbara, and my sisters, Laura and Joanne
AMW

To Laverne, Jack, and Sirous; to my father, Sirous, and in memory of my mother, Parvin
MN

To my wife Tingting Jiang
YTH
Contents

Preface .. xviii
About the Editors ... xxi

CHAPTER 1 When radio meets software .. 1

Alexander M. Wyglinski, Maziar Nekovee, and Y. Thomas Hou

1.1 Introduction 1
1.2 Software-Defined Radio 2
 1.2.1 What Is Software-Defined Radio? 2
 1.2.2 Evolution of Software-Defined Radio 4
1.3 Cognitive Radio 6
 1.3.1 What Is Cognitive Radio? 6
 1.3.2 Evolution of Cognitive Radio 8
1.4 Key Applications 9
 1.4.1 Interoperability 9
 1.4.2 Dynamic Spectrum Access 10
1.5 Book Organization 12

Theme 1 Cognitive radio communication techniques and algorithms 13

CHAPTER 2 Radio frequency spectrum and regulation 15

Dennis Roberson and William Webb

2.1 Introduction 15
2.2 Spectrum: Nature’s Communication Highway 15
 2.2.1 Physical Characteristics of Spectrum 16
 2.2.2 Implications for Communication Applications 19
2.3 Regulatory History and Successes 19
 2.3.1 Objectives and Philosophy 19
 2.3.2 Early History and Success 20
2.4 Emerging Regulatory Challenges and Actions 21
 2.4.1 Era of Increasing Regulatory Challenges 23
 2.4.2 Allocation, Reallocation, and Optimization 24
 2.4.3 Regulatory Actions 25
 2.4.4 Spectrum Task Forces and Commissions 26
2.5 Regulatory Issues of Cognitive Access 26
 2.5.1 Should a Regulator Allow Cognitive Access? 26
2.5.2 How to Determine the Rules of Entry 28
2.5.3 Regulatory Implications of Different Methods of Cognition 29
2.5.4 Regulatory Developments to Date 30

2.6 Spectrum Measurements and Usage 31
2.6.1 Early Spectrum Occupancy Studies 31
2.6.2 Snapshot Studies 32
2.6.3 Spectrum Observatory 32
2.6.4 Spectral Sensor Arrays 34

2.7 Applications for Spectrum Occupancy Data 35
2.7.1 Regulatory Guidance 36
2.7.2 Wireless Systems and Device Design Opportunities 37
2.7.3 Wireless Communications and Data Service Providers 37
2.7.4 Societal Value 37

2.8 Chapter Summary and Further Readings 38
2.9 Problems 38

CHAPTER 3 Digital communication fundamentals for cognitive radio 41

Si Chen and Alexander M. Wyglinski

3.1 Introduction 41
3.2 Data Transmission 42
 3.2.1 Fundamental Limits 42
 3.2.2 Sources of Transmission Error 43
3.3 Digital Modulation Techniques 45
 3.3.1 Representation of Signals 46
 3.3.2 Euclidean Distance between Signals 47
 3.3.3 Decision Rule 48
 3.3.4 Power Efficiency 48
 3.3.5 M-ary Phase Shift Keying 49
 3.3.6 M-ary Quadrature Amplitude Modulation 50
3.4 Probability of Bit Error 51
 3.4.1 Derivation of Probability of Bit Error 52
 3.4.2 Probability of Bit Error of M-ary Phase Shift Keying 57
3.5 Multicarrier Modulation 57
 3.5.1 Basic Theory 58
 3.5.2 Orthogonal Frequency Division Multiplexing 63
 3.5.3 Filter Bank Multicarrier Systems 66
3.6 Multicarrier Equalization Techniques 67
 3.6.1 Interference in Multicarrier Systems 67
 3.6.2 Distortion Reduction 68
CHAPTER 4 Spectrum sensing and identification 85
Qing Zhao and Ananthram Swami

4.1 Introduction 85
4.2 Primary Signal Detection 86
 4.2.1 Energy Detector 88
 4.2.2 Cyclostationary Feature Detector 92
 4.2.3 Matched Filter 92
 4.2.4 Cooperative Sensing 93
 4.2.5 Other Approaches 94
4.3 From Detecting Primary Signals to Detecting Spectrum Opportunities 95
 4.3.1 Definition and Implications of Spectrum Opportunity 95
 4.3.2 Spectrum Opportunity Detection 97
4.4 Fundamental Trade-offs: Performance versus Constraint 101
 4.4.1 MAC Layer Performance Measures 101
 4.4.2 Global Interference Model 102
 4.4.3 Local Interference Model 103
4.5 Fundamental Trade-offs: Sensing Accuracy versus Sensing Overhead 106
4.6 Chapter Summary and Further Readings 108
4.7 Problems 109

CHAPTER 5 Spectrum access and sharing 113
Alireza Attar, Oliver Holland, and Hamid Aghvami

5.1 Introduction 113
5.2 Unlicensed Spectrum Sharing 117
5.3 Licensed Spectrum Sharing 119
5.4 Secondary Spectrum Access 124
5.5 Non-Real-Time SSA 125
5.6 Real-Time SSA 125
CHAPTER 6 Agile transmission techniques

Srikant Pagadarai, Rakesh Rajbanshi, Gary J. Minden, and Alexander M. Wyglinski

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>149</td>
</tr>
<tr>
<td>6.2 Wireless Transmission for Dynamic Spectrum Access</td>
<td>150</td>
</tr>
<tr>
<td>6.2.1 Spectrum Pooling</td>
<td>151</td>
</tr>
<tr>
<td>6.2.2 Underlay and Overlay Transmission</td>
<td>151</td>
</tr>
<tr>
<td>6.3 Noncontiguous Orthogonal Frequency Division Multiplexing</td>
<td>154</td>
</tr>
<tr>
<td>6.4 NC-OFDM-Based Cognitive Radio: Challenges and Solutions</td>
<td>155</td>
</tr>
<tr>
<td>6.4.1 Interference Mitigation</td>
<td>156</td>
</tr>
<tr>
<td>6.4.2 FFT Pruning for NC-OFDM</td>
<td>165</td>
</tr>
<tr>
<td>6.4.3 Peak-to-Average Power Ratio Problem in NC-OFDM</td>
<td>167</td>
</tr>
<tr>
<td>6.5 Chapter Summary and Further Readings</td>
<td>174</td>
</tr>
<tr>
<td>6.6 Problems</td>
<td>175</td>
</tr>
</tbody>
</table>

CHAPTER 7 Reconfiguration, adaptation, and optimization

Timothy R. Newman, Joseph B. Evans, and Alexander M. Wyglinski

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>177</td>
</tr>
<tr>
<td>7.2 Adaptation Engine</td>
<td>178</td>
</tr>
<tr>
<td>7.3 Operating Parameters</td>
<td>179</td>
</tr>
<tr>
<td>7.3.1 Transmission Parameters</td>
<td>179</td>
</tr>
<tr>
<td>7.3.2 Environmental Measurements</td>
<td>180</td>
</tr>
<tr>
<td>7.4 Parameter Relationships</td>
<td>182</td>
</tr>
<tr>
<td>7.4.1 Single Radio Performance Objectives</td>
<td>183</td>
</tr>
<tr>
<td>7.4.2 Multiple Objective Goals</td>
<td>185</td>
</tr>
<tr>
<td>7.5 Cognitive Adaptation Engines</td>
<td>187</td>
</tr>
<tr>
<td>7.5.1 Expert Systems</td>
<td>188</td>
</tr>
<tr>
<td>7.5.2 Genetic Algorithms</td>
<td>189</td>
</tr>
<tr>
<td>7.5.3 Case-Based Reasoning Systems</td>
<td>191</td>
</tr>
<tr>
<td>7.6 Chapter Summary</td>
<td>196</td>
</tr>
<tr>
<td>7.7 Problems</td>
<td>197</td>
</tr>
</tbody>
</table>
CHAPTER 8 Fundamentals of communication networks

Shiwen Mao

8.1 Introduction 201
8.2 Architecture and Building Blocks 201
8.2.1 Protocol Architecture 201
8.2.2 Switching Technologies 203
8.2.3 Encapsulation and Multiplexing 204
8.2.4 Naming and Addressing 205
8.2.5 Multiple Access 206
8.2.6 Routing and Forwarding 206
8.2.7 Congestion Control and Flow Control 206
8.2.8 Error Control 207
8.3 New Challenges in Wireless Networks 208
8.3.1 Wireless Transmissions 208
8.3.2 Mobility 209
8.3.3 Energy Efficiency 210
8.4 Mobility Modeling 210
8.4.1 Mobility Models 210
8.4.2 The Random Waypoint Model 211
8.4.3 Perfect Simulation 213
8.5 Power Control and Multiuser Diversity 214
8.6 Multiple Access Schemes 217
8.6.1 Polling 218
8.6.2 ALOHA and Slotted ALOHA 220
8.6.3 CSMA 221
8.6.4 CSMA/CA 224
8.7 Routing, Energy Efficiency, and Network Lifetime 227
8.8 Congestion Control in Wireless Networks 229
8.9 Cross-Layer Design and Optimization 231
8.10 Chapter Summary 233
8.11 Problems 233

CHAPTER 9 Cognitive radio network architectures

Petri Mähönen and Janne Riibijärvi

9.1 Introduction 235
9.2 Cognitive Radio Network Architectures 236
9.2.1 Cognitive Resource Manager Framework 237
9.2.2 Architectures for Spectrum Sensing 244
9.2.3 Network Optimization through Utilities 247
9.2.4 Value of Perfect Information 249
CHAPTER 10 User cooperative communications

Elsheikh Elsheikh, Kai-Kit Wong, Yangyang Zbang, and Tiejun Cui

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>261</td>
</tr>
<tr>
<td>10.1.1 Diversity</td>
<td>262</td>
</tr>
<tr>
<td>10.1.2 User Cooperation and Cognitive Systems</td>
<td>263</td>
</tr>
<tr>
<td>10.1.3 Chapter Preview</td>
<td>264</td>
</tr>
<tr>
<td>10.2 Relay Channels</td>
<td>264</td>
</tr>
<tr>
<td>10.2.1 Introduction</td>
<td>264</td>
</tr>
<tr>
<td>10.2.2 A General Three-Node Relay Channel</td>
<td>267</td>
</tr>
<tr>
<td>10.2.3 Wireless Relay Channel</td>
<td>273</td>
</tr>
<tr>
<td>10.3 User Cooperation in Wireless Networks</td>
<td>283</td>
</tr>
<tr>
<td>10.3.1 Introduction</td>
<td>283</td>
</tr>
<tr>
<td>10.3.2 Two-User Cooperative Network</td>
<td>284</td>
</tr>
<tr>
<td>10.3.3 Cooperative Wireless Network</td>
<td>288</td>
</tr>
<tr>
<td>10.4 Multihop Relay Channel</td>
<td>297</td>
</tr>
<tr>
<td>10.5 Chapter Summary and Further Readings</td>
<td>304</td>
</tr>
<tr>
<td>10.6 Problems</td>
<td>304</td>
</tr>
</tbody>
</table>

CHAPTER 11 Information theoretical limits on cognitive radio networks

Natasha Devroye

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>307</td>
</tr>
<tr>
<td>11.1.1 The Rise and Importance of Cognitive Networks</td>
<td>308</td>
</tr>
<tr>
<td>11.1.2 Types of Cognitive Behavior</td>
<td>309</td>
</tr>
<tr>
<td>11.1.3 Chapter Preview</td>
<td>311</td>
</tr>
<tr>
<td>11.2 Information Theoretic Basics</td>
<td>312</td>
</tr>
<tr>
<td>11.2.1 Communications Channels</td>
<td>312</td>
</tr>
<tr>
<td>11.2.2 Information Theoretic Metrics of Interest</td>
<td>314</td>
</tr>
<tr>
<td>11.2.3 Classic Channels</td>
<td>316</td>
</tr>
</tbody>
</table>
13.2.3 Ambiguity in CR Definitions 372
13.2.4 A Glossary of Cognitive Radio Definitions 375
13.2.5 A Generalized Definition of Cognitive Radio Network 376
13.2.6 Concepts Related to Spectrum Management 376
13.2.7 Concepts Related to Computational Platforms 377

13.3 CR Terminology Standardization 379
13.3.1 General Overview 379
13.3.2 IEEE 1900.1 380
13.3.3 IEEE 1900.2 381
13.3.4 IEEE 1900.3 381
13.3.5 IEEE 1900.4 382
13.3.6 IEEE 1900.5 382
13.3.7 IEEE 1900.6 383
13.3.8 Related Standardization Efforts 383
13.3.9 Results and Roadmap of IEEE SCC41 384

13.4 Chapter Summary 385
13.5 Problems 385

CHAPTER 14 Cognitive radio for broadband wireless access in TV bands: The IEEE 802.22 standards 387
Carlos Cordeiro, Dave Cavalcanti, and Saisbankar Nandagopalan

14.1 Introduction 387
14.1.1 Cognitive Radios 388
14.1.2 Regulatory Scenario for TV White Space 388
14.1.3 Dynamic Spectrum Access Models 389

14.2 Overview of IEEE 802.22 Standard 390
14.2.1 Applications 391
14.2.2 Reference Architecture 391

14.3 IEEE 802.22 Physical Layer 393
14.3.1 Preamble, Control Header, and MAP Definition 393
14.3.2 CBP Packet Format 396
14.3.3 Channel Coding and Modulation Schemes 397
14.3.4 Transmit Power Control 398
14.3.5 RF Mask 398

14.4 IEEE 802.22 Medium-Access Control Layer 399
14.4.1 Superframe and Frame Structures 399
14.4.2 Incumbent Detection and Notification Support 402
14.4.3 Multichannel Operation 403
14.4.4 Synchronization 404
14.4.5 Self-Coexistence 405
14.4.6 Quality-of-Service Support 408
14.4.7 Spectrum Management Model 409
14.4.8 Spectrum Manager 410
14.4.9 Spectrum Sensing Function 411
14.4.10 Incumbent Database Support 411
14.5 Spectrum Sensing 412
14.5.1 Incumbent Protection Radius 412
14.5.2 Sensing Algorithms 416
14.6 Other Standardization Activities 427
14.6.1 IEEE 802.22.1 Standard 427
14.6.2 Other Related Standards: IEEE 802.16h, SCC41 427
14.7 Chapter Summary and Future Directions 428
14.8 Problems 429

CHAPTER 15 Cognitive radio network security 431
Jung-Min "Jerry" Park, Kaigui Bian, and Ruiliang Chen

15.1 Introduction 431
15.1.1 Overview of Security Threats to Incumbent Coexistence 431
15.1.2 Overview of Security Threats to Self-Coexistence 433
15.1.3 Radio Software Security Threats 434
15.2 Primary-User Emulation Attacks 435
15.2.1 Spectrum Sensing in Hostile Environments 435
15.2.2 Classification of PUE Attacks 436
15.2.3 Noninteractive Localization of Primary Signal Transmitters 437
15.2.4 Simulation Results 441
15.2.5 Related Research 446
15.3 Robust Distributed Spectrum Sensing 446
15.3.1 Technical Background 447
15.3.2 Weighted Sequential Probability Ratio Test 449
15.3.3 Simulations 451
15.4 Security Vulnerabilities in IEEE 802.22 456
15.4.1 The 802.22 Air Interface 457
15.4.2 An Overview of the IEEE 802.22 Security Sublayer 460
15.4.3 Security Vulnerabilities in Coexistence Mechanisms 462
15.5 Security Threats to the Radio Software 463
15.6 Problems 465

CHAPTER 16 Public safety and cognitive radio 467
Marnix Heskamp, Roel Schipborst, and Kees Slump

16.1 Introduction 467
16.1.1 Requirements 468
16.1.2 Commercial Wireless Communication Networks 470
CHAPTER 16 Applications of Cognitive Radio

16.1 Economic Value of the Spectrum 470
16.1.3 Economic Value of the Spectrum 470
16.1.4 Benefits of Cognitive Radio 472

16.2 Standards for Public Safety Communication 473
16.2.1 TETRA 473
16.2.2 C2000 476

16.3 Applications of Cognitive Radio 477
16.3.1 The Firework Disaster in The Netherlands 477
16.3.2 Bandwidth Requirements 478
16.3.3 Spectrum Organization 479
16.3.4 Propagation Conditions 481
16.3.5 White Space Assessment 482
16.3.6 System Spectral Efficiency 485
16.3.7 Antijamming 485

16.4 Chapter Summary 486

16.5 Problems 487

CHAPTER 17 Auction-based spectrum markets in cognitive radio networks

Xia Zhou, Heather Zbeng, Maziar Nekovee, and Milind M. Buddhikot

17.1 Introduction 489
17.1.1 Dynamic Spectrum Micro-Auctions 490
17.1.2 The Role of Cognitive Radios 491

17.2 Rethinking Spectrum Auctions 491

17.3 On-demand Spectrum Auctions 493
17.3.1 Bidding Format: Piecewise Linear Price-Demand Bids 493
17.3.2 Pricing Models 493
17.3.3 Fast Auction Clearing by Linearizing the Interference Constraints 494

17.4 Economically Robust Spectrum Auctions 494
17.4.1 Spectrum Allocation 497
17.4.2 Winner Pricing 497
17.4.3 Supporting Other Bidding Formats 497
17.4.4 Supporting Different Auction Objectives 498
17.4.5 VERITAS Performance and Complexity 498

17.5 Double Spectrum Auctions for Multiparty Trading 499
17.5.1 Grouping Buyers 501
17.5.2 Determining Winners 502
17.5.3 Pricing 502
17.5.4 TRUST Performance and Complexity 503

17.6 Chapter Summary and Further Readings 503

17.7 Problems 505
19.4 The Maynooth Adaptable Radio System 566
 19.4.1 Introduction 566
 19.4.2 Design Motivation 569
 19.4.3 Experiments and Use Cases 577
 19.4.4 Lessons Learned 580
 19.4.5 Future Plans 582
19.5 Chapter Summary 582
19.6 Problems 583

CHAPTER 20 Cognitive radio evolution 587
Joseph Mitola III

20.1 Introduction 587
 20.1.1 Organization 588
20.2 Cognitive Radio Architectures 589
 20.2.1 Dynamic Spectrum Access 591
 20.2.2 The Haykin Dynamic Spectrum Architecture 592
 20.2.3 The Ideal CRA 594
 20.2.4 Networking and CRA Evolution 595
20.3 Architecture Evolution and Use Case Evolution 597
 20.3.1 Product Differentiation 597
 20.3.2 Protocol Stacks 598
 20.3.3 OA&M 599
 20.3.4 Location Awareness 599
 20.3.5 Spectrum Awareness 599
 20.3.6 Spectrum Auctions 600
 20.3.7 User Expectations 600
 20.3.8 First Responder Situation Awareness 602
 20.3.9 Commercial Sentient Spaces 602
20.4 Sensory Perception in the Evolving CRA 603
 20.4.1 Machine Vision 604
 20.4.2 Human Language and Machine Translation 604
 20.4.3 Situation Perception Architectures 607
20.5 Quality of Information 608
 20.5.1 Quantity 609
 20.5.2 Quality: Precision and Recall 609
 20.5.3 Quality: Accuracy 610
 20.5.4 Timeliness 610
 20.5.5 Quality: Validity 610
 20.5.6 Quality: Level of Detail 611
20.6 Cognitive Radio Policy Languages 611
 20.6.1 What Is a Policy Language? 611
 20.6.2 Policy Language Needs 612
 20.6.3 What Is Language? 613
Appendices: GNU radio experimentation

Appendix A Essential Linux Commands

Appendix B GNU Radio Installation Guide

Appendix C Universal Software Radio Peripheral

Appendix D GNU Radio Python Program Structure

Appendix E Analog Receiver Code

Appendix F Digital Transmitter Code

Appendix G Digital Receiver Code

Appendix H Adaptive Transmitter Code

References

Index
Preface

Cognitive radio is the next disruptive radio communication and networking technology. It is currently experiencing rapid growth due to its potential to solve many of the problems affecting present-day systems. For instance, interest in cognitive radio by the industrial sector has been rapidly growing over the past couple of years, which has manifested into several forms, including:

- Regulatory agencies moving toward allowing the operation of cognitive radios in licensed television spectrum bands.
- Creation and eventual ratification of international wireless standards supporting secondary access of licensed spectrum.
- Incorporation of cognitive radio technology into existing standards.
- Active lobbying by various entities and coalitions for cognitive access to wireless spectral white spaces, including nonprofit organizations and various corporations.

Wireless device manufacturers (e.g., Motorola, Eriksson, and Nokia), telecommunication operators (e.g., BT, France Telecom), and chip makers (e.g., Intel) are all beginning to invest in this new technology, especially with respect to research and development. Outside the area of wireless communication, software-defined radio and cognitive radio technology are expected to have important applications in consumer electronics and the automotive industry. However, although there have been numerous publications, conferences, tutorials, short courses, and books in this area, there does not exist a single comprehensive textbook introducing this material to the communication networks generalist in a structured manner.

The foremost objective of this book is to educate wireless communication generalists about cognitive radio communication networks. The first two parts of this book introduce the reader to the wireless communication and networking theory involved in designing/implementing cognitive radio systems and networks. End-of-chapter questions give the reader the opportunity to apply what she or he has just learned to address problems arising in that chapter. Finally, the third part of this book, which contains numerous implementations, applications, and case studies, helps the reader synthesize the previous two parts by highlighting how these concepts fit in real-world problems.

The intended readership for this book is both wireless communication industry and public sector practitioners and researchers in electrical engineering, computer engineering, and computer science (including graduate students). Both groups are assumed to have a basic background in wireless communications and networks, although they lack any expertise in cognitive radio. This book is designed specifically to introduce communication generalists to the area of cognitive radio communications and networks via a structured approach.

xviii
For the industry practitioner, our book provides a self-contained guide that caters to their immediate needs of learning new concepts and techniques in this emerging area. While the introductory sections bring the reader up to speed with the fundamentals of cognitive radio, the third part provides an up-to-date “handbook of cognitive radio technology,” as it will be in the marketplace within a few years. Sample code and implementations allow researchers to gain a hands-on knowledge of cognitive radio technology, which is much appreciated in an industrial setting. Furthermore, by having specifically two chapters on the two emerging industry standards based on cognitive radio (IEEE 802.22 and IEEE SCC41), we believe that this book will be of definite benefit to the industry practitioners in this sector. The relevance of the book to this group is further increased by one of the editors and several of the contributors being from industrial research laboratories worldwide (e.g., BT, Motorola, Cisco, Philips, Intel, Broadcom).

For academic researchers, cognitive radio communications has been the subject of much recent research and is starting to become well-established. Nevertheless, cognitive radio networks are recognized as a highly challenging area, with many open research problems remaining to be explored. The cognitive radio networks part of our book is written by internationally leading experts in the field and caters to the needs of researchers in the field who require a basis in principles and challenges of cognitive radio networks (such as architecture, security, cooperation) from where they can explore new research directions in cognitive radio. Moreover, many academic institutions are beginning to offer courses on cognitive radio, software-defined radio, and advanced wireless systems engineering. At the moment, only a half dozen universities offer entire courses on cognitive radio or software-defined radio. However, numerous courses on advance wireless communications and networks exist worldwide, possessing at least a module on cognitive radio, which will eventually evolve into full courses in the near future as this area continues to grow.

Since this book covers a wide range of topics in cognitive radio communications and networks, we arranged the presentation of the topics covered by this book such that each chapter gradually builds upon the knowledge and information of the previous chapters. As a result, someone with a basic understanding of communication systems and networks can learn about the topics covered in this book in a step-by-step approach, either in a classroom environment or via self-education. Moreover, communication engineers who already have an understanding of some of the material covered in the book can easily skip ahead to topics of interest. Finally, the chapters have been grouped together into three thematically related parts in order to provide better structure for the reader with respect to the topics covered: Radio Communications, Networks, and Implementation; Applications; and Case Studies. Note that the final chapter of this book provides an all-encompassing vision on the evolution and future directions for cognitive radio by Joseph Mitola III, the father of both software-defined radio and cognitive radio.
This book is made possible by the extensive support of numerous individuals throughout the duration of this project. First, we are deeply indebted to our contributors, who all share in our vision of educating wireless communication generalists about cognitive radio communication networks by producing well-written, informative, and high-quality chapters. Second, we would like to thank our publishers at Elsevier, especially Tim Pitts and Melanie Benson, for their hard work, guidance, and encouragement during the creation of this book. Third, we owe our special thanks to the following colleagues for taking the time to review the manuscript of this book at various stages of this project (in alphabetical order): Alireza Attar, David Cavalcanti, Si Chen, Natasha Devroye, Oliver Holland, Santosh Kawade, Devin Kelly, Michael Leferman, Shiwen Mao, Sai Shankar Nandagopala, Timothy Newman, Srikant Pagadarai, Przemysław Pawelczak, Rangarao Venkatesha Prasad, Di Pu, Yi Shi, Jingkai Su, David Taubenheim, William Webb, Kai-Kit Wong, Liguang Xie, and Qing Zhao. Fourth, we would like to thank Honggang Zhang, Frederick Martin, and Rajarathnam Chandramouli, with whom we worked with much pleasure in organizing the Second International Conference on Cognitive Radio Oriented Wireless Communication and Networks (CrownCom 2007), for bringing us together in Orlando, Florida, USA, where the idea for this book was born. Finally, we would like to thank our families for their support and encouragement.

Alexander M. Wyglinski
Worcester Polytechnic Institute, United States

Maziar Nekovee
BT Research and University College London, United Kingdom

Y. Thomas Hou
Virginia Polytechnic Institute and State University, United States
About the Editors

Alexander M. Wyglinski is an Assistant Professor of Electrical and Computer Engineering at Worcester Polytechnic Institute (WPI), Director of the WPI Limerick Project Center, and Director of the Wireless Innovation Laboratory (WI Lab). He received his Ph.D. from McGill University in 2005, his M.S.(Eng.) from Queens University at Kingston in 2000, and his B.Eng. from McGill University in 1999, all in electrical engineering. Professor Wyglinski’s current research interests include wireless communications, wireless networks, cognitive radios, software-defined radios, transceiver optimization algorithms, dynamic spectrum access networks, spectrum sensing techniques, machine learning techniques for communication systems, and signal processing techniques for digital communications. He is a member of the IEEE, IEEE Communications Society, IEEE Signal Processing Society, IEEE Vehicular Technology Society, IEEE Women in Engineering, Eta Kappa Nu, and Sigma Xi.

Maziar Nekovee leads cognitive radio research at BT (British Telecom) and is also involved in leading a number of large EU and International collaborative R&D projects on cognitive radio networks and secondary/dynamic spectrum access. These projects involve altogether over 30 industrial and academic partners from Europe, China, India, and the United States. They intend to bring very close to market the cognitive radio technology as well as researching long-term directions of the technology. Dr. Nekovee received his BSc. and MSc. (cum laude) in electrical engineering from Delft University of Technology in The Netherlands in 1990 and his Ph.D. in theoretical and computational physics from the University of Nijmegen in The Netherlands in 1995. His research cuts across several disciplines and currently focuses on theory, modeling, simulations, and development of complex networked systems, including cognitive and cooperative radio networks, wireless vehicular communication networks, and complex social and biological networks.
Dr. Nekovee is the recipient of a prestigious Industry Fellowship from the U.K.'s Academy of Science, the Royal Society, and an Honorary Senior Fellow at University College London.

Y. Thomas Hou is an Associate Professor of Electrical and Computer Engineering at Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA. He received his Ph.D. from Polytechnic Institute of New York University in 1998. Prof. Hou's current research interests include cross-layer design and optimization for cognitive radio wireless networks, cooperative communications, MIMO-based ad hoc networks, video communications over dynamic ad hoc networks, and algorithm design for sensor networks. He was a recipient of an Office of Naval Research (ONR) Young Investigator Award (2003) and a National Science Foundation (NSF) CAREER Award (2004) for his research on optimizations and algorithm design for wireless ad hoc and sensor networks. He has published extensively in leading IEEE/ACM journals and conferences and received five best paper awards from IEEE (including IEEE INFOCOM 2008 Best Paper Award and IEEE ICNP 2002 Best Paper Award). Prof. Hou is on the editorial boards of a number of IEEE and international journals. He is a senior member of IEEE and ACM and holds five U.S. patents.