
Chapter 1

Introduction to real-time systems

1.1 Chapter overview

The role of real-time software grows larger and larger, and in a competitive
marketplace any marginal improvement in usability or performance, provided
by more effective software, will give a significant sales advantage. This intro-
ductory chapter tries to outline the source of some of the problems which
programmers and engineers are likely to encounter and provides a set of
guidelines for identifying potential real-time systems by looking at a num-
ber of their characteristics. It also introduces associated key ideas through
example applications which, at this early stage, may be more helpful than
offering abstract principles.

1.2 Real-time systems development

Real-time processing normally requires both parallel activities and fast
response. In fact, the term ‘real-time’ is often used synonymously with
‘multi-tasking’ or ‘multi-threading’, although this is not strictly correct:
small real-time systems, as used in dedicated equipment controllers, can
perform perfectly adequately with just a simple looping program. Indeed,
the period I spent developing commercial embedded systems taught me that
such simplicity of design has much merit, and with the massive increase
in processor speeds, it is now possible to use such crude software schemes
for a much wider range of applications. As long as the response is good
enough, no further complexities need be introduced. But, if a large num-
ber of different inputs are being monitored by a single processor, or the
input data streams are complex and structured, the simple polling loop
approach will prove inflexible and slow, and a multi-tasking solution will
be required. Whatever style of implementation is chosen as appropriate,
the need remains to deal with several concurrent activities over a period
of time.

1

2 Real-time systems development

Real-time systems often seem like juggling

1.3 System complexity

A lot of the problems encountered with any software development involve
‘complexity management’. Good practice, prior experience and team work
are essential factors in achieving a successful outcome. Problems often appear
impossible until they are subdivided, then each component part becomes
much more manageable. Real-time software suffers from the same set of
problems as traditional DP (Data Processing) applications, but adds the
extra dimension of time to confuse the developer. To help in the preliminary
analysis and design work, a rigorous method, which can be understood by all
the team members, should be adopted. This will provide discipline and guid-
ance. The main reason for undertaking design activity is to arrive at some
well-structured code. Design without a subsequent implementation is mostly
a futile activity. If you follow a good design technique, appropriate questions
will emerge at the right moment, disciplining your thought processes.

A design method should provide intellectual guidance for system par-
titioning as well as documentation standards to ensure you record your
decisions and supporting rationale. Without an effective method, you could
end up with the complexity of a bramble patch, as illustrated opposite.

Introduction to real-time systems 3

A very preliminary design schema illustrating complexity (thanks to Les Carleton)

Perhaps surprisingly, suitable alternatives for real-time systems design
are not very numerous. In this text we have selected: Structured Analysis/
Structured Design (SA/SD), Concurrent Design Approach for Real-time
Systems (CODARTS), Finite State Methods (FSM), and Object-Oriented
Design (OOD) for study. The actual tools used to solve problems clearly
constrain the set of solutions available, and so the choice of design method
is vital.

1.4 Microprocessors and real-time applications

We are all familiar with real-time applications, they surround us in our
everyday lives. Vending machines, mobile phones, alarm systems, washing
machines, motor car engine controllers, heart monitors, microwave ovens,
point-of-sale terminals, all operate courtesy of an embedded microcontroller
running dedicated software. Before microprocessors appeared in the late
1970s, such functionality, in as far as it was possible, was conferred by elec-
tronic circuits often built using 7400 series TTL logic packs. Each application
required a completely different circuit to be designed and manufactured. This
was not an attractive prospect for equipment suppliers who were struggling
to control their expanding warehouse stock levels, inflated by the gush of new
silicon products. The arrival of embedded software, which allowed many dif-
ferent applications to share the same hardware, was most welcome. The term

4 Real-time systems development

Enter car number first

Coins

Tariff
1hr 40p
Sun free
Sat freePress for

ticket

P

A familiar real-time application

‘real-time’ is also used in the USA to describe on-line terminal services such
as ATMs (Automatic Teller Machines, or cash dispensers), database enquiry,
and on-line reservation and payment systems. Recently the term ‘respon-
sive system’ has been introduced to further distinguish such computer-based
applications. The list expands as technology elaborates. In practice, all com-
puter systems have some aspects which are relevant to real-time programming
and so the specific skills presented in this text are in great demand.

1.5 Definition of a real-time system

Although there is no clear dividing line between real-time and non-real-time
systems, there are a set of distinguishing features (listed below) which can
assist with an outline classification schema to identify real-time applications.

• Timing The most common definition of a real-time system involves a
statement similar to ‘Real-time systems are required to compute and
deliver correct results within a specified period of time.’ Does this mean
that a non-real-time system such as a payroll program, could print
salary cheques two years late, and be forgiven because it was not a
real-time system? Hardly so! Obviously there are time constraints on
non-real-time systems too. There are even circumstances in which the

Introduction to real-time systems 5

• Specified limit on system response latency
• Event-driven scheduling
• Low-level programming
• Software tightly coupled to special hardware
• Dedicated specialized function
• The computer may be inside a control loop
• Volatile variables
• Multi-tasking implementation
• Run-time scheduling
• Unpredictable environment
• System intended to run continuously
• Life-critical applications

Outline real-time categorization scheme

early delivery of a result could generate more problems than lateness
of delivery. A premature newspaper obituary could sometimes create as
much havoc as an early green on a traffic light controller.

Response time sensitivity

• Interrupt driven After the requirement for maximum response delay
times, the next characteristic of real-time systems is their involvement
with events. These often manifest themselves in terms of interrupt
signals arising from the arrival of data at an input port, or the ticking

Now!

Event-driven pre-emption

6 Real-time systems development

of a hardware clock, or an error status alarm. Because real-time sys-
tems are often closely coupled with special equipment (a situation that
is termed ‘embedded’) the programmer has also to gain a reasonable
understanding of the hardware if the project is to be a thorough success.
Once again, however, the demarcation between traditional data process-
ing and real-time systems is not easy to draw because event-driven GUI
interfaces are so widely used within all desktop applications.

• Low-level programming The C language is still favourite for writing
device drivers for new hardware. But because high-level languages,
including C, do not generally have the necessary instructions to han-
dle interrupt processing, it has been common for programmers to drop
down to assembler level to carry out this type of coding. Because ASM
and C are classified as low-level languages by many programmers, who
may be more familiar with database systems and windowing interfaces,
it has been suggested as a distinguishing characteristic of real-time pro-
grammers that they prefer to use low-level languages. This can be seen as
somewhat misleading, when the real-time high-level languages Modula-2
and ADA are taken into consideration.

• Specialized hardware Most real-time systems work within, or at least
close beside, specialized electronic and mechanical devices. Unfortu-
nately, to make matters more difficult, during development these are
often only prototype models, with some doubt surrounding their func-
tionality and reliability. This is especially true for small embedded
microcontrollers which may even be required to perform as critical com-
ponent parts within a feedback control loop. The oven power controller
illustrated below could employ an integrated microcontroller to monitor
the oven temperature and adjust the electrical power accordingly. Such
applications place a heavy responsibility on the programmer to fully
understand the functional role of the software and its contribution to
the feedback delay which governs the system response. Code may have
to run synchronously with the hardware or other software systems, such
as when telephone transmissions are sequenced 8000 times a second to
maintain acceptable voice quality. Very often this leads the programmer

ADC
�
�

Desired
temp

DAC Heater
Driver

Oven

Temperature
valueSignal

condn

Feedback control loop for specialized hardware

Introduction to real-time systems 7

into other disciplines: electrical theory, mechanics, acoustics, physiology
or optics. Real-time programmers rarely have a routine day.

• Volatile data I/O Another special issue for real-time software con-
cerns ‘volatile data’. These are variables which change their value from
moment to moment, due to the action of external devices or agents,
through interrupts or DMA. This is distinguished from the situation
where input data is obtained from a disk file, or from the keyboard under
program control. The most common example encountered by real-time
programmers involves input channels which operate autonomously to
bring in new values for memory variables when data arrives at an input
port. The software must then be structured to check for changes at the
correct rate, so as not to miss a data update.

CPU

Main memory

Volatile
data

System bus

I/O subsystem Source

Count

DMA controller

Data

Data

Volatile variables with a DMA controller

• Multi-tasking Real-time systems are often expected to involve multi-
tasking. In this situation, several processes or tasks cooperate to carry
out the overall job. When considering this arrangement, there should
be a clear distinction drawn between the static aggregation of groups of
instructions into functions for compilation, and the dynamic sequencing
of tasks which takes place at run-time. It has already been suggested
that full multi-tasking is not always necessary, but it can be positively
advantageous to programmers in simplifying their work. It is also widely
accepted that many computer systems have become so complex that
it has become necessary to decompose them into components to help
people to understand and build them. In the traditional data processing
field, for example, the production of invoices from monthly accounts
requires several distinct operations to be carried out. These can be
sequenced, one after the other, in separate phases of processing. With

8 Real-time systems development

real-time systems this is rarely possible; the only way to partition the
work is to run components in parallel, or concurrently. Multi-tasking
provides one technique which can assist programmers to partition their
systems into manageable components which have delegated responsibil-
ity to carry out some part of the complete activity. Thus, multi-tasking,
although generally seen as an implementation strategy, can also offer an
intellectual tool to aid the designer.

T1

T2 T3

T4

Component sequencing

• Run-time scheduling The separation of an activity into several distinct,
semi-autonomous tasks leads to the question of task sequencing. In trad-
itional DP applications the sequence planning is largely done by the
programmer. Functions are called in the correct order and the activity
is completed. But for real-time systems this is only half the story. The
major part of sequencing takes place at run-time, and is accomplished by
the operating system through the action of the scheduler. It is as if the
sequencing decisions have been deferred, it is a kind of ‘late sequencing’,
to draw a parallel with the established term ‘late binding’, used with
regard to code linking. This is perhaps the most interesting feature
of real-time systems. The manner in which the various activities are
evoked in the correct order is quite different from that of a traditional
DP system which normally relies on the arrival of data records from
an input file to sequence the functions, and so it is predetermined and
fixed.

• Unpredictability Being event driven, real-time systems are at the mercy
of unpredictable changes in their environments. It is just not feasible to
anticipate with 100 per cent certainty all the permutations of situations
which may arise. In my experience, the worst offenders are actually
the human users, who seem totally unable, or unwilling, to understand
what the designer intended. Any choice offered by a menu or sequence of
YES/NO alternatives will soon reveal unexpected outcomes during field
trials. The exact ordering or sequencing of all the functions which deal
with these interactions has to be decided at run-time by the scheduler,
giving much more flexibility in response. Considerable effort is now put
into extensive simulation testing in order to trap as many of these bugs
as possible, even before the designs are released.

Introduction to real-time systems 9

Unpredictability

• Life-critical code Although not always the case, real-time systems can
involve serious risk. A failure to run correctly may result in death or
at least injury to the user and others. Such applications are becoming
more and more common, with the aircraft and automobile industries
converting their products to ‘fly by wire’ processor technology. This
removes from the driver/pilot all direct, muscular control over the phys-
ical mechanism, relying entirely on digital control systems to carry out
their commands. The burden of developing real-time, life-critical soft-
ware, with all the extra checking, documentation and acceptance trials

Life risking applications

10 Real-time systems development

required, may raise the cost beyond normal commercial projects, of
similar code complexity, by an astonishing factor of 30. Most real-time
applications are intended to run continuously, or at least until the user
turns off the power. Telephone exchanges, for example, contain mil-
lions of lines of real-time code, and are expected to run non-stop for 20
years. The increasing use of embedded microprocessors within medical
monitoring and life-support equipment, such as radiological scanners
and drug infusion pumps, makes consideration of software reliability
and systems integrity even more urgent. Some research effort has been
expended in devising a method to formally prove correct a computer
program, much in the same way that mathematicians deal with alge-
braic proofs. So far, the products resulting from this work have not
generated much commercial interest.

1.6 Programming structures

It is now well accepted that computer programs can all be broken down into
three fundamental structures:

• Linear sequences of instructions
• Iterative loops of instructions
• Branches guarded by selection statements

But as indicated above, the sequencing of real-time code is not straight-
forward. In addition, multi-tasking code requires two more structures:

• Parallel or concurrent instructions
• Critical groups of exclusive instructions

SEQ
IT
SEL
PAR
CRIT

More structures in real-time programs

While all DP systems may benefit from utilizing parallel or concurrent coding,
it is rarely essential, as it frequently is in the case of real-time systems. This
formally indicates the increased complexity that arises when working in the
real-time field.

Introduction to real-time systems 11

1.7 Response latency

There is also an interesting contradiction in citing ‘minimum response delay’
(latency) as the key factor when characterizing real-time systems. For
example, when using more sophisticated real-time executives (RTE), the full
response to a Receiver Ready or Transmitter Ready (RxRdy or TxRdy)
interrupt is often deferred in order to balance the processing load. Thus the
executive attempts to impose its own processing schedule on all the activities,
which can actually result in a delayed response. This could be seen as trans-
forming unpredictable, asynchronous demands into scheduled, synchronous
processing.

Synchronous
Scheduled
processing

Asynchronous
Unpredictable

events

Rapid response compromised for processing efficiency

1.8 Relative speeds

1.8.1 Polling an input too fast

An important factor that needs to be clearly understood by newcomers to
real-time programming is the vast disparity in speed between the modern,
electronic computer and the human, physical world. Whereas even a slow
microcontroller will zip through instructions at a rate of 10 million per
second, humans can rarely handle a keyboard at two key strokes per sec-
ond. The problem is due more to the relative speeds than their absolute
values. Such an enormous disparity in speed leaves programmers in quite a
quandary, since the voracious processing capacity of a modern CPU demands
to be fed at all times!

Consider the oscilloscope trace below, which shows how the output voltage
changes when a microswitch is closed. The contact bounces for a period of up
to one millisecond (1 ms, one thousandth of a second) before finally settling
down. Humans are not aware of this high speed dithering, but a computer,
sampling an input port one million times a second, can wrongly record that
the switch has been turned on and off several times when it has only been
pressed once.

Such errors often show up in ‘monitoring and counting’ systems and may
lead to the use of more expensive optical or magnetic switch units which do
not suffer from contact bounce.

12 Real-time systems development

Y:2.00 V/div X:0.1 ms/div Single A1 STOP

Voltage from a key switch showing a contact bounce of nearly 1 ms

Alternatively, extra logic gates can be included to eliminate the effects of
contact bounce as shown below. But perhaps the best solution is to deploy
some debouncing software. This can subject the incoming, raw signals to low-
pass filtering, at no extra expense. We will return to this issue in Chapter 4
with an example system.

Light
beam

Mechanical switch

Optical switch

10 K

5 V

0 V

Switch

Debouncing logic

1.8.2 Polling an input too slowly

It scarcely needs to be said that if a computer checks an input too infrequently
it runs the risk of missing an occasional event, such as a counting pulse. To
avoid this happening, it is common to require the sampling rate to be at least
twice as fast as the mean pulse frequency. If the system has to detect a pulse
occurring no more often than every 10 ms, the port should be checked at least
every 5 ms (200 times a second). Sometimes the input events are recorded
on a hardware latch in an attempt to reduce the required sampling rate.

Introduction to real-time systems 13

However, this still runs the risk of losing an event when a following event
overruns the previous one before the software reads and clears the earlier
event from the latch.

Sampling pulses

Events A B C
Missed!

Sampling too infrequently

The term ‘aliasing’ is used to describe a similar situation which occurs
when an analogue signal is sampled too slowly. If the input signal contains
frequencies above half the sampling rate, the sampled version of the signal
will appear to contain frequencies not in the original signal. Look closely at
the figure below. The original signal (‘A’) is printed with a thick line and
shows 12 cycles (∩∪). The sampling points are shown as dashed lines, with
the captured values as thick vertical bars. Notice that there are fewer than
the minimum two samples per signal cycle. There are only 20 samples in 12
cycles, whereas there should be at least 24. Now reconstruct the signal using
only the sample values. The resulting synthesized wave (‘B’) is drawn with
a thin line. ‘A’ and ‘B’ are not the same. This artifact is called aliasing and
is avoided by filtering all the high frequency components from the original
signal before sampling occurs. The maximum frequency threshold of half the
sampling rate is referred to as the Nyquist limit. You may be familiar with old
Hollywood films, where stagecoach wheels appear to turn backwards because
the movie cameras ran too slowly.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A B

Aliasing error through sampling too slowly: only 20 sample points in 12 cycles

1.8.3 Light sensing

Another example problem, illustrating the relative timing issue, involves the
use of light sensors. Normal office lighting relies on fluorescent tubes. These

14 Real-time systems development

actually flicker very strongly at 100 Hz. The human eye is normally insensitive
to flicker rates above 40 Hz, but a surface inspection computer could easily
be confused by large variation in illumination. If the program is periodically
reading a value given by a photodiode, the exact moments when the samples
are taken would have more influence on the result than the darkness of the
surface being scanned. If the polling is carried out fast enough, say 5 kHz,
the 100 Hz brightness modulation would get averaged out. Once again, the
timing of computer activity is critical to obtaining a correct result.

Y:0.1 V/div X:10 ms/div Single A1 STOP

Voltage from a light sensor showing 100 Hz mains flicker

The application areas described above, switch scanning, pulse detection
and light sensing, show that calling input routines too frequently or too
infrequently can both generate artifacts which can blossom into serious errors.

1.9 Software timing

Another problem for programmers involved with real-time systems is the
need to understand more exactly what the compiler is creating. With desktop
systems it is now commonplace to write and run, with little attention being

v2f

V

mcntlr

Voltage-to-frequency converter

Introduction to real-time systems 15

paid to the final executable code. There are circumstances where this opti-
mistic disregard may lead to difficulties. A commonly used environmental
monitoring arrangement involves a transducer being interfaced to a voltage-
to-frequency converter (thanks to Laurence O’Brien for sharing this lop-sided
bug with me). The cost advantage of not using an ADC interfaced to a serial
transmission link is the prime motivation. With a V2F unit, the transducer
analogue voltage is converted to a pulse frequency code: the larger the volt-
age, the higher the frequency; the lower the voltage, the lower the frequency.
The computer only has to dedicate a single bit input port to accept the infor-
mation in serial mode. However, there remains the problem of converting this
pulse frequency code into normal integer format. For an HLL programmer
the following code might appear attractive. It runs and offers the beguiling
appearance of success, but it entails an interesting bug related to the code
generated by the compiler. Unfortunately, the time spent in the two oppos-
ing arms of the IF/ELSE structure is not matched. So with an actual 50/50
situation, the results would not come out as 50/50, because of the dwell time
bias. This can be checked by reversing the code and running both versions
back to back. Inspecting assembler code listings from the compiler will also
reveal the discrepancy.

loop for 100 msec { loop for 100 msec {
if (input–bit) ←−−−−−−−−−−−−−−−−−−−−−−−−→ if (!input–bit)

hcount++; hcount++;
else else

lcount++; lcount++;
} }
temp1 = tempX*hcount/ temp2 = tempX*hcount/

(lcount+hcount) (lcount+hcount)

1.10 High speed timing

Perhaps an example would now be useful of the opposite situation, when pro-
cessors simply cannot run fast enough. Consider a laser range-finder, intended
for use in civil surveying, or more ominously for battlefield targeting. It works
by preparing a pulse laser for firing, emitting a pulse of light, waiting for the
reflected echo to return, and, by timing the duration of the flight, calculating
the distance travelled.

The speed of light is 3 × 108 m/sec.
For a target 20 km away, the pulse of light will travel 40 km (4 × 104 m).

So time taken =
distance
speed

=
4 × 104

3 × 108 = 1. 3 × 10−4 s = 130 µs

If the item being surveyed is only 50 m distant, the time of flight will be
reduced to 325 ns.

16 Real-time systems development

Laser pulse
emerging

Echo returning
from 50 m

325 ns

Light travels very fast!

Thus the timing mechanism must be able to cope with the range 0.3–
150µs. Instructions executed on a 500 MHz, dedicated processor could
maximally complete instructions every 2 ns, with the code running from LI
cache. However, any disturbance to the instruction fetch/execute pipeline
sequence, such as cache elimination, task swapping, interrupts, or even con-
ditional branches in the code, would reduce the instruction rate considerably.
Therefore, the only reliable timing method for this application is to employ
a high speed hardware counter which is cleared down and restarted when the
light pulse leaves the laser, and stopped when the echo returns. The num-
ber captured is a measure of the distance travelled by the laser pulse, there
and back. Only a close interplay of software and hardware can provide the
solution to this problem.

1.11 Output timing overload

There is a similar set of timing problems facing the programmer when dealing
with periodic, or cyclic, output data. A typical example involves the control
of motors. These may be used in continuous mode, to turn wheels at a desired
speed, or to position a unit and hold it against a varying resistant pressure.

Motor drive problems

Introduction to real-time systems 17

Both situations may involve responding to sensors providing feedback infor-
mation. There are several different types of motor available, each with its
own special area of application: stepper, DC servo, universal AC, induction
AC, and synchronous AC. DC servo and stepper motors are most commonly
controlled with microprocessors; the latter we will meet again in Chapter 2.
Both DC servo and steppers can provide rotation and dynamic positioning.
Stepper motors in particular require accurately timed sequences of pulses to
control their speed and direction.

Microprocessor-based controllers can handle such a problem by holding
pulse pattern tables in memory and accessing the entries in sequence at the
correct rate. Another interesting type of positioning servo motor is supplied
by Futaba for model makers. It also uses a digital pulse input to specify
the required angular position of the motor shaft. Commonly, a 2 ms pulse
will indicate a central, neutral position, a 1.5 ms pulse sets the shaft to
−45◦ and a 2.5 ms pulse sends the shaft to +45◦. Unfortunately, unlike the
stepper motor, the positioning pulses need to be repeated every 20 ms, to
refresh the controller. This is quite a problem for a processor when several
positioning units have to be serviced simultaneously, as is the case with a
robot arm. Arranging for five timing pulses to be dispatched every 20 ms,
with an accuracy of 50µs, really does benefit from some special hardware
support.

1.12 Debugging real-time systems

When debugging real-time code extra difficulties emerge, such as the impos-
sibility of usefully single stepping through doubtful code, or reproducing
elusive, time critical input situations. Inserting a neanderthal printf()
statement in an attempt to isolate the bug will completely change the execu-
tion timing (my aged PC/200 takes nearly 1 ms to complete a call to printf).
Confusion often arises when dealing with prototype hardware. Errors can be
blamed on the software, when in fact the problem is due to the new electron-
ics. Such uncertainty makes debugging more difficult and challenging. Extra
equipment may need to be acquired, by purchase, hire or loan, to generate
complex test signals, and capture the results using sophisticated logic ana-
lysers, In Circuit Emulators (ICE) or digital storage oscilloscopes. Initially, a
very useful trick is to insert a couple of output instructions within your code,
which will emit a short indicator pulse from a spare output port. This can
be picked up by the oscilloscope and viewed. It is an enormous advantage to
be able to see the relative timings of ongoing processing activity, set against
traces obtained from external events. When dealing with systems which are
processing fast streams of data interleaved with intermittent, much slower
events, capturing the correct sequences for analysis can be tricky. In this
situation, you may be able to get your software to trigger the viewing trace,
and so synchronize the oscilloscope display to the events under investigation.

18 Real-time systems development

Hewlett
Packard

546455D

ON

Volts/Div

A1

A1
Position

Volts/Div

A2

A2
Position+−

Digitall

D0-D15

Volts Time Curses

Trace

Auto Display Print

Setup

Measure Storage

RunStop Single Auto Erase

Analogl

Horizontal

Main

Trigger

Pattern

Edge

Advanced

Mode

Oscilloscopes can display timing information from software, too

1.13 Access to hardware

Because real-time computer systems are often working in tight integra-
tion with the surrounding equipment, they need to have efficient access to
hardware. This means that the normal hardware/software separation,
imposed by an operating system for security purposes, has to be broached.
The application software must be able to directly read input ports and write
to output ports. With Unix and Windows, these operations are forbidden to
all but supervisor-level code. To run all the application tasks with supervisor
permission would incur unnecessary risk, so special device driver routines
are needed to provide the I/O facilities that real-time programs require.
Operating systems can get in the way.

Hardware

Operating

system

Application

programs

Direct access to hardware

Introduction to real-time systems 19

1.14 Machine I/O

All machine instruction sets must include some mechanism allowing the pro-
grammer to transfer data into and out of the computer. To that end, Intel
provides its CPUs with special IN and OUT instructions which operate solely
on ports located within a designated I/O address space. In a more unified,
von Neumann approach Motorola chose to avoid separate I/O instructions
and address spaces, and so enabled programmers to use the normal group of
data transfer instructions with I/O ports.

This is possible because all the ports are located within memory address
space, alongside the RAM or ROM chips. From the CPU’s perspective, ports,
ROM and RAM can look much the same for access purposes. Only when data
caching facilities are included does this homogeneity break down.

• Dedicated and periodic polling
• Interrupt driven
• Direct Memory Access (DMA)

Different I/O techniques

From the software point of view there are three principal techniques used
to initiate and control the transfer of data through a computer I/O port.
Direct Memory Access (DMA) is distinct in that it depends substantially
on autonomous hardware which is required to generate the bus cycle con-
trol sequences in order to carry out data transfers independently of the main
CPU. We will discuss each I/O method in greater detail later in this chapter.
All require software driver routines to work closely with associated hardware
units. These routines are normally part of the operating system and not
infrequently written in assembly language. In the PC marketplace, extension
card suppliers provide such driver routines on CD or floppy disk, along with
the hardware, so that they may be installed by the user. It is also increasingly

Hardware

HAL

O/S routines

HLL library

User code

Software access to hardware

20 Real-time systems development

common to have access to driver routine libraries via the Internet. Following
the pioneering example of Unix, modern operating systems are written as far
as possible in HLL, probably C. In this way, porting the operating system
to a new processor is faster and more reliable, once a good C compiler has
been obtained. Windows NT has defined a specific hardware interface layer
of software, HAL, which acts as a virtual machine layer to aid porting to new
processors. The traditional view of software is a hierarchy of intercommuni-
cating layers as presented above. Each layer has a specific data processing
role and exchanges messages with adjoining layers.

HAL hides much of the specific hardware differences between Pentium,
ALPHA and MIPS processors, from the main part of the operating system
code, making it easier to port and maintain the system code. Although Win-
dows 98 allows direct access to the I/O hardware, with Unix and Windows
NT/XP it is strictly denied for security reasons. Such a limitation does not
concern most application programmers who only ever access I/O facilities by
calling library procedures provided with the HLL compiler, such as getc()
and putc(). These library procedures may then call underlying operating
system functions to gain access to the actual hardware.

The introduction of a ‘virtual machine’ software layer has also been used
in the development of a version of Linux, RTAI, for real-time applications.
We will discuss this more in Chapter 19.

1.15 Programmed I/O

The fundamental method of reading data from an input port involves the sim-
ple execution of either a MOVE or IN instruction, depending on whether the
port is memory mapped or I/O mapped. An example of input by programmed
polling from an I/O mapped port is presented in C and Pentium assembler
code below. This would only work on a system running DOS or Windows
98 because Linux expressly denies direct access to hardware in this fashion
for security reasons. Access to all port addresses is limited to processes run-
ning with root permissions, so if you have the supervisor password, and are
prepared to risk a complete system rebuild should you inadvertently blunder
into an unexpected port, you are free to try your hand! The Linux ‘suid’

Polling
loop

RxRdy

Spin polling

Introduction to real-time systems 21

permissions, explained in Chapter 10, offer a middle path through the secu-
rity quagmire. Operating system code handles all the I/O operations, so all
the assembler-level IN and OUT instructions are hidden inside device driver
routines. The receive ready flag (RxRdy) in the status register (STATUS)
is repeatedly checked in a tight polling loop until it has been set to 1 by
the port hardware, indicating that a new item of data has arrived in the
data receive register (RxData). The loop then drops through and the newly
arrived data byte is read from the data receive register. In this example, it
is then checked for zero because this would indicate the end of the current
data transfer. If it is non-zero, the item is saved into the data array using a
pointer, and the loop continues.

do {
while (!(INP(STATUS) & RXRDY)) { }; /* wait for data */

} while (*pch++ = INP(RXDATA)); /* check data for a NULL */

The ASM equivalent of the above code uses the Pentium IN input instruction
and might look something like this. Again, the status port register is checked
before reading the data port itself.

MOV EDI,PCH ;init pointer to start of data buffer
TLOOP: IN AL,STATUS ;read status port

AND AL,RXRDY ;test device status bit
JZ TLOOP ;blocking: if no data go round again

DATAIN: IN AL,RXDATA ;data from Rx port & clear RXRDY flag
OR AL,AL ;test for EOS marker
JZ COMPLETE ;jmp out if finished
MOV [EDI],AL ;save character in data buffer
INC EDI ;bump buffer pointer to next location
JMP TLOOP ;back for more input

COMPLETE: ;character string input complete

Example input polling loop in C and ASM code

It is also very important to understand that I/O port hardware detects
the action of data being read from the data register, RxData, and clears
down the RxRdy flag. This prepares the hardware for the arrival of the next
item of data. The complementary version which outputs data is nearly iden-
tical, except the TxData flag in the status register is polled until it changes
to 1, indicating that the data transmit register is empty and available. The
next data item is then moved from memory into TxData, the data transmit
register. At this point the polling loop starts all over again.

1.16 Hardware/software cost tradeoff

To an increasing extent, product functionality has been invested in the
embedded software rather than special purpose hardware. It was immediately

22 Real-time systems development

appreciated, with the introduction of microprocessors in the 1970s, that the
cost of duplicating and distributing software was trivial compared to manu-
facturing and transporting hardware units. Although this may still be true,
it is apparent that hardware production costs are falling, and software devel-
opment costs dramatically increasing. In addition, the lifetime maintenance
cost of software has often been neglected because it was not really under-
stood how software could deteriorate over time in a similar way to corroding
metal parts. The need to fund continual software maintenance can in part be
attributed not to an ageing process within the system, but rather to an evolv-
ing environment which no longer fits the software. Maybe this is paralleled
in the theatre, where Shakespeare is continually reinterpreted, generation
after generation, seeking to match the evolving expectation of audiences.
Since 1606, the accumulated maintenance cost of King Lear has certainly far
outstripped the original commissioning fee. In fact, software suppliers may
still not fully understand the problems associated with the management and
maintenance of their products; hardware revisions remain more visible and
controllable. But perhaps the most problematic issue for all software prod-
ucts is the ease with which changes can be made, and the future need for
documentation forgotten.

Development
costs

Maintenance
costs

$

time

Software lifetime costs

1.17 Hard, soft and firm

Often the distinction is drawn between ‘hard’ and ‘soft’ real-time systems.
Hard systems impose tight limits on response times, so that a delayed result
is a wrong result. The examples of a jet fuel controller and a camera shutter
unit illustrate the need to get a correct value computed and available at the
right time. Soft real-time systems need only meet a time-average performance
target. As long as most of the results are available before the deadline, the
system will run successfully, with acceptably recognizable output. Audio and
video transmission and processing equipment are examples of real-time sys-
tems which must achieve an average throughput performance. A single lost
speech sample or image frame can normally be covered up by repeating the

Introduction to real-time systems 23

previous item. Only when responses are delayed repeatedly will a seriously
unacceptable error occur. The category of ‘firm’ is also being mooted as a
crossover between the other two, because real-world systems do not always
fall into either category for response deadlines.

A somewhat clearer distinction is visible between ‘large’ and ‘small’
real-time systems development. Design techniques, management methods,
implementation languages and many other critical aspects are dealt with
differently by groups operating at the two extremes of this application spec-
trum. Typical projects on the small side would be coffee or ticket vending
machines, entertainment equipment, or protocol converter units. Large sys-
tems could be production plant monitoring equipment, air traffic control
and telecommunication networks. Real-time systems, large and small, are
becoming a routine part of our everyday life.

1.18 Software Quality Assurance (SQA)

The production and maintenance of high quality software has been the spe-
cial concern of software engineers since the 1970s, when the term ‘Software
Engineering’ was first coined in an attempt to express the frustration of pro-
grammers with the repeated failures of large software projects. By studying
the separate activities involved in designing and realizing programs, it was
hoped to improve the industry’s performance. The complete lifecycle of a
software product spans several distinct but overlapping phases which can, to
some extent, be discussed in isolation. The software engineering approach
to real-time systems emphasizes the importance of the early requirements
acquisition phase and later product testing activity. As software continues to
grow in size and sophistication, the need to coordinate large teams of analysts
and programmers, all working on the same project, becomes more problem-
atic. Some parallels can be drawn with traditional engineering methods, and
benefits can be derived from their long experience, but this can also be mis-
leading. The techniques which have evolved to successfully support large civil
engineering projects or automobile production plants may not necessarily be
appropriate for computer programmers. Remember that bridges still collapse
and cars fail due to design faults, so the admiration and emulation should be
cautious. Undoubtedly the complexity of software will increase still further
and automated methods will have to be developed to assist the development
process. In particular, real-time systems have suffered from some disaster-
ously public failures, such as the loss of the Ariane 5 rocket during its initial

‘Hardware degrades despite maintenance, software
degrades because of it.’

A depressing aphorism

24 Real-time systems development

launch and the recall of engine management units for bug fixes, which have
contributed to a general scepticism about all computer-based projects.

5 ?

Costly software failures

1.19 Experience and history

Unfortunately, in computing, the lessons learned during earlier eras are often
overlooked. Pioneering mainframe programmers despised the small DEC
PDP-8 minicomputers when they first arrived, and the Intel 8080 micro-
processors were initially ignored by everyone except hobby-mag readers and
hardware engineers. In my own department, an experienced CS colleague
expressed the now ludicrous view that he could see no reason to include
details of the recently introduced Z80 microprocessor and CP/M operat-
ing system into university curricula. Each generation seems determined to
recapitulate earlier discoveries and waste vast effort in the process. With the
introduction of the PC, Microsoft and IBM spurned many well-designed, field
proven operating systems in favour of DOS. This now seems an incredible
leap backwards in developmental terms.

When re-reading the RTL/2 reference book written by John Barnes in
1976, I am struck by the freshness of its focus, the continuing relevance of
the ideas and the apparent lack of progress achieved in dealing with the same
set of software problems during the intervening three decades. The perceived
need to adopt the latest jargon and intellectual style seems to have created
a fashion-conscious industry which refuses to sift out and carry forward the
best ideas.

Part of the problem could be that the modern computer science text-
book rarely contains much technical information about past achievements in
hardware and software. If there is a history section, it occurs along with the
introduction, and concentrates on industry ‘heroes’ and archive photographs
of shiny sales-room cabinets. Comments on their tiny 16 Kbit core memories
do not draw out our admiration for the efficiency of the code, but rather
laughter at the ludicrous idea of programs running in such confined space.
Indeed, the subtle ideas and algorithms contained within them are not often

Introduction to real-time systems 25

discussed or explained. History is bunk, but if we ignore it, we are condemned
to repeat its mistakes and continually suffer the same frustrations.

1.20 Futures?

For real-time developers, a very relevant revolution, which may parallel that
triggered by the arrival of 8 bit microprocessors, could be in progress at
this very moment with the introduction of large Field Programmable Gate
Arrays (FPGAs). These are configured for a particular application by writing
a specification program in a language such as VHDL or Verilog. With the
size and gate density achievable at present, it is possible to install several
fast RISC processors on the same FPGA, and still leave space for peripheral
devices. So the opportunity for ‘roll your own’ microcontrollers is available
now, with the possibility of powerful bespoke clustering not far off. Such
a development is not so revolutionary, but if the expressive potential of
VHDL is pushed a bit further, it may be capable of capturing the complete
application, with all its algorithms, in digital hardware without recourse
to processors and software. The advantage of parallel, synchronous cir-
cuits implementing all the functionality is yet to be thoroughly investigated.
Such an approach draws back together the divergent skills and traditions
developed by software and hardware engineers. Those involved in real-time
systems design and implementation should keep their eyes open for evolving
developments from this direction.

1.21 Chapter summary

This chapter introduces the key issues which make the development of real-
time software more challenging than desktop, or traditional DP applications.
A set of characteristics is offered which can be used to identify those appli-
cations which may require special real-time expertise. But a clear distinction
is not really valid because most modern programs have some measure of
real-time features. The key significance of designing systems to handle many
discrete, concurrent activities has been emphasized because of the extra com-
plexity that this introduces. The sequencing of code at run-time in response
to changing environmental circumstances is possibly the principal defining
characteristic. Handling I/O activity with unusual devices can be a par-
ticular problem for real-time programmers which demands extra hardware
knowledge. Hard real-time systems need to meet strict response deadlines,
while soft real-time systems only have to achieve a satisfactory average per-
formance. It is now recognized that large real-time systems require special
expertise, tools and techniques for their successful development. The current
revolution in the field of embedded systems centres on the application of
FPGA chips as a replacement for programmable microcontrollers.

26 Real-time systems development

Considerations of timing must be appreciated by the system designer and
programmer.
1 ms, a millisecond, one thousandth of a second 10−3

1 µs, a microsecond, one millionth of a second 10−6

1 ns, a nanosecond, one thousandth of a millionth of a second 10−9

1 ps, a picosecond, one millionth of a millionth of a second 10−12

1 fs, a femtosecond, one thousandth of a millionth of a millionth of a second 10−15

1 year 32 nHz year number rollover

6 months 64 nHz GMT<->BST changeover

8 hr 30mHz AGA coal stove cycle time

10 s 0.1 Hz photocopier page printing

1 s 1 Hz time-of-day rate

300 ms 3 Hz typing speed

300 ms human reaction time

150 ms 7 Hz mechanical switch bounce time

15 ms 70 Hz motor car engine speed

125ms 8 kHz digitized speech, telephone quality

64ms 15.6 kHz TV line rate

50ms Mc68000 interrupt latency

0.5ms 2 MHz Mc68000 instruction rate

0.074ms 13.5 MHz video data rate

0.050ms semiconductor RAM access time

0.01ms 100 MHz Ethernet data rate

10 ns 100 MHz memory cycle, PC motherboard

2.5 ns 400 MHz logic gate delay

555 ps 1.8 GHz cellular telephone transmissions

500 ps 2 GHz single instruction issue, Pentium IV

0.3 ps 3 THz infrared radiation

16 fs 600 THz visible light

210 ≈ 103 1000, known as 1 kilo
220 ≈ 106 1000_000, known as 1 mega

250 ≈ 1015 1000_000_000_000_000, known as 1 peta

 260 Hz middle C

 440 Hz concert pitch A

1 ms 1 kHz serial line data rate

230 ≈ 109 1000_000_000, known as 1 giga
240 ≈ 1012 1000_000_000_000, known as 1 tera

260 ≈ 1018 1000_000_000_000_000_000, known as 1 exa

Timing parameters, from slow to fast

Introduction to real-time systems 27

1.22 Problems and issues for discussion

1. What should be the intellectual basis of computer science, the
CPU fetch–execute cycle or the use of abstract languages to specify
functionality?

Will the use of VHDL or Verilog to configure large FPGA chips
become as significant for programmers as the traditional HLLs: C/C++
and Java?

2. With the increase in CPU speeds from 20 to 2000 MHz in 20 years
(1980 to 2000), have many of the original reasons for using complex
multi-tasking software been rendered irrelevant by enhanced hardware
performance?

3. What aspects of code sequencing can be set at compile time, and what
aspects still have to be determined at run-time? (This concerns the
‘granularity’ of concurrency.)

4. If every process had its own private CPU, what facilities, currently
offered by operating systems, would no longer be required?

5. Look up the circumstances of the Ariane 5 launch catastrophe (4/6/96),
and see whether too little or too much software engineering was princi-
pally to blame. Would the rocket have crashed if the programming had
been carried out in C rather than Ada, or if the ‘trusted and proven’
Ariane 4 software had not been reused?

6. Compare the technical specifications for several microprocessors:

Clock MIPS Max MMU External H/W FPU
speed memory interrupts timer

PIC 12C508

Intel 8051

Motorola

MCF5282

ARM-7

Intel

Pentium-4

Itanium 2

1.23 Suggestions for reading

Allworth, S. & Zobel, R. (1987). Introduction to Real-time Software Design.
Macmillan.

Barnes, J. (1976). RTL/2, Design and Philosophy. Hayden & Sons.

28 Real-time systems development

Bruyninckx, H. (2002). Real-time and Embedded Guide. From: herman.bruyninckx@
mech.kuleuven.ac.be

Burns, A. & Welling, A. (2001). Real-time Systems and Programming Languages.
Addison Wesley.

Cooling, J. E. (2003). Software Engineering, Real-time Systems. Addison Wesley.
Gomaa, H. (1993). Software Design Methods for Concurrent and Real-time Systems.

Addison Wesley.
Lawrence, P. & Mauch, K. (1985). Real-time Microcomputer Systems Design: An

Introduction. McGraw Hill.
Shaw, A. C. (2001). Real-time Systems and Software. Wiley.
Simon, D. (1999). An Embedded Software Primer. Addison Wesley.

