
Physically Based Rendering is a terrific book. It covers all the marvelous math, fascinating
physics, practical software engineering, and clever tricks that are necessary to write a state-
of-the-art photorealistic renderer. All of these topics are dealt with in a clear and pedagogical
manner without omitting the all-important practical details.

pbrt is not just a “toy” implementation of a ray tracer, but a general and robust full-scale
global illumination renderer. It contains many important optimizations to reduce execution
time and memory consumption for complex scenes. Furthermore, pbrt is easy to extend to
experiment with other rendering algorithm variations.

This book is not only a textbook for students, but also a useful reference book for practitioners
in the field. The second edition has been extended with sections on Metropolis light transport,
subsurface scattering, precomputed light transport, and more.

Per Christensen
Senior Software Developer, RenderMan Products, Pixar Animation Studios

Looking for a job in research or high end rendering? Get your kick-start education and
start your own project with this book that comes along with both theory and real examples,
meaning real code.

With their second edition, Matt Pharr and Greg Humphreys provide easy access to even the
most advanced rendering techniques like Metropolis light transport and quasi-Monte Carlo
methods. In addition the framework lets you skip the bootstrap pain of getting data into and
out of your renderer.

The holistic approach of literate programming results in a clear logic of an easy-to-read text.
If you are serious about graphics, there is no way around this unique and extremely valuable
book that is closest to the state of the art.

Alexander Keller
Chief Scientist, Mental Images
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Preface

[Just as] other information should be available to those who want to learn and understand,
program source code is the only means for programmers to learn the art from their prede-
cessors. It would be unthinkable for playwrights not to allow other playwrights to read their
plays [or to allow them] at theater performances where they would be barred even from tak-
ing notes. Likewise, any good author is well read, as every child who learns to write will
read hundreds of times more than it writes. Programmers, however, are expected to invent
the alphabet and learn to write long novels all on their own. Programming cannot grow and
learn unless the next generation of programmers has access to the knowledge and information
gathered by other programmers before them. —Erik Naggum

Rendering is a fundamental component of computer graphics. At the highest level of
abstraction, rendering is the process of converting a description of a three-dimensional
scene into an image. Algorithms for animation, geometric modeling, texturing, and
other areas of computer graphics all must pass their results through some sort of ren-
dering process so that they can be made visible in an image. Rendering has become
ubiquitous; from movies to games and beyond, it has opened new frontiers for creative
expression, entertainment, and visualization.

In the early years of the field, research in rendering focused on solving fundamental prob-
lems such as determining which objects are visible from a given viewpoint. As effective
solutions to these problems have been found and as richer and more realistic scene de-
scriptions have become available thanks to continued progress in other areas of graphics,
modern rendering has grown to include ideas from a broad range of disciplines, includ-
ing physics and astrophysics, astronomy, biology, psychology and the study of perception,
and pure and applied mathematics. The interdisciplinary nature of rendering is one of
the reasons that it is such a fascinating area of study.

This book presents a selection of modern rendering algorithms through the documented
source code for a complete rendering system. All of the images in this book, including
the one on the front cover, were rendered by this software. All of the algorithms that
came together to generate these images are described in these pages. The system, pbrt, is
written using a programming methodology called literate programming that mixes prose
describing the system with the source code that implements it. We believe that the literate
programming approach is a valuable way to introduce ideas in computer graphics and
computer science in general. Often, some of the subtleties of an algorithm can be unclear
or hidden until it is implemented, so seeing an actual implementation is a good way to
acquire a solid understanding of that algorithm’s details. Indeed, we believe that deep
understanding of a small number of algorithms in this manner provides a stronger base
for further study of computer graphics than does superficial understanding of many.
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In addition to clarifying how an algorithm is implemented in practice, presenting these
algorithms in the context of a complete and nontrivial software system also allows us
to address issues in the design and implementation of medium-sized rendering systems.
The design of a rendering system’s basic abstractions and interfaces has substantial im-
plications for both the elegance of the implementation and the ability to extend it later,
yet the trade-offs in this design space are rarely discussed.

pbrt and the contents of this book focus exclusively on photorealistic rendering , which
can be defined variously as the task of generating images that are indistinguishable from
those that a camera would capture in a photograph, or as the task of generating images
that evoke the same response from a human observer as looking at the actual scene. There
are many reasons to focus on photorealism. Photorealistic images are crucial for the
movie special-effects industry because computer-generated imagery must often be mixed
seamlessly with footage of the real world. In entertainment applications where all of the
imagery is synthetic, photorealism is an effective tool for making the observer forget that
he or she is looking at an environment that does not actually exist. Finally, photorealism
gives a reasonably well-defined metric for evaluating the quality of the rendering system’s
output.

A consequence of our approach is that this book and the system it describes do not ex-
haustively cover the state-of-the-art in rendering; many interesting topics in photorealis-
tic rendering will not be introduced either because they don’t fit well with the architecture
of the software system (e.g., finite-element radiosity algorithms) or because we believed
that the pedagogical value of explaining the algorithm was outweighed by the complexity
of its implementation. We will note these decisions as they come up and provide point-
ers to further resources so that the reader can follow up on topics of interest. Many other
areas of rendering, including interactive rendering, visualization, and illustrative forms
of rendering such as pen-and-ink styles, aren’t covered in this book at all. Nevertheless,
many of the algorithms and ideas in this system (e.g., algorithms for texture map anti-
aliasing) are applicable to a wider set of rendering styles.

AUDIENCE

Our primary intended audience for this book is students in graduate or upper-level un-
dergraduate computer graphics classes. This book assumes existing knowledge of com-
puter graphics at the level of an introductory college-level course, although certain key
concepts such as basic vector geometry and transformations will be reviewed here. For
students who do not have experience with programs that have tens of thousands of lines
of source code, the literate programming style gives a gentle introduction to this com-
plexity. We pay special attention to explaining the reasoning behind some of the key
interfaces and abstractions in the system in order to give these readers a sense of why
the system is structured in the way that it is.

Our secondary, but equally important, audiences are advanced graduate students and
researchers, software developers in industry, and individuals interested in the fun of writ-
ing their own rendering systems. Although many of the ideas in this book will likely be
familiar to these readers, seeing explanations of the algorithms presented in the liter-
ate style may provide new perspectives. pbrt includes implementations of a number of
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advanced and/or difficult-to-implement algorithms and techniques, such as subdivision
surfaces, Monte Carlo light transport and Metropolis sampling, subsurface scattering,
and precomputed light transport algorithms; these should be of particular interest to
experienced practitioners in rendering. We hope that delving into one particular organi-
zation of a complete and nontrivial rendering system will also be thought provoking to
this audience.

OVERVIEW AND GOALS

pbrt is based on the ray-tracing algorithm. Ray tracing is an elegant technique that has
its origins in lens making; Carl Freidrich Gauss traced rays through lenses by hand in
the 19th century. Ray-tracing algorithms on computers follow the path of infinitesimal
rays of light through the scene until they intersect a surface. This approach gives a
simple method for finding the first visible object as seen from any particular position
and direction, and is the basis for many rendering algorithms.

pbrt was designed and implemented with three main goals in mind: it should be com-
plete, it should be illustrative, and it should be physically based.

Completeness implies that the system should not lack key features found in high-quality
commercial rendering systems. In particular, it means that important practical issues,
such as antialiasing, robustness, and the ability to efficiently render complex scenes,
should all be addressed thoroughly. It is important to consider these issues from the
start of the system’s design, since these features can have subtle implications for all
components of the system and can be quite difficult to retrofit into the system at a later
stage of implementation.

Our second goal means that we tried to choose algorithms, data structures, and ren-
dering techniques with care and with an eye toward readability and clarity. Since their
implementations will be examined by more readers than is the case for many other ren-
dering systems, we tried to select the most elegant algorithms that we were aware of and
implement them as well as possible. This goal also required that the system be small
enough for a single person to understand completely. We have implemented pbrt us-
ing an extensible architecture, with the core of the system implemented in terms of a set
of carefully-designed abstract base classes, and as much of the specific functionality as
possible in implementations of these base classes. The result is that one doesn’t need to
understand all of the specific implementations in order to understand the basic structure
of the system. This makes it easier to delve deeply into parts of interest and skip others,
without losing sight of how the overall system fits together.

There is a tension between the two goals of being complete and being illustrative. Imple-
menting and describing every possible useful technique would not only make this book
extremely long, but also would make the system prohibitively complex for most readers.
In cases where pbrt lacks a particularly useful feature, we have attempted to design the
architecture so that the feature could be added without altering the overall system design.

The basic foundations for physically based rendering are the laws of physics and their
mathematical expression. pbrt was designed to use the correct physical units and con-
cepts for the quantities it computes and the algorithms it implements. When configured
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to do so, pbrt can compute images that are physically correct ; they accurately reflect the
lighting as it would be in a real-world version of the scene. One advantage of the deci-
sion to use a physical basis is that it gives a concrete standard of program correctness:
for simple scenes, where the expected result can be computed in closed form, if pbrt
doesn’t compute the same result, we know there must be a bug in the implementation.
Similarly, if different physically based lighting algorithms in pbrt give different results
for the same scene, or if pbrt doesn’t give the same results as another physically based
renderer, there is certainly an error in one of them. Finally, we believe that this physically
based approach to rendering is valuable because it is rigorous. When it is not clear how a
particular computation should be performed, physics gives an answer that guarantees a
consistent result.

Efficiency was given lower priority than these three goals. Since rendering systems often
run for many minutes or hours in the course of generating an image, efficiency is clearly
important. However, we have mostly confined ourselves to algorithmic efficiency rather
than low-level code optimization. In some cases, obvious micro-optimizations take a
backseat to clear, well-organized code, although we did make some effort to optimize
the parts of the system where most of the computation occurs.

In the course of presenting pbrt and discussing its implementation, we hope to convey
some hard-learned lessons from years of rendering research and development. There is
more to writing a good renderer than stringing together a set of fast algorithms; making
the system both flexible and robust is a difficult task. The system’s performance must
degrade gracefully as more geometry or light sources are added to it, or as any other axis
of complexity is pushed. Numeric stability must be handled carefully, and algorithms
that don’t waste floating-point precision are critical.

The rewards for developing a system that addresses all these issues are enormous—it is
a great pleasure to write a new renderer or add a new feature to an existing renderer
and use it to create an image that couldn’t be generated before. Our most fundamental
goal in writing this book was to bring this opportunity to a wider audience. Readers
are encouraged to use the system to render the example scenes in the pbrt software
distribution as they progress through the book. Exercises at the end of each chapter
suggest modifications to the system that will help clarify its inner workings, and more
complex projects to extend the system by adding new features.

The website for this book is located at www.pbrt.org. The latest version of the pbrt source
code is available from this site and we will also post errata and bug fixes, additional scenes
to render, and supplemental utilities. Any bugs in pbrt or errors in this text that are not
listed at the website can be reported to the email address bugs@pbrt.org . We greatly value
your feedback!

CHANGES SINCE THE FIRST EDITION

Six years have passed since the publication of the first edition of this book. In that
time, thousands of copies of the book have been sold and the pbrt software has been
downloaded thousands of times from the book’s website. The pbrt user base has given
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us a significant amount of feedback and encouragement, and our experience with the
system guided many of the decisions we made in making changes between the version of
pbrt presented in the first edition and the updated version described here. In addition to a
number of bug fixes, we also made several significant design changes and enhancements:

1. Removal of the plugin architecture. The first version of pbrt used a run-time
plugin architecture to dynamically load code for implementations of objects like
shapes, lights, integrators, cameras, and other objects that were used in the scene
currently being rendered. This approach allowed users to extend pbrt with new
object types (e.g., new shape primitives) without recompiling the entire rendering
system. This approach initially seemed elegant, but it complicated the task of
supporting pbrt on multiple platforms and it made debugging more difficult. The
only new usage scenario that it truly enabled (binary-only distributions of pbrt or
binary plugins) was actually contrary to our pedagogical and open-source goals.
Therefore, the plugin architecture was dropped in this edition.

2. Removal of the image processing pipeline. The first version of pbrt provided a
tone-mapping interface that converted high dynamic range (HDR) floating point
output images directly into low dynamic range TIFFs for display. This function-
ality made sense in 2004, as support for HDR images was still sparse. In 2010,
however, advances in digital photography have made HDR images commonplace.
Although the theory and practice of tone mapping are elegant and worth learning,
we decided to focus the new book exclusively on the process of image formation
and ignore the topic of image display. Interested readers should read the book writ-
ten by Reinhard et al. (2005) for a thorough and modern treatment of the HDR
image display process.

3. Task parallelism. Multicore architectures are now ubiquitous, and we felt that pbrt
would not remain relevant without the ability to scale to the number of locally
available cores. We also hope that the parallel programming implementation de-
tails documented in this book will help graphics programmers understand some
of the subtleties and complexities in writing scalable parallel code (e.g., choosing
appropriate task granularities or mutex types), which is still a difficult and too-
infrequently taught topic.

4. Appropriateness for “production” rendering. The first version of pbrt was in-
tended exclusively as a pedagogical tool and a stepping-stone for rendering re-
search. Indeed, we made a number of decisions in preparing the first edition that
were contrary to use in a production environment, such as limited support for
image-based lighting, no support for motion blur, and a photon mapping im-
plementation that wasn’t robust in the presence of complex lighting. With much
improved support for these features as well as support for subsurface scattering
and Metropolis light transport, we feel that pbrt is now much more suitable for
rendering very high-quality images of complex environments as it is presented
here. The tradeoff in making these improvements is that as the system becomes
more feature-complete, it may be harder for instructors to use the new software
to create manageable assignments for students. While this is a real concern, we
had similar reservations about the first version of pbrt “relieving” students of the
burden and benefits of writing their own ray-tracing system from scratch. With



xxiv P R E F A C E

experience from the first edition being used at many universities, we have come
to believe that this tradeoff was a good one, and we hope and expect that the new
edition will continue to enable high-quality rendering courses.
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Guillermo M. Leal Llaguno of Evolución Visual, www.evvisual.com, based on a hacienda
that he visited in San Miguel de Allende, Mexico. The scene was modeled in 3ds max and
exported to the pbrt file format with a custom script written by Guillermo. The scene
features just over 2.5 million unique triangles and has a total geometric complexity of
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10.7 million triangles due to the use of object instancing; the pbrt files that describe
the scene geometry require 620 MB of on-disk storage. There are a total of 354 texture
maps, representing 293 MB of texture data. Final rendering of the cover image at 1496
by 2235 resolution using pbrt took over 40 hours of computation on an eight-core
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ADDITIONAL READING

Donald Knuth’s article Literate Programming (Knuth 1984) describes the main ideas be-
hind literate programming as well as his web programming environment. The seminal
TEX typesetting system was written with web and has been published as a series of books
(Knuth 1986, Knuth 1993a). More recently, Knuth has published a collection of graph
algorithms in literate format in The Stanford GraphBase (Knuth 1993b). These programs
are enjoyable to read and are excellent presentations of their respective algorithms. The
website www.literateprogramming.com has pointers to many articles about literate pro-
gramming, literate programs to download, and a variety of literate programming sys-
tems; many refinements have been made since Knuth’s original development of the idea.

The only other literate programs we know of that have been published as books are the
implementation of the lcc compiler, which was written by Christopher Fraser and David
Hanson and published as A Retargetable C Compiler: Design and Implementation (Fraser
and Hanson 1995), and Martin Ruckert’s book on the mp3 audio format, Understanding
MP3 (Ruckert 2005).


