
3
THE UNIFIED MODELING
LANGUAGE

CHAPTER OUTLINE
Class Diagrams 36

Basic Class Diagram Notation 37
Class Diagrams for Database Design 39
Example from the Music Industry 44

Activity Diagrams 47
Activity Diagram Notation Description 48
Activity Diagrams for Workflow 50

Summary 52
Tips and Insights for Database Professionals 52
Literature Summary 53

The Unified Modeling Language (UML) is a graphical
language for communicating design specifications for soft-
ware. The object-oriented software development commu-
nity created UML to meet the special needs of describing
object-oriented software design. UML has grown into a
standard for the design of digital systems in general.

There are a number of different types of UML diagrams
serving various purposes (Rumbaugh et al., 2005). The class
and the activity diagram types are particularly useful for
discussing database design issues. UML class diagrams
capture the structural aspects found in database schemas.
UML activity diagrams facilitate discussion on the dynamic
processes involved in database design. This chapter is an
overview of the syntax and semantics of the UML class and
activity diagram constructs used in this book. These same
concepts are useful for planning, documenting, discussing,

35

and implementing databases. We are using UML 2.0,
although for the purposes of the class diagrams and activity
diagrams shown in this book, if you are familiar with UML
1.4 or 1.5 you will probably not see any differences.

UML class diagrams and entity–relationship (ER)
models (Chen, 1976; Chen, 1987) are similar in both form
and semantics. The original creators of UML point out
the influence of ER models on the origins of class diagrams
(Rumbaugh et al., 2005). The influence of UML has in turn
affected the database community. Class diagrams now
appear frequently in the database literature to describe
database schemas.

UML activity diagrams are similar in purpose to flow
charts. Processes are partitioned into constituent activities
along with control flow specifications.

This chapter is organized into three main sections. The
first section presents class diagram notation, along with
examples. The next section covers activity diagram nota-
tion, along with illustrative examples. Finally, the last sec-
tion concludes with a few tips for UML usage.

Class Diagrams
A class is a descriptor for a set of objects that share some

attributes and/or operations. We conceptualize classes of
objects in our everyday lives. For example, a car has attri-
butes, such as a vehicle identification number (VIN) and
mileage. A car also has operations, such as accelerate and
brake. All cars have these attributes and operations. Indivi-
dual cars differ in the details. A given car has a value for the
VIN and mileage. For example, a given car might have a
VIN of 1NXBR32ES3Z126369 with a mileage of 22,137 miles.
Individual cars are objects that are instances of the Car class.

Classes and objects are a natural way of conceptualizing
the world around us. The concepts of classes and objects
are also the paradigms that form the foundation of object-
oriented programming. The development of object-oriented
programming led to the need for a language to describe
object-oriented design, giving rise to UML.

There is a close correspondence between class diagrams
in UML and ER diagrams. Classes are analogous to entities.

36 Chapter 3 THE UNIFIED MODELING LANGUAGE

Database schemas can be diagrammed using UML. It is
possible to conceptualize a database table as a class. The
columns in the table are the attributes, and the rows are
objects of that class. For example, we could have a table
named Car with columns named “vin” and “mileage” (note
that we put table names in boldface throughout the book
for readability). Each row in the table would have values
for these columns, representing an individual car. A given
car might be represented by a row with the value
1NXBR32ES3Z126369 in the vin column, and 22,137 in
the mileage column.

The major difference between classes and entities is the
lack of operations in entities. Note that the term operation
is used here in the UML sense of the word. Stored pro-
cedures, functions, triggers, and constraints are forms of
named behavior that can be defined in databases; however,
these are not associated with the behavior of individual
rows. The term operations in UML refers to the methods
inherent in classes of objects. These behaviors are not
stored in the definition of rows within the database. There
are no operations named “accelerate” or “brake” associated
with rows in our Car table in Figure 3.1. Classes can be
shown with attributes and no operations in UML, which
is the typical usage for database schemas.

Basic Class Diagram Notation
The top of Figure 3.1 illustrates the UML syntax for a class,

showing both attributes and operations. It is also possible
to include user-defined named compartments, such as
“responsibilities.” We will focus on the class name, attributes,
and operations compartments. The UML icon for a class is a
rectangle. When the class is shown with attributes and oper-
ations, the rectangle is subdivided into three horizontal com-
partments. The top compartment contains the class name,
centered in boldface, beginningwith a capital letter. Typically,
class names are nouns. The middle compartment contains
attribute names, left justified in regular face, beginning
with a lowercase letter. The bottom compartment contains
operation names, left justified in regular face, beginning
with a lowercase letter, ending with parentheses. The paren-
thesis may contain arguments for the operation.

Chapter 3 THE UNIFIED MODELING LANGUAGE 37

The class notation has some variations, reflecting empha-
sis. Classes can be written without the attribute com-
partment and/or the operations compartment. Operations
are important in software. If the software designer wishes to
focus on the operations, the class can be shown with only
the class name and operations compartments. Showing
operations and hiding attributes is a very common syntax
usedby software designers. Database designers, on the other
hand, do not generally deal with class operations; however,
the attributes are of paramount importance. The needs of
the database designer can be met by writing the class with
only the class name and attribute compartments showing.
Hiding operations and showing attributes is an uncommon
syntax for a software designer, but it is common for database

Class Name

attribute1
attribute2

operation1()
operation2()

Car

vin
mileage

accelerate()
brake()

Car

accelerate()
brake()

Car

vin
mileage

Car

Classes

Notation and Example

Notational Variations

Emphasizing Operations

Emphasizing Attributes

Emphasizing Class

Relationships

Association

Generalization

Aggregation

Composition

Car Driver

CarSedan

Car Frame

CarCar Pool

Figure 3.1 Basic UML class
diagram constructs.

38 Chapter 3 THE UNIFIED MODELING LANGUAGE

design. Lastly, in high-level diagrams, it is often desirable to
illustrate the relationships of the classes without becoming
entangled in the details of the attributes and operations.
Classes can be written with just the class name compart-
ment when simplicity is desired.

Various types of relationships may exist between clas-
ses. Associations are one type of relationship. The most
generic form of association is drawn with a line connecting
two classes. For example, in Figure 3.1 there is an associa-
tion between the Car class and the Driver class.

A few types of associations, such as aggregation and
composition, are very common. UML has designated
symbols for these associations. Aggregation indicates “part
of” associations, where the parts have an independent
existence. For example, a Car may be part of a Car Pool.
The Car also exists on its own, independent of any Car
Pool. Another distinguishing feature of aggregation is that
the part may be shared among multiple objects. For exam-
ple, a Car may belong to more than one Car Pool. The
aggregation association is indicated with a hollow diamond
attached to the class that holds the parts. Figure 3.1 indi-
cates that a Car Pool aggregates Cars.

Composition is another “part of” association, where the
parts are strictly owned, not shared. For example, a Frame
is part of a single Car. The notation for composition is an
association adorned with a solid black diamond attached
to the class that owns the parts. Figure 3.1 indicates that
a Frame is part of the composition of a Car.

Generalization is another common relationship. For
example, Sedan is a type of car. The Car class ismore general
than the Sedan class. Generalization is indicated by a solid
line adorned with a hollow arrowhead pointing to the more
general class. Figure 3.1 shows generalization from the
Sedan class to the Car class.

Class Diagrams for Database Design
The reader may be interested in the similarities and

differences between UML class diagrams and ER models.
Figures 3.2 through 3.5 are parallel to some of the figures
in Chapter 2, allowing for easy comparisons. We then turn
our attention to capturing primary key information in

Chapter 3 THE UNIFIED MODELING LANGUAGE 39

Figure 3.6. We conclude this section with an example
database schema of the music industry, illustrated by
Figures 3.7 through 3.10.

Figure 3.2 illustrates UML constructs for relationships
with various degrees of association andmultiplicities. These
examples are parallel to the ER models shown in Figure 2.3.
You may refer back to Figure 2.3 if you wish to contrast the
UML constructs with ER constructs.

Associations between classes may be reflexive, binary, or
n-ary. Reflexive association is a term we are carrying
over from ER modeling. It is not a term defined in UML,
although it is worth discussing. Reflexive association

Employee
managed

manager 1

*

Department Division
1*

Skill Project
skill used

*
Employee

assignment

* *

Department Employee
manager

11

*
Department Employee

1

Department Employee
manager

10..1

Office Employee
occupant

0..*1

Employee Project
**

WorkAssignment

task-assignment
start-date

reflexive
association

binary
association

ternary
association

Degree

Multiplicities

one-to-one

one-to-many

many-to-many

optional

mandatory

Existence

Figure 3.2 Selected UML
relationship types (parallel
to Figure 2.3).

40 Chapter 3 THE UNIFIED MODELING LANGUAGE

relates a class to itself. The reflexive association in Fig-
ure 3.2 means an Employee in the role of manager is
associated with many managed Employees. The roles of
classes in a relationship may be indicated at the ends of
the relationship. The number of objects involved in the
relationship, referred to as multiplicity, may also be speci-
fied at the ends of the relationship. An asterisk indicates
that many objects take part in the association at that
end of the relationship. The multiplicities of the reflexive
association example in Figure 3.2 indicate that an
Employee is associated with one manager, and a manager
is associated with many managed Employees.

A binary association is a relationship between two clas-
ses. For example, one Division has many Departments.
Notice the solid black diamond at the Division end of the
relationship. The solid diamond is an adornment to the
association that indicates composition. The Division is
composed of Departments.

The ternary relationship in Figure 3.2 is an example of an
n-ary association—an association that relates three or
more classes. All classes partaking in the association are
connected to a hollow diamond. Roles and/or multiplicities
are optionally indicated at the ends of the n-ary association.
Each end of the ternary association example in Figure 3.2 is
marked with an asterisk, signifying many. The meaning of
each multiplicity is isolated from the other multiplicities.
Given a class, if you have exactly one object from every
other class in the association, the multiplicity is the number
of associated objects for the given class. One Employee
working on one Project assignment uses many Skills. One
Employee uses one Skill on many Project assignments.
One Skill used on one Project is fulfilled bymany Employees.

The next three class diagrams in Figure 3.2 show various
combinations of multiplicities. The illustrated one-to-one
association specifies that each Department is associated
with exactly one Employee acting in the role of manager,
and eachmanager is associatedwith exactly oneDepartment.
The diagram with the one-to-many association means that
each Department has many Employees, and each Employee
belongs to exactly one Department.

The many-to-many example in Figure 3.2 means each
Employee associates with many Projects, and each Project

Chapter 3 THE UNIFIED MODELING LANGUAGE 41

associates withmany Employees. This example also illustrates
the use of an association class. If an association has attributes,
these are written in a class that is attached to the association
with a dashed line. The association class named WorkAssign-
ment in Figure 3.2 contains two association attributes named
task-assignment and start-date. The association and the class
together form an association class.

Multiplicity can be a range of integers, written with the
minimum and maximum values separated by two periods.
The asterisk by itself carries the same meaning as the range
[0..*]. Also, if the minimum and maximum values are the
same number, then themultiplicity can be written as a single
number. For example, [1..1] means the same as [1]. Optional
existence can be specified using a zero. The [0..1] in the
optional existence example of Figure 3.2 means an Employee
in the role of manager is associated with either no Depart-
ment (e.g., upper management) or one Department.

Mandatory existence is specified whenever a multiplicity
begins with a positive integer. The example of mandatory
existence in Figure 3.2 means an Employee is an occupant

of exactly one Office. One end of an
association can indicate mandatory
existence, while the other end may
use optional existence. This is the
case in the example, where anOffice
may have any number of occupants,
including zero.

Generalization is another type
of relationship. A superclass is a
generalization of a subclass. Special-
ization is the opposite relationship
of generalization. A subclass is a
specialization of the superclass.
The generalization relationship in
UML is written with a hollow arrow
pointing from the subclass to the
generalized superclass. The top
example in Figure 3.3 shows four
subclasses:Manager, Engineer, Tech-
nician, and Secretary. These four
subclasses are all specializations of

Manager Secretary

Employee

Engineer Technician

Individual

Employee Customer

EmpCust

Complete
enumeration of
subclasses

Figure 3.3 UML generalization constructs (parallel to
Figure 2.4).

42 Chapter 3 THE UNIFIED MODELING LANGUAGE

the more general superclass, Employee—that is, Managers,
Engineers, Technicians, and Secretaries are types of
Employees.

Notice the four relationships share a common arrowhead.
Semantically, these are still four separate relationships. The
sharing of the arrowhead is permissible in UML, to improve
the clarity of the diagrams.

The bottom example in Figure 3.3 illustrates that a class
can act as both a subclass in one relationship and a super-
class in another relationship. The class named Individual
is a generalization of the Employee and Customer classes.
The Employee and Customer classes are in turn superclasses
of the EmpCust class. A class can be a subclass in more
than one generalization relationship. The meaning in the
example is that an EmpCust object is both an Employee
and a Customer.

Youmay occasionally find that UMLdoesn’t supply a stan-
dard symbol for what you are attempting to communicate.
UML incorporates some extensibility to accommodate user
needs, such as a note. A note in UML is written as a rectangle
with a dog-eared upper-right corner. The note can attach
to the pertinent element(s) with a dashed line(s).Write briefly
in the note what you wish to convey. The bottom diagram in
Figure 3.3 illustrates a note, which describes the Employee
and Customer classes as the “Complete enumeration of
subclasses.”

The distinction between composition and
aggregation is sometimes elusive for those new
to UML. Figure 3.4 shows an example of each,
to help clarify. The top diagram means that a
Program and Electronic Documentation both
contribute to the composition of a Software Prod-
uct. The composition signifies that the parts do
not exist without the Software Product (there
is no software pirating in our ideal world). The
bottom diagram specifies that a Teacher and
a Textbook are aggregated by a course. The aggre-
gation signifies that the Teacher and the Textbook
are part of the Course, but they also exist sepa-
rately. If a course is canceled, the Teacher and
the Textbook continue to exist.

Program Electronic Documentation

Software Product

Teacher Textbook

Course

Figure 3.4 UML aggregation constructs
(parallel to Figure 2.6).

Chapter 3 THE UNIFIED MODELING LANGUAGE 43

Figure 3.5 illustrates another
example of an n-ary relationship.
The n-ary relationship may be clari-
fied by specifying roles next to the
participating classes. A Student is an
enrollee in a class, associated with a
given Room location and a scheduled
Day and meeting Time.

The concept of a primary key arises
in the context of database design.
Often, each row of a table is uniquely
identified by the values contained in
one or more columns designated as
the primary key. Objects in software
are not typically identified in this fash-
ion. As a result, UML does not have an
icon representing a primary key. How-
ever, UML is extensible. The meaning
of an element in UML may be
extendedwith a stereotype. Stereotypes
are depicted with a short natural lan-
guage word or phrase, enclosed in
guillemets: « and ». We take advantage
of this extensibility, using a stereotype
«pk» to designate primary key attri-
butes. Figure 3.6 illustrates the stereo-
type mechanism. The vin attribute is
specified as the primary key for Cars.
This means that a given VIN identifies
a specific Car. A noteworthy rule of
thumb for primary keys: When a
composition relationship exists, the

primary key of the part includes the primary key of the
owning object. The second diagram in Figure 3.6 illustrates
this point.

Example from the Music Industry
Large database schemas may be introduced with high-

level diagrams. Details can be broken out in additional dia-
grams. The overall goal is to present ideas in a clear,
organized fashion. UML offers notational variations and an

CourseStudent
enrollee

Room Day Time

class

scheduled
daylocation

meeting
time

Figure 3.5 UML n-ary relationship (parallel to
Figure 2.8).

Car

«pk» vin
mileage
color

Primary key as a stereotype

Composition example
with primary keys

Invoice

«pk» inv_num
customer_id
inv_date

LineItem

«pk» inv_num
«pk» line_num
description
amount

1 .. *

Figure 3.6 UML constructs illustrating primary keys.

44 Chapter 3 THE UNIFIED MODELING LANGUAGE

organizationalmechanism. Youwill sometimes find there are
multiple ways of representing the samematerial in UML. The
decisions you make with regard to your representation
depend in part on your purpose for a given diagram.
Figures 3.7 through 3.10 illustrate some of the possibilities
with an example drawn from the music industry.

Packages may be used to organize classes into groups.
Packages may themselves also be grouped into packages.
The goal of using packages is to make the overall design of
a system more comprehensible. One use for packages is to
represent a schema. You can then show multiple schemas
concisely. Another use for packages is to group related clas-
ses together within a schema, and present the schema
clearly. Given a set of classes, different people may concep-
tualize different groupings. The division is a design deci-
sion, with no right or wrong answer. Whatever decisions
are made, the result should enhance readability. The nota-
tion for a package is a folder icon, and the contents of a
package can be optionally shown in the body of the folder.
If the contents are shown, then the name of the package is
placed in the tab. If the contents are elided, then the name
of the package is placed in the body of the icon.

If the purpose is to illustrate the relationships of the
packages, and the classes are not important at the moment,
then it is better to illustrate with the contents elided.
Figure 3.7 illustrates the notation with the music industry
example at a very high level. Music is created and placed
on Media. The Media is then distributed. There is an asso-
ciation between the Music and the Media, and between
the Media and Distribution.

Let us look at the organization of the classes. The music
industry is illustrated in Figure 3.8 with the classes listed.
The Music package contains classes that are responsible
for creating the music. Examples of Groups are the Beatles
and the Bangles. Sarah McLachlan and Sting are Artists.
Groups and Artists are involved in creating the music.
We will look shortly at the other classes and how they are

Music Media Distribution Figure 3.7 Example of
related packages.

Chapter 3 THE UNIFIED MODELING LANGUAGE 45

related. The Media package contains classes that physically
hold the recordings of the music. The Distribution package
contains classes that bring the media to you.

The contents of a package can be expanded into greater
detail. The relationships of the classes within the Music
package are illustrated in Figure 3.9. A Group is an aggrega-
tion of two or more Artists. As indicated by the multiplicity
between Artist and Group [0..*], an Artist may or may
not be in a Group, and may be in more than one Group.
Composers, Lyricists, and Musicians are different types of
Artists. A Song is associated with one or more Composers.
A Song may not have any Lyricist, or any number of
Lyricists. A Song may have any number of Renditions.
A Rendition is associated with exactly one Song. A Rendition
is associated with Musicians and Instruments. A given
Musician–Instrument combination is associated with
any number of Renditions. A specific Rendition–Musician
combination may be associated with any number of

Distribution

Studio
Publisher
RetailStore

Media

Music Media
Album
CD
Track

Music

Group
Artist
Composer
Lyricist
Musician
Instrument
Song
Rendition

Figure 3.8 Example
illustrating classes grouped
into packages.

Composer MusicianLyricist

Artist

Instrument

Song

Rendition

Group

1 .. *

1 .. *

0 .. *

1 .. *

*

1

*

*

*

2 .. *
0 .. *

Figure 3.9 Relationships
between classes in the
Music package.

46 Chapter 3 THE UNIFIED MODELING LANGUAGE

Instruments. A given Rendition–Instrument combination is
associated with any number of Musicians.

A system may be understood more easily by shifting
focus to each package in turn. We turn our attention now
to the classes and relationships in the Media package,
shown in Figure 3.10. The associated classes from the
Music and Distribution packages are also shown, detailing
how the Media package is related to the other two
packages. The Music Media is associated with the Group
and Artist classes, which are contained in the Music
package shown in Figure 3.8. The Music Media is also
associated with the Publisher, Studio, and Producer
classes, which are contained in the Distribution package
shown in Figure 3.8. Albums and CDs are types of Music
Media. Albums and CDs are both composed of Tracks.
Tracks are associated with Renditions.

Activity Diagrams
UML has a full suite of diagram types, each of which

fulfills a need for describing a view of the design. UML
activity diagrams are used to specify the activities and the
flow of control in a process. The process may be a
workflow followed by people, organizations, or other phys-
ical things. Alternatively, the process may be an algorithm

StudioMusic Media

Rendition

Producer

Album CD

Track

Publisher
Group

Artist

Figure 3.10 Classes of the
Media package, and related
classes.

Chapter 3 THE UNIFIED MODELING LANGUAGE 47

implemented in software. The syntax and the semantics of
UML constructs are the same, regardless of the process
described. Our examples draw from workflows that are
followed by people and organizations, since these are more
useful for the logical design of databases.

Activity Diagram Notation Description
Activity diagrams include notation for nodes, control

flow, and organization. The icons we are describing here are
outlined in Figure 3.11. The notation is further clarified
by example in the “Activity Diagrams for Workflow” section.

Subset Name 2

Activity Name

[guard]

[alternative
guard]

initial node

final node

activity node

Nodes

Control

flow

decision (branch)

fork

join

Organization

partition (swim lanes)

Subset Name 1

Figure 3.11 UML activity
diagram constructs.

48 Chapter 3 THE UNIFIED MODELING LANGUAGE

The nodes include the initial node, final nodes, and
activity nodes. Any process begins with control residing
in the initial node, represented as a solid black circle.
The process terminates when control reaches a final
node, represented with a solid black circle surrounded
by a concentric circle (i.e., a bull’s-eye). Activity nodes
are states where specified work is processed. For example,
an activity might be named “Generate quote.” The name
of an activity is typically a descriptive verb or short verb
phrase, written inside a lozenge shape. Control resides in
an activity until that activity is completed. Then control
follows the outgoing flow.

Control flow icons include flows, decisions, forks, and
joins. A flow is drawn with an arrow. Control flows in the
direction of the arrow. Decision nodes are drawn as a
hollow diamond with multiple outgoing flows. Each flow
from a decision node must have a guard condition.
A guard condition is written within square brackets next
to the flow. Control flows in exactly one direction from a
decision node, and only follows a flow if the guard con-
dition is true. The guard conditions associated with a
decision node must be mutually exclusive, to avoid non-
deterministic behavior. There can be no ambiguity as to
which direction the control follows. The guards must
cover all possible test conditions, so that control is not
blocked at the decision node. One path may be guarded
with [else]. If a path is guarded with [else], then control
flows in that direction only if all the other guards fail.
Forks and joins are both forms of synchronization written
with a solid bar. The fork has one incoming flow, and
multiple outgoing flows. When control flows to a fork,
the control concurrently follows all the outgoing flows.
These are referred to as concurrent threads. Joins are the
opposite of forks; the join construct has multiple incom-
ing flows and one outgoing flow. Control flows from a join
only when control has reached the join from each of the
incoming flows.

Activity diagrams may be further organized using parti-
tions, also known as swim lanes. Partitions split activities
into subsets, organized by responsible party. Each subset
is named and enclosed with lines.

Chapter 3 THE UNIFIED MODELING LANGUAGE 49

Activity Diagrams for Workflow
Figure 3.12 illustrates theUML activity diagramconstructs

used for the publication of this book. This diagram is par-
titioned into two subsets of activities, organized by responsi-
ble party. The left subset contains Customer activities, and
the right subset contains Manufacturer activities. Activity
partitions may be arranged vertically, horizontally, or in a
grid. Curved dividers may be used, although this is atypical.
Activity diagrams can also be written without a partition.
The construct is organizational, and doesn’t carry inherent

Customer Manufacturer

Generate quoteRequest quote

[acceptable]

Review quote

[unacceptable]

Place order Enter order

Produce order

Ship order

Receive order

Generate invoiceReceive invoice

Pay Record payment

Figure 3.12 UML activity
diagram, manufacturing
example.

50 Chapter 3 THE UNIFIED MODELING LANGUAGE

semantics. Themeaning is suggestedby your choice of subset
names.

Control begins in the initial state, represented by the
solid dot in the upper-left corner of Figure 3.12. Control
flows to the first activity, where the customer requests a
quote (Request quote). Control remains in an activity until
that activity is completed; then the control follows the out-
going arrow. When the request for the quote is complete,
the Manufacturer generates a quote (Generate quote).
Then the Customer reviews the quote (Review quote).

The next construct is a branch, represented by a dia-
mond. Each outgoing arrow from a branch has a guard.
The guard represents a condition that must be true in order
for control to flow along that path. Guards are written as
short condition descriptions enclosed in brackets. After the
customer finishes reviewing the quote in Figure 3.12, if it is
unacceptable the process reaches a final state and termina-
tes. A final state is represented with a target (the bull’s-eye).
If the quote is acceptable, then the Customer places an
order (Place order). The Manufacturer enters (Enter order),
produces (Produce order), and ships the order (Ship order).

At a fork, control splits into multiple concurrent threads.
The notation is a solid bar with one incoming arrow
and multiple outgoing arrows. After the order ships in
Figure 3.12, control reaches a fork and splits into two
threads. The Customer receives the order (Receive order).
In parallel to the Customer receiving the order, the Manu-
facturer generates an invoice (Generate invoice), and
then the customer receives the invoice (Receive invoice).
The order of activities between threads is not constrained.
Thus, the Customer may receive the order before or after
the Manufacturer generates the invoice, or even after the
Customer receives the invoice.

At a join, multiple threads merge into a single thread.
The notation is a solid bar with multiple incoming arrows
and one outgoing arrow. In Figure 3.12, after the customer
receives the order and the invoice, then the customer will
pay (Pay). All incoming threads must complete before con-
trol continues along the outgoing arrow.

Finally, in Figure 3.12, the Customer pays, the Manufac-
turer records the payment (Record payment), and then a
final state is reached. Notice that an activity diagram may

Chapter 3 THE UNIFIED MODELING LANGUAGE 51

have multiple final states. However, there can only be one
initial state.

There are at least two uses for activity diagrams in the
context of database design. Activity diagrams can specify
the interactions of classes in a database schema. Class dia-
grams capture structure, and activity diagrams capture
behavior. The two types of diagrams can present comple-
mentary aspects of the same system. For example, one
can easily imagine that Figure 3.12 illustrates the usage of
classes named Quote, Order, Invoice, and Payment.
Another use for activity diagrams in the context of data-
base design is to illustrate processes surrounding the data-
base. For example, database life cycles can be illustrated
using activity diagrams.

Summary
UML is a graphical language that is currently very popular

for communicating design specifications for software and, in
particular, for logical database designs via class diagrams.
The similarity between UML and the ER model is shown
through some common examples, including ternary rela-
tionships and generalization. UML activity diagrams are used
to specify the activities and flow of control in processes.

Tips and Insights for Database
Professionals

Tip 1. The advantages of UML modeling are that it is
widely used in industry, more standardized than other
conceptual models, and more connected to object-ori-
ented applications. Use UML if these match your
priorities.
Tip 2. Decide what you wish to communicate first
(usually classes), and then focus your description.
Illustrate the details that further your purpose, and omit
the rest. UML is like any other language in that you can
immerse yourself in excruciating detail and lose your
purpose. Be concise.

52 Chapter 3 THE UNIFIED MODELING LANGUAGE

Tip 3. Keep each UML diagram to one page. Diagrams
are easier to understand if they can be seen in one glance.
This is not to say that youmust restrict yourself, rather you
should divide and organize your content into reasonable,
understandable portions. Use packages to organize your
presentation. If you have many brilliant ideas to convey
(of course you do!), begin with a high-level diagram that
paints the broad picture. Then follow up with a diagram
dedicated to each of your ideas.
Tip 4. Use UML when it is useful. Don’t feel compelled
to write a UML document just because you feel you need
a UML document. UML is not an end in itself, but it is an
excellent design tool for appropriate problems.
Tip 5. Accompany your diagrams with textual des-
criptions, thereby clarifying your intent. Additionally,
remember that some people are oriented verbally, others
visually. Combining natural languagewithUML is effective.
Tip 6. Take care to clearly organize each diagram.
Avoid crossing associations. Group elements together if
there is a connection in your mind. Two UML diagrams
can contain the exact same elements and associations,
and one might be a jumbled mess, while the other is ele-
gant and clear. Both convey the same meaning in UML,
but clearly the elegant version will be more successful at
communicating design issues.

Literature Summary
The definitive reference manual for UML is Rumbaugh,

Jacobson, and Booch (2005). Use Muller (1999) for more
detailed UML database modeling. Other useful UML texts
are Naiburg and Maksimchuk (2001), Quatrani (2003), and
Rumbaugh, Jacobson, and Booch (2004).

Chapter 3 THE UNIFIED MODELING LANGUAGE 53

	Chapter 3:###The Unified Modeling Language
	CHAPTER OUTLINE
	Class Diagrams
	Basic Class Diagram Notation
	Class Diagrams for Database Design
	Example from the Music Industry

	Activity Diagrams
	Activity Diagram Notation Description
	Activity Diagrams for Workflow

	Summary
	Tips and Insights for Database Professionals
	Literature Summary

