
Physically Based Rendering is a terrific book. It covers all the marvelous math, fascinating
physics, practical software engineering, and clever tricks that are necessary to write a state-
of-the-art photorealistic renderer. All of these topics are dealt with in a clear and pedagogical
manner without omitting the all-important practical details.

pbrt is not just a “toy” implementation of a ray tracer, but a general and robust full-scale
global illumination renderer. It contains many important optimizations to reduce execution
time and memory consumption for complex scenes. Furthermore, pbrt is easy to extend to
experiment with other rendering algorithm variations.

This book is not only a textbook for students, but also a useful reference book for practitioners
in the field. The second edition has been extended with sections on Metropolis light transport,
subsurface scattering, precomputed light transport, and more.

Per Christensen
Senior Software Developer, RenderMan Products, Pixar Animation Studios

Looking for a job in research or high end rendering? Get your kick-start education and
start your own project with this book that comes along with both theory and real examples,
meaning real code.

With their second edition, Matt Pharr and Greg Humphreys provide easy access to even the
most advanced rendering techniques like Metropolis light transport and quasi-Monte Carlo
methods. In addition the framework lets you skip the bootstrap pain of getting data into and
out of your renderer.

The holistic approach of literate programming results in a clear logic of an easy-to-read text.
If you are serious about graphics, there is no way around this unique and extremely valuable
book that is closest to the state of the art.

Alexander Keller
Chief Scientist, Mental Images





Physically Based Rendering
FROM THEORY TO IMPLEMENTATION

SECOND EDITION

MATT PHARR
Intel

GREG HUMPHREYS
NVIDIA

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier



REPLACE THIS PAGE WITH THE SEPARATE COPYRIGHT PAGE.



To Deirdre, who even let me bring the manuscript on our honeymoon.

M. P.

To Isabel and Leila, the two most extraordinary people I’ve ever met. May your pixels
never be little squares.

G. H.



ABOUT THE AUTHORS

Matt Pharr is a Principal Engineer at Intel, working as the lead architect in the Ad-
vanced Rendering Technology group. He previously co-founded Neoptica, which worked
on programming models for graphics on heterogeneous CPU+GPU systems; Neoptica
was acquired by Intel. Before Neoptica, Matt was in the Software Architecture group at
NVIDIA, co-founded Exluna, and worked in Pixar’s Rendering R&D group. He received
his Ph.D. from the Stanford Graphics Lab, working under the supervision of Pat Hanra-
han. He was also the editor of GPU Gems 2.

Greg Humphreys is a member of the OptiX raytracing team at NVIDIA. Previously, he
was a professor of Computer Science at the University of Virginia, where he conducted
research in both high performance and physically based computer graphics, as well as
computer architecture and visualization. Greg has a B.S.E. degree from Princeton, and a
Ph.D. in Computer Science from Stanford under the supervision of Pat Hanrahan. When
he’s not tracing rays, Greg enjoys tournament bridge, knitting, and riding his motorcycle.



Contents

PREFACE xix

CHAPTER 01. INTRODUCTION 1

1.1 Literate Programming 1

1.1.1 Indexing and Cross-Referencing 3

1.2 Photorealistic Rendering and the Ray-Tracing Algorithm 4

1.2.1 Cameras 5
1.2.2 Ray-Object Intersections 7
1.2.3 Light Distribution 8
1.2.4 Visibility 9
1.2.5 Surface Scattering 10
1.2.6 Recursive Ray Tracing 11
1.2.7 Ray Propagation 13

1.3 pbrt: System Overview 15

1.3.1 Phases of Execution 16
1.3.2 Scene Representation 18
1.3.3 Renderer Interface and SamplerRenderer 24
1.3.4 The Main Rendering Loop 26
1.3.5 Parallelization of pbrt 35
1.3.6 An Integrator for Whitted Ray Tracing 41

1.4 How to Proceed through This Book 47

1.4.1 The Exercises 48

1.5 Using and Understanding the Code 48

1.5.1 Pointer or Reference? 48
1.5.2 Code Optimization 49
1.5.3 The Book Web site 49
1.5.4 Extending the System 49
1.5.5 Bugs 50

Further Reading 50

Exercise 52

CHAPTER 02. GEOMETRY AND TRANSFORMATIONS 55

2.1 Coordinate Systems 55

2.1.1 Coordinate System Handedness 56

2.2 Vectors 57

2.2.1 Arithmetic 58
2.2.2 Scaling 59
2.2.3 Dot and Cross Product 60



vii i C O N T E N T S

2.2.4 Normalization 62
2.2.5 Coordinate System from a Vector 63

2.3 Points 63

2.4 Normals 65

2.5 Rays 66

2.5.1 Ray Differentials 68

2.6 Three-Dimensional Bounding Boxes 70

2.7 Transformations 74

2.7.1 Homogeneous Coordinates 75
2.7.2 Basic Operations 76
2.7.3 Translations 77
2.7.4 Scaling 79
2.7.5 x, y, and z Axis Rotations 80
2.7.6 Rotation around an Arbitrary Axis 82
2.7.7 The Look-At Transformation 84

2.8 Applying Transformations 85

2.8.1 Points 85
2.8.2 Vectors 86
2.8.3 Normals 86
2.8.4 Rays 88
2.8.5 Bounding Boxes 88
2.8.6 Composition of Transformations 88
2.8.7 Transformations and Coordinate System Handedness 89

∗ 2.9 Animating Transformations 90

2.9.1 Quaternions 92
2.9.2 Quaternion Interpolation 94
2.9.3 AnimatedTransform Implementation 96

2.10 Differential Geometry 101

Further Reading 103

Exercises 104

CHAPTER 03. SHAPES 107

3.1 Basic Shape Interface 107

3.1.1 Bounding 109
3.1.2 Refinement 110
3.1.3 Intersection 110
3.1.4 Avoiding Incorrect Self-Intersections 111
3.1.5 Shading Geometry 112
3.1.6 Surface Area 113
3.1.7 Sidedness 113

3.2 Spheres 113

3.2.1 Construction 115
3.2.2 Bounding 116

∗ An asterisk denotes a section with advanced content that can be skipped on a first reading.



C O N T E N T S ix

3.2.3 Intersection 116
3.2.4 Partial Spheres 119

∗ 3.2.5 Partial Derivatives of Normal Vectors 121
3.2.6 DifferentialGeometry Initialization 122
3.2.7 Surface Area 123

3.3 Cylinders 124

3.3.1 Construction 125
3.3.2 Bounding 126
3.3.3 Intersection 126
3.3.4 Partial Cylinders 127
3.3.5 Surface Area 129

3.4 Disks 129

3.4.1 Construction 130
3.4.2 Bounding 130
3.4.3 Intersection 131
3.4.4 Surface Area 132

3.5 Other Quadrics 133

3.5.1 Cones 133
3.5.2 Paraboloids 134
3.5.3 Hyperboloids 134

3.6 Triangles and Meshes 135

3.6.1 Triangle 139
3.6.2 Triangle Intersection 140
3.6.3 Surface Area 145
3.6.4 Shading Geometry 145

∗ 3.7 Subdivision Surfaces 148

3.7.1 Mesh Representation 151
3.7.2 Bounds 160
3.7.3 Subdivison 160

Further Reading 174

Exercises 175

CHAPTER 04. PRIMITIVES AND INTERSECTION
ACCELERATION 183

4.1 Primitive Interface and Geometric Primitives 184

4.1.1 Geometric Primitives 187
4.1.2 TransformedPrimitive: Object Instancing and Animated Primitives 189

4.2 Aggregates 191

4.2.1 Ray–Box Intersections 193

4.3 Grid Accelerator 195

4.3.1 Creation 197
4.3.2 Traversal 202

4.4 Bounding Volume Hierarchies 208

4.4.1 BVH Construction 210
4.4.2 The Surface Area Heuristic 217



x C O N T E N T S

4.4.3 Compact BVH For Traversal 222
4.4.4 Traversal 224

4.5 Kd-Tree Accelerator 227

4.5.1 Tree Representation 229
4.5.2 Tree Construction 231
4.5.3 Traversal 240

4.6 Debugging Aggregates 245

4.6.1 Finding Bugs in Aggregates 246
4.6.2 Fixing Bugs In Aggregates 249
4.6.3 Aggregate Performance Bugs 250

Further Reading 250

Exercises 255

CHAPTER 05. COLOR AND RADIOMETRY 261

5.1 Spectral Representation 261

5.1.1 The Spectrum Type 263
5.1.2 CoefficientSpectrum Implementation 263

5.2 The SampledSpectrum Class 266

5.2.1 XYZ Color 270
5.2.2 RGB Color 273

5.3 RGBSpectrum Implementation 279

5.4 Basic Radiometry 281

5.4.1 Basic Quantities 282
5.4.2 Incident and Exitant Radiance Functions 286
5.4.3 Luminance and photometry 287

5.5 Working with Radiometric Integrals 288

5.5.1 Integrals over Projected Solid Angle 289
5.5.2 Integrals over Spherical Coordinates 290
5.5.3 Integrals over Area 292

5.6 Surface Reflection 293

5.6.1 The BRDF 294
5.6.2 The BSSRDF 296

Further Reading 297

Exercises 298

CHAPTER 06. CAMERA MODELS 301

6.1 Camera Model 301

6.1.1 Camera Coordinate Spaces 303

6.2 Projective Camera Models 305

6.2.1 Orthographic Camera 306
6.2.2 Perspective Camera 310
6.2.3 Depth of Field 313

6.3 Environment Camera 318



C O N T E N T S xi

Further Reading 320

Exercises 320

CHAPTER 07. SAMPLING AND RECONSTRUCTION 323

7.1 Sampling Theory 323

7.1.1 The Frequency Domain and the Fourier Transform 325
7.1.2 Ideal Sampling and Reconstruction 327
7.1.3 Aliasing 331
7.1.4 Antialiasing Techniques 332
7.1.5 Application to Image Synthesis 335
7.1.6 Sources of Aliasing in Rendering 336
7.1.7 Understanding Pixels 337

7.2 Image Sampling Interface 338

7.2.1 Sample Representation and Allocation 342

7.3 Stratified Sampling 346

∗ 7.4 Low-Discrepancy Sampling 359

7.4.1 Definition of Discrepancy 359
7.4.2 Hammersley and Halton Sequences 361
7.4.3 (0,2)-Sequences 368
7.4.4 The Low-Discrepancy Sampler 372

∗ 7.5 Best-Candidate Sampling Patterns 378

7.6 Adaptive Sampling 385

7.7 Image Reconstruction 389

7.7.1 Filter Functions 393

7.8 Film and the Imaging Pipeline 402

7.8.1 Film Interface 403
7.8.2 ImageFilm 404

Further Reading 413

Exercises 417

CHAPTER 08. REFLECTION MODELS 423

8.1 Basic Interface 428

8.1.1 Reflectance 430
8.1.2 BRDF → BTDF Adapter 430
8.1.3 BxDF Scaling Adapter 431

8.2 Specular Reflection and Transmission 432

8.2.1 Fresnel Reflectance 434
8.2.2 Specular Reflection 439
8.2.3 Specular Transmission 442

8.3 Lambertian Reflection 446

8.4 Microfacet Models 447

8.4.1 Oren-Nayar Diffuse Reflection 449
8.4.2 Torrance-Sparrow Model 452



xii C O N T E N T S

8.4.3 Blinn Microfacet Distribution 455
8.4.4 Anisotropic Microfacet Model 457

8.5 Fresnel Incidence Effects 460

8.6 Measured BRDFs 462

8.6.1 Irregular Isotropic Measured BRDF 463
8.6.2 Regular Halfangle Format 467

Further Reading 470

Exercises 472

CHAPTER 09. MATERIALS 477

9.1 BSDFs 477

9.1.1 BSDF Memory Management 482

9.2 Material Interface and Implementations 483

9.2.1 MatteMaterial 484
9.2.2 PlasticMaterial 486
9.2.3 Mix Material 487
9.2.4 Measured Material 489
9.2.5 Additional Materials 490

9.3 Bump Mapping 490

Further Reading 496

Exercises 497

CHAPTER 10. TEXTURE 501

10.1 Sampling and Antialiasing 503

10.1.1 Finding the Texture Sampling Rate 503
10.1.2 Filtering Texture Functions 509

∗ 10.1.3 Ray Differentials for Specular Reflection and Transmission 510

10.2 Texture Coordinate Generation 513

10.2.1 2D (u, v) Mapping 514
10.2.2 Spherical Mapping 515
10.2.3 Cylindrical Mapping 517
10.2.4 Planar Mapping 518
10.2.5 3D Mapping 518

10.3 Texture Interface and Basic Textures 519

10.3.1 Constant Texture 520
10.3.2 Scale Texture 520
10.3.3 Mix Textures 521
10.3.4 Bilinear Interpolation 522

10.4 Image Texture 523

10.4.1 Texture Caching 524
10.4.2 MIP Maps 528
10.4.3 Isotropic Triangle Filter 536

∗ 10.4.4 Elliptically Weighted Average 539

10.5 Solid and Procedural Texturing 544

10.5.1 UV Texture 545



C O N T E N T S xii i

10.5.2 Checkerboard 546
10.5.3 Solid Checkerboard 552

10.6 Noise 553

10.6.1 Perlin Noise 554
10.6.2 Random Polka Dots 558
10.6.3 Noise Idioms and Spectral Synthesis 560
10.6.4 Bumpy and Wrinkled Textures 565
10.6.5 Windy Waves 566
10.6.6 Marble 567

Further Reading 569

Exercises 571

∗ CHAPTER 11. VOLUME SCATTERING 575

11.1 Volume Scattering Processes 575

11.1.1 Absorption 576
11.1.2 Emission 578
11.1.3 Out-Scattering and Extinction 579
11.1.4 In-scattering 581

11.2 Phase Functions 583

11.3 Volume Interface and Homogeneous Media 587

11.3.1 Homogeneous Volumes 589

11.4 Varying-Density Volumes 591

11.4.1 3D Grids 592
11.4.2 Exponential Density 594

11.5 Volume Aggregates 596

11.6 The BSSRDF 598

11.6.1 Subsurface Scattering Materials 599

Further Reading 600

Exercises 601

CHAPTER 12. LIGHT SOURCES 605

12.1 Light Interface 606

12.1.1 Visibility Testing 608

12.2 Point Lights 609

12.2.1 Spotlights 611
12.2.2 Texture Projection Lights 614
12.2.3 Goniophotometric Diagram Lights 618

12.3 Distant Lights 621

12.4 Area Lights 623

12.5 Infinite Area Lights 627

Further Reading 632

Exercises 633



xiv C O N T E N T S

CHAPTER 13. MONTE CARLO INTEGRATION I:
BASIC CONCEPTS 637

13.1 Background and Probability Review 638

13.1.1 Continuous Random Variables 639
13.1.2 Expected Values and Variance 640

13.2 The Monte Carlo Estimator 641

13.3 Basic Sampling Of Random Variables 643

13.3.1 The Inversion Method 643
13.3.2 The Rejection Method 650

∗ 13.4 Metropolis Sampling 652

13.4.1 Basic Algorithm 652
13.4.2 Choosing Mutation Strategies 654
13.4.3 Start-up bias 655
13.4.4 Estimating Integrals With Metropolis Sampling 656
13.4.5 Example: One-Dimensional Setting 656

13.5 Transforming between Distributions 660

13.5.1 Transformation in Multiple Dimensions 661
13.5.2 Example: Polar Coordinates 661
13.5.3 Example: Spherical Coordinates 661

13.6 2D Sampling with Multidimensional Transformations 662

13.6.1 Example: Uniformly Sampling a Hemisphere 663
13.6.2 Example: Sampling a Unit Disk 665
13.6.3 Example: Cosine-Weighted Hemisphere Sampling 668
13.6.4 Example: Sampling a Triangle 670
13.6.5 Example: Piecewise-Constant 2D Distributions 671

Further Reading 674

Exercises 675

CHAPTER 14. MONTE CARLO INTEGRATION II:
IMPROVING EFFICIENCY 679

14.1 Russian Roulette and Splitting 680

14.1.1 Splitting 681

14.2 Careful Sample Placement 682

14.2.1 Stratified Sampling 682
14.2.2 Quasi Monte Carlo 685
14.2.3 Warping Samples and Distortion 685

14.3 Bias 686

14.4 Importance Sampling 688

14.4.1 Multiple Importance Sampling 690

14.5 Sampling Reflection Functions 693

14.5.1 Sampling the Blinn Microfacet Distribution 695
14.5.2 Sampling the Anisotropic Microfacet Model 699
14.5.3 Sampling FresnelBlend 701
14.5.4 Specular Reflection and Transmission 702



C O N T E N T S xv

14.5.5 Application: Estimating Reflectance 703
14.5.6 Sampling BSDFs 705

14.6 Sampling Light Sources 708

14.6.1 Basic Interface 709
14.6.2 Lights with Singularities 711
14.6.3 Area Lights 715
14.6.4 ShapeSet Sampling 722
14.6.5 Infinite Area Lights 724

∗ 14.7 Volume Scattering 730

14.7.1 Sampling Phase Functions 731
14.7.2 Computing Optical Thickness 731

Further Reading 733

Exercises 734

CHAPTER 15. LIGHT TRANSPORT I:
SURFACE REFLECTION 739

15.1 Direct Lighting 741

15.1.1 Estimating the Direct Lighting Integral 747

15.2 The Light Transport Equation 751

15.2.1 Basic Derivation 751
15.2.2 Analytic Solutions to the LTE 753
15.2.3 The Surface Form of the LTE 754
15.2.4 Integral over Paths 755
15.2.5 Delta distributions in the Integrand 757
15.2.6 Partitioning the Integrand 758
15.2.7 The Measurement Equation and Importance 759

15.3 Path Tracing 760

15.3.1 Overview 762
15.3.2 Path Sampling 763
15.3.3 Incremental Path Construction 765
15.3.4 Implementation 765

∗ 15.3.5 Bidirectional Path Tracing 770

15.4 Instant Global Illumination 772

15.4.1 Creating the virtual light sources 775
15.4.2 Rendering with virtual light sources 780

15.5 Irradiance Caching 784

15.5.1 Rendering With The Irradiance Cache 789
15.5.2 Lookup and Interpolatiton 791
15.5.3 Adding new values 794

15.6 Particle Tracing and Photon Mapping 797
∗ 15.6.1 Theoretical Basis for Particle Tracing 798

15.6.2 Photon Integrator 800
15.6.3 Building the Photon Maps 803
15.6.4 Using the Photon Map 817
15.6.5 Photon Interpolation and Density Estimation 827



xvi C O N T E N T S

∗ 15.7 Metropolis Light Transport 833

15.7.1 Sample Representation 838
15.7.2 Mutations 839
15.7.3 Generating Paths 842
15.7.4 Path Contributions 845
15.7.5 MetropolisRenderer Implementation 852
15.7.6 Rendering 857

Further Reading 861

Exercises 865

∗ CHAPTER 16. LIGHT TRANSPORT II:
VOLUME RENDERING 873

16.1 The Equation of Transfer 873

16.2 Volume Integrator Interface 876

16.3 Emission-Only Integrator 876

16.4 Single Scattering Integrator 882

16.5 Subsurface Scattering 885

16.5.1 Poisson Distribution of Sample Points 888
16.5.2 Building the Sample Point Octree 897
16.5.3 The Dipole Diffusion Approximation 901
16.5.4 Rendering with Hierarchical Integration 908
16.5.5 Setting Scattering Properties 912

Further Reading 913

Exercises 916

∗ CHAPTER 17. LIGHT TRANSPORT III:
PRECOMPUTED LIGHT TRANSPORT 925

17.1 Basis Functions: Theory 927

17.1.1 A Piecewise-Constant Basis 928
17.1.2 Projection Onto a Basis 930
17.1.3 Orthonormal Basis Functions 930

17.2 Spherical Harmonics 932

17.2.1 Efficient Evaluation 935
17.2.2 Projecting Light Sources 941
17.2.3 Projecting Incident Radiance Functions 949
17.2.4 Reducing Ringing 950
17.2.5 Rotations 951

17.3 Radiance Probes 956

17.3.1 Creating Radiance Probes 956
17.3.2 Using Radiance Probes 965

17.4 Precomputed Diffuse Transfer 969

17.5 Precomputed Glossy Transfer 974

17.5.1 The Transfer Matrix 975



C O N T E N T S xvii

17.5.2 The BSDF Matrix 977
17.5.3 GlossyPRTIntegrator Implementation 979

Further Reading 982

Exercises 984

CHAPTER 18. RETROSPECTIVE AND THE FUTURE 989

18.1 Design Retrospective 989

18.1.1 Abstraction versus Efficiency 991
18.1.2 Design Alternative: Triangles Only 991
18.1.3 Increased Scene Complexity 992

18.2 Throughput Processors 993

18.2.1 The Future 995
18.2.2 Further Resources 995

18.3 Conclusion 997

APPENDIXES

A UTILITIES 999

B SCENE DESCRIPTION INTERFACE 1045

C INDEX OF FRAGMENTS 1077

D INDEX OF CLASSES AND THEIR MEMBERS 1091

E INDEX OF MISCELLANEOUS IDENTIFIERS 1101

REFERENCES 1105

INDEX 1143

COLOPHON 1169





Preface

[Just as] other information should be available to those who want to learn and understand,
program source code is the only means for programmers to learn the art from their prede-
cessors. It would be unthinkable for playwrights not to allow other playwrights to read their
plays [or to allow them] at theater performances where they would be barred even from tak-
ing notes. Likewise, any good author is well read, as every child who learns to write will
read hundreds of times more than it writes. Programmers, however, are expected to invent
the alphabet and learn to write long novels all on their own. Programming cannot grow and
learn unless the next generation of programmers has access to the knowledge and information
gathered by other programmers before them. —Erik Naggum

Rendering is a fundamental component of computer graphics. At the highest level of
abstraction, rendering is the process of converting a description of a three-dimensional
scene into an image. Algorithms for animation, geometric modeling, texturing, and
other areas of computer graphics all must pass their results through some sort of ren-
dering process so that they can be made visible in an image. Rendering has become
ubiquitous; from movies to games and beyond, it has opened new frontiers for creative
expression, entertainment, and visualization.

In the early years of the field, research in rendering focused on solving fundamental prob-
lems such as determining which objects are visible from a given viewpoint. As effective
solutions to these problems have been found and as richer and more realistic scene de-
scriptions have become available thanks to continued progress in other areas of graphics,
modern rendering has grown to include ideas from a broad range of disciplines, includ-
ing physics and astrophysics, astronomy, biology, psychology and the study of perception,
and pure and applied mathematics. The interdisciplinary nature of rendering is one of
the reasons that it is such a fascinating area of study.

This book presents a selection of modern rendering algorithms through the documented
source code for a complete rendering system. All of the images in this book, including
the one on the front cover, were rendered by this software. All of the algorithms that
came together to generate these images are described in these pages. The system, pbrt, is
written using a programming methodology called literate programming that mixes prose
describing the system with the source code that implements it. We believe that the literate
programming approach is a valuable way to introduce ideas in computer graphics and
computer science in general. Often, some of the subtleties of an algorithm can be unclear
or hidden until it is implemented, so seeing an actual implementation is a good way to
acquire a solid understanding of that algorithm’s details. Indeed, we believe that deep
understanding of a small number of algorithms in this manner provides a stronger base
for further study of computer graphics than does superficial understanding of many.



xx P R E F A C E

In addition to clarifying how an algorithm is implemented in practice, presenting these
algorithms in the context of a complete and nontrivial software system also allows us
to address issues in the design and implementation of medium-sized rendering systems.
The design of a rendering system’s basic abstractions and interfaces has substantial im-
plications for both the elegance of the implementation and the ability to extend it later,
yet the trade-offs in this design space are rarely discussed.

pbrt and the contents of this book focus exclusively on photorealistic rendering , which
can be defined variously as the task of generating images that are indistinguishable from
those that a camera would capture in a photograph, or as the task of generating images
that evoke the same response from a human observer as looking at the actual scene. There
are many reasons to focus on photorealism. Photorealistic images are crucial for the
movie special-effects industry because computer-generated imagery must often be mixed
seamlessly with footage of the real world. In entertainment applications where all of the
imagery is synthetic, photorealism is an effective tool for making the observer forget that
he or she is looking at an environment that does not actually exist. Finally, photorealism
gives a reasonably well-defined metric for evaluating the quality of the rendering system’s
output.

A consequence of our approach is that this book and the system it describes do not ex-
haustively cover the state-of-the-art in rendering; many interesting topics in photorealis-
tic rendering will not be introduced either because they don’t fit well with the architecture
of the software system (e.g., finite-element radiosity algorithms) or because we believed
that the pedagogical value of explaining the algorithm was outweighed by the complexity
of its implementation. We will note these decisions as they come up and provide point-
ers to further resources so that the reader can follow up on topics of interest. Many other
areas of rendering, including interactive rendering, visualization, and illustrative forms
of rendering such as pen-and-ink styles, aren’t covered in this book at all. Nevertheless,
many of the algorithms and ideas in this system (e.g., algorithms for texture map anti-
aliasing) are applicable to a wider set of rendering styles.

AUDIENCE

Our primary intended audience for this book is students in graduate or upper-level un-
dergraduate computer graphics classes. This book assumes existing knowledge of com-
puter graphics at the level of an introductory college-level course, although certain key
concepts such as basic vector geometry and transformations will be reviewed here. For
students who do not have experience with programs that have tens of thousands of lines
of source code, the literate programming style gives a gentle introduction to this com-
plexity. We pay special attention to explaining the reasoning behind some of the key
interfaces and abstractions in the system in order to give these readers a sense of why
the system is structured in the way that it is.

Our secondary, but equally important, audiences are advanced graduate students and
researchers, software developers in industry, and individuals interested in the fun of writ-
ing their own rendering systems. Although many of the ideas in this book will likely be
familiar to these readers, seeing explanations of the algorithms presented in the liter-
ate style may provide new perspectives. pbrt includes implementations of a number of



P R E F A C E xxi

advanced and/or difficult-to-implement algorithms and techniques, such as subdivision
surfaces, Monte Carlo light transport and Metropolis sampling, subsurface scattering,
and precomputed light transport algorithms; these should be of particular interest to
experienced practitioners in rendering. We hope that delving into one particular organi-
zation of a complete and nontrivial rendering system will also be thought provoking to
this audience.

OVERVIEW AND GOALS

pbrt is based on the ray-tracing algorithm. Ray tracing is an elegant technique that has
its origins in lens making; Carl Freidrich Gauss traced rays through lenses by hand in
the 19th century. Ray-tracing algorithms on computers follow the path of infinitesimal
rays of light through the scene until they intersect a surface. This approach gives a
simple method for finding the first visible object as seen from any particular position
and direction, and is the basis for many rendering algorithms.

pbrt was designed and implemented with three main goals in mind: it should be com-
plete, it should be illustrative, and it should be physically based.

Completeness implies that the system should not lack key features found in high-quality
commercial rendering systems. In particular, it means that important practical issues,
such as antialiasing, robustness, and the ability to efficiently render complex scenes,
should all be addressed thoroughly. It is important to consider these issues from the
start of the system’s design, since these features can have subtle implications for all
components of the system and can be quite difficult to retrofit into the system at a later
stage of implementation.

Our second goal means that we tried to choose algorithms, data structures, and ren-
dering techniques with care and with an eye toward readability and clarity. Since their
implementations will be examined by more readers than is the case for many other ren-
dering systems, we tried to select the most elegant algorithms that we were aware of and
implement them as well as possible. This goal also required that the system be small
enough for a single person to understand completely. We have implemented pbrt us-
ing an extensible architecture, with the core of the system implemented in terms of a set
of carefully-designed abstract base classes, and as much of the specific functionality as
possible in implementations of these base classes. The result is that one doesn’t need to
understand all of the specific implementations in order to understand the basic structure
of the system. This makes it easier to delve deeply into parts of interest and skip others,
without losing sight of how the overall system fits together.

There is a tension between the two goals of being complete and being illustrative. Imple-
menting and describing every possible useful technique would not only make this book
extremely long, but also would make the system prohibitively complex for most readers.
In cases where pbrt lacks a particularly useful feature, we have attempted to design the
architecture so that the feature could be added without altering the overall system design.

The basic foundations for physically based rendering are the laws of physics and their
mathematical expression. pbrt was designed to use the correct physical units and con-
cepts for the quantities it computes and the algorithms it implements. When configured



xxii P R E F A C E

to do so, pbrt can compute images that are physically correct ; they accurately reflect the
lighting as it would be in a real-world version of the scene. One advantage of the deci-
sion to use a physical basis is that it gives a concrete standard of program correctness:
for simple scenes, where the expected result can be computed in closed form, if pbrt
doesn’t compute the same result, we know there must be a bug in the implementation.
Similarly, if different physically based lighting algorithms in pbrt give different results
for the same scene, or if pbrt doesn’t give the same results as another physically based
renderer, there is certainly an error in one of them. Finally, we believe that this physically
based approach to rendering is valuable because it is rigorous. When it is not clear how a
particular computation should be performed, physics gives an answer that guarantees a
consistent result.

Efficiency was given lower priority than these three goals. Since rendering systems often
run for many minutes or hours in the course of generating an image, efficiency is clearly
important. However, we have mostly confined ourselves to algorithmic efficiency rather
than low-level code optimization. In some cases, obvious micro-optimizations take a
backseat to clear, well-organized code, although we did make some effort to optimize
the parts of the system where most of the computation occurs.

In the course of presenting pbrt and discussing its implementation, we hope to convey
some hard-learned lessons from years of rendering research and development. There is
more to writing a good renderer than stringing together a set of fast algorithms; making
the system both flexible and robust is a difficult task. The system’s performance must
degrade gracefully as more geometry or light sources are added to it, or as any other axis
of complexity is pushed. Numeric stability must be handled carefully, and algorithms
that don’t waste floating-point precision are critical.

The rewards for developing a system that addresses all these issues are enormous—it is
a great pleasure to write a new renderer or add a new feature to an existing renderer
and use it to create an image that couldn’t be generated before. Our most fundamental
goal in writing this book was to bring this opportunity to a wider audience. Readers
are encouraged to use the system to render the example scenes in the pbrt software
distribution as they progress through the book. Exercises at the end of each chapter
suggest modifications to the system that will help clarify its inner workings, and more
complex projects to extend the system by adding new features.

The website for this book is located at www.pbrt.org. The latest version of the pbrt source
code is available from this site and we will also post errata and bug fixes, additional scenes
to render, and supplemental utilities. Any bugs in pbrt or errors in this text that are not
listed at the website can be reported to the email address bugs@pbrt.org . We greatly value
your feedback!

CHANGES SINCE THE FIRST EDITION

Six years have passed since the publication of the first edition of this book. In that
time, thousands of copies of the book have been sold and the pbrt software has been
downloaded thousands of times from the book’s website. The pbrt user base has given



P R E F A C E xxii i

us a significant amount of feedback and encouragement, and our experience with the
system guided many of the decisions we made in making changes between the version of
pbrt presented in the first edition and the updated version described here. In addition to a
number of bug fixes, we also made several significant design changes and enhancements:

1. Removal of the plugin architecture. The first version of pbrt used a run-time
plugin architecture to dynamically load code for implementations of objects like
shapes, lights, integrators, cameras, and other objects that were used in the scene
currently being rendered. This approach allowed users to extend pbrt with new
object types (e.g., new shape primitives) without recompiling the entire rendering
system. This approach initially seemed elegant, but it complicated the task of
supporting pbrt on multiple platforms and it made debugging more difficult. The
only new usage scenario that it truly enabled (binary-only distributions of pbrt or
binary plugins) was actually contrary to our pedagogical and open-source goals.
Therefore, the plugin architecture was dropped in this edition.

2. Removal of the image processing pipeline. The first version of pbrt provided a
tone-mapping interface that converted high dynamic range (HDR) floating point
output images directly into low dynamic range TIFFs for display. This function-
ality made sense in 2004, as support for HDR images was still sparse. In 2010,
however, advances in digital photography have made HDR images commonplace.
Although the theory and practice of tone mapping are elegant and worth learning,
we decided to focus the new book exclusively on the process of image formation
and ignore the topic of image display. Interested readers should read the book writ-
ten by Reinhard et al. (2005) for a thorough and modern treatment of the HDR
image display process.

3. Task parallelism. Multicore architectures are now ubiquitous, and we felt that pbrt
would not remain relevant without the ability to scale to the number of locally
available cores. We also hope that the parallel programming implementation de-
tails documented in this book will help graphics programmers understand some
of the subtleties and complexities in writing scalable parallel code (e.g., choosing
appropriate task granularities or mutex types), which is still a difficult and too-
infrequently taught topic.

4. Appropriateness for “production” rendering. The first version of pbrt was in-
tended exclusively as a pedagogical tool and a stepping-stone for rendering re-
search. Indeed, we made a number of decisions in preparing the first edition that
were contrary to use in a production environment, such as limited support for
image-based lighting, no support for motion blur, and a photon mapping im-
plementation that wasn’t robust in the presence of complex lighting. With much
improved support for these features as well as support for subsurface scattering
and Metropolis light transport, we feel that pbrt is now much more suitable for
rendering very high-quality images of complex environments as it is presented
here. The tradeoff in making these improvements is that as the system becomes
more feature-complete, it may be harder for instructors to use the new software
to create manageable assignments for students. While this is a real concern, we
had similar reservations about the first version of pbrt “relieving” students of the
burden and benefits of writing their own ray-tracing system from scratch. With



xxiv P R E F A C E

experience from the first edition being used at many universities, we have come
to believe that this tradeoff was a good one, and we hope and expect that the new
edition will continue to enable high-quality rendering courses.

ACKNOWLEDGMENTS

Pat Hanrahan has contributed to this book in more ways than we could hope to acknowl-
edge; we owe a profound debt to him. He tirelessly argued for clean interfaces and finding
the right abstractions to use throughout the system, and his understanding of and ap-
proach to rendering deeply influenced its design. His willingness to use pbrt and this
manuscript in his rendering course at Stanford was enormously helpful, particularly in
the early years of its life when it was still in very rough form; his feedback throughout
this process has been crucial for bringing the text to its current state. Finally, the group
of people that Pat helped assemble at the Stanford Graphics Lab, and the open environ-
ment that he fostered, made for an exciting, stimulating, and fertile environment. We feel
extremely privileged to have been there.

We owe a debt of gratitude to the many students who used early drafts of this book in
courses at Stanford and the University of Virginia between 1999 and 2004. These students
provided an enormous amount of feedback about the book and pbrt. The teaching
assistants for these courses deserve special mention: Tim Purcell, Mike Cammarano, Ian
Buck, and Ren Ng at Stanford, and Nolan Goodnight at Virginia. A number of students
in those classes gave particularly valuable feedback and sent bug reports and bug fixes;
we would especially like to thank Evan Parker and Phil Beatty. A draft of the manuscript
of this book was used in classes taught by Bill Mark and Don Fussell at the University
of Texas, Austin, and Raghu Machiraju at Ohio State University; their feedback was
invaluable, and we are grateful for their adventurousness in incorporating this system
into their courses, even while it was still being edited and revised.

Matt Pharr would like to acknowledge colleagues and co-workers in rendering-related
endeavors who have been a great source of education and who have substantially influ-
enced his approach to writing renderers and his understanding of the field. Particular
thanks go to Craig Kolb, who provided a cornerstone of Matt’s early computer graphics
education through the freely available source code to the rayshade ray-tracing system,
and Eric Veach, who has also been generous with his time and expertise. Thanks also
to Doug Shult and Stan Eisenstat for formative lessons in mathematics and computer
science during high school and college, respectively, and most importantly to Matt’s par-
ents, for the education they’ve provided and continued encouragement along the way.
Finally, thanks also to Nick Triantos, Jayant Kolhe, and NVIDIA for their understanding
and support through the final stages of the preparation of the first edition of the book.

Greg Humphreys is very grateful to all the professors and TAs who tolerated him when
he was an undergraduate at Princeton. Many people encouraged his interest in graph-
ics, specifically Michael Cohen, David Dobkin, Adam Finkelstein, Michael Cox, Gordon
Stoll, Patrick Min, and Dan Wallach. Doug Clark, Steve Lyon, and Andy Wolfe also su-
pervised various independent research boondoggles without even laughing once. Once,
in a group meeting about a year-long robotics project, Steve Lyon became exasperated
and yelled, “Stop telling me why it can’t be done, and figure out how to do it!”—an im-



P R E F A C E xxv

promptu lesson that will never be forgotten. Eric Ristad fired Greg as a summer research
assistant after his freshman year (before the summer even began), pawning him off on an
unsuspecting Pat Hanrahan and beginning an advising relationship that would span 10
years and both coasts. Finally, Dave Hanson taught Greg that literate programming was
a great way to work, and that computer programming can be a beautiful and subtle art
form.

We are also grateful to Don Mitchell, for his help with understanding some of the de-
tails of sampling and reconstruction; Thomas Kollig and Alexander Keller, for explaining
the finer points of low-discrepancy sampling; and Dave Eberly, “Just d’FAQs,” Hans-
Bernhard Broeker, Steve Westin, and Gernot Hoffmann, for many interesting threads on
comp.graphics.algorithms. Christer Ericson had a number of suggestions for improving
our kd-tree implementation. Christophe Hery helped us with understanding the nuances
of subsurface scattering and Peter-Pike Sloan was kind enough to carefully review Chap-
ter 17 on precomputed light transport algorithms.

Many people and organizations have generously supplied us with scenes and models for
use in this book and the pbrt distribution. Their generosity has been invaluable in help-
ing us create interesting example images throughout the text. The bunny, Buddha, and
dragon models are courtesy of the Stanford Computer Graphics Laboratory’s scanning
repository at graphics.stanford.edu/data/3Dscanrep/. The ecosystem scene was created by
Oliver Deussen and Bernd Lintermann for a paper by them and collaborators (Deussen,
Hanrahan, Lintermann, Mech, Pharr, and Prusinkiewicz 1998). The “killeroo” model is
included with permission of Phil Dench and Martin Rezard (3D scan and digital repre-
sentations by headus, design and clay sculpt by Rezard). The physically accurate smoke
data sets were created by Duc Nguyen and Ron Fedkiw. Nolan Goodnight created envi-
ronment maps with a realistic skylight model. The Cornell Program of Computer Graph-
ics Light Measurement Laboratory allowed us to include measured BRDF data, and Paul
Debevec provided numerous high dynamic-range environment maps. Marc Ellens pro-
vided spectral data for a variety of light sources, and the spectral RGB measurement data
for a variety of displays is courtesy of Tom Lianza at X-Rite.

We are particularly grateful to Guillermo M. Leal Llaguno of Evolución Visual, www
.evvisual.com, who modeled and rendered the San Miguel scene featured on the cover
and in numerous figures in the book. We would also especially like to thank Marko
Dabrovic (www.3lhd.com) and Mihovil Odak at RNA Studios (www.rna.hr), who sup-
plied a bounty of excellent models and scenes, including the Sponza atrium, the Sibenik
cathedral, and the Audi TT car model. Many thanks are also due to Florent Boyer (www
.florentboyer.com), who provided the contemporary house scene used in many of the
images in Chapter 15.

We would also like to thank the book’s reviewers, all of whom had insightful and con-
structive feedback about the manuscript at various stages of its progress. We’d particu-
larly like to thank the reviewers who provided feedback on both editions of the book: Ian
Ashdown, Per Christensen, Doug Epps, Dan Goldman, Eric Haines, Erik Reinhard, Pete
Shirley, Peter-Pike Sloan, Greg Ward, and a host of anonymous reviewers. For the second
edition, Janne Kontkanen, Nelson Max, Bill Mark, and Eric Tabellion also contributed
numerous helpful suggestions.



xxvi P R E F A C E

We’d like to thank the faculty members at various universities who have used pbrt in their
courses, including Emmanuel Agu, Dirk Arnold, Stephen Chenney, Yung-Yu Chuang,
Don Fussell, Pat Hanrahan, Bill Mark, Nelson Max, Gary Meyer, Torsten Möller, Rick
Parent, Sumanta Pattanaik, and Luiz Velho.

Many people have contributed to not only pbrt but to our own better understanding of
rendering through bug reports, patches, and suggestions about better implementation
aproaches. A few have made particularly substantial contributions—we would especially
like to thank Kevin Egan, John Danks, Volodymyr Kachurovskyi, Solomon Boulos, and
Stephen Chenney. In addition, we would also like to thank Rachit Agrawal, Frederick
Akalin, Mark Bolstad, Thomas de Bodt, Brian Budge, Mark Colbert, Shaohua Fan, Nigel
Fisher, Jeppe Revall Frisvad, Robert G. Graf, Asbjørn Heid, Keith Jeffery, Greg Johnson,
Aaron Karp, Donald Knuth, Martin Kraus, Murat Kurt, Larry Lai, Craig McNaughton,
Swaminathan Narayanan, Anders Nilsson, Jens Olsson, Vincent Pegoraro, Nils Thuerey,
Xiong Wei, Wei-Wei Xu, Arek Zimny, and Matthias Zwicker for their suggestions and
bug reports. Finally, we would like to thank the LuxRender developers and the LuxRen-
der community, particularly Terrence Vergauwen, Jean-Philippe Grimaldi, and Asbjørn
Heid; it has been a delight to see the rendering system they have built from pbrt’s foun-
dation, and we have learned from reading their source code and implementations of new
rendering algorithms.

For the production of the first edition, we would also like to thank Tim Cox (senior
editor), for his willingness to take on this slightly unorthodox project and for both his
direction and patience throughout the process. We are very grateful to Elisabeth Beller
(project manager), who has gone well beyond the call of duty for this book; her ability
to keep this complex project in control and on schedule has been remarkable, and we
particularly thank her for the measurable impact she has had on the quality of the
final result. Thanks also to Rick Camp (editorial assistant) for his many contributions
along the way. Paul Anagnostopoulos and Jacqui Scarlott at Windfall Software did the
book’s composition; their ability to take the authors’ homebrew literate programming file
format and turn it into high-quality final output while also juggling the multiple unusual
types of indexing we asked for is greatly appreciated. Thanks also to Ken DellaPenta
(copyeditor) and Jennifer McClain (proofreader) as well as to Max Spector at Chen
Design (text and cover designer), and Steve Rath (indexer).

For the second edition, we’d like to thank Greg Chalson who talked us into expanding and
updating the book; Greg also ensured that Paul Anagnostopoulos at Windfall Software
would again do the book’s composition. We’d like to thank Paul again for his efforts in
working with this book’s production complexity. Finally, we’d also like to thank Todd
Green, Paul Gottehrer, and Heather Scherer at Elsevier.

ABOUT THE COVER

The “San Miguel” scene on the cover of the book was modeled and then rendered by
Guillermo M. Leal Llaguno of Evolución Visual, www.evvisual.com, based on a hacienda
that he visited in San Miguel de Allende, Mexico. The scene was modeled in 3ds max and
exported to the pbrt file format with a custom script written by Guillermo. The scene
features just over 2.5 million unique triangles and has a total geometric complexity of



P R E F A C E xxvii

10.7 million triangles due to the use of object instancing; the pbrt files that describe
the scene geometry require 620 MB of on-disk storage. There are a total of 354 texture
maps, representing 293 MB of texture data. Final rendering of the cover image at 1496
by 2235 resolution using pbrt took over 40 hours of computation on an eight-core
Mac Pro computer. The scene is available in the scenes/sanmiguel directory of the pbrt
distribution.

ADDITIONAL READING

Donald Knuth’s article Literate Programming (Knuth 1984) describes the main ideas be-
hind literate programming as well as his web programming environment. The seminal
TEX typesetting system was written with web and has been published as a series of books
(Knuth 1986, Knuth 1993a). More recently, Knuth has published a collection of graph
algorithms in literate format in The Stanford GraphBase (Knuth 1993b). These programs
are enjoyable to read and are excellent presentations of their respective algorithms. The
website www.literateprogramming.com has pointers to many articles about literate pro-
gramming, literate programs to download, and a variety of literate programming sys-
tems; many refinements have been made since Knuth’s original development of the idea.

The only other literate programs we know of that have been published as books are the
implementation of the lcc compiler, which was written by Christopher Fraser and David
Hanson and published as A Retargetable C Compiler: Design and Implementation (Fraser
and Hanson 1995), and Martin Ruckert’s book on the mp3 audio format, Understanding
MP3 (Ruckert 2005).


