HANDBOOK OF STATISTICAL ANALYSIS AND DATA MINING APPLICATIONS
“Great introduction to the real-world process of data mining. The overviews, practical advice, tutorials, and extra DVD material make this book an invaluable resource for both new and experienced data miners.”

Karl Rexer, Ph.D.
(President and Founder of Rexer Analytics, Boston, Massachusetts, www.RexerAnalytics.com)

“Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write.”

H. G. Wells (1866 – 1946)

“Today we aren’t quite to the place that H. G. Wells predicted years ago, but society is getting closer out of necessity. Global businesses and organizations are being forced to use statistical analysis and data mining applications in a format that combines art and science–intuition and expertise in collecting and understanding data in order to make accurate models that realistically predict the future that lead to informed strategic decisions thus allowing correct actions ensuring success, before it is too late . . . today, numeracy is as essential as literacy. As John Elder likes to say: ‘Go data mining!’ It really does save enormous time and money. For those with the patience and faith to get through the early stages of business understanding and data transformation, the cascade of results can be extremely rewarding.”

Gary Miner, March, 2009
Table of Contents

Foreword 1	xv
Foreword 2	xvii
Preface	xix
Introduction	xxiii
List of Tutorials by Guest Authors	xxix

I

HISTORY OF PHASES OF DATA ANALYSIS, BASIC THEORY, AND THE DATA MINING PROCESS

1. The Background for Data Mining Practice
 - Preamble 3
 - A Short History of Statistics and Data Mining 4
 - Assumptions of the Parametric Model 6
 - Two Views of Reality 8
 - Aristotle 8
 - Plato 9
 - Data, Data Everywhere . . . 11
 - Machine Learning Methods: The Third Generation 11
 - Statistical Learning Theory: The Fourth Generation 12
 - Postscript 13

2. Theoretical Considerations for Data Mining
 - Preamble 15
 - The Scientific Method 16
 - What Is Data Mining? 17
 - A Theoretical Framework for the Data Mining Process 18
 - Microeconomic Approach 19
 - Inductive Database Approach 19
 - Strengths of the Data Mining Process 19
 - Customer-Centric Versus Account-Centric: A New Way to Look at Your Data 20
 - The Physical Data Mart 20
 - The Virtual Data Mart 21
 - Househeld Databases 21
 - The Data Paradigm Shift 22
 - Creation of the Car 22
 - Major Activities of Data Mining 23
 - Major Challenges of Data Mining 25
 - Examples of Data Mining Applications 26
 - Major Issues in Data Mining 26
 - General Requirements for Success in a Data Mining Project 28
 - Example of a Data Mining Project: Classify a Bat’s Species by Its Sound 28
 - The Importance of Domain Knowledge 30
 - Postscript 30
 - Why Did Data Mining Arise? 30
 - Some Caveats with Data Mining Solutions 31

3. The Data Mining Process
 - Preamble 33
 - The Science of Data Mining 33
 - The Approach to Understanding and Problem Solving 34
 - CRISP-DM 35
 - Business Understanding (Mostly Art) 36
 - Define the Business Objectives of the Data Mining Model 36
 - Assess the Business Environment for Data Mining 37
 - Formulate the Data Mining Goals and Objectives 37
5. Feature Selection
Preamble 77
Variables as Features 78
Types of Feature Selections 78
Feature Ranking Methods 78
 Gini Index 78
 Bi-variate Methods 80
 Multivariate Methods 80
 Complex Methods 82
Subset Selection Methods 82
 The Other Two Ways of Using Feature Selection in STATISTICA: Interactive Workspace 93
 STATISTICA DMRecipe Method 93
Postscript 96

6. Accessory Tools for Doing Data Mining
Preamble 99
Data Access Tools 100
 Structured Query Language (SQL) Tools 100
 Extract, Transform, and Load (ETL) Capabilities 100
Data Exploration Tools 101
 Basic Descriptive Statistics 101
 Combining Groups (Classes) for Predictive Data Mining 105
 Slicing/Dicing and Drilling Down into Data Sets/Results Spreadsheets 106
Modeling Management Tools 107
 Data Miner Workspace Templates 107
Modeling Analysis Tools 107
 Feature Selection 107
 Importance Plots of Variables 108
In-Place Data Processing (IDP) 113
 Example: The IDP Facility of STATISTICA Data Miner 114
 How to Use the SQL 114
Rapid Deployment of Predictive Models 114
Model Monitors 116
Postscript 117
II

THE ALGORITHMS IN DATA MINING AND TEXT MINING, THE ORGANIZATION OF THE THREE MOST COMMON DATA MINING TOOLS, AND SELECTED SPECIALIZED AREAS USING DATA MINING

7. Basic Algorithms for Data Mining: A Brief Overview

Preamble 121

STATISTICA Data Miner Recipe (DMRecipe) 123

KXEN 124

Basic Data Mining Algorithms 126
- Association Rules 126
- Neural Networks 128
- Radial Basis Function (RBF) Networks 136
- Automated Neural Nets 138
- Generalized Additive Models (GAMs) 138
- Outputs of GAMs 139
- Interpreting Results of GAMs 139
- Classification and Regression Trees (CART) 139
 - Recursive Partitioning 144
 - Pruning Trees 144
- General Comments about CART for Statisticians 144
- Advantages of CART over Other Decision Trees 145
- Uses of CART 146
- General CHAID Models 146
 - Advantages of CHAID 147
 - Disadvantages of CHAID 147
- Generalized EM and k-Means Cluster Analysis—An Overview 147
 - k-Means Clustering 147
 - EM Cluster Analysis 148
 - Processing Steps of the EM Algorithm 149
 - V-fold Cross-Validation as Applied to Clustering 149

Postscript 150

8. Advanced Algorithms for Data Mining

Preamble 151

Advanced Data Mining Algorithms 154
- Interactive Trees 154
- Multivariate Adaptive Regression Splines (MARSplines) 158
- Statistical Learning Theory: Support Vector Machines 162
- Sequence, Association, and Link Analyses 164
- Independent Components Analysis (ICA) 168
- Kohonen Networks 169
- Characteristics of a Kohonen Network 169
- Quality Control Data Mining and Root Cause Analysis 169
- Image and Object Data Mining: Visualization and 3D-Medical and Other Scanning Imaging 170

Postscript 171

9. Text Mining and Natural Language Processing

Preamble 173

The Development of Text Mining 174

A Practical Example: NTSB 175
- Goals of Text Mining of NTSB Accident Reports 184
- Drilling into Words of Interest 188
- Means with Error Plots 189
- Feature Selection Tool 190
- A Conclusion: Losing Control of the Aircraft in Bad Weather Is Often Fatal 191

Summary 194

Text Mining Concepts Used in Conducting Text Mining Studies 194

Postscript 194

10. The Three Most Common Data Mining Software Tools

Preamble 197

SPSS Clementine Overview 197
- Overall Organization of Clementine Components 198
- Organization of the Clementine Interface 199
- Clementine Interface Overview 199
- Setting the Default Directory 201
- SuperNodes 201
11. Classification
Preamble 235
What Is Classification? 235
Initial Operations in Classification 236
Major Issues with Classification 236
 What Is the Nature of Data Set to Be Classified? 236
 How Accurate Does the Classification Have to Be? 236
 How Understandable Do the Classes Have to Be? 237
Assumptions of Classification Procedures 237
 Numerical Variables Operate Best 237
 No Missing Values 237
 Variables Are Linear and Independent in Their Effects on the Target Variable 237
Methods for Classification 238
 Nearest-Neighbor Classifiers 239
 Analyzing Imbalanced Data Sets with Machine Learning Programs 240
 CHAID 246
 Random Forests and Boosted Trees 248
 Logistic Regression 250
 Neural Networks 251
 Naïve Bayesian Classifiers 253
What Is the Best Algorithm for Classification? 256
Postscript 257

12. Numerical Prediction
Preamble 259
Linear Response Analysis and the Assumptions of the Parametric Model 260
Parametric Statistical Analysis 261
 Assumptions of the Parametric Model 262
 The Assumption of Independency 262
 The Assumption of Normality 262
 Normality and the Central Limit Theorem 263
 The Assumption of Linearity 264
 Linear Regression 264
 Methods for Handling Variable Interactions in Linear Regression 265
 Collinearity among Variables in a Linear Regression 265
 The Concept of the Response Surface 266
 Generalized Linear Models (GLMs) 270
 Methods for Analyzing Nonlinear Relationships 271
 Nonlinear Regression and Estimation 271
 Logit and Probit Regression 272
 Poisson Regression 272
 Exponential Distributions 272
 Piecewise Linear Regression 273
 Data Mining and Machine Learning Algorithms Used in Numerical Prediction 274
 Numerical Prediction with C&RT 274
 Model Results Available in C&RT 276
 Advantages of Classification and Regression Trees (C&RT) Methods 277
 General Issues Related to C&RT 279
 Application to Mixed Models 280
 Neural Nets for Prediction 280
 Manual or Automated Operation? 280
 Structuring the Network for Manual Operation 280
 Modern Neural Nets Are “Gray Boxes” 281
 Example of Automated Neural Net Results 281
 Support Vector Machines (SVMs) and Other Kernel Learning Algorithms 282
Postscript 284

13. Model Evaluation and Enhancement
Preamble 285
Introduction 286
Model Evaluation 286
 Splitting Data 287
Avoiding Overfit Through Complexity
- Regularization 288
- Error Metric: Estimation 291
- Error Metric: Classification 291
- Error Metric: Ranking 293
- Cross-Validation to Estimate Error Rate and Its Confidence 295
- Bootstrap 296
- Target Shuffling to Estimate Baseline Performance 297

Re-Cap of the Most Popular Algorithms 300
- Linear Methods (Consensus Method, Stepwise Is Variable-Selecting) 300
- Decision Trees (Consensus Method, Variable-Selecting) 300
- Neural Networks (Consensus Method) 301
- Nearest Neighbors (Contributory Method) 301
- Clustering (Consensus or Contributory Method) 302

Enhancement Action Checklist 302
Ensembles of Models: The Single Greatest Enhancement Technique 304
- Bagging 305
- Boosting 305
- Ensembles in General 306

How to Thrive as a Data Miner 307
- Big Picture of the Project 307
- Project Methodology and Deliverables 308
- Professional Development 309
- Three Goals 310

Postscript 311

14. Medical Informatics
Preamble 313
- What Is Medical Informatics? 313
- How Data Mining and Text Mining Relate to Medical Informatics 314
- XplorMed 316
- ABView: HivResist 317
- 3D Medical Informatics 317
- What Is 3D Informatics? 317
- Future and Challenges of 3D Medical Informatics 318
- Journals and Associations in the Field of Medical Informatics 318

Postscript 318

15. Bioinformatics
Preamble 321
- What Is Bioinformatics? 323
- Data Analysis Methods in Bioinformatics 326
- ClustalW2: Sequence Alignment 326
- Searching Databases for RNA Molecules 327
- Web Services in Bioinformatics 327
- How Do We Apply Data Mining Methods to Bioinformatics? 329

Postscript 332
- Tutorial Associated with This Chapter on Bioinformatics 332
- Books, Associations, and Journals on Bioinformatics, and Other Resources, Including Online 332

16. Customer Response Modeling
Preamble 335
- Early CRM Issues in Business 336
- Knowing How Customers Behaved Before They Acted 336
- Transforming Corporations into Business Ecosystems: The Path to Customer Fulfillment 337

CRM in Business Ecosystems 338
- Differences Between Static Measures and Evolutionary Measures 338
- How Can We Reorganize Our Data to Reflect Motives and Attitudes? 339
- What Is a Temporal Abstraction? 340

Conclusions 344

Postscript 345

17. Fraud Detection
Preamble 347
- Issues with Fraud Detection 348
- Fraud Is Rare 348
- Fraud Is Evolving! 348
- Large Data Sets Are Needed 348
- The Fact of Fraud Is Not Always Known during Modeling 348
- When the Fraud Happened Is Very Important to Its Detection 349
Comparative Assessment of the Models (Evaluation) 467
Classification Matrix: Boosting Trees with Deployment Model (Best Model) 469
Deploying the Model for Prediction 469
Conclusion 470

F. Churn Analysis
Objectives 471
Steps 472

G. Text Mining: Automobile Brand Review
Introduction 481
Text Mining 482
Input Documents 482
Selecting Input Documents 482
Stop Lists, Synonyms, and Phrases 482
Stemming and Support for Different Languages 483
Indexing of Input Documents: Scalability of STATISTICA Text Mining and Document Retrieval 483
Results, Summaries, and Transformations 483
Car Review Example 484
Saving Results into Input Spreadsheet 498
Interactive Trees (C&RT, CHAID) 503
Other Applications of Text Mining 512
Conclusion 512

H. Predictive Process Control: QC-Data Mining
Predictive Process Control Using STATISTICA and STATISTICA Qc-miner 513
Case Study: Predictive Process Control 514
Understanding Manufacturing Processes 514
Data File: ProcessControl.sta 515
Variable Information 515
Problem Definition 515
Design Approaches 515
Data Analyses with STATISTICA 517
Split Input Data into the Training and Testing Sample 517
Stratified Random Sampling 517
Feature Selection and Root Cause Analyses 517
Different Models Used for Prediction 518
Compute Overlaid Lift Charts from All Models: Static Analyses 520
Classification Trees: CHAID 521
Compute Overlaid Lift/Gain Charts from All Models: Dynamic Analyses 523
Cross-Tabulation Matrix 524
Comparative Evaluation of Models: Dynamic Analyses 526
Gains Analyses by Deciles: Dynamic Analyses 526
Transformation of Change 527
Feature Selection and Root Cause Analyses 528
Interactive Trees: C&RT 528
Conclusion 529

I. Business Administration in a Medical Industry

J. Clinical Psychology: Making Decisions about Best Therapy for a Client

K. Education–Leadership Training for Business and Education

L. Dentistry: Facial Pain Study

M. Profit Analysis of the German Credit Data
Introduction 651
Modeling Strategy 653
SAS-EM 5.3 Interface 654
A Primer of SAS-EM Predictive Modeling 654
Advanced Techniques of Predictive Modeling 669
Micro-Target the Profitable Customers 676
Appendix 678

N. Predicting Self-Reported Health Status Using Artificial Neural Networks
Background 681
Data 682
Preprocessing and Filtering 683
Part 1: Using a Wrapper Approach in Weka to Determine the Most Appropriate Variables for Your Neural Network Model

Part 2: Taking the Results from the Wrapper Approach in Weka into STATISTICA Data Miner to Do Neural Network Analyses

IV

MEASURING TRUE COMPLEXITY, THE “RIGHT MODEL FOR THE RIGHT USE,” TOP MISTAKES, AND THE FUTURE OF ANALYTICS

18. Model Complexity (and How Ensembles Help)

Preamble 707
Model Ensembles 708
Complexity 710
Generalized Degrees of Freedom 713
Examples: Decision Tree Surface with Noise 714
Summary and Discussion 719
Postscript 720

19. The Right Model for the Right Purpose: When Less Is Good Enough

Preamble 723
Embrace Change Rather Than Flee from It 725
Decision Making Breeds True in the Business Organism 725
Muscles in the Business Organism 726
What Is a Complex System? 726
The 80:20 Rule in Action 728
Agile Modeling: An Example of How to Craft Sufficient Solutions 728
Postscript 730

20. Top 10 Data Mining Mistakes

Preamble 733
Introduction 734
0. Lack Data 734
1. Focus on Training 735
2. Rely on One Technique 736
3. Ask the Wrong Question 738
4. Listen (Only) to the Data 739
5. Accept Leaks from the Future 742
6. Discount Pesky Cases 743
7. Extrapolate 744
8. Answer Every Inquiry 747
9. Sample Casually 750
10. Believe the Best Model 752
How Shall We Then Succeed? 753
Postscript 753

21. Prospects for the Future of Data Mining and Text Mining as Part of Our Everyday Lives

Preamble 755
RFID 756
Social Networking and Data Mining 757
Example 1 758
Example 2 759
Example 3 760
Example 4 761
Image and Object Data Mining 761
Visual Data Preparation for Data Mining: Taking Photos, Moving Pictures, and Objects into Spreadsheets Representing the Photos, Moving Pictures, and Objects 765
Cloud Computing 769
What Can Science Learn from Google? 772
The Next Generation of Data Mining 772
From the Desktop to the Clouds . . . 778
Postscript 778

22. Summary: Our Design

Preamble 781
Beware of Overtrained Models 782
A Diversity of Models and Techniques Is Best 783
The Process Is More Important Than the Tool 783
Text Mining of Unstructured Data Is Becoming Very Important 784
Practice Thinking About Your Organization as Organism Rather Than as Machine 784
Good Solutions Evolve Rather Than Just Appear After Initial Efforts 785
What You Don’t Do Is Just as Important as What You Do 785
Very Intuitive Graphical Interfaces Are Replacing Procedural Programming 786
Data Mining Is No Longer a Boutique Operation; It Is Firmly Established in the Mainstream of Our Society 786

“Smart” Systems Are the Direction in Which Data Mining Technology Is Going 787
Postscript 787

Glossary 789

Index 801

DVD Install Instructions 823
This book will help the novice user become familiar with data mining. Basically, data mining is doing data analysis (or statistics) on data sets (often large) that have been obtained from potentially many sources. As such, the miner may not have control of the input data, but must rely on sources that have gathered the data. As such, there are problems that every data miner must be aware of as he or she begins (or completes) a mining operation. I strongly resonated to the material on “The Top 10 Data Mining Mistakes,” which give a worthwhile checklist:

- Ensure you have a response variable and predictor variables—and that they are correctly measured.
- Beware of overfitting. With scads of variables, it is easy with most statistical programs to fit incredibly complex models, but they cannot be reproduced. It is good to save part of the sample to use to test the model. Various methods are offered in this book.
- Don’t use only one method. Using only linear regression can be a problem. Try dichotomizing the response or categorizing it to remove nonlinearities in the response variable. Often, there are clusters of values at zero, which messes up any normality assumption. This, of course, loses information, so you may want to categorize a continuous response variable and use an alternative to regression. Similarly, predictor variables may need to be treated as factors rather than linear predictors. A classic example is using marital status or race as a linear predictor when there is no order.
- Asking the wrong question—when looking for a rare phenomenon, it may be helpful to identify the most common pattern. These may lead to complex analyses, as in item 3, but they may also be conceptually simple. Again, you may need to take care that you don’t overfit the data.
- Don’t become enamored with the data. There may be a substantial history from earlier data or from domain experts that can help with the modeling.
- Be wary of using an outcome variable (or one highly correlated with the outcome variable) and becoming excited about the result. The predictors should be “proper” predictors in the sense that (a) they are measured prior to the outcome and (b) are not a function of the outcome.
- Do not discard outliers without solid justification. Just because an observation is out of line with others is insufficient reason to ignore it. You must check the circumstances that led to the value. In any event, it is useful to conduct the analysis with the observation(s) included and excluded to determine the sensitivity of the results to the outlier.
Extrapolating is a fine way to go broke—the best example is the stock market. Stick within your data, and if you must go outside, put plenty of caveats. Better still, restrain the impulse to extrapolate. Beware that pictures are often far too simple and we can be misled. Political campaigns oversimplify complex problems (“My opponent wants to raise taxes”; “My opponent will take us to war”) when the realities may imply we have some infrastructure needs that can be handled only with new funding, or we have been attacked by some bad guys.

Be wary of your data sources. If you are combining several sets of data, they need to meet a few standards:

- The definitions of variables that are being merged should be identical. Often they are close but not exact (especially in meta-analysis where clinical studies may have somewhat different definitions due to different medical institutions or laboratories).
- Be careful about missing values. Often when multiple data sets are merged, missing values can be induced: one variable isn’t present in another data set, what you thought was a unique variable name was slightly different in the two sets, so you end up with two variables that both have a lot of missing values.
- How you handle missing values can be crucial. In one example, I used complete cases and lost half of my sample—all variables had at least 85% completeness, but when put together the sample lost half of the data. The residual sum of squares from a stepwise regression was about 8. When I included more variables using mean replacement, almost the same set of predictor variables surfaced, but the residual sum of squares was 20. I then used multiple imputation and found approximately the same set of predictors but had a residual sum of squares (median of 20 imputations) of 25. I find that mean replacement is rather optimistic but surely better than relying on only complete cases. If using stepwise regression, I find it useful to replicate it with a bootstrap or with multiple imputation. However, with large data sets, this approach may be expensive computationally.

To conclude, there is a wealth of material in this handbook that will repay study.

Peter A. Lachenbruch, Ph.D.,
Oregon State University
Past President, 2008, American Statistical Society
Professor, Oregon State University
Formerly: FDA and professor at Johns Hopkins University;
UCLA, and University of Iowa, and
University of North Carolina Chapel Hill
A November 2008 search on Amazon.com for “data mining” books yielded over 15,000 hits—including 72 to be published in 2009. Most of these books either describe data mining in very technical and mathematical terms, beyond the reach of most individuals, or approach data mining at an introductory level without sufficient detail to be useful to the practitioner. The *Handbook of Statistical Analysis and Data Mining Applications* is the book that strikes the right balance between these two treatments of data mining.

This volume is not a theoretical treatment of the subject—the authors themselves recommend other books for this—but rather contains a description of data mining principles and techniques in a series of “knowledge-transfer” sessions, where examples from real data mining projects illustrate the main ideas. This aspect of the book makes it most valuable for practitioners, whether novice or more experienced.

While it would be easier for everyone if data mining were merely a matter of finding and applying the correct mathematical equation or approach for any given problem, the reality is that both “art” and “science” are necessary. The “art” in data mining requires experience: when one has seen and overcome the difficulties in finding solutions from among the many possible approaches, one can apply newfound wisdom to the next project. However, this process takes considerable time and, particularly for data mining novices, the iterative process inevitable in data mining can lead to discouragement when a “textbook” approach doesn’t yield a good solution.

This book is different; it is organized with the practitioner in mind. The volume is divided into four parts. Part I provides an overview of analytics from a historical perspective and frameworks from which to approach data mining, including CRISP-DM and SEMMA. These chapters will provide a novice analyst an excellent overview by defining terms and methods to use, and will provide program managers a framework from which to approach a wide variety of data mining problems. Part II describes algorithms, though without extensive mathematics. These will appeal to practitioners who are or will be involved with day-to-day analytics and need to understand the qualitative aspects of the algorithms. The inclusion of a chapter on text mining is particularly timely, as text mining has shown tremendous growth in recent years.

Part III provides a series of tutorials that are both domain-specific and software-specific. Any instructor knows that examples make the abstract concept more concrete, and these tutorials accomplish exactly that. In addition, each tutorial shows how the solutions were developed using popular data mining software tools, such as Clementine, Enterprise Miner, Weka, and STATISTICA. The step-by-step specifics will assist practitioners in learning not only how to approach a wide variety of problems, but also how to use these software...
products effectively. Part IV presents a look at the future of data mining, including a treatment of model ensembles and “The Top 10 Data Mining Mistakes,” from the popular presentation by Dr. Elder.

However, the book is best read a few chapters at a time while actively doing the data mining rather than read cover-to-cover (a daunting task for a book this size). Practitioners will appreciate tutorials that match their business objectives and choose to ignore other tutorials. They may choose to read sections on a particular algorithm to increase insight into that algorithm and then decide to add a second algorithm after the first is mastered. For those new to a particular software tool highlighted in the tutorials section, the step-by-step approach will operate much like a user’s manual. Many chapters stand well on their own, such as the excellent “History of Statistics and Data Mining” and “The Top 10 Data Mining Mistakes” chapters. These are broadly applicable and should be read by even the most experienced data miners.

The Handbook of Statistical Analysis and Data Mining Applications is an exceptional book that should be on every data miner’s bookshelf or, better yet, found lying open next to their computer.

Dean Abbott
President
Abbott Analytics
San Diego, California
Data mining scientists in research and academia may look askance at this book because it does not present algorithm theory in the commonly accepted mathematical form. Most articles and books on data mining and knowledge discovery are packed with equations and mathematical symbols that only experts can follow. Granted, there is a good reason for insistence on this formalism. The underlying complexity of nature and human response requires teachers and researchers to be extremely clear and unambiguous in their terminology and definitions. Otherwise, ambiguities will be communicated to students and readers, and their understanding will not penetrate to the essential elements of any topic. Academic areas of study are not called disciplines without reason.

This rigorous approach to data mining and knowledge discovery builds a fine foundation for academic studies and research by experts. Excellent examples of such books are

Books like these were especially necessary in the early days of data mining, when analytical tools were relatively crude and required much manual configuration to make them work right. Early users had to understand the tools in depth to be able to use them productively. These books are still necessary for the college classroom and research centers. Students must understand the theory behind these tools in the same way that the developers understood it so that they will be able to build new and improved versions.

Modern data mining tools, like the ones featured in this book, permit ordinary business analysts to follow a path through the data mining process to create models that are “good enough.” These less-than-optimal models are far better in their ability to leverage faint patterns in databases to solve problems than the ways it used to be done. These tools provide default configurations and automatic operations, which shield the user from the technical complexity underneath. They provide one part in the crude analogy to the automobile interface. You don’t have to be a chemical engineer or physicist who understands moments of force to be able to operate a car. All you have to do is learn to turn the key in the ignition, step on the gas and the brake at the right times, turn the wheel to change direction in a safe manner, and voila, you are an expert user of the very complex technology
under the hood. The other half of the story is the instruction manual and the driver’s education course that help you to learn how to drive.

This book provides that instruction manual and a series of tutorials to train you how to do data mining in many subject areas. We provide both the right tools and the right intuitive explanations (rather than formal mathematical definitions) of the data mining process and algorithms, which will enable even beginner data miners to understand the basic concepts necessary to understand what they are doing. In addition, we provide many tutorials in many different industries and businesses (using many of the most common data mining tools) to show how to do it.

OVERALL ORGANIZATION OF THIS BOOK

We have divided the chapters in this book into three parts for the same general reason that the ancient Romans split Gaul into three pieces—for the ease of management. The fourth part is a group of tutorials, which serve in principle as Rome served—as the central governing influence. The central theme of this book is the education and training of beginning data mining practitioners, not the rigorous academic preparation of algorithm scientists. Hence, we located the tutorials in the middle of the book in Part III, flanked by topical chapters in Parts I, II, and IV.

This approach is “a mile wide and an inch deep” by design, but there is a lot packed into that inch. There is enough here to stimulate you to take deeper dives into theory, and there is enough here to permit you to construct “smart enough” business operations with a relatively small amount of the right information. James Taylor developed this concept for automating operational decision making in the area of Enterprise Decision Management (Taylor, 2007). Taylor recognized that companies need decision-making systems that are automated enough to keep up with the volume and time-critical nature of modern business operations. These decisions should be deliberate, precise, consistent across the enterprise, smart enough to serve immediate needs appropriately, and agile enough to adapt to new opportunities and challenges in the company. The same concept can be applied to nonoperational systems for Customer Relationship Management (CRM) and marketing support. Even though a CRM model for cross-sell may not be optimal, it may enable several times the response rate in product sales following a marketing campaign. Models like this are “smart enough” to drive companies to the next level of sales. When models like this are proliferated throughout the enterprise to lift all sales to the next level, more refined models can be developed to do even better. This enterprise-wide “lift” in intelligent operations can drive a company through evolutionary rather than revolutionary changes to reach long-term goals.

When one of the primary authors of this book was fighting fires for the U.S. Forest Service, he was struck by the long-term efficiency of Native American contract fire fighters on his crew in Northern California. They worked more slowly than their young “whipper-snapper” counterparts, but they didn’t stop for breaks; they kept up the same pace throughout the day. By the end of the day, they completed far more fire line than the other members of the team. They leveraged their “good enough” work at the moment to accomplish optimal success overall.
Companies can leverage “smart enough” decision systems to do likewise in their pursuit of optimal profitability in their business.

Clearly, use of this book and these tools will not make you experts in data mining. Nor will the explanations in the book permit you to understand the complexity of the theory behind the algorithms and methodologies so necessary for the academic student. But we will conduct you through a relatively thin slice across the wide practice of data mining in many industries and disciplines. We can show you how to create powerful predictive models in your own organization in a relatively short period of time. In addition, this book can function as a springboard to launch you into higher-level studies of the theory behind the practice of data mining. If we can accomplish those goals, we will have succeeded in taking a significant step in bringing the practice of data mining into the mainstream of business analysis.

The three coauthors could not have done this book completely by themselves, and we wish to thank the following individuals, with the disclaimer that we apologize if, by our neglect, we have left out of this “thank you list” anyone who contributed.

Foremost, we would like to thank Acquisitions Editor Lauren Schultz of Elsevier’s Boston office; Lauren was the first to catch the vision and see the need for this book and has worked tirelessly to see it happen. Also, Leah Ackerson, Marketing Manager for Elsevier, and Tom Singer, then Elsevier’s Math and Statistics Acquisitions Editor, who were the first to get us started down this road. Yet, along with Elsevier’s enthusiasm came their desire to have it completed within two months of their making a final decision. So that really pushed us. But Lauren and Leah continually encouraged us during this period by, for instance, flying into the 2008 Knowledge Discovery and Data Mining conference to work out many near-final details.

Bob Nisbet would like to honor and thank his wife, Jean Nisbet, Ph.D., who blasted him off in his technical career by retyping his dissertation five times (before word processing), and assumed much of the family’s burdens during the writing of this book. Bob also thanks Dr. Daniel B. Botkin, the famous global ecologist, for introducing him to the world of modeling and exposing him to the distinction between viewing the world as machine and viewing it as organism. And, thanks are due to Ken Reed, Ph.D., for inducting Bob into the practice of data mining. Finally, he would like to thank Mike Laracy, a member of his data mining team at NCR Corporation, who showed him how to create powerful customer response models using temporal abstractions.

John Elder would like to thank his wife, Elizabeth Hinson Elder, for her support—keeping five great kids happy and healthy while Dad was stuck on a keyboard—and for her inspiration to excellence. John would also like to thank his colleagues at Elder Research, Inc.—who pour their talents, hard work, and character into using data mining for the good of our clients and community—for their help with research contributions throughout the book. You all make it a joy to come to work. Dustin Hux synthesized a host of material to illustrate the interlocking disciplines making up data mining; Antonia de Medinaceli contributed valuable and thorough edits; Stein Kretsinger made useful suggestions; and Daniel Lautzenheiser created the figure showing a non-intuitive type of outlier.

Co-author Gary Miner wishes to thank his wife, Linda A. Winters-Miner, Ph.D., who has been working with Gary on similar books over the past 10 years and wrote several
of the tutorials included in this book, using real-world data. Gary also wishes to thank the following people from his office who helped in various ways, from keeping Gary’s computers running properly to taking over some of his job responsibilities when he took days off to write this book, including Angela Waner, Jon Hillis, Greg Sergeant, Jen Beck, Win Noren, and Dr. Thomas Hill, who gave permission to use and also edited a group of the tutorials that had been written over the years by some of the people listed as guest authors in this book.

Without all the help of the people mentioned here, and maybe many others we failed to specifically mention, this book would never have been completed. Thanks to you all!

Bob Nisbet (bob2@nisbet.com)
John Elder (elder@datamininglab.com)
Gary Miner (miner.gary@gmail.com)

October 31, 2008

General inquiries can be addressed to: handbook@datamininglab.com

References

SAS
To gain experience using SAS® Enterprise Miner™ for the Desktop using tutorials that take you through all the steps of a data mining project, visit HYPERLINK “http://www.support.sas.com/statandDMapps” www.support.sas.com/statandDMapps.

The tutorials include problem definition and data selection, and continue through data exploration, data transformation, sampling, data partitioning, modeling, and model comparison. The tutorials are suitable for data analysts, qualitative experts, and others who want an introduction to using SAS Enterprise Miner for the Desktop using a free 90-day evaluation.

STATSOFT
To gain experience using STATISTICA Data Miner + QC-Miner + Text Miner for the Desktop using tutorials that take you through all the steps of a data mining project, please install the free 90-day STATISTICA that is on the DVD bound with this book. Also, please see the “DVD Install Instructions” at the end of the book for details on installing the software and locating the additional tutorials that are only on the DVD.

SPSS
Call 1.800.543.2185 and mention offer code US09DM0430C to get a free 30-day trial of SPSS Data Mining software (PASW Modeler) for use with the HANDBOOK.
Often, data miners are asked, “What are statistical analysis and data mining?” In this book, we will define what data mining is from a procedural standpoint. But most people have a hard time relating what we tell them to the things they know and understand. Before moving on into the book, we would like to provide a little background for data mining that everyone can relate to.

Statistical analysis and data mining are two methods for simulating the unconscious operations that occur in the human brain to provide a rationale for decision making and actions. Statistical analysis is a very directed rationale that is based on norms. We all think and decide on the basis of norms. For example, we consider (unconsciously) what the norm is for dress in a certain situation. Also, we consider the acceptable range of variation in dress styles in our culture. Based on these two concepts, the norm and the variation around that norm, we render judgments like, “That man is inappropriately dressed.” Using similar concepts of mean and standard deviation, statistical analysis proceeds in a very logical way to make very similar judgments (in principle). On the other hand, data mining learns case by case and does not use means or standard deviations. Data mining algorithms build patterns, clarifying the pattern as each case is submitted for processing. These are two very different ways of arriving at the same conclusion: a decision. We will introduce some basic analytical history and theory in Chapters 1 and 2.

The basic process of analytical modeling is presented in Chapter 3. But it may be difficult for you to relate what is happening in the process without some sort of tie to the real world that you know and enjoy. In many ways, the decisions served by analytical modeling are similar to those we make every day. These decisions are based partly on patterns of action formed by experience and partly by intuition.

A pattern of action can be viewed in terms of the activities of a hurdler on a race track. The runner must start successfully and run to the first hurdle. He must decide very quickly how high to jump to clear the hurdle. He must decide when and in what sequence to move his legs to clear the hurdle with minimum effort and without knocking it down. Then he must run a specified distance to the next hurdle, and do it all over again several times, until he crosses the finish line. Analytical modeling is a lot like that.
The training of the hurdler’s “model” of action to run the race happens in a series of operations:

- Run slow at first.
- Practice takeoff from different positions to clear the hurdle.
- Practice different ways to move the legs.
- Determine the best ways to do each activity.
- Practice the best ways for each activity over and over again.

This practice trains the sensory and motor neurons to function together most efficiently. Individual neurons in the brain are “trained” in practice by adjusting signal strengths and firing thresholds of the motor nerve cells. The performance of a successful hurdler follows the “model” of these activities and the process of coordinating them to run the race. Creation of an analytical “model” of a business process to predict a desired outcome follows a very similar path to the training regimen of a hurdler. We will explore this subject further in Chapter 3 and apply it to develop a data mining process that expresses the basic activities and tasks performed in creating an analytical model.

HUMAN INTUITION

In humans, the right side of the brain is the center for visual and aesthetic sensibilities. The left side of the brain is the center for quantitative and time-regulated sensibilities. Human intuition is a blend of both sensibilities. This blend is facilitated by the neural connections between the right side of the brain and the left side. In women, the number of neural connections between right and left sides of the brain is 20% greater (on average) than in men. This higher connectivity of women’s brains enables them to exercise intuitive thinking to a greater extent than men. Intuition “builds” a model of reality from both quantitative building blocks and visual sensibilities (and memories).

PUTTING IT ALL TOGETHER

Biological taxonomy students claim (in jest) that there are two kinds of people in taxonomy—those who divide things up into two classes (for dichotomous keys) and those who don’t. Along with this joke is a similar recognition that taxonomists are divided into the “lumpers” (who combine several species into one) and the “splitters” (who divide one species into many). These distinctions point to a larger dichotomy in the way people think.

In ecology, there used to be two schools of thought: autoecologists (chemistry, physics, and mathematics explain all) and the synecologists (organism relationships in their environment explain all). It wasn’t until the 1970s that these two schools of thought learned that both perspectives were needed to understand ecosystems (but more about that later). In business, there are the “big picture” people versus “detail” people. Some people learn by
following an intuitive pathway from general to specific (inductive). Often, we call them “big picture” people. Other people learn by following an intuitive pathway from specific to general (deductive). Often, we call them “detail” people.

This distinction is reflected in many aspects of our society. In Chapter 1, we will explore this distinction to a greater depth in regard to the development of statistical and data mining theory through time.

Many of our human activities involve finding patterns in the data input to our sensory systems. An example is the mental pattern that we develop by sitting in a chair in the middle of a shopping mall and making some judgment about patterns among its clientele. In one mall, people of many ages and races may intermingle. You might conclude from this pattern that this mall is located in an ethnically diverse area. In another mall, you might see a very different pattern. In one mall in Toronto, a great many of the stores had Chinese titles and script on the windows. One observer noticed that he was the only non-Asian seen for a half-hour. This led to the conclusion that the mall catered to the Chinese community and was owned (probably) by a Chinese company or person.

Statistical methods employed in testing this “hypothesis” would include

- Performing a survey of customers to gain empirical data on race, age, length of time in the United States, etc.;
- Calculating means (averages) and standard deviations (an expression of the average variability of all the customers around the mean);
- Using the mean and standard deviation for all observations to calculate a metric (e.g., student’s t-value) to compare to standard tables;

If the metric exceeds the standard table value, this attribute (e.g., race) is present in the data at a higher rate than expected at random.

More advanced statistical techniques can accept data from multiple attributes and process them in combination to produce a metric (e.g., average squared error), which reflects how well a subset of attributes (selected by the processing method) predicts desired outcome. This process “builds” an analytical equation, using standard statistical methods. This analytical “model” is based on averages across the range of variation of the input attribute data. This approach to finding the pattern in the data is basically a deductive, top-down process (general to specific). The general part is the statistical model employed for the analysis (i.e., normal parametric model). This approach to model building is very “Aristotelian.” In Chapter 1, we will explore the distinctions between Aristotelian and Platonic approaches for understanding truth in the world around us.

Both statistical analysis and data mining algorithms operate on patterns: statistical analysis uses a predefined pattern (i.e., the Parametric Model) and compares some measure of the observations to standard metrics of the model. We will discuss this approach in more detail in Chapter 1. Data mining doesn’t start with a model; it builds a model with the data. Thus, statistical analysis uses a model to characterize a pattern in the data; data mining uses the pattern in the data to build a model. This approach uses deductive reasoning, following an Aristotelian approach to truth. From the “model” accepted in the beginning (based on the mathematical distributions assumed), outcomes are deduced. On the other hand, data
mining methods discover patterns in data inductively, rather than deductively, following a more Platonic approach to truth. We will unpack this distinction to a much greater extent in Chapter 1.

Which is the best way to do it? The answer is ... it depends. It depends on the data. Some data sets can be analyzed better with statistical analysis techniques, and other data sets can be analyzed better with data mining techniques. How do you know which approach to use for a given data set? Much ink has been devoted to paper to try to answer that question. We will not add to that effort. Rather, we will provide a guide to general analytical theory (Chapter 2) and broad analytical procedures (Chapter 3) that can be used with techniques for either approach. For the sake of simplicity, we will refer to the joint body of techniques as analytics.

In Chapters 4 and 5, we introduce basic process and preparation procedures for analytics.

Chapters 6–9 introduce accessory tools and some basic and advanced analytic algorithms used commonly for various kinds of analytics projects, followed by the use of specialized algorithms for the analysis of textual data.

Chapters 10–12 provide general introductions to three common analytics tool packages and the two most common application areas for those tools (classification and numerical prediction).

Chapter 13 discusses various methods for evaluating the models you build. We will discuss

- Training and testing activities
- Resampling methods
- Ensemble methods
- Use of graphical plots
- Use of lift charts and ROC curves

Additional details about these powerful techniques can be found in Chapter 5 and in Witten and Frank (2006).

Chapters 14–17 guide you through the application of analytics to four common problem areas: medical informatics, bioinformatics, customer response modeling, and fraud.

One of the guiding principles in the development of this book is the inclusion of many tutorials in the body of the book and on the DVD. There are tutorials for SAS-Enterprise Miner, SPSS Clementine, and STATISTICA Data Miner. You can follow through the appropriate tutorials with STATISTICA Data Miner. If you download the free trials of the other tools (as described at the end of the Preface), you can follow the tutorials based on them. In any event, the overall principle of this book is to provide enough of an introduction to get you started doing data mining, plus at least one tool for you to use in the beginning of your work.

Chapters 18–20 discuss the issues in analytics regarding model complexity, parsimony, and modeling mistakes.

Chapter 18, on how to measure true complexity, is the most complex and “researchy” chapter of the book, and can be skipped by most readers; but Chapter 20, on classic analytic
mistakes, should be a big help to anyone who needs to implement real models in the real world.

Chapter 21 gives you a glimpse of the future of analytics. Where is data mining going in the future? Much statistical and data mining research during the past 30 years has focused on designing better algorithms for finding faint patterns in “mountains” of data. Current directions in data mining are organized around how to link together many processing instances rather than improving the mathematical algorithms for pattern recognition. We can see these developments taking shape in at least these major areas:

- RAID (Radio Frequency Identification Technologies)
- Social networks
- Visual data mining: object identification, video and audio, and 3D scanning
- Cloud computing

It is likely that even these global processing strategies are not the end of the line in data mining development. Chapter 1 ends with the statement that we will discover increasingly novel and clever ways to mimic the most powerful pattern recognition engine in the universe: the human brain. Chapter 22 wraps up the whole discussion with a summary.

Much concern in the business world now is organized around the need for effective business intelligence (BI) processes. Currently, this term refers just to business reporting, and there is not much “intelligence” in it. Data mining can bring another level of “intelligence” to bear on problem solving and pattern recognition. But even the state that data mining may assume in the near future (with cloud computing and social networking) is only the first step in developing truly intelligent decision-making engines.

One step further in the future could be to drive the hardware supporting data mining to the level of nanotechnology. Powerful biological computers the size of pin heads (and smaller) may be the next wave of technological development to drive data mining advances. Rather than the sky, the atom is the limit.

References

List of Tutorials by
Guest Authors

Tutorials are located in three places:

1. Tutorials A–N are located in Part III of this book.
3. Additional Tutorials are located on the book’s companion Web site: http://www.elsevierdirect.com/companions/9780123747655

Tutorials in Part III of the printed book, with accompanying datasets and results located on the DVD that is bound with this book:

Tutorial A (Field: General)
How to Use Data Miner Recipe *STATISTICA* Data Miner Only
Gary Miner, Ph.D.

Tutorial B (Field: Engineering)
Data Mining for Aviation Safety Using Data Mining Recipe “Automatized Data Mining” from *STATISTICA*
Alan Stolzer, Ph.D.

Tutorial C (Field: Entertainment Business)
Predicting Movie Box-Office Receipts Using SPSS Clementine Data Mining Software
Dursun Delen, Ph.D

Tutorial D (Field: Financial–Business)
Detecting Unstatified Customers: A Case Study Using SAS Enterprise Miner Version 5.3 for the Analysis
Chamont Wang, Ph.D.

Tutorial E (Field: Financial)
Credit Scoring Using *STATISTICA* Data Miner
Sachin Lahoti and Kiron Mathew

Tutorial F (Field: Business)
Churn Analysis using SPSS-Clementine
Robert Nisbet, Ph.D.
Tutorial G (Field: Customer Satisfaction–Business)
Text Mining: Automobile Brand Review Using STATISTICA Data Miner and Text Miner
Sachin Lahoti and Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial H (Field: Industry Quality Control)
Predictive Process Control: QC-Data Mining Using STATISTICA Data Miner and QC-Miner
Sachin Lahoti and Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorials I, J, and K
Three Short Tutorials Showing the Use of Data Mining and Particularly C&RT to Predict and Display Possible Structural Relationships among Data
edited by Linda A. Miner, Ph.D.

Tutorial I (Field: Business Administration)
Business Administration in a Medical Industry: Determining Possible Predictors for Days with Hospice Service for Patients with Dementia
Linda A. Miner, Ph.D., James Ross, MD, and Karen James, RN, BSN, CHPN

Tutorial J (Field: Clinical Psychology & Patient Care)
Clinical Psychology: Making Decisions about Best Therapy for a Client: Using Data Mining to Explore the Structure of a Depression Instrument
David P. Armentrout, Ph.D. and Linda A. Miner, Ph.D.

Tutorial K (Field: Leadership Training–Business)
Education–Leadership Training for Business and Education Using C&RT to Predict and Display Possible Structural Relationships
Greg S. Robinson, Ph.D., Linda A. Miner, Ph.D., and Mary A. Millikin, Ph.D.

Tutorial L (Field: Dentistry)
Dentistry: Facial Pain Study Based on 84 Predictor Variables (Both Categorical and Continuous)
Charles G. Widmer, DDS, MS.

Tutorial M (Field: Financial–Banking)
Profit Analysis of the German Credit Data using SAS-EM Version 5.3
Chamont Wang, Ph.D., edited by Gary Miner, Ph.D.

Tutorial N (Field: Medical Informatics)
Predicting Self-Reported Health Status Using Artificial Neural Networks
Nephi Walton, Stacey Knight, MStat, and Mollie R. Poynton, Ph.D., APRN, BC
Tutorials on the DVD bound with this book including datasets, data mining projects, and results:

Tutorial O *(Field: Demographics)*
Regression Trees Using Boston Housing Data Set
Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial P *(Field: Medical Informatics & Bioinformatics)*
Cancer Gene
Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial Q *(Field: CRM – Customer Relationship Management)*
Clustering of Shoppers: Clustering Techniques for Data Mining Modeling
Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial R *(Field: Financial–Banking)*
Credit Risk using Discriminant Analysis in a Data Mining Model
Sachin Lahoti and Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial S *(Field: Data Analysis)*
Data Preparation and Management
Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial T *(Field: Deployment of Predictive Models)*
Deployment of a Data Mining Model
Kiron Mathew and Sachin Lahoti

Tutorial U *(Field: Medical Informatics)*
Stratified Random Sampling for Rare Medical Events: A Data Mining Method to Understand Pattern and Meaning of Infrequent Categories in Data
David Redfearn, Ph.D., edited by Gary Miner, Ph.D.
[This Tutorial is not included on the DVD bound with the book, but instead is on this book’s companion Web site.]

Tutorial V *(Field: Medical Informatics–Bioinformatics)*
Heart Disease Utilizing Visual Data Mining Methods
Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial W *(Field: Medical Informatics–Bioinformatics)*
Type II Diabetes Versus Assessing Hemoglobin A1c and LDL, Age, and Sex: Examination of the Data by Progressively Analyzing from Phase 1 (Traditional Statistics) through Phase 4 (Advanced Bayesian and Statistical Learning Theory) Data Analysis Methods, Including Deployment of Model for Predicting Success in New Patients
Dalton Ellis, MD and Ashley Estep, DO, edited by Gary Miner, Ph.D.
Tutorial X (Field: Separating Competing Signals)
Independent Component Analysis
Thomas Hill, Ph.D, edited by Gary Miner, Ph.D.

Tutorial Y (Fields: Engineering–Air Travel–Text Mining)
NTSB Aircraft Accident Reports
Kiron Mathew, by Thomas Hill, Ph.D., and Gary Miner, Ph.D.

Tutorial Z (Field: Preventive Health Care)
Obesity Control in Children: Medical Tutorial Using STATISTICA Data Miner Recipe—
Childhood Obesity Intervention Attempt
Linda A. Miner, Ph.D., Walter L. Larimore, MD, Cheryl Flynt, RN, and Stephanie Rick

Tutorial AA (Field: Statistics–Data Mining)
Random Forests Classification
Thomas Hill, Ph.D. and Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial BB (Field: Data Mining–Response Optimization)
Response Optimization for Data Mining Models
Kiron Mathew and Thomas Hill, Ph.D., edited by Gary Miner, Ph.D.

Tutorial CC (Field: Industry–Quality Control)
Diagnostic Tooling and Data Mining: Semiconductor Industry
Kiron Mathew and Sachin Lahoti, edited by Gary Miner, Ph.D.

Tutorial DD (Field: Sociology)
Visual Data Mining: Titanic Survivors
Kiron Mathew and Thomas Hill, Ph.D., edited by Gary Miner, Ph.D.

Tutorial EE (Field: Demography–Census)
Census Data Analysis: Basic Statistical Data Description
Kiron Mathew, edited by Gary Miner, Ph.D.

Tutorial FF (Field: Environment)
Linear and Logistic Regression (Ozone Data)
Jessica Sieck, edited by Gary Miner, Ph.D.

Tutorial GG (Field: Survival Analysis–Medical Informatics)
R-Integration into a Data Miner Workspace Node: R-node Competing Hazards Program
Named cmprsk from the R-Library
Ivan Korsakov and Wayne Kendal, MD., Ph.D., FRCSC, FRPCP, edited by Gary Miner, Ph.D.
Tutorial HH (Fields: Social Networks–Sociology & Medical Informatics)
Social Networks among Community Organizations: Tulsa Cornerstone Assistance Network Partners Survey of Satisfaction Derived From this Social Network by Members of Cornerstone Partners: Out of 24 Survey Questions, Which are Important in Predicting Partner Satisfaction?
Enis Sakirgil, MD and Timothy Potter, MD, edited by Gary Miner, Ph.D.

Tutorial II (Field: Social Networks)
Nairobi, Kenya Baboon Project: Social Networking among Baboon Populations in Kenya on the Laikipia Plateau
Shirley C. Strum, Ph.D., edited by Gary Miner, Ph.D.

Tutorial JJ (Field: Statistics Resampling Methods)
Jackknife and Bootstrap Data Miner Workspace and MACRO for STATISTICA Data Miner
Gary Miner, Ph.D.

Tutorial KK (Field: Bioinformatics)
Dahlia Mosaic Virus: A DNA Microarray Analysis on 10 Cultivars From a Single Source: Dahlia Garden in Prague, Czech Republic
Hanu R. Pappu, Ph.D., edited by Gary Miner, Ph.D.

Tutorials that are on the book’s companion Web site:
http://www.elsevierdirect.com/companions/9780123747655

Tutorial LL (Field: Physics–Meteorology)
Prediction of Hurricanes from Cloud Data
Jose F. Nieves, Ph.D. and Juan S. Lebron

Tutorial MM (Field: Education–Administration)
Characteristics of Student Populations in Schools and Universities of the United States
Allen Mednick, Ph.D. Candidate

Tutorial NN (Field: Business–Psychology)
Business Referrals based on Customer Service Records
Ronald Mellado Miller, Ph.D.

Tutorial OO (Field: Medicine–Bioinformatics)
Autism: Rating From Parents and Teachers Using an Assessment of Autism Measure and Also Linkage with Genotype: Three Different Polymorphisms Affecting Serotonin Functions Versus Behavioral Data
Ira L. Cohen, Ph.D.
Tutorial PP (Field: Ecology)
Human Ecology: Clustering Fiber Length Histograms by Degree of Damage
Mourad Krifa, Ph.D.

Tutorial QQ (Field: Finance–Business)
Wall Street: Stock Market Predictions
Gary Miner, Ph.D.

Tutorial RR (Field: Scorecards–Business Financial)
Developing Credit Scorecards Using SAS® Enterprise Miner™
R. Wayne Thompson, SAS, Carey, North Carolina

Tutorial SS (Field: Astronomy)
Astro-Statistics: Data Mining of SkyLab Project: Hubble Telescope Star and Galaxy Data
Joseph M. Hilbe, JD, Ph.D., Gary Miner, Ph.D., and Robert Nisbet, Ph.D.

Tutorial TT (Field: Customer Response–Business Commercial)
Boost Profitability and Reduce Marketing Campaign Costs with PASW Modeler by SPSS Inc.
David Vergara