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CHAPTER

ONE
STRESSES AND STRAINS

1.1 Introduction

The theory of plasticity is the branch of mechanics that deals with the calculation
of stresses and strains in a body, made of ductile material, permanently deformed
by a set of applied forces. The theory is based on certain experimental observations
on the macroscopic behavior of metals in uniform states of combined stresses. The
observed results are then idealized into a mathematical formulation to describe the
behavior of metals under complex stresses. Unlike elastic solids, in which the state of
strain depends only on the final state of stress, the deformation that occurs in a plastic
solid is determined by the complete history of the loading. The plasticity problem
is, therefore, essentially incremental in nature, the final distortion of the solid being
obtained as the sum total of the incremental distortions following the strain path.

A metal may be regarded as macroscopically homogeneous and isotropic when
the small crystal grains forming the aggregate are distributed with random orienta-
tions. As a result of plastic deformation, the crystallographic directions gradually
rotate toward a common axis, producing a preferred orientation. An initially
isotropic material thereby becomes anisotropic, and its mechanical properties vary
with direction. The development of anisotropy with progressive cold work and the
resulting strain-hardening are too complex to be successfully incorporated in the the-
oretical framework. In the mathematical theory of plasticity, it is generally assumed
that the material remains isotropic throughout the deformation irrespective of the
degree of cold work. Since the strain-hardening characteristic of a metal in a complex
state of stress can be related to that in uniaxial tension or compression, it is necessary
to examine the uniaxial stress–strain behavior in some detail before considering the
general theory of plasticity.

1
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The plastic deformation in a single crystal is generally produced by slip, which
is the sliding of adjacent blocks of the crystal along definite crystallographic planes,
called slip planes. The boundary line separating the slipped region of a crystal from
the neighboring unslipped region is called a dislocation. The movement of the dis-
location, which is responsible for the slip, is initiated by a line defect causing a local
concentration of stress. Slip usually occurs on those planes which are most densely
packed with atoms. The magnitude and direction of the relative movement in a slip
is specified by a vector known as the Burgers vector. A dislocation is said to be one
of unit strength when the magnitude of the Burgers vector is equal to one atomic
spacing. The terms edge dislocation and screw dislocation are used to describe the
situations where the Burgers vector is normal and parallel respectively to the dis-
location line. In general, a dislocation is partly edge and partly screw in character,
and the dislocation line forms a curve or a closed loop.†

In a polycrystalline metal, the crystallographic orientation changes from one
grain to the next through a narrow transition zone, or grain boundary, which acts as
an effective barrier to slip. Dislocations pile up along the active slip planes at the
grain boundaries, the effect of which is to oppose the generations of new dislocations.
When the applied stress is increased to a critical value, the shear stress developed
at the head of the dislocation pile-up becomes large enough to cause dislocation
movement across the boundary. The dislocation pile-up is mainly responsible for
strain-hardening of the metal in the early stages of plastic deformation. The rate
of hardening of the polycrystalline metal is always higher than that of the single
crystal, where the increase in yield stress is caused by dislocations interacting with
one another and with foreign atoms serving as barriers. The dislocation interactions
control the yield strength of a polycrystalline metal only in the later stages of the
deformation.

If the temperature of the strain-hardened metal is progressively increased, the
cold-worked state becomes more and more unstable, and the material eventually
reverts to the unstrained state. The overall process of heat treatment that restores
the ductility to the cold-worked metal is known as annealing. The temperature
at which there is a marked decrease in hardness of the metal is known as the
recrystallization temperature. The dislocation density decreases considerably on
recrystallization, and the cold-worked structure is replaced by a set of new strain-
free grains. The greater the degree of cold-work, the lower the temperature necessary
for recrystallization, and smaller the resulting grain size.‡

In ductile metals, under favorable conditions, plastic deformation can con-
tinue to a very large extent without failure by fracture. Large plastic strains do occur

† For a complete discussion, see A. H. Cottrell, Dislocations and Plastic Flow in Crystals,
Clarendon Press, Oxford (1953); W. T. Read, Dislocations in Crystals, McGraw-Hill Book
Company, New York (1953); J. Friedel, Dislocations, Addison-Wesley Publishing Company, Read-
ing, Mass. (1964); F. R. N. Nabarro, Theory of Crystal Dislocations, Clarendon Press, Oxford (1967);
D. Hull, Introduction to Dislocations, 2d ed., Pergamon Press, Oxford (1975).

‡ See, for example, G. E. Dieter, Mechanical Metallurgy, Chap. 5, 2d ed., McGraw-Hill Book
Company, New York (1976). See also R. W. K. Honeycombe, The Plastic Deformation of Metals, 2d
ed., Edward Arnold, London (1984).
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in many metal-working processes, which constitute an important area of application
of the theory of plasticity. While elastic strains may be neglected in such problems,
the continued change in geometry of the workpiece must be allowed for in the the-
oretical treatment. Severe plastic strains are produced locally in certain mechanical
tests such as the hardness test and the notch tensile test. The significance of these
tests cannot be fully appreciated without a knowledge of the extent of the plastic
zone and the associated state of stress. Situations in which elastic and plastic strains
are comparable in magnitude arise in a number of important structural problems
when the loading is continued beyond the elastic limit. Structural designs based on
the estimation of collapse loads are more economical than elastic designs, since the
plastic method takes full advantage of the available ductility of the material.

1.2 The Stress–Strain Behavior

(i) The true stress–strain curve The stress–strain curve of an annealed material
in simple tension is found to coincide with that in simple compression when the true
stress σ is plotted against the true or natural strain ε. The true stress, defined as the
load divided by the current cross-sectional area of the specimen, can be significantly
different from the nominal stress, which is the load per unit original area of cross-
section. Let l denote the current length of a tensile specimen and dl the increase in
length produced by a small increment of the stress. Then the true strain increases by
the amount dε= dl/l. If the initial length is l0, the total strain is ε= ln(l0/l), called
the true or natural strain.† For a specimen uniformly compressed from an initial
height h0 to a final height h, the magnitude of the natural strain is ε= ln(h0/h). The
conventional or engineering strain e, on the other hand, is the amount of extension
or contraction per unit original length or height. It follows that ε= ln(l+ e) in the
case of tension, and ε=−ln(l− e) in the case of compression. Thus ε becomes
progressively lower than e in tension, and higher than e in compression, as the
deformation is continued in the plastic range.

Figure 1.1 shows the true stress–strain curve of a typical annealed material
in simple tension. So long as the stress is sufficiently small, the material behaves
elastically, and the original size of the specimen is regained on removal of the
applied load. The initial part of the stress–strain curve is a straight line of slope
E, which is known as Young’s modulus. The point A represents the proportional
limit at which the linear relationship between the stress and the strain ceases to
hold. The elastic range generally extends slightly beyond the proportional limit.
For most metals, the transition from elastic to plastic behavior is gradual, owing to
successive yielding of the individual crystal grains. The location of the yield point
B is, therefore, largely a matter of convention. The corresponding stress Y , known
as the yield stress, is generally defined as that for which a specified small amount of
permanent deformation is observed. For theoretical purposes, it is often convenient

† The concept of natural strain has been introduced by P. Ludwik, Elemente der Technologischen
Mechanik, Springer Verlag, Berlin (1909). The natural strains associated with successive deformations
are additive, but the engineering strains are not.
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Figure 1.1 True stress–strain curve
of metals with effects of unloading
and reversed loading.

to assume a sharp yield point defined by the intersection of a pair of straight lines,
one of which is a continuation of OA and the other a tangent to the stress–strain
curve at a point slightly above B.

Beyond the yield point, the stress continually increases with further plastic
strain, while the slope of the stress–strain curve, representing the rate of strain-
hardening, steadily decreases with increasing stress. If the specimen is stressed to
some point C in the plastic range and the load is subsequently released, there is an
elastic recovery following the path CD which is very nearly a straight line† of slope
E. The permanent strain that remains on complete unloading is equal to OE. On
reapplication of the load, the specimen deforms elasticity until a new yield point
F is reached. Neglecting the hysteresis loop of narrow width formed during the
loading and unloading, F may be taken as coincident with C. On further loading,
the stress–strain curve proceeds along FG, virtually as a continuation of the curve
BC. The curve EFG may be regarded as the stress–strain curve of the metal when
prestrained by the amount OE. The greater the degree of prestrain, the higher the
new yield point and the flatter the strain-hardening curve. For a heavily prestrained
metal, the rate of strain-hardening is so small that the material may be regarded as
approximately nonhardening or ideally plastic.

A generic point on the stress–strain curve in the plastic range corresponds to
a recoverable elastic strain equal to σ/E, and an irrecoverable plastic strain equal

† L. Prandtl, Z. angew. Math. Mech., 8: 85 (1928).
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to ε− σ/E. If the stress is plotted against the plastic strain only, and the material
is assumed to have a sharp yield point, the resulting curve will begin at σ=Y . Let
H be the slope of the true stress–strain curve excluding the elastic strain, and T
the slope of the curve including the elastic strain, for a given value of the stress σ.
The quantities H and T are known as the plastic modulus and the tangent modulus
respectively. A stress increment dσ produces an elastic strain increment dσ/E and
a plastic strain increment dσ/H, while the total strain increment is dσ/T . Hence the
relationship between H and T is

1

T
= 1

E
+ 1

H
(1)

In an annealed material, H is considerably greater than T at the initial yielding, but
these two moduli rapidly approach one another as the strain is increased. The differ-
ence between H and T becomes insignificant when the slope is only a few times the
yield stress. At this stage, the elastic strain increment becomes negligible in com-
parison with the plastic strain increment. When the total strain is sufficiently large,
the elastic strain itself is negligible. The stress–strain behavior at sufficiently large
strains is identical to that of a hypothetical material in which E is infinitely large. Such
a material is regarded as rigid/plastic, since it remains undeformed so long as the
stress is below the yield point, while the subsequent deformation is entirely plastic.

Suppose that a specimen that has been completely unloaded from a tensile plas-
tic state, represented by the point C, is reloaded in simple compression (Fig. 1.1).
The stress–strain curve will then follow the path DF ′, where the new yield point
F ′ corresponds to a stress that is appreciably smaller in magnitude than that at C.
This phenomenon is known as the Bauschinger effect,† which occurs in real metals
whenever there is a reversal of the stress. The subsequent strain-hardening follows
the path F ′G′, and approaches the stress–strain curve in compression as the loading
is continued. The lowering of the yield stress in reversed loading is mainly caused by
residual stresses that are left in the specimen on a microscopic scale due to the differ-
ent stress states in the individual crystals. The Bauschinger effect can, therefore, be
largely removed by a mild annealing. In the theory of plasticity, it is generally neces-
sary to neglect the Bauschinger effect, the material being assumed to have identical
yield stresses in tension and compression irrespective of the previous cold-work.

Some metals, such as annealed mild steel, exhibit a sharp yield point followed
by a sudden drop in the stress, which remains approximately constant during a
small amount of further straining. The sharp peak is known as the upper yield point,
which is usually 10 to 20 percent higher than the lower yield point represented
by the constant stress. At the upper yield point, a lamellar plastic zone, known as
Lüder’s band, inclined at approximately 45◦ to the tensile axis, appears at a local
stress concentration. During the subsequent elongation under constant stress, several
Lüder’s bands appear and gradually spread over the entire specimen. After a total
yield point elongation of about 10 percent, the stress begins to rise again due to

† J. Bauschinger, Zivilingenieur, 27: 289 (1881).
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strain-hardening, and the stress–strain curve then continues as before. The yield
point drop is suppressed by a light cold-work, but the phenomenon reappears after
the metal has been rested for several days at room temperature, or several hours at
a relatively high temperature.†

(ii) Some consequences of work-hardening A longitudinal extension in the tensile
test is accompanied by a contraction in the lateral direction. The ratio of the mag-
nitude of the lateral strain increment to that of the longitudinal strain increment is
known as the contraction ratio, denoted by η. In the elastic range of deformation, the
contraction ratio has a constant value equal to Poisson’s ratio ν.When the yield point
is exceeded, the plastic part of the lateral strain increment for an isotropic material
is numerically equal to one-half of the longitudinal plastic strain increment. Since
the ratio of the elastic parts of the lateral and longitudinal strain increments is equal
to −ν, the total lateral strain increment in uniaxial tension is

dε′ = − 1
2 dε+ ( 1

2 − ν)dεe

where dεe is the elastic part of the longitudinal strain increment dε. In view of the
relationship dεe= dσ/E= (T/E)dε, the contraction ratio becomes

η = −dε′

dε
= 1

2 − ( 1
2 − ν)

T

E
(2)

Since the slope of the stress–strain curve decreases fairly rapidly in the early stages
of strain-hardening, the contraction ratio rapidly approaches the asymptotic value
of 0.5 as the strain is increased in the plastic range.‡ For a material having a sharp
yield point, the contraction ratio changes discontinuously at this point to a value that
depends on the initial rate of strain-hardening. When the tangent modulus becomes
of the same order as that of the current yield stress, η� 0.5, and the incremental
change in volume becomes negligible.

The standard tensile test is unsuitable for obtaining the stress–strain curve of
metals up to large values of the strain, since the specimen begins to neck when the
rate of hardening decreases to a critical value. At this stage, the increase in load
due to strain-hardening is exactly balanced by the decrease in load caused by the
diminution of the area of cross section. Consequently, the load attains a maximum
at the onset of necking. The longitudinal load at any stage is P= σA, where A is the
current cross-sectional area and σ the current stress, and the corresponding volume
of the specimen is lA, where l is the current length. Using the constancy of volume,
the maximum load condition dP= 0 may be written as

dσ

σ
= −dA

A
= dl

l

† In addition to low-carbon steel, yield point phenomenon has been observed in aluminum,
molybdenum, and titanium alloys.

‡ For an experimental investigation on the variation of the contraction ratio, see A. Shelton,
J. Mech. Eng. Sci., 3: 89 (1961).
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Figure 1.2 Peculiarities in tension and compression. (a) Location of point of tensile necking;
(b) nominal stress versus engineering strain.

Since dl/l is equal to dε, the condition for the onset of necking becomes

dσ

dε
= σ (3)

When the true stress–strain curve is given, the point on the curve that corresponds to
the tensile necking can be located graphically from the fact that the slope at this point
is equal to the current stress (Fig. 1.2a). A heavily prestrained metal will obviously
neck as soon as the yield point is exceeded. Since dε= de/(1+ e), the condition for
necking can be expressed in the alternative form

dσ

de
= σ

1+ e

It follows that the maximum load corresponds to the point of contact of the tangent
to the (σ, e) curve from the point (−1, 0) on the negative strain axis.† The tensile
test becomes unstable when the load reaches its maximum. The deformation is
confined locally in the neck, while the remainder of the specimen recovers elastically
under decreasing load until fracture intervenes. The stress distribution in the neck
assumes a triaxial state which varies through the cross section of the neck. The
test no longer provides a direct measure of the stress–strain behavior. Although the
stress–strain curve may be continued by introducing a correction factor that requires

† A Considere, Ann. ponts et chausses, 6: 574 (1885). An interesting discussion has been given by
C. R. Calladine, Engineering Plasticity, Chap. 2, Pergamon Press, Oxford (1969).
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careful measurements of the geometry of the neck,† the experimental difficulties
render the method unsuitable for practical purposes.‡

The strain-hardening characteristic of metals at large strains is most conveniently
obtained by compressing a solid cylindrical specimen between a pair of parallel
platens. In the absence of efficient lubrication, the compression test is complicated
by the fact that the friction at the platens restricts the metal flow at the ends of
the specimen, causing barreling as the compression proceeds. Since homogeneous
compression is thus prevented by friction, the stress–strain curve cannot be derived
by the direct measurement of the load and the change in height of the specimen. In
actual practice, the difficulty is overcome by using several cylinders with different
initial diameter/height ratios, subjecting them to the same load each time on an
incremental basis, and then extrapolating the results at each stage to obtain the strain
corresponding to zero diameter/height ratio.§ Since the barreling would theoretically
disappear for a specimen of infinite height, the extrapolation method eliminates the
frictional effect.

Homogeneous deformation in the simple compression test can be achieved by
inserting PTFE (polytetra fluoroethylene) films of suitable thickness between the
specimen and the compression platens. As well as producing effective lubrication,
the PTFE films are themselves compressed so as to exert radial pressure to the
material near the periphery. This inhibits the barreling tendency, except when the
film thickness is too small. An excessive film thickness, on the other hand, produces
bollarding in which the diameter of the specimen becomes bigger at the ends than
at the middle. For a given specimen, there is an optimum film thickness for which
neither barreling nor bollarding would occur. The compression should be carried
out incrementally, renewing the PTFE films after each load application. Using the
constancy of volume, the load required during the homogeneous compression may
be written as

P = σA = σA0h0

h
= σA0

1− e

where A0 is the original area of cross section of the specimen. The graph for P against
e shows an upward inflection and rises continuously without limit (Fig. 1.2b). Setting
d2P/de2= 0, and using the fact that d/dε= (1− e)d/de, the condition for inflection
is found as (

d

dε
+ 2

)(
dσ

dε
+ σ

)
= 0 (4)

† P. W. Bridgman, Trans. A.S.M.E., 32: 553 (1944); N. N. Davidenkov and N. I. Spiridonova, Proc.
Am. Soc. Test. Mat., 46: 1147 (1946). See also E. R. Marshall and M. C. Shaw, Trans. A.S.M.E., 44:
716 (1952); J. D. Lubahn and R. P. Felgar, Plasticity and Creep of Metals, p. 114, Wiley and Sons, New
York (1961).

‡ A dynamic analysis for the development of the neck has been given by N. K. Gupta and B. Karunes,
Int. J. Mech. Sci., 21: 387 (1979).

§ The extrapolation method has been developed by G. Sachs, Zeit. Metallkunde, 16: 55 (1924),
M. Cook and E. C. Larke, J. Inst. Metals, 71: 371 (1945), A. B. Watts and H. Ford, Proc. Inst. Mech.
Eng., 169: 1141 (1955).
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which defines the corresponding point on the true stress–strain curve. This point is
most conveniently located if the stress–strain curve is represented by an empirical
equation. In view of the incompressibility of the material, the nominal stress is
s= σ exp(ε) in compression and s= σ exp(−ε) in tension.

The work done in changing the height of a specimen from h to h+ dh in simple
compression is−P dh, where P is the current axial load. The incremental work done
per unit volume of the specimen is therefore equal to −P dh/Ah or σ dε. It follows
that during the homogeneous compression of a specimen from an initial height h0
to a current height h, the work done per unit volume is given by the area under the
true stress–strain curve up to a total strain of ln(h0/h).

(iii) Empirical stress–strain equations For theoretical computations, it is often
necessary to represent an experimentally determined stress–strain curve by an empir-
ical equation of suitable form. When the material is rigid/plastic, it is frequently
convenient to employ the Ludwik power law†

σ = Cεn (5)

where C is a constant stress, and n is a strain-hardening exponent usually lying
between zero and 0.5. The equation predicts a zero initial stress and an infinite initial
slope, except for n= 0 which represents a nonhardening rigid/plastic material. The
higher the value of n, the more pronounced is the strain-hardening characteristic of
the material (Fig. 1.3a). Since dσ/dε= nσ/ε in view of (5), it follows from (3) that
the magnitude of the true strain at the onset of necking in simple tension is equal to
n. The work done per unit volume during a homogeneous extension or contraction
is easily shown to be σε/(1+ n), where σ and ε are the final values of stress and
strain.

The simple power law (5) may be readily modified by including a constant term
Y representing the initial yield stress. The stress–strain equation then becomes

σ = Y (1+ mεn) (6)

where m and n are dimensionless constants. Although this formula represents the
strict rigid/plastic behavior of metals, it does not give a better fit for an actual stress–
strain curve over a wide range of strains. When n= 1, the above equation represents a
linear strain-hardening, which is a reasonable approximation for heavily prestrained
metals. A more successful formula, due to Swift,‡ is the generalized power law

σ = C(m+ ε)n (7)

where C, m, and n are empirical constants. The stress–strain curve represented by
(7) can be obtained from that given by (5) if the stress axis is move along the positive
strain axis through a distance m. Hence m may be regarded as the amount of prestrain

† P. Ludwik, Elem. Technol. Mech., Springer Verlag, Berlin (1909).
‡ H. W. Swift, J. Mech. Phys. Solids, 1: 1 (1952).
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Figure 1.3 Empirical stress–strain curves for rigid/plastic materials. (a) Ludwik equation; (b) Voce
equation.

in a material whose stress–strain curve in the annealed state corresponds to m= 0,
the value of n remaining the same. If a given prestrained metal is represented by both
(5) and (7), the value of n in the two cases will of course be different. The instability
strain in simple tension according to the Swift equation is n−m for m� n and zero
for m� n.

For certain applications involving rigid/plastic materials, it is convenient to use
an equation suggested by Voce.† In its simplest form, the Voce equation may be
written as

σ = C(1− me−nε) (8)

where e is the exponential constant. The curves corresponding to varying m and n
approach the asymptote σ=C (Fig. 1.3b). However, C is unlikely to be the satu-
ration stress of a given metal as the rate of hardening becomes vanishingly small.
The rapidity with which the asymptotic value is approached is represented by n.
The coefficient m defines the initial state of hardening, the fully hardened material
corresponding to m= 0. The slope of the stress–strain curve given by (8) is equal to
n(C− σ), which varies linearly with the stress.

When the elastic and plastic strains are of comparable magnitudes, it is necessary
to replace ε in the preceding equations by the plastic strain εp. Considering the power
law (5), the plastic part of the strain may be assumed to vary as σm, where m= 1/n,
Since the elastic part of the strain is equal to σ/E, the total strain may be expressed

† E. Voce, J. Inst. Metals, 74: 537 (1948). See also J. H. Palm, Appl. Sci. Res., A-2: 198 (1948).
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Figure 1.4 Empirical stress–strain curves for elastic/plastic materials. (a) Modified Ludwik equation;
(b) Ramberg-Osgood equation.

by the Ramberg-Osgood equation†

ε = σ

E

{
1+ α

(
σ

σ0

)m−1
}

(9)

where σ0 is a nominal yield stress and α a dimensionless constant. The slope of
the stress–strain curve given by the above equation continuously decreases from
the value E at the origin (Fig. 1.4b). At the nominal yield point σ= σ0, the plastic
strain is α times the elastic strain, and the secant modulus is E/(1+α). The tangent
modulus at any point of the curve is given by

E

T
= 1+ αm

(
σ

σ0

)m−1

(10)

The second term on the right-hand side is equal to E/H in view of (1). The stress–
strain curve for a range of materials can be reasonably fitted by Equation (9) with
α= 3/7. For a nonhardening material (m=∞), the equation degenerates into a pair
of straight lines meeting at the yield point σ= σ0.

The contraction ratio η determined from (2) and (10) is plotted against Eε/σ0
in Fig. 1.5, assuming α= 3/7. Due to the nature of the Ramberg-Osgood equation,
a variation of η is predicted even in the elastic range of straining. The contraction

† W. Ramberg and W. R. Osgood, NACA Tech. Note, 902 (1943).
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Figure 1.5 Variation of the contraction ratio with longitudinal strain in uniaxial tension according to
the Ramberg-Osgood stress–strain equation (ν= 0.3).

ratio increases very rapidly in the neighborhood of the yield point, following which
η approaches the value 0.5 in an asymptotic manner. The actual value of η is seen
to be reasonably close to 0.5 while the total strain is still of the elastic order of
magnitude.

It is sometimes more convenient to employ a stress–strain equation where the
curve in the plastic range is expressed by a simple power law, the material being
assumed to have a definite yield point at σ=Y . The empirical representation then
becomes

σ =




Eε ε � Y

E

Y

(
Eε

Y

)n

ε � Y

E

(11)

where n is generally less than 0.5. The slope of the stress–strain curve given by (11)
changes discontinuously from E to nE at the yield point (Fig. 1.4a). The tangent
modulus at any point in the plastic range is n times the secant modulus. The empirical
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curve is effectively the Ludwik curve whose initial part is replaced by a chord of
slope E.

The Ramberg-Osgood curve represents a continuous transition from the elastic
to the plastic behavior expressed by a single equation when the material work-
hardens. A similar curve for the ideally plastic material is given by the equation

σ = Y tanh

(
Eε

Y

)

which is due to Prager.† The curve having an initial slope E gradually bends over
to approach the yield stress Y in an asymptotic manner. The approach is so rapid
that σ is within 1 percent of Y when ε is only 4Y/E. The tangent modulus at any
point on the curve is equal to E(1− σ2/Y2), and the corresponding plastic modulus
is E(Y2/σ2− 1). These moduli soon become negligible while the strain is still quite
small.‡

(iv) Influence of pressure, strain rate, and temperature The tensile test of ductile
materials under superimposed hydrostatic pressure has revealed that the yield point
and the uniform elongation are unaffected by the applied pressure, but the strain to
fracture increases with the intensity of the pressure. The increased ductility of the
material is caused by the lateral compressive stresses which inhibit the formation of
microcracks that lead to fracture. Test results for both tension and compression of
brittle materials under fluid pressure indicate that there is a certain critical pressure
above which the material behaves in a ductile manner.§ The stress–strain curves
for axially compressed limestone cylinders under uniform fluid pressures acting on
the curved surface are shown in Fig. 1.6, where σ denotes the axial compressive
stress in excess of the confining pressure p. Each curve corresponds to a particular
confining pressure expressed in atmospheres.¶ Some materials are found to suffer
a certain amount of permanent volume change when subjected to hydrostatic pres-
sures of exceedingly high magnitude, although the change is negligible in ordinary
situations.‖

† W. Prager, Rev. Fac. Sci., Univ. Istanbul, 5: 215 (1941); Duke Math. J., 9: 228 (1942).
‡ Other forms of stress–strain equation are sometimes used for the derivation of special solutions.

See, for example, R. Hill, Phil. Mag., 41: 1133 (1950), and J. Chakrabarty, Int. J. Mech. Sci., 12: 315
(1970).

§ The pressure can be accurately measured from the change in resistance of a manganin wire
immersed in the pressurized fluid. A detailed account of the experimental investigations regarding the
effect of hydrostatic pressure on metals has been presented by P. W. Bridgman, Studies in Large Plastic
Flow and Fracture, McGraw-Hill Book Company, New York (1952), and by H. Ll. D. Pugh (ed.),
Mechanical Behavior of Materials under Pressure, Elsevier, Amsterdam (1970).

¶ Experimental results on the compression of marble and limestone cylinders under fluid pressure
have been reported by Th. von Karman, Z. Ver. deut. Ing., 55: 1749 (1911), and by D. T. Griggs,
J. Geol., 44: 541 (1936).
‖ P. W. Bridgman, J. Appl. Phys., 18: 246 (1947). The effect of hydrolastic pressure on the shear

properties of metals has been investigated by B. Crossland, Proc. Inst. Mech. Eng., 169: 935 (1954);
B. Crossland and W. H. Dearden, ibid., 172, 805 (1958). See also M. C. Shaw, Int. J. Mech. Sci., 22:
673 (1980).
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Figure 1.6 Behavior of limestone cylinders under axial thrust and lateral pressure (after Griggs).

Plastic instability is found to occur in cylindrical bars when subjected to lateral
fluid pressures of sufficient magnitude.† The phenomenon is caused by a slight
non-uniformity in distortion of the unconstrained surface which is exposed to fluid
pressure. When the material is ductile, the longitudinal strain at the onset of necking
is exactly the same as that in uniaxial tension, but the cross section of the neck is
greatly reduced before fracture. Brittle materials, which normally fracture with no
significant plastic strain under simple tension, are found to deform beyond the point
of necking when tested under lateral fluid pressure. Moreover, the uniform strain at
the onset of necking is found to be identical to that given by (3), with the stress–strain
curve obtained in simple compression. For extremely brittle materials, the fracture
mode seems to remain brittle even under a fluid pressure acting on the lateral surface.‡

At room temperature, the stress–strain curve of metals is practically indepen-
dent of the rate of straining attainable in ordinary testing machines. High-speed
tensile tests have shown that the yield stress increases with the strain rate, and this
effect is more pronounced at elevated temperatures. The true strain rate in simple
compression is defined as ε̇=−ḣ/h, where h is the current specimen height and ḣ its
rate of change. To obtain a constant strain rate during a test, it is therefore necessary
to decrease the platen speed in proportion to the specimen height. This is achieved
by using a cam plastometer in which one of the compression platens is actuated by
a cam of logarithmic profile.§ Maintaining a constant temperature during a test is

† J. Chakrabarty. Proc. 13th Int. M.T.D.R. Conf., p. 565, Pergamon Press, Oxford (1972).
‡ P. W. Bridgman, Phil. Mag., July, 63 (1912).
§ The cam plastometer has been devised by E. Orowan, Brit. Iron and Steel Res. Assoc. Rep.,

MW/F/22 (1950).
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Figure 1.7 Effects of strain rate and temperature on the stress–strain curve of metals. (a) EN25 steel at
1000◦C (after Cook); (b) annealed copper at a strain rate of 10−3/s (after Mahtab et al.).

more difficult, since the heat generated during the test raises the temperature of the
specimen adiabatically. Figure 1.7 shows typical stress–strain curves of metals in
compression, obtained under constant temperatures and strain rates.†

For a given value of the strain, the combined effect of strain rate and temperature
on the yield stress may be expressed by the functional relationship‡

σ = f

{
ε̇ exp

(
Q

RT

)}
(12)

where Q is an activation energy for plastic flow, T the absolute testing temperature,
and R the universal gas constant equal to 8.314 J/g mol ◦K. The above relationship
has been experimentally confirmed for several metals over wide ranges of strain rate

† For experimental methods and results on the high-speed compression at elevated temperatures,
see P. M. Cook, Proc. Conf. Properties of Materials at High Rates of Strain, Inst. Mech. Eng., 86
(1957); F. U. Mahtab, W. Johnson, and R. A. C. Slater, Proc. Inst. Mech. Eng., 180: 285 (1965);
S. K. Samanta, Int. J. Mech. Sci., 10: 613 (1968), J. Mech. Phys. Solids, 19: 117 (1971); T. A. Dean and
C. E. N. Sturgess, Proc. Inst. Mech. Eng., 187: 523 (1973). See also R. A. C. Slater, Engineering
Plasticity, Chap. 6, Wiley and Sons, London (1977); M. S. J. Hashmi, J. Strain Anal., 15: 201 (1980).

‡ C. Zener and J. H. Hollomon, J. Appl. Phys., 15: 22 (1944); T. Trozera, O. D. Sherby, and
J. L. Dorn, Trans. ASME, 49: 173 (1957). The expression in the curly bracket of (12) is often called the
Zener-Hollomon parameter, which is also useful in the theory of high-temperature creep. A generalized
constitutive equation, including the effect of strain, has been discussed by J. M. Alexander, Plasticity
Today (Ed. H. Sawczick), Elsevier, Amsterdam (1986).
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and temperature. When the temperature is held constant, the test results can be fitted
by the power law†

σ = Cεnε̇m (13)

where C, m and n depend on the operating temperature. The exponent m is known as
the strain-rate sensitivity, which generally increases with temperature, particularly
when it is above the recrystallization temperature. The strain-hardening exponent
n, on the other hand, rapidly decreases with increasing values of the elevated
temperature.

The dependence of the flow stress on strain rate and temperature for a given
strain is sometimes expressed in the alternative form‡

σ = f

{
T

(
1− m ln

ε̇

ε̇0

)}
(14)

where m and ε̇0 are constants, the quantity in the curly bracket being known as the
velocity modified temperature. It is consistent with the fact that an increase in strain
rate is in effect equivalent to a decrease in temperature. Equation (14) agrees with
test data for a fairly wide range of values of the strain rate and temperature.

Above the recrystallization temperature, the yield stress attains a saturation
value after a small amount of strain, as a result of the work-hardening rate being
balanced by the rate of thermal softening. The dependence of the saturation stress
on strain rate and temperature can be expressed with reasonable accuracy by the
empirical equation§

σ = C sinh−1
(

mε̇n exp
b

T

)

where b, C, m, and n are material constants. The activation energy Q is then indepen-
dent of the temperature, and is approximately equal to Rb/n.A distinction between
cold- and hot-working of metals is usually made on the basis of the recrystalliza-
tion temperature, whose absolute value is roughly one-half of the absolute melting
temperature. The above equation reduces to a power law when the expression in the
parenthesis is sufficiently small.¶

† W. F. Hosford and R. M. Caddell, Metal Forming Mechanics and Metallurgy, 2d ed., Chap. 5,
Prentice-Hall, Englewood Cliffs, NJ (1993).

‡ C. W. MacGregor and J. C. Fisher, J. Appl. Mech., 13: 11 (1946).
§ C. M. Sellars and W. J. McG. Tegart, Mem. Sci. Rev. Met., 63: 731 (1966); S. K. Samanta, Proc.

11th Int. M.T.D.R. Conf., Pergamon Press, Oxford (1970).
¶ Large neck-free extensions are possible in certain highly rate-sensitive alloys, called superplastic

alloys. See W. A. Backofen, I. Turner and H. Avery, Trans. Q. ASM, 57: 981 (1966); J. W. Edington,
K. N. Melton, and C. P. Cutler, Prog. Mater. Sci., 21: 63 (1976); K. A. Padmanabhan and G. J. Davies,
Superplasticity, Springer-Verlag, Berlin (1980); T. G. Nieh, J. Wadsworth, and O. D. Sherby,
Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge (1997).
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1.3 Analysis of Stress

(i) Stress tensor When a body is subjected to a set of external forces, internal forces
are produced in different parts of the body so that each element of the body is in
a state of statical equilibrium. Through any point O within the body, consider a
small surface element δS whose orientation is specified by the unit vector l along the
normal drawn on one side of the element (Fig. 1.8a). The material on this side of δS
may be regarded as exerting a force δP across the surface element upon the material
on the other side. The limit of the ratio δP/δS as δS tends to zero is the stress vector
T at O associated with the direction I. For given external loading, the stress acting
across any plane passing through a given point O depends on the orientation of the
plane. The resolved component of the stress vector along the unit normal l is called
the direct or normal stress denoted by σ, while the component tangential to the plane
is known as the shear stress denoted by τ.

Consider now a set of rectangular axes Ox, Oy, and Oz emanating from a
typical point O, and imagines a small rectangular parallelepiped at O having its
edges parallel to the axes of reference (Fig. 1.8b). The normal stresses across the
faces of the block are denoted by σx, σy, and σz, where the subscripts denote the
directions of the normal to the faces. The shear stress acting on the faces normal to
the x axis is resolved into the components τxy and τxz parallel to the y and z axes
respectively. The first suffix denotes the direction of the normal to the face and the
second suffix the direction of the component. In a similar way, the shear stresses
on the faces normal to the y axis are denoted by τyx and τyz, and those on the faces
normal to the z axis by τzx and τzy. The stresses are taken as positive if they are
directed as shown in the figure, when the outward normals to the faces are in the
positive directions of the coordinate axes. The positive directions are all reversed
on the remaining faces of the block where the outward normals are in the negative
directions of the axes of reference. The nine components of the stress at any point
form a second-order tensor σij, known as the stress tensor, where i and j take integral

Figure 1.8 Definition of stress. (a) Normal and shear stresses; (b) components of stress tensor.
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values 1, 2, and 3. The stress components may be displayed as elements of the square
matrix

σij =

σx τxy τxz
τyx σy τyz
τzx τzy σz


 =


σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33




The forces acting on the faces of the parallelepiped are clearly in equilibrium.
To examine the couple equilibrium, let δx, δy, δz denote the lengths of these faces
along the respective coordinate axes. Then the resultant couple about the z axis is
(τxy− τyx)δx δy δz, which must vanish for equilibrium. This gives τxy= τyx. Simi-
larly, the conditions for couple equilibrium about the other two axes give τyz= τzy
and τzx = τxz. These identities may be expressed as σij = σji, implying that the stress
tensor is symmetric with respect to its subscripts. Thus there are six independent
stress components, three normal components σx, σy, σz, and three shear components
τxy, τyz, τzx, which completely specify the state of stress at each point of the body.
The matrix representing the stress tensor is evidently symmetrical.

The mean of the three normal stresses, equal to (σx + σy+ σz)/3, is known as
the hydrostatic stress denoted by σ0. A deviatoric or reduced stress tensor sij is
defined as that which is obtained from σij by reducing the normal stress components
by σ0. This gives the deviatoric stresses as

sij =

sx sxy sxz

syx sy syz
szx szy sz


 =


(σx − σ0) τxy τxz

τyx (σy − σ0) τyz
τzx τzy (σz − σ0)




The deviatoric normal stresses are therefore given by

3sx = 2σx − σy − σz, 3sy = 2σy − σz − σx, 3sz = 2σz − σx − σy

The deviatoric shear stresses are the same as the actual shear stresses. Since sx + sy+
sz= 0, the deviatoric normal stresses cannot all have the same sign. The difference
between any two normal components of the deviatoric stress is the same as that
between the corresponding components of the actual stress. Expressed in suffix
notation, the relationship between sij and σij is

sij = σij − σ0δij = σij − 1
3σkkδij (15)

where δij is the Kronecker delta whose value is unity when i= j and zero when
i 
= j. Evidently, δij = δji. Any repeated or dummy suffix indicates a summation of all
terms obtainable by assigning the values 1, 2, and 3 to this suffix in succession. Thus
σkk = σx + σy+ σz. It follows from the definition of the delta symbol thatσijδjk = σik ,
where j is a dummy suffix and i, k are free suffixes. Each term of a tensor equation
must have the same free suffixes, but a dummy suffix can be replaced by any other
letter different from the free suffixes.
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(ii) Stresses on an oblique plane Consider the equilibrium of a small tetrahedron
OABC of which the edges OA, OB, and OC are along the coordinate axes (Fig. 1.9).
Let (l, m, n) be the directions cosines of a straight line drawn along the exterior
normal to the oblique plane ABC. These are the components of the unit normal 1
with respect to Ox, Oy, and Oz. If the area of the face ABC is denoted by δS, the
faces OAB, OBC, and OCA have areas n δS, l δS, and m δS respectively. The stress
vector T acting across the face ABC has components Tx, Ty, and Tz along the axes
of reference. Resolving the forces in the directions Ox, Oy, and Oz, we get

Tx = lσx + mτxy + nτzx

Ty = lτxy + mσy + nτyz (16)

Tz = lτzx + mτyz + nσz

on cancelling out δS from each equation of force equilibrium. When δS tends to zero,
these equations give the components of the stress vector at O, associated with the
direction (l, m, n), in terms of the components of the stress tensor. Using the suffix
notation and the summation convention, (16) can be expressed as

Tj = liσij

where l1= l, l2=m, l3= n. The above equation is equivalent to three equations
corresponding to the three possible values of the free suffix j. A single free suffix
therefore characterizes a vector. The normal stress across the plane specified by its

Figure 1.9 Stresses across an oblique
plane in a three-dimensional state of stress.
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normal (l, m, n) is

σ = lTx + mTy + nTz = ljTj = liljσij

= l2σx + m2σy + n2σz + 2lmτxy + 2mnτyz + 2nlτzx (17)

The shear stress across the plane can be resolved into two components in a pair of
mutually perpendicular directions in the plane. Denoting one of these directions by
(l′, m′, n′), the corresponding shear component is obtained as

τ′ = l′Tx + m′Ty + n′Tz = l′jTj = lil
′
jσij

= ll′σx + mm′σy + nn′σz + (lm′ + ml′)τxy + (mn′ + nm′)τyz + (nl′ + ln′)τzx
(18)

This evidently is the resolved component of the resultant stress in the direction
(l′, m′, n′). The direction cosines satisfy the well-known geometrical relations

l2 + m2 + n2 = 1 l′2 + m′2 + n′2 = 1 ll′ + mm′ + nn′ = 0 (19)

The first two equations express the fact (l, m, n) and (l′, m′, n′) represent unit vectors,
while the last relation expresses the orthogonality of these vectors. The shear stress
is most conveniently found from the fact that its magnitude is

√
T2− σ2, and its

direction cosines are proportional to its rectangular components

Tx − lσ Ty − mσ Tz − nσ

Let xi and x′i represent two sets of rectangular axes through a common origin O, and
aij denote the direction cosine of the x′i axis with respect to the xj axis. The direction
cosine of the xi axis with respect to the x′j axis is then equal to aji. It follows from
geometry that the coordinates of any point in space referred to the two sets of axes
are related by the equations

x′i = aijxj xj = aijx
′
i (20)

The components of any vector transform† according to the same law as (20). Let
σ′ij denote the components of the stress tensor when referred to the set of axes x′i. A
defining property of tensors is the transformation law

σ′ij = aikajlσkl (21)

Let us suppose that a11= l, a12=m, a13= n, and a21= l′, a22=m′, a23= n′. The
normal stress across the plane (l, m, n) is then equal to σ′11, and the corresponding
expression (17) can be readily verified from (21). Similarly, the component of the
shear stress across the plane resolved in the direction (l′, m′, n′) is equal to σ′12 which
can be shown to be that given by (18).

† It follows from (20) that x′i = aikxk = aikajkx′j , indicating that aikajk = δij , which furnishes six
independent relations of types (19).
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(iii) Principal stresses The normal stress σ has maximum and minimum values for
varying orientations of the oblique plane. Regarding l and m as the independent direc-
tion cosines, the conditions for stationary σ may be written as ∂σ/∂l= 0, ∂σ/∂m= 0.
Differentiating the first equation of (19) partially with respect to l and m, we get
∂n/∂l=−l/n and ∂n/∂m=−m/n. Inserting these results into the partial derivatives
of (17), and using (16), the stationary condition can be expressed as

Tx

l
= Ty

m
= Tz

n

This shows that the resultant stress across the plane acts in the direction of the normal
when the normal stress has a stationary value. Each of the above ratios is therefore
equal to the normal stress σ. The substitution into (16) gives

l(σx − σ)+ mτxy + nτzx = 0

lτxy + m(σy − σ)+ nτyz = 0 (22)

lτzx + mτyz + n(σz − σ) = 0

In suffix notation, these relations are equivalent to li(σij − σδij)= 0, which follows
directly from the fact that Tj = σlj across a principal plane. The set of linear homo-
geneous equations (22) would have a nonzero solution for l, m, n if the determinant
of their coefficients vanishes. Thus∣∣∣∣∣∣

σx − σ τxy τzx
τxy σy − σ τyz
τzx τyz σz − σ

∣∣∣∣∣∣ = 0

Expanding this determinant, we obtain a cubic equation in σ having three real roots
σ1, σ2, σ3, which are known as the principal stresses. These stresses act across
planes on which the shear stresses are zero. The cubic may be expressed in the form

σ3 − I1σ
2 − I2σ − I3 = 0 (23)

where

I1 = σx + σy + σz = σ1 + σ2 + σ3 = σii (24)

I2 = −(σxσy + σyσz + σzσx)+ τ2
xy + τ2

yz + τ2
zx

= −(σ1σ2 + σ2σ3 + σ3σ1) = 1
2 (σijσij − σiiσjj) (25)

I3 = σxσyσz + 2τxyτyzτzx − σxτ
2
yz − σyτ

2
zx − σzτ

2
xy

=
∣∣∣∣∣∣
σx τxy τzx
τxy σy τyz
τzx τyz σz

∣∣∣∣∣∣ = σ1σ2σ3 (26)



Chakra-01.tex 26/12/2005 12: 41 Page 22

22 theory of plasticity

The expressions for I1, I2, I3 in terms of the principal stresses follow from the fact that
(23) is equivalent to the equation (σ− σ1)(σ− σ2)(σ− σ3)= 0. Since the stationary
values of the normal stress do not depend on the orientation of the coordinate axes, the
coefficients of (23) must also be independent of the choice of the axes of references.
The quantities I1, I2, I3 are therefore known as the invariants of the stress tensor.†

The direction cosines corresponding to each principal stress can be found from
the first equation of (19) and any two equations of (22) with the appropriate value of
σ. Let (l1, m1, n1) and (l2, m2, n2) represent the directions of σ1 and σ2 respectively.
If we express (22) in terms of l1, m1, n1, and σ1, multiply these equations by l2, m2, n2
in order and add them together, and then subtract the resulting equation from that
obtained by interchanging the subscripts, we arrive at the result

(σ1 − σ2)(l1l2 + m1m2 + n1n2) = 0

If σ1 
= σ2, the above equation indicates that the directions (l1, m1, n1) and (l2, m2, n2)
are perpendicular to one another. It follows, therefore, that the principal directions
corresponding to distinct values of the principal stresses are mutually orthogonal.
These directions are known as the principal axes of the stress. When two of the
principal stresses are equal to one another, the direction of the third principal stress
is uniquely determined, but all directions perpendicular to this principal axis are
principal directions. When σ1= σ2= σ3, representing a hydrostatic state of stress,
any direction in space is a principal direction.

The invariants of the deviatoric stress tensor are obtained by replacing the actual
stress components in (24) to (26) by the corresponding deviatoric components. The
first deviatoric stress invariant is

J1 = sx + sy + sz = s1 + s2 + s3 = sii = 0

where s1, s2, s3 are the principal deviatoric stresses. These principal values are the
roots of the cubic equation

s3 − J2s− J3 = 0 (27)

where

J2 = −(sxsy + sysz + szsx)+ τ2
xy + τ2

yz + τ2
zx

= 1
2 (s2

x + s2
y + s2

z )+ τ2
xy + τ2

yz + τ2
zx

= 1
6 [(σx − σy)2 + (σy − σz)

2 + (σz − σx)2]+ τ2
xy + τ2

yz + τ2
zx (28)

J3 = sxsysz + 2τxyτyzτzx − sxτ
2
yz − syτ

2
zx − szτ

2
xy

=
∣∣∣∣∣∣
sx τxy τzx
τxy sy τyz
τzx τyz sz

∣∣∣∣∣∣ = s1s2s3 = 1
3 (s3

1 + s3
2 + s3

3) (29)

† Any symmetric tensor of second order has three real principal values, the basic invariants of the
tensor being identical in form to those for the stress.
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The last two expressions for J2 are obtained from the first expression by adding the
identically zero terms 1

2 (sx + sy+ sz)2 and 1
3 (sx + sy+ sz)2 respectively, and noting

the fact that sx − sy= σx − σy etc. Similarly, the last expression for J3 follows from
the preceding one on adding the term 1

3 (s1+ s2+ s3)3. In suffix notation, these
invariants can be written as

J2 = 1
2 sijsij J3 = 1

3 sijsjkski (30)

The repetition of all suffixes is a characteristic of invariants, which are scalars.
Substituting σ= s+ I1/3 in (23) and comparing the coefficients of the resulting
equation with those of (27), we obtain

J2 = I2 + 1
3 I2

1 J3 = I3 + 1
3 I1I2 + 2

27 I3
1

When J2 and J3 have been found, equation (27) may be solved by means of the
substitution s= 2

√
J2/3 cosφ, which reduces the cubic to

cos 3φ = J3

2

(
3

J2

)3/2

(31)

Since 4J3
2 � 27J2

3 , the right-hand side† of (31) lies between −1 and 1, and one
value of φ lies between 0 and π/3. The principal deviatoric stresses may therefore
be written as

s1 = 2

√
J2

3
cosφ s2, s3 = −2

√
J2

3
cos

(π
3
± φ

)
(32)

where 0�φ�π/3. Any function of these principal components is also a function
of the invariants, which play an important part in the mathematical development of
the theory of plasticity.

(iv) Principal shear stresses When the principal stresses and their directions are
known, it is convenient to take the principal axes as the axes of reference. If Ox,
Oy, Oz denote the coordinate axes associated with the principal stresses σ1, σ2, σ3
respectively, the components of the stress vector across a plane whose normal is in
the direction (l, m, n) are

Tx = lσ1 Ty = mσ2 Tz = nσ3

The normal stress across the oblique plane therefore becomes

σ = l2σ1 + m2σ2 + n2σ3 (33)

† Using (32) and (31), it can be shown that 4J3
2 − 27J2

3 = (σ1− σ2)2(σ2− σ3)2(σ3− σ1)2, which
is a positive quantity for distinct values of the principal stresses.
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If the magnitude of the shear stress across the plane is denoted by τ, then

τ2 = T2 − σ2 = (l2σ2
1 + m2σ2

2 + n2σ2
3 )− (l2σ1 + m2σ2 + n2σ3)2

= (σ1 − σ2)2l2m2 + (σ2 − σ3)2m2n2 + (σ3 − σ1)2n2l2 (34)

in view of the relation l2+m2+ n2= 1. Since the components of the normal stress
along the coordinate axes are (lσ, mσ, nσ), the components of the shear stress are
l(σ1− σ), m(σ2− σ), n(σ3− σ). Hence the direction cosines of the shear stress are

ls = l

(
σ1 − σ
τ

)
ms = m

(
σ2 − σ
τ

)
ns = n

(
σ3 − σ
τ

)
(35)

A plane which is equally inclined to the three principal axes is known as the octa-
hedral plane, the direction cosines of its normal being given by l2=m2= n2= 1/3.
These relations are satisfied by four pairs of parallel planes forming a regular octa-
hedron having its vertices on the principal axes. By (33) and (34), the octahedral
normal stress is equal to the hydrostatic stress σ0, and the octahedral shear stress is
of the magnitude

τ0 = 1
3

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 =

√
2
3 J2

The components of the octahedral shear stress along the principal axes are
numerically equal to 1/

√
3 times the deviatoric principal stresses.

We now proceed to determine the stationary values of the shear stress for varying
orientations of the oblique plane. To this end, we put n2= 1− l2−m2 in (34), and
express it in the form

τ2 = l2(σ2
1 − σ2

3 )+ m2(σ2
2 − σ2

3 )+ σ2
3 − {l2(σ1 − σ3)+ m2(σ2 − σ3)+ σ3}2

where l and m are treated as the independent variables. We shall follow the convention
σ1>σ2>σ3. Equating to zero the derivatives of τ2 with respect to l and m, we obtain

l(σ1 − σ3)[(1− 2l2)(σ1 − σ3)− 2m2(σ2 − σ3)]= 0

m(σ2 − σ3)[(1− 2m2)(σ2 − σ3)− 2l2(σ1 − σ3)]= 0
(36)

These equations are obviously satisfied for l=m= 0, and hence n= 1, which cor-
responds to a principal stress direction for which the shear stress has a minimum
value of zero. To obtain a maximum value of the shear stress, we set l= 0 sat-
isfying the first equation of (36), and use this value in the second equation to get
l− 2m2= 0. This gives l= 0, m2= n2= 1/2 corresponding to maximum shear stress
equal to 1

2 (σ2− σ3) according to (34). Similarly, the direction represented by m= 0,
n2= l2= 1/2 satisfies (36), and furnishes a maximum value of 1

2 (σ1− σ3) for the
shear stress. Finally, setting n= 0 and hence l2+m2= 1, we find that τ is a max-
imum for l2=m2= 1/2, giving a stationary value equal to 1

2 (σ1− σ2). The three
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Figure 1.10 Construction for the normal stress and the direction of the shear stress.

stationary shear stresses, known as the principal shear stresses, may therefore be
written as

τ1 = 1
2 (σ2 − σ3) τ2 = 1

2 (σ1 − σ3) τ3 = 1
2 (σ1 − σ2) (37)

These stresses act in directions which bisect the angles between the principal axes.
By (33), the normal stresses acting on the planes of τ1, τ2, τ3 are immediately found
to be, respectively,

1
2 (σ2 + σ3) 1

2 (σ1 + σ3) 1
2 (σ1 + σ2)

In view of the assumption σ1>σ2>σ3, the greatest shear stress is of magnitude
1
2 (σ1− σ3), and it acts across a plane whose normal bisects the angle between the
directions of σ1 and σ3. It follows from (32) that the greatest shear stress is equal to√

J2 cos(π/6−φ), where φ lies between zero and π/3 satisfying (31).

(v) Shear stress and the oblique triangle Consider now the direction of the shear
stress on an inclined plane in relation to the true shape of the oblique triangle. It
is assumed for simplicity that the direction cosines (l, m, n) are all positive.† Let
δh denote the perpendicular distance from the origin O to the oblique plane ABC
(Fig. 1.10a). Then the distances of the vertices A, B, C from O are δh/l, δh/m, δh/n
respectively, their ratios being

OA:OB:OC = mn:nl:lm (38)

The sides of the triangle are readily found from the right-angled triangles AOB,
BOC, and COA. The true shape of the oblique triangle ABC is therefore defined by
the ratios

AB:BC:CA = n
√

1− n2:l
√

1− l2:m
√

1− m2 (39)

† No generality is lost in this assumption, since the positive directions of the axes of reference can
be arbitrarily chosen, and the expressions for σ and τ involve only the squares of the direction cosines.
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The vertical angles of the triangle follow from (39) and the well-known cosine law.
The results can be conveniently put in the form

tan A = l

mn
tan B = m

nl
tan C = n

lm
(40)

The coordinate axes in Fig. 1.10a are in the directions of the principal stresses.
A line BD is drawn from the apex B to meet the opposite side of AC at D, such
that BD is perpendicular to the direction of the shear stress across the plane. The
components of the vector BD along the axes Ox, Oy, Oz are equal to ED, –OB, OE
respectively. Since BD is orthogonal to both the directions (l, m, n) and (ls, ms, ns),
the scalar products of BD with the unit vectors representing these directions must
vanish. Using (35) and (33), it is easily shown that

ED:OB:OE = mn(σ2 − σ3):nl(σ1 − σ3):lm(σ1 − σ2) (41)

If σ1>σ2>σ3, the line BD must meet AC internally as shown. Indeed, from the
similar triangles CDE and CAO, we have

CD

CA
= ED

OA
= ED

OB

OB

OA
= σ2 − σ3

σ1 − σ3
(42)

in view of (38) and (41). If points A, D, C, and G are located along a straight line, such
that GA= σ1, GD= σ2, and GC= σ3, and the true shape triangle ABC is constructed
on CA as base (Fig. 1.10b), then in view of (42), the shear stress is directed at right
angles to the line joining B and D. Since ns< 0 by (35), the direction of the shear
stress vector is obtained by a 90◦ counterclockwise rotation from the direction BD.
If R is the orthocenter of the triangle ABC, and BM is drawn perpendicular to CA,
then by Eqs. (40),

CM

AM
= cot C

cot A
= l2

n2

MR

MB
= cot A

tan C
= m2 (43)

since angle MRC is equal to the vertical angle A. If RN is drawn parallel to BD,
meeting CA at N , then MN/MD=MR/MB=m2, which gives

GN = GM +MN = (l2 + m2 + n2)GM + m2MD

= l2(GA−MA)+ m2GD+ n2(GC + CM) = l2GA+ m2GD+ n2GC

The expression on the right-hand side is equal to σ in view of (33). Hence GN
represents the magnitude of the normal stress transmitted across the plane.† It
follows from (34) and (41) that if OB represents the quantity nl(σ1− σ3) to a certain
scale, then BD will represent the shear stress τ to the same scale. Hence

OB

BD
= nl

(
σ1 − σ3

τ

)
= nl

τ
CA

† The constructions for the normal stress and the direction of the shear stress are due to H. W.
Swift, Engineering, 162: 381 (1946).



Chakra-01.tex 26/12/2005 12: 41 Page 27

stresses and strains 27

Figure 1.11 An element in a state of plane stress.

with reference to Fig. 1.10. Since RN/BD=MR/MB=m2 by (43), and
CA=√OC2+OA2, we have

RN = m2 · BD = m2τ

nl

OB

CA
= mτ√

1− m2

in view of (38). It follows that the magnitude of the shear stress on the plane is
τ=RN tan β, where β is the angle made by the normal to the plane with the direction
of the intermediate principal stress σ2.

(vi) Plane stress A state of plane stress is defined by σz= τyz= τzx = 0. The z
axis then coincides with a principal axis, and the corresponding principal stress
vanishes.† The orientation of Ox and Oy with respect to the other two principal
axes is, however, arbitrary. Consider a plane AB perpendicular to the xy plane, and
let φ be the counterclockwise angle made by the normal to the plane with the x
axis (Fig. 1.11). The shear stress τ will be reckoned positive when it is directed to
the left of the exterior normal. Setting l= cosφ, m= sin φ, and n= 0 in (16), the
components of the stress vector across AB are obtained as

Tx = σx cosφ + τxy sin φ Ty = τxy cosφ + σy sin φ (44)

The resolved components of the resultant stress along the normal and the tangent to
the plane are

σ = Tx cosφ + Ty sin φ τ = −Tx sin φ + Ty cosφ

† The results for plane stress are directly applicable to the more general situation where the z axis
coincides with the direction of any nonzero principal stress.
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Substituting for Tx and Ty in the above equations, the normal and shear stresses
across the plane are obtained as

σ = σx cos2φ + σy sin2φ + 2τxy sin φ cosφ

= 1
2 (σx + σy)+ 1

2 (σx − σy)cos 2φ + τxy sin 2φ (45)

τ = −(σx − σy)sin φ cosφ + τxy(cos2φ − sin2φ)

= − 1
2 (σx − σy)sin 2φ + τxy cos 2φ (46)

These results may be directly obtained from (16) and (17) by setting l=m′ = cosφ,
m=−l′ = sin φ and n= n′ = 0. Since dσ/dφ= 2τ, which is readily verified from
above, the shear stress vanishes on the plane for which the normal stress has a
stationary value. This corresponds to φ=α, where

tan 2α = 2τxy

σx − σy
(47)

which defines two directions at right angles to one another, giving the principal axes
in the plane of Ox and Oy. The principal stresses σ1, σ2 are the roots of the equation

(σ − σx)(σ − σy) = τ2
xy

which is obtained by writing Tx = σ cosφ and Ty= σ sin φ in (44), and then
eliminating φ between the two equations. The solution is

σ1, σ2 = 1
2 (σx + σy)± 1

2

√
(σx − σy)2 + 4τ2

xy (48)

The acute angle made by the direction of the algebraically greater principal stress
σ1 with the x axis is measured in the counterclockwise sense when τxy is positive,
and in the clockwise sense when τxy is negative. It follows from (48) that

σx + σy = σ1 + σ2 σxσy − τ2
xy = σ1σ2 (49)

These are the basic invariants of the stress tensor in a state of plane stress. Evidently,
any function of these invariants is also an invariant.

Let Oξ, and Oη represent a new pair of rectangular axes in the (x, y) plane,
and let φ be the angle of inclination of the ξ axis to the x axis measured in the
counterclockwise sense. Then the stress components σξ and τξη, referred to the
new axes, are directly given by the right-hand sides of (45) and (46) respectively.
The remaining stress component ση is obtained by writing π/2+φ for φ in (45),
resulting in

ση = σx sin2φ + σy cos2φ − 2τxy sin φ cosφ

= 1
2 (σx + σy)− 1

2 (σx − σy)cos 2φ − τxy sin 2φ (50)
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It immediately follows thatσξ + ση= σx + σy, which shows the invariance of the first
expression of (49). The invariance of the second expression may be similarly verified.

Considering the principal axes as the axes of reference, the shear stress across
an inclined plane can be written as τ=− 1

2 (σ1− σ2)sin 2φ, which indicates that the
shear stress is directed to the right of the outward normal to the plane when σ1>σ2
and 0<φ<π/2. The shear stress has its greatest magnitude when φ=±π/4, the
maximum value of the shear stress being

τmax = 1
2 |σ1 − σ2| = 1

2

√
(σx − σy)2 + 4τ2

xy (51)

There are two other principal shear stresses, having magnitudes 1
2 |σ1| and 1

2 |σ2|, and
bisecting the angles between the z axis and the directions of σ1 and σ2 respectively.
A little examination of the three principal values reveals that the numerically greatest
shear stress occurs in the plane of the applied stresses when σ1 and σ2 have opposite
signs, and out of the plane of the applied stresses when they are of the same sign.
In view of (49), the former corresponds to σxσy<τ

2
xy and the latter to σxσy>τ

2
xy. A

state of pure shear is given by σ1=−σ2, since the normal stress then vanishes on
the planes of maximum shear.

1.4 Mohr’s Representation of Stress

(i) Two-dimensional stress state A useful graphical method of analyzing the state
of stress has been developed by Mohr.† In this method, the normal and shear stresses
across any plane are represented by a point on a plane diagram in which σ and τ are
taken as rectangular coordinates. For the present purpose, it is necessary to regard
the shear stress as positive when it has a clockwise moment about a point within the
element. In Fig. 1.12, the stresses acting on planes perpendicular to the x and y axes
are represented by the points X and Y on the (σ, τ) plane. The circle drawn on XY
as diameter, and having its center C on the σ axis, is called the Mohr circle for the
considered state of stress. The points A and B, where the circle is intersected by the
σ axis, define the principal stresses, since OA= σ1 and OB= σ2 in view of (48) and
the geometry of Mohr’s diagram. By (47), the angle made by CA with CX is twice
the angle α which the direction of σ1 makes with the x axis in the physical plane.
The normal and shear stresses transmitted across a plane, whose normal is inclined
at a counterclockwise angle φ to the x axis, correspond to the point L on the Mohr
circle, where CL is inclined to CX at an angle 2φ measured in the same sense. The
proof of the construction follows from the fact that CD=CL cos 2α and XD=CL
sin 2α, where XD is perpendicular to OA. Then from the geometry of the figure,

ON = OC + CL cos 2(α− φ) = OC + CD cos 2φ + XD sin 2φ

LN = CL sin 2(α− φ) = −CD sin 2φ + XD cos 2φ

These expressions are equivalent to (45) and (46) in view of the present sign conven-
tion. If LC is produced to meet the circle again at M, then the coordinates of M give

† O. Mohr, Zivilingenieur, 28: 112 (1882). See also his book, Technische Mechanik, Berlin (1906).
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Figure 1.12 Mohr’s construction for a two-dimensional state of stress. (a) Physical plane; (b) stress
plane.

the stresses across a plane perpendicular to that corresponding to L. The maximum
shear stress is evidently equal to the radius of the Mohr circle, and acts on planes
that correspond to the extremities of the vertical diameter. The normal stress across
these planes is equal to the distance of the center of the circle from the origin of the
stress plane.

It is instructive to consider the following alternative construction, also due to
Mohr. Let a generic point P, the state of stress at which is being discussed, be taken
as the origin of coordinates in the physical plane (Fig. 1.12a). All planes passing
through P and containing the z axis are denoted by their traces in the xy plane. The
normal and shear stresses corresponding to the points X and Y on the Mohr circle
are transmitted across the planes Py and Px respectively. The lines through X and
Y drawn parallel to these planes intersect the circle at a common point P*, which is
called the pole of the Mohr circle. When the stress circle and the pole are given, the
stresses acting across any plane Pλ through P are found by locating the point L on
the circle such that P*L is parallel to Pλ, the angle XCL at the center being twice the
peripheral angle XP*L over the arc XL. The planes corresponding to the principal
stresses are parallel to P*A and P*B, and those corresponding to the maximum
shear stress are parallel to P*S and P*T . It may be noted that the magnitude of the
resultant stress across any plane is equal to the distance of the corresponding stress
point on the Mohr circle from the origin of the stress plane.

(ii) Three-dimensional stress state Suppose that the principal stresses σ1, σ2, σ3
are known in magnitude and direction for a three-dimensional state of stress. These
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principal values are assumed as distinct, and so labeled thatσ1>σ2>σ3.A graphical
method developed by Mohr can be used to find the variation of normal and shear
stresses with the direction (l, m, n). We begin with the relations

l2σ1 + m2σ2 + n2σ3 = σ
l2σ2

1 + m2σ2
2 + n2σ2

3 = σ2 + τ2 (52)

l2 + m2 + n2 = 1

This is a set of three linear equations for the squares of the direction cosines. The
solution is most conveniently obtained by eliminating n2 from the first two equations
by means of the third, resulting in

l2 = (σ − σ2)(σ − σ3)+ τ2

(σ1 − σ2)(σ1 − σ3)
(53)

m2 = (σ − σ3)(σ − σ1)+ τ2

(σ2 − σ3)(σ2 − σ1)
(54)

n2 = (σ − σ1)(σ − σ2)+ τ2

(σ3 − σ1)(σ3 − σ2)
(55)

Let one of the direction cosines, say n, be held constant while the other two are
varied. By (55), the normal and shear stresses then vary according to the equation

τ2 + {σ − 1
2 (σ1 + σ2)}2 = 1

4 (σ1 − σ2)2 + n2(σ1 − σ3)(σ2 − σ3) (56)

In the stress plane, σ and τ therefore lie on a circle whose center is on the σ axis
at a distance 1

2 (σ1+ σ2) from the origin. The square of the radius of the circle is
given by the right-hand side of (56). The radius varies from 1

2 (σ1− σ2) for n= 0 to
1
2 (σ1+ σ2)− σ3 for n= 1.

In Fig. 1.13, the points A, B, C with coordinates (σ1, 0), (σ2, 0), (σ3, 0) are the
principal points of the Mohr diagram. The centers of the segments AB, BC, and CA
are denoted by the points P, Q, and R. The upper semicircle drawn on the diameter
AB corresponds to n= 0. As n increases from 0 to 1, the radius of the semicircle
varies from PB to PC. Similarly, the upper semicircles with BC and CA as diameters
correspond to l= 0 and m= 0 respectively. For constant values of l, (53) defines a
family of circles having the equation

τ2 + {σ − 1
2 (σ2 + σ3)}2 = 1

4 (σ2 − σ3)2 + l2(σ1 − σ2)(σ1 − σ3) (57)

The center of these circles is at Q, while the radius varies from QB for l= 0 to QA
for l= 1. Finally, considering constant values of m, we have the family of circles

τ2 + {σ − 1
2 (σ1 + σ3)}2 = 1

4 (σ1 − σ3)2 + m2(σ1 − σ2)(σ3 − σ2) (58)
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Figure 1.13 Mohr’s representation of stress in three dimensions.

with the center at R, and the radius decreasing from RC for m= 0 to RB for m= 1.
For arbitrary values of (l, m, n), the state of stress will correspond to a point in the
space between the three semicircles drawn on the diameters AB, BC, and CA.

To find the values of σ and τ across any given plane, let α= cos−1 l and
γ = cos−1 n be the angles made by the normal to the plane with the directions
of σ1 and σ3 respectively. Set off angles APD and CQE equal to 2α and 2γ respec-
tively, by drawing the radii PD and QE to the appropriate semicircles. The circular
arcs DHF and EHG, drawn with centers Q and P respectively, intersect one another
at H giving the required stress point.† If the lines AD and CE are produced, they
will meet the outermost semicircle at F and G respectively. Since the angle ABD is
equal to α, and BD= (σ1− σ2)cosα, the triangle BDQ furnishes

QD2 = QB2 + BD2 + 2QB · BD cosα

= 1
4 (σ2 − σ3)2 + (σ1 − σ2)(σ1 − σ3)cos2α

Hence QD is identical to the radius of the circle (57) corresponding to the given
value of l. Similarly, the radius PE is equal to that of the circle (56) corresponding
to the given value of n. This completes the proof of the construction for the stress
point H. It can be shown that the circular arc drawn through H with center at R cuts
the semicircles on AB and BC at J and K respectively, where BJ and BK are each
inclined at an angle β= cos−1 m to the vertical through B.

† Numerical examples have been given by J. M. Alexander, Strength of Materials, Chap. 4, Ellis
Horwood Limited, Chichester, U.K. (1981).
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Figure 1.14 Instantaneous veloci-
ties of three neighboring particles in
a deforming region.

The semicircles with centers P, Q, R are in fact one-half of the two-
dimensional Mohr circles for the planes perpendicular to the directions of σ3, σ1, σ2
respectively. Considering the first semicircle, the coordinates of any point such as
D are easily shown to be those given by (45) and (46) with the principal axes taken
as the axes of reference. For three-dimensional stress states, there is no graphical
construction for finding the principal stresses and their directions from given com-
ponents of the stress. When one of the axes of reference coincides with a principal
axis, the problem of finding the remaining principal stresses and their directions is
essentially two-dimensional in character.

1.5 Analysis of Strain Rate

(i) Rates of deformation and rotation A body is said to be deformed or strained
when changes occur in the relative positions of the particles forming the body. The
instantaneous rate of straining at any point of the body is specified by the velocity
field in the neighborhood of this point. Let vi denote the components (u, v, w) of the
velocity of a typical particle P whose instantaneous coordinates are denoted by xi
(Fig. 1.14). Consider a neighboring particle Q situated at an infinitesimal distance
from P, the coordinates of Q being xi+ δxi. Then the relative velocity of Q with
respect to P is given by

δvi = ∂vi

∂xj
δxj

which is equivalent to three equations corresponding to the three components (δu,
δv, δw) of the relative velocity. The velocity gradient tensor ∂vi/∂xj may be regarded
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as the sum of its symmetric part ε̇ij and antisymmetric part ωij, where

ε̇ij = 1

2

(
∂vi

∂xj
+ ∂vj

∂xi

)
ωij = 1

2

(
∂vi

∂xj
+ ∂vj

∂xi

)
(59)

Evidently, ε̇ij = ε̇ji and ωij =−ωji, indicating the properties of symmetry and anti-
symmetry of the respective tensors. The expression for the relative velocity therefore
becomes

δvi = ε̇ij δxj + ωij δxj (60)

To obtain the physical significance of the decomposed parts of the relative veloc-
ity, let ω21=−ω12=ωz, ω32=−ω23=ωx, and ω13=−ω31=ωy, the remaining
components of ωij being identically zero. The second equation of (59) then gives

ωx = 1

2

(
∂w

∂y
− ∂v
∂z

)
ωy = 1

2

(
∂u

∂z
− ∂w
∂x

)
ωz = 1

2

(
∂v

∂x
− ∂u
∂y

)
(61)

It follows from above that the quantities ωx, ωy, ωz form the components of the
vector†

ω = 1
2 curl v

where v is the velocity vector of the particle P. The components of the relative
velocity given by the second term on the right-hand side of (60) are ωy δz−ωz δy,
ωz δx−ωx δz, ωx δy−ωy δx. They form the components of the vector product
ω× δs, where δs denotes the infinitesimal vector PQ. The second part of the relative
velocity therefore corresponds to an instantaneous rigid body rotation of the neigh-
borhood of P with an angular velocity ω. The antisymmetric tensor ωij is known
as the spin tensor. The relationship between the tensor ωij and the associated spin
vector ωk may be written as

ωij = −eijkωk 2ωk = −ekijωij = ekij
∂vj

∂xi
(62)

where eijk is the permutation symbol whose value is+1 or−1 according to whether
i, j, k form an even or odd permutation‡ of 1, 2, 3. When two of the suffixes i, j, k
are equal, eijk is identically zero. It follows from the definition that

eijk = ejki = ekij = −eikj = −ekji = −ejik

If the neighborhood of P undergoes an instantaneous deformation, the first term
on the right-hand side of (60) must be nonzero. The symmetric tensor ε̇ij is there-
fore called the rate of deformation or the true strain rate at P at the instant under

† The direction of ω is parallel to the direction of advancement of a right-handed screw turning in
the same sense as that of the rigid body rotation.

‡ This means that e123= e231= e312= 1 and e213= e132= e321=−1, while all other components
are zero. The permutation tensor has the important property emijemkl= δikδjl− δilδjk , which may be
obtained by eliminating ωk between the two relations (62), and comparing the result for ωij with that
given by (59).
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consideration. The rectangular components of the strain rate are

ε̇x = ∂u

∂x
ε̇y= ∂v

∂y
ε̇z= ∂w

∂z

γ̇xy= 1

2

(
∂u

∂y
+ ∂v
∂x

)
γ̇yz= 1

2

(
∂w

∂y
+ ∂v
∂z

)
γ̇zx = 1

2

(
∂w

∂x
+ ∂u
∂z

) (63)

The first three are the normal components and the last three are the shear components
of the strain rate. When the total deformation is small, the expressions on the right-
hand sides of (63) give the components of the strain itself with u, v, w regarded as
the components of the displacement of the particle.†

For the mechanical interpretation of the components of the tensor ε̇ij, consider
first the rate of change of the instantaneous length δs of the material line element
PQ. The square of this line element is δs2= δxi δxi, which gives

δs(δs)̇ = δvi δxi = ∂vi

∂xj
δxi δxj = ∂vj

∂xi
δxi δxj

where the dot denotes the material derivative, specifying the rate of change following
the motion of the particles. Using the expression for ε̇ij given by (59), the above
relation may be written as

δs(δs)̇ = 1

2

(
∂vi

∂xi
+ ∂vj

∂xi

)
δxi δxj = ε̇ij δxi δxj

If the unit vector in the direction PQ is denoted by li, then δxi= li δs. The ratio
(δs)̇/δs, called the rate of extension ε̇ in the direction PQ, is then obtained as

ε̇ = lilj ε̇ij

= l2ε̇x + m2ε̇y + n2ε̇z + 2lmγ̇xy + 2mnγ̇yz + 2nlγ̇zx (64)

where (l, m, n) are the direction cosines of PQ. It follows that the components ε̇x,
ε̇y, ε̇z are the rates of extension at the particle P in the coordinate directions.

Consider, now, a second material line element PQ′ emanating from P, the
instantaneous coordinates of Q′ being xi+ δx′i. Then the velocity of Q′ relative to
that of P is

δv′i =
∂vi

∂xj
δx′j

The scalar product of the infinitesimal vectors PQ and PQ′ is δxi δx′i, and its material
rate of change is

(δxi δx
′
i )̇ = δxi δv

′
i + δx′i δvi =

(
∂vi

∂xj
+ ∂vj

∂xi

)
δxi δx

′
j = 2ε̇ij δxi δx

′
j

† The expressions for the strain rates and the components of spin in cylindrical and spherical
coordinates are given in App. B.
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Let the instantaneous length of the line element PQ′ be denoted by δs′, and the rate
of extension in this direction by ε̇′. If the included angle between PQ and PQ′ is
denoted by θ, the scalar product δxi δx′i is equal to δs δs′ cos θ. The above equation
therefore becomes

[(ε̇+ ε̇′)cos θ − θ̇ sin θ]δs δs′ = 2ε̇ij δxi δx
′
j (65)

If the neighborhood of P undergoes an instantaneous rigid body motion, the mate-
rial triangle PQQ′ retains its shape following the motion, giving ε̇= ε̇′ = θ̇= 0. It
follows from (65) that ε̇ij then vanishes identically as expected. The rate at which
an instantaneous right angle between a pair of material line elements decreases is
twice the rate of shear, denoted by γ̇ . Setting δxi= li δs, δx′j = l′j δs′, and θ=π/2 in
(65), the rate of shear associated with the directions li and l′i is obtained as

γ̇ = lil
′
j ε̇ij = ll′ε̇x + mm′ε̇y + nn′ε̇z + (lm′ + ml′)γ̇xy

+ (mn′ + m′n)γ̇yz + (nl′ + ln′)γ̇zx (66)

where (l′, m′, n′) are the direction cosines of PQ′. It follows from (66) that γ̇xy, γ̇yz,
and γ̇zx are the rates of shear associated with the appropriate coordinate directions.
In the engineering literature, the shear rate is taken as equal to the rate of decrease of
the angle formed by an instantaneous pair of orthogonal material line elements. The
engineering components of the rate of shear are therefore twice the corresponding
tensor components. During a finite deformation, the engineering shear strain asso-
ciated with a pair of orthogonal line elements in the unstrained state is the tangent
of the angle by which the right angle decreases.

(ii) Principal strain rates The relative velocity of Q with respect to P, correspond-
ing to pure deformation in the neighborhood of P, may be resolved into a component
along PQ and a component perpendicular to PQ. These resolved components are
equal to ε̇ δs and γ̇ δs respectively, as may be seen from (60), (64), and (66), the unit
vector l′i being considered in the appropriate perpendicular direction. The direction
PQ represents a principal direction of the rate of deformation, if the relative velocity
of pure deformation is directed along PQ. In this case γ̇ = 0, and ε̇ij δxj is equal to
ε̇ δxi, where δxi= li δs. Hence

ε̇ijlj = ε̇li or (ε̇ij − ε̇ δij)lj = 0 (67)

This consists of three scalar equations, analogous to (22), for the components of the
unit vector lj. Equating to zero the determinant of the coefficients formed by the
expression in the parenthesis of (67), we obtain the cubic equation

ε̇3 − N1ε̇
2 − N2ε̇− N3 = 0

whose roots are the principal strain rates ε̇1, ε̇2, ε̇3. The coefficients N1, N2, N3
are the basic invariants of the strain rate tensor, their expressions in terms of the
components of ε̇ij being

N1 = ε̇ii N2 = 1
2 (ε̇ij ε̇ij − ε̇iiε̇jj) N3 = |ε̇ij| (68)
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where the last expression denotes the determinant of the matrix of the tensor ε̇ij.
When the principal values of the strain rate are distinct, each principal strain rate
is associated with a unique principal direction. The three principal directions are
mutually orthogonal and are known as the principal axes of the strain rate. In analogy
with (15), a deviatoric strain rate ėij is defined as

ėij = ε̇ij − ε̇0δij = ε̇ij − 1
3 ε̇kkδij (69)

The principal axes of ėij are the same as those of ε̇ij. The principal components of
the deviatoric strain rate are obtained by subtracting the mean extension rate ε̇0 from
the corresponding principal strain rates. The principal shear rates have the values

1
2 |ε̇1 − ε̇2| 1

2 |ε̇2 − ε̇3| 1
2 |ε̇3 − ε̇1|

These are the maximum values of the magnitude of γ̇ at the considered particle. Each
principal shear rate is associated with directions which bisect the angles between
the corresponding pair of principal axes of the rate of deformation.

The first invariant N1 is equal to the rate of change of volume per unit volume
in the neighborhood of a typical particle P. This may be shown by considering a
small rectangular parallelepiped at P with its edges parallel to the principal axes. If
the instantaneous lengths of the edges are denoted by δa, δb, δc, the rates at which
these lengths change following the motion are ε̇1 δa, ε̇2 δb, ε̇3 δc respectively. The
instantaneous volume δa δb δc of the parallelepiped therefore changes at the rate
(ε̇1+ ε̇2+ ε̇3)δa δb δc. If the local density of the material is denoted by ρ, the mass
of the parallelepiped is ρ δa δb δc, which remains constant following the motion.
Setting the rate of change of this mass to zero, we have

ρ̇/ρ = −(ε̇1 + ε̇2 + ε̇3) = −(ε̇x + ε̇y + ε̇z) = −ε̇ii

Expressing the rates of extension in terms of the velocity gradients, the above relation
can be written as

ρ̇ + ρ∂vi

∂xi
= ρ̇ + ρ

(
∂u

∂x
+ ∂v
∂y
+ ∂w
∂z

)
= 0 (70)

For an incompressible material, the density remains constant, and consequently ε̇ii
must vanish. In this case, the components of the deviatoric strain rate are identical
to those of the actual strain rate.

Consider the situation where the principal axes of the strain rate remain fixed
with respect to an element as it continues to deform. The axes of reference are
assumed to take part in the rotation of the element so that they are parallel to the prin-
cipal axes at each stage. Let x, y, z denote the coordinates of the center of the element
at any instant t, measured in the directions of ε̇1, ε̇2, ε̇3 respectively. If the initial coor-
dinates x0, y0, z0 are taken as independent space variables, which do not change fol-
lowing the motion, the material rate of change of each variable is given by its partial
derivative with respect to t. The first principal strain rate may therefore be written as

∂ε1

∂t
= ∂u/∂x0

∂x/∂x0
= (∂/∂t)(∂x/∂x0)

∂x/∂x0
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Similar expressions may be written down for the other two principal strain rates.
These equations are immediately integrated to give the total principal strains

ε1 = ln

(
∂x

∂x0

)
ε2 = ln

(
∂y

∂y0

)
ε3 = ln

(
∂z

∂z0

)

which are the logarithms of the ratios of the final and initial lengths of the material
line elements along the principal axes. When the principal axes of the strain rate
rotate with respect to the element, the principal components of the successive strain
increments cannot be interpreted as increments of principal strains.†

(iii) Instantaneous plane strain The instantaneous state of strain is called plane
if one of the principal strain rates vanishes at each point of the deforming body.
If the z axis is taken along this principal axis, we have ε̇z= γ̇yz= γ̇zx = 0 for an
instantaneous plane strain condition. The velocity field therefore has the form

u = u(x, y) v = v(x, y) w = 0

and the nonzero strain rates ε̇x, ε̇y, and γ̇xy are all independent of z. A typical
material line element PQ in the plane z= const instantaneously extends and rotates
in the same plane. A part of the instantaneous rotation corresponds to a local rigid
body spin of the material about an axis through P with an angular velocity ωz=ω,
which is reckoned positive when the rotation is counterclockwise. The condition of
compatibility of the components of strain rate is

∂2ε̇x

∂y2 +
∂2ε̇y

∂x2 = 2
∂2γ̇xy

∂x ∂y
(71)

which is readily verified on direct substitution from (63). It is a consequence of the
fact that three strain-rate components are defined by two velocity components.‡

Let φ denote the counterclockwise orientation of a line element PQ with respect
to the x axis. Then the instantaneous coordinate differences between the particles P
and Q are δx= δs cosφ and δy= δs sin φ, where δs is the length of the element PQ.
Let (δu∗, δv∗) denote the relative velocity of Q with respect to P corresponding to
pure deformation. Then

δu∗ = (ε̇x cosφ + γ̇xy sin φ)δs

δv∗ = (γ̇xy cosφ + ε̇y sin φ)δs

† For a discussion of finite homogeneous strains, in which all straight lines remain straight during
straining, see J. C. Jaeger, Elasticity, Fracture, and Flow, Chap. 1, Methuen and Company, London
(1969).

‡ For a three-dimensional velocity field, there are six equations of compatibility, three of which are
of type (71). They are necessary and sufficient conditions for the existence of single-valued velocities.
See, for example, L. E. Malvern, Introduction to Mechanics of a Continuous Medium, p. 189, Prentice-
Hall, Englewood Cliffs, N.J. (1969).
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in view of the first term on the right-hand side of (60). The resolved component
of this relative velocity in the direction PQ is equal to ε̇ δs, where ε̇ is the rate of
extension along PQ. Hence

ε̇ = δu∗ cosφ + δv∗ sin φ

δs

= ε̇ cos2φ + ε̇y sin2φ + 2γ̇xy sin φ cosφ (72)

The expression for ε̇ is also obtained from (65) by setting l= cosφ, m= sin φ, n= 0.
The shear strain rate γ̇ associated with the directions φ and π/2+φ is given by the
resolved component of the relative velocity (δu∗, δv∗) in the direction perpendicular
to PQ. Thus

γ̇ = −δu
∗ sin φ + δv∗ cosφ

δs

= −(ε̇x − ε̇y)sin φ cosφ + γ̇xy(cos2φ − sin2θ) (73)

It follows from the nature of the derivation that γ̇ is the counterclockwise angular
velocity of PQ corresponding to pure deformation of the neighborhood of P. An
element PR inclined at π/2+φ to the x axis has a clockwise angular velocity equal
to γ̇ . The right angle between PQ and PR therefore decreases at the rate 2γ̇ , which
is the engineering shear rate at P associated with these directions. It follows that the
total angular velocities of PQ and PR are ω+ γ̇ and ω− γ̇ respectively measured in
the counterclockwise sense.

The direction φ corresponds to a principal direction of the strain rate if the
corresponding shear rate vanishes. Since dε̇/dφ= 2γ̇ in view of (72) and (73), the
longitudinal strain rate has a stationary value in the principal direction. The condition
γ̇ = 0 gives

tan 2φ = 2γ̇xy

ε̇x − ε̇y
(74)

which defines two mutually perpendicular directions representing the principal axes
in the xy plane. The principal axes of stress and strain rate coincide if the ratios on
the right-hand sides of (47) and (74) are equal to one another. The principal strain
rates are expressed as

ε̇1, ε̇2 = 1
2 (ε̇x + ε̇y)± 1

2

√
(ε̇x − ε̇y)2 + 4γ̇2

xy (75)

The second term on the right-hand side represents the maximum rate of shear in the
plane of the instantaneous motion. Choosing the principal axes in this plane as the
new axes of reference, the rate of extension ε̇ and the total angular velocity φ̇ of a
material line element PQ may be written from (72) and (73) as

ε̇= 1
2 (ε̇1 + ε̇2)+ 1

2 (ε̇1 − ε̇2)cos 2φ

φ= ω − 1
2 (ε̇1 − ε̇2)sin 2φ

(76)



Chakra-01.tex 26/12/2005 12: 41 Page 40

40 theory of plasticity

Figure 1.15 Geometrical representation of the rates of extension and rotation in plane strain.

where ω is the component of spin at P. It follows that ε̇ and φ̇ can be represented
by a point whose locus is a circle with parametric equations (76). If ε̇ is taken as
the ordinate and φ̇ as the abscissa (Fig. 1.15), the coordinates of the center C of the
circle are ω, 1

2 (ε̇1+ ε̇2), and the radius of the circle is 1
2 (ε̇1− ε̇2), where ε̇1> ε̇2. The

highest and lowest points of the circle, denoted by A and B, represent the maximum
and minimum rates of extension, together with an angular velocity equal to ω.

Let a point Q* on the circle correspond to the direction φ with respect to the
first principal axis. Then in view of (76), the angle ACQ* is equal to 2φ. The line
Q*P* drawn parallel to the direction PQ meets the circle again at P* which may
be regarded as the pole of the circle. Since the peripheral angle AP*Q* is equal
to φ, the line P*A is parallel to the first principal direction at P. To find the point
on the circle corresponding to any given direction in the plane of motion, it is only
necessary to draw a line in this direction through P* and locate its second intersection
with the circle. Let P*R* be drawn parallel to some given direction PR through
P. Then the rate of change of the material angle QPR is equal to the difference
between the abscissas of the corresponding points R* and Q* on the circle. For the
considered orientation of the line elements PQ and PR, the angle between them
instantaneously decreases. The difference between the abscissas of the points D and
E, which correspond to the maximum shear directions at P, is greater than that of any
other pair of points on the circle. It follows, therefore, that the right angle formed by
the material line elements in the maximum shear directions changes at a rate which
is numerically greater than that for any other material angle in the plane of motion.†

† The above construction is due to W. Prager, Introduction to Mechanics of Continua, p. 69, Ginn
and Company, Boston (1961). Mohr’s construction for the rates of extension and shear associated with
any angle φ is identical to that for the normal and shear stresses.
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(iv) Equilibrium and virtual work Consider a mass of material occupying a finite
volume V and bounded by a surface S at a generic instant t. The material is in
equilibrium under surface forces distributed over S, and body forces (such as grav-
itational and centrifugal forces) distributed throughout V . The body force acting on
a typical volume element dV is equal to ρgj dV , where gj denotes the body force per
unit mass and ρ the current density. The force Tj acting on a typical surface element
dS, specified by its exterior unit normal li, is equal to σijli dS. The condition of force
equilibrium requires the resultant of these forces to vanish, leading to∫

σijli dS +
∫
ρgj dV = 0

where the surface integral extends over S and the volume integral over V . Using
Green’s theorem, the surface integral can be transformed into a volume integral,
reducing the above expression to∫ (

∂σij

∂xi
+ ρgj

)
dV = 0

The vanishing of the above integral requires that the expression in the parenthesis
must vanish identically. The equilibrium condition therefore becomes

∂σij

∂xi
+ ρgj = 0 (77)

which is equivalent to three equations corresponding to the three coordinate direc-
tions. In view of the symmetry of the stress tensor, (77) also ensures that the resultant
moment of the surface and body forces is identically zero.†

Equation (77) must be satisfied throughout the interior of the body. At the
boundary of the body, the force Tj per unit area acting on a typical surface element
must be equal to the stress vector across this element. The boundary condition may
therefore be written as

Tj = liσij (78)

where li is the unit vector along the exterior normal to the surface at the consid-
ered point. In general, (77) and (78) must be supplemented by other equations to
determine the stress components uniquely.

Consider, now, a continuous velocity field vj, which is chosen independently of
an equilibrium distribution of stress σij. The rate of work done by the distribution
of surface traction Tj (in the absence of body forces) is∫

Tjvj dS =
∫

liσijvj dS =
∫

∂

∂xi
(σijvj)dV =

∫
σij
∂vj

∂xi
dV

† See, for example, W. Prager, Introduction to Mechanics of Continua, p. 46, Ginn and Company,
Boston (1961).
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in view of (77). The transformation of the surface integral into the volume integral
follows from Gauss’ divergence theorem (or Green’s theorem) applied to the vector
σijvj. Since

σij
∂vj

∂xi
= σji

∂vj

∂xi
= σij

∂vi

∂xj
= 1

2
σij

(
∂vi

∂xj
+ ∂vj

∂xi

)
= σij ε̇ij

by the symmetry of the stress tensor and the interchangeability of dummy suffixes,
we obtain the principle of virtual work in the form∫

Tjvj dS =
∫
σij ε̇ij dV (79)

where ε̇ij is the rate of deformation associated with the velocity vj. Equation (79)
states that the rate of work done by the external forces on any virtual velocity field is
equal to the rate of dissipation of internal energy. If the velocity field is discontinuous,
the energy dissipated due to shearing across the discontinuities must be included on
the right-hand side of (79).

1.6 Concepts of Stress Rate

(i) Objective stress rates The rate of deformation of a solid, for a given state of
stress, is generally a function of the instantaneous rate of change of the stress. The
stress rate tensor used in this relation, known as the constitutive relation, must be
defined in such a way that it vanishes in the event of an instantaneous rigid body rota-
tion. Such a stress rate is called an objective stress rate. From the physical standpoint,
it is natural to consider the rate of change of the stress referred to a set of axes that
participates in the instantaneous rotation of a typical element. Although the stress
components with respect to a fixed coordinate system are changed by the rotation of
the element, the components with respect to the rotating system remain unaffected.

Consider two sets of rectangular axes xi and x′i, which have a common origin
O, and which are coincident at an instant t. During a small interval of time dt, the
first set of axes is assumed to remain fixed, while the second set of axes takes part
in the rigid-body rotation of the given element. An infinitesimal vector PQ drawn
in the element from its center P is denoted by δxj and δx′j with respect to the two
coordinate systems at the instant t+ dt. The difference δxj − δx′j is equal to δvj dt,
where δvj denotes the relative velocity of rotation of Q with respect to P at the
instant t. Recalling that δvj =ωji δx′i, where ωij denotes the rate of rotation of the
neighborhood of P, we have

δxj = δx′j + (ωji dt)δx′i = (δij − ωij dt)δx′i (80)

The angle which the xj axis makes with the x′i axis instantaneously changes at the rate
ωij when i 
= j. Let σij denote the true (or Cauchy) stress at the particle P when dt= 0.
The material rates of change of the stress referred to the fixed and the rotating axes are
denoted by σ̇ij and σ̊ij respectively. At the time t+ dt, the primed and the unprimed
stress components become σij + σ̊ij dt and σij + σ̇ij dt respectively. In view of (20),
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expressed in the infinitesimal form, aij is given by the expression in the parenthesis
of (80). The transformed stress tensor may therefore be written from (21) as

σij + σ̊ij dt = (δik − ωik dt)(δjl − ωjl dt)(σkl + σ̇kl dt)

Neglecting the terms containing squares and cubes of dt, and using the symmetry
of the stress tensor, the relationship between σ̇ij and σ̊ij, which is due to Jaumann,†
is obtained as

σ̊ij = σ̇ij − σikωjk − σjkωik (81)

The quantity σ̊ij may be regarded as the rigid body derivative of the true stress at
the instant under consideration. It can be significantly different from the material
derivative σ̇ij whenever the rate of rotation is important.

Consider now the scalar triple product pijσjkωik where pij is an arbitrary tensor
having the same principal axes as those of σij. Since this expression is an invariant, it
is convenient to take the common principal axes as the axes of reference. The tensor
pijσjk then corresponds to a diagonal matrix, while the diagonal components of ωik
are always zero. Consequently, the scalar product of these two tensors is identically
zero. It is similarly shown that the triple product pijσikωjk also vanishes. It follows,
therefore, from (81) that

pijσ̊ij = pijσ̇ij

Thus σ̊ij and σ̇ij have the same scalar product with any second-order tensor whose
principal axes coincide with those ofσij. This property has an important consequence
in the theory of plasticity.

Various other definitions of the stress rate, vanishing for an instantaneous
rigid-body rotation, have been proposed in the literature. An objective stress rate
sometimes used in the literature to replace σ̊ij is the material rate of change of the
modified stress tensor

τij = ∂ai

∂xk

∂aj

∂xl
σkl

where ai are the initial coordinates of the particle which is currently at xi. The
material derivative of τij, when the initial state coincides with that at the generic
instant t, is easily shown to be‡

τ̇ij = σ̇ij − σik
∂vj

∂xk
− σjk

∂vi

∂xk
(82)

† G. Jaumann, Sitz. Akad. Wiss. Wien 120: 385 (1911). The result has been rederived by H. Fromm,
Ing.-Arch., 4: 452 (1933); S. Zaremba, Mem. Sci. Math., No. 82, Paris (1937); W. Noll, J. Rat. Mech.
Anal., 4: 3 (1955); R. Hill, J. Mech. Phys. Solids, 7: 209 (1959). See also W. Prager, Q. Appl. Math.,
18: 403 (1961); A. J. M. Spencer, Continuum Mechanics, Longman, London (1980).

‡ The derivation of (82) is very similar to that of (87). The tensor (ρo/ρ)τij , where ρo and ρ are
the initial and final densities of the material, is called the Kirchhoff stress. The material rate of change
of the Kirchhoff stress at the initial state is τ̇ij + ε̇kkσij .



Chakra-01.tex 26/12/2005 12: 41 Page 44

44 theory of plasticity

It follows from (81) and (82) that τ̇ij differs from σ̊ij by the quantity σik ε̇jk + σjk ε̇ik ,
which is appreciable when the rate of deformation becomes significant. It is impor-
tant to note that τ̇ij and σ̇ij do not have the same scalar product with any tensor pij
which is coaxial with σij.

(ii) Nominal stress rate Through a typical particle P in the deforming material,
consider a small surface element represented by the vector δSi at any instant t. The
magnitude of this vector is the current area δS, and the direction of this vector is that
of the normal to the surface in the current state. The coordinates of P are denoted
by xi in the instantaneous state, and by ai in some initial reference state with respect
to a fixed set of rectangular axes. The initial area of the surface element is δS0, the
corresponding vector being denoted by δSo

i . Consider now a material line element
PQ emanating from the particle P. If the instantaneous components of the vector
PQ are denoted by δxi, the corresponding components in the initial state are given
by

δai = ∂ai

∂xj
δxj

The volume of the material cylinder, specified by the axial vector PQ and having the
given surface element as its base, changes from δSo

i δai in the initial state to δSi δxi
in the current state. The conservation of mass requires

ρ δSj δxj = ρ0 δS
o
i δai

where ρ0 and ρ are the initial and current densities of the material at the particle P.
Substituting for δai, we have(

ρ

ρ0
δSj − ∂ai

∂xj
δSo

i

)
δxj = 0

Since this equation must be satisfied for any arbitrary vector δxj, the expression in
the parenthesis must vanish. Hence

ρ

ρ0
δSj = ∂ai

∂xj
δSo

i (83)

The infinitesimal force δPj transmitted in the current state may be referred to the
surface element in the initial state through a nominal stress tensor tij. The true stress
tensor σij, on the other hand, is associated with the surface element in the current
state to give the same infinitesimal force. Expressed mathematically,

δPj = tij δS
o
i = σkj δSk (84)

Thus tij δS0 is the jth component of the force currently acting on a surface element
which was initially perpendicular to the ith axis. Substitution for δSk from (83) leads
to the relationship between tij and σij as

tij = ρ0

ρ

∂ai

∂xk
σkj (85)
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This relation shows that the nominal stress tensor tij is not symmetric. Nevertheless,
it is convenient to introduce this tensor for treating the problems of uniqueness and
stability. The material derivative of tij is obtained by applying the operator.

d

dt
= ∂

∂t
+ vm

∂

xm

where vm is the instantaneous velocity of the considered particle. The first term on
the right-hand side represents the local part and the second term the convective part
of the derivative. Since the initial coordinates do not change following the particle,
dai/dt= 0, in view of which the material rate of change of the tensor ∂ai/∂xk is
obtained as

d

dt

(
∂ai

∂xk

)
= ∂

∂xk

(
∂ai

∂t

)
+ vm

∂

∂xk

(
∂ai

∂xm

)
= −∂vm

∂xk

∂ai

∂xm
(86)

Considering the material derivative of (85), and using (70) and (86), it is easily
shown that

dtij
dt
= ρ0

ρ

(
dσmj

dt
+ σmj

∂vk

∂xk
− σkj

∂vm

∂xk

)
∂ai

∂xm

where a dummy suffix has been replaced by another. If the initial state is now
assumed to coincide with the instantaneous state, ρ0= ρ, ai= xi, and consequently
∂ai/∂xm= δim. Denoting the instantaneous rate of change by a dot as usual, we
finally obtain†

ṫij = σ̇ij + σij
∂vk

∂xk
− σjk

∂vi

∂xk
(87)

which relates the nominal stress rate ṫij to the true stress rate σ̇ij with respect to a
fixed set of rectangular axes. It follows from (84) that when ṫij vanishes, the force
transmitted across the surface element instantaneously remains constant, despite the
deformation and the rotation of the element.

(iii) Equilibrium equations and boundary conditions Let V0 be the initial volume
and S0 the initial surface of the material which instantaneously fills the volume V with
surface S.Denote by loi the unit vector along the exterior normal to an initial surface
element of area dS0. The forces currently acting on typical surface and volume
elements of the material may be expressed as tijloi dS0 and ρ0gj dV0 respectively.
Equating the resultant of these forces over the entire body to zero, we get∫

tijl
◦
i dS0 +

∫
ρ0gj dV0 = 0

† The expression (87) is due to R. Hill, J. Mech. Phys. Solids, 6: 236 (1958).
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where the integrands are considered as functions of the initial coordinates ai and the
time t. The transformation by Green’s theorem furnishes the result∫ (

∂tij
∂ai
+ ρ0gj

)
dV0 = 0

Since this equation holds for any arbitrary region V0, the integrand must vanish. The
equation of equilibrium in terms of the nominal stress therefore becomes

∂tij
∂ai
+ ρ0gj = 0

The material derivative of this equation is simply the partial derivative with respect
to t, since the initial coordinates are taken as the space variables. Denoting the mate-
rial rate of change of the nominal stress by ṫij when the initial state is assumed as
that at the instant t, we obtain

∂ṫij
∂xi
+ ρġj = 0 (88)

This is the rate equation of equilibrium expressed in its simplest form. Inserting from
(87), the equation may be written down in terms of the true stress rate σ̇ij. When body
forces are neglected (as is usual with gravitational forces), the rate equation becomes

∂σ̇ij

∂xi
− ∂vi

∂xk

∂σjk

∂xi
= 0 (89)

This expression is also obtained if we apply the operator d/dt on equation (77). The
second term on the left-hand side of (89) represents the effect of the instantaneous
motion of the element.

The components of the stress rate must be in equilibrium with the instantaneous
rate of change of boundary tractions. Since the future position of a typical surface
element is not known in advance, when positional changes are taken into account,
it is convenient to express the boundary condition in terms of the traction rate based
on the initial configuration. If δPj denotes the current load vector acting on a surface
element of initial area δS0, then the ratio δPj/δS0 as δS0 tends to zero is the nominal
traction Fj. It follows from (84) that

Fj = loi tij

If the material rate of change of the nominal traction is denoted by Ḟj when the
initial state is taken as that at the instant considered (loi = li), then

Ḟj = li ṫij (90)

A different situation arises when a part of the boundary surface is subjected to a
uniform normal pressure p through an inviscid fluid. In this case, the infinitesimal
load vector on the surface element is

δPj = −p δSj = −p

(
ρ0

ρ

∂ai

∂xj

)
loi δS0
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in view of (83). The load per unit initial area of the element therefore becomes

Fj = −p

(
ρ0

ρ

∂ai

∂xj

)
loi (91)

Taking the material derivative of the nominal traction (91), and using the relations
(70) and (86), we obtain

dFj

dt
= ρ0

ρ

{
−
(

ṗ+ p
∂vk

∂xk

)
∂ai

∂xj
+ p

∂vk

∂xj

∂ai

∂xk

}
loi

since the unit vector loi does not change during the motion of the surface. If the initial
state is regarded as identical to the instantaneous state, ρ0= ρ, ai= xi, loi = li, and
the nominal traction rate becomes†

Ḟj = −ṗlj + p

(
lk
∂vk

∂xj
− lj

∂vk

∂xk

)
(92)

It follows that even when the pressure remains constant, the nominal traction changes
as a result of the instantaneous distortion of the unconstrained surface. The equi-
librium equation and the boundary condition, expressed in the rate form, must be
supplemented by the constitutive equation for the particular solid in formulating the
boundary value problem of the incremental type.

Problems

1.1 In a certain annealed material, the yield point is taken as that for which the permanent strain is
one-quarter of the recoverable elastic strain. The true stress–strain curve for the material in the plastic
range may be represented by the empirical equation

σ = E

180
ε0.25

where E is Young’s modulus. Determine the stress Y at the yield point as a fraction of E, and compute
the true and nominal values of the uniaxial instability stress in terms of Y .

Answer: Y =E/943, σ= 3.71 Y , s= 2.89 Y .

1.2 The true stress/engineering strain curve of a material in simple tension may be represented by the
equation σ=Cen, where C and n are empirical constants. Show that the value of e at the onset of
necking in uniaxial tension is n/(1− n). Suppose that a bar of material is axially compressed to a strain
of e< n, and is subsequently extended to the point of necking. Assuming no buckling, and neglecting
Bauschinger effect, show that the ratio of the final and initial lengths of the bar is (1− e)2/(1− n).

1.3 Prove that according to the Voce equation for the stress–strain curve, the true stress and the natural
strain at the onset of instability in uniaxial tension are

σ = Cn

1+ n
ε = ln[m(1+ n)]

n

† J. Chakrabarty, Z. angew. Math. Phys., 24: 270 (1973). A more general type of loading has been
examined by R. Hill, J. Mech. Phys. Solids, 10: 185 (1962).
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What would be the instability strain when m(1+ n) is less than unity? Show that the stress–strain curve
can be linearized by introducing a new strain measure ε∗ defined as

ε∗ = 1

n

{
1−

(
l0
l

)n}
where l0 and l are the initial and final lengths of a tension bar.

1.4 In the simple compression of a short cylinder, the curve representing the variation of the load with
the amount of compression shows a point of inflection. If the true stress–strain curve of the material is
expressed by the empirical equation σ=Cεn, show that the natural strain corresponding to the point of
inflection is

ε = 1
4

[√
n(8+ n)− 3n

]
For what range of values of n will this strain exceed the instability strain in simple tension?

Answer: 0< n< 1/6.

1.5 In the homogeneous compression of a cylindrical specimen, the curve for the nominal stress against
the natural strain has a point of inflection. Show that the corresponding point on the true stress–strain
curve is given by (

d

dε
+ 1

)2

σ = 0

Assuming the empirical equation σ=Cεn, show that the true strain is
√

n− n at the point of inflection.
For what values of n will this strain exceed the uniaxial instability strain?

Answer: 0< n< 0.25.

1.6 The effect of elastic deformation of the material on the instability strain may be estimated by
considering the stress–strain equation in the Ramberg-Osgood form

ε = σ

E
+ 3σ0

7E

(
σ

σ0

)1/n

where σ0 is the nominal yield stress and n is the strain-hardening exponent. Show that the true strain at
the onset of necking in simple tension becomes

ε � n+
(

7n

3

)n(σ0

E

)1−n

to a close approximation. Assuming n= 0.05 and σ0/E= 0.002, compute the percentage error involved
in using the simple power law σ=Cεn.

Answer: 4.76%.

1.7 The plane structure shown in Fig. A consists of three bars pin-jointed at their ends. The central bar
OB is made of a material whose stress–strain curve is represented by σ=C1ε

n1 . The inclined bars OA
and OC are made of a different material, having its stress–strain law expressed by σ=C2ε

n2 , where
n2 < n1. If the initial angle of inclinations ψ is such that plastic instability occurs simultaneously in the
three bars on the application of a vertical load at O, show that

cosψ =
√

exp(2n2)− 1

exp(2n1)− 1

1.8 Suppose that the bars of Fig. A have the same cross-sectional area A, and are made of a material
that strain-hardens according to the law σ/Y = (Eε/Y )n. Show that the relationship between the applied
load P and the deflection δ of point O, for sufficiently small strains in the fully plastic range, is given by

P

AY
= (1+ 2 cos2n+1ψ)

(
Eδ

Yl

)n Eδ

Yl
� sec2ψ
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Figure A

How is this equation modified when OB is plastic while OA and OC are still elastic? Obtain a graphical
plot of P/AY against Eδ/Yl over the range 0<Eδ/Yl< 5, assuming n= 0.25 and ψ= 45◦.

1.9 The stress–strain curve of a rigid/plastic metal can be accurately fitted (except for very small strains)
by the Ludwik equation σ=Cεn. It is required to approximate this curve by the straight line σ=Y +Hε,
giving the same plastic work over a total strain of ε0 (Fig. B). If the difference between the stresses
predicted by the two equations at ε= 1

2 ε0 is exactly one-half of that at ε= ε0, show that

Y

σ0
= 3− n

1+ n
− 21−n Hε0

2σ0
= 21−n − 2− n

1+ n

where σ0=Cεn
0. Assuming n= 0.3, estimate the maximum percentage error in the linear approximation

where the straight line falls below the curve.
Answer: 7.8%.

Figure B Figure C

1.10 Derive an expression for the hoop stress that exists in a thin circular ring of mean radius r, thickness
t, and density ρ, rotating about its own axis with an angular velocity ω. If the deformation is continued
in the plastic range, tensile instability would occur when the angular velocity attains a maximum.
Representing the true stress–strain curve by the empirical equation σ=Cεn, show that the instability
or bursting speed is given by

ρω2r2
0 = C

(n

2

)n
exp(−n)

where r0 is the mean radius of the undeformed ring.
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1.11 In a thin-walled spherical shell under a uniform internal pressure p, the state of stress is a balanced
biaxial tension σ, which is related to the compressive thickness strain ε by the uniaxial stress–strain law
for the material. If plastic instability occurs in the shell when the internal pressure attains a maximum,
show that dσ/dε= 3

2σ at the onset of instability. Assuming the empirical stress–strain equation σ=Cεn,
obtain the dimensionless bursting pressure

p

C
= 2t0

r0

(
2

3
n

)n

exp(−n)

where t0 and r0 are the initial wall thickness and mean radius respectively.

1.12 A compound bar is made up of a solid cylinder which just fits into a hollow one, the two cylinders
being firmly bonded at their common interface. The true stress–strain curve is given by σ=C1ε

n1 for
the inner cylinder and by σ=C2ε

n2 for the outer cylinder. If the two cylinders carry equal loads at the
onset of instability, when the compound bar is subjected to longitudinal tension, show that the ratio of
the cross-sectional areas of the outer and inner cylinders is

A2

A1
= C1

C2

(
n1 + n2

2

)n1−n2

1.13 Fig. C illustrates the perforation of a uniform plate of thickness t0 by a smooth cylindrical drift of
radius a having a conical end. Each element of the raised lip may be assumed to form under a uniaxial
tensile hoop stress of varying intensity. Show that the height of the lip is h= 2

3 a, and that its thickness
varies as the cube root of the distance from the outer edge. If the material strain-hardens according to
the law σ=Cεn, show that the plastic work done during the process is

W = πt0a2C
�(1+ n)

21+n

where �(x) is the gamma function of any positive variable x. Find the numerical value of W/t0a2C
when n= 0.5.

Answer: 0.984.

Figure D

1.14 A plate of uniform thickness t0 is perforated by a smooth conical drift of semiangle α as shown in
Fig. D. The axis of the drift moves perpendicular to the plane of the plate and develops a conical lip of
base radius a. Assuming a uniaxial state of stress to exist in each element, show that the radius of the
outer cross section of the lip is b= a(1− sin α)2/3. Show also that the thickness t of an element that
was situated at a radius r0 in the undeformed state is given by

t

t0
=
( r0

b

)1/2
{

1+
( r0

b

)3/2
sin α

}−1/3
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1.15 Suppose that the structure shown in Fig. A is loaded in the fully plastic range to produce a small
vertical deflection δ of the joint O. The bars are identical in material and cross section, and the strain-
hardening of each bar is given by σ/Y = (Eε/Y )n. If the residual stresses left in the vertical and the
inclined bars are σ′1 and σ′2 respectively on complete unloading from the plastic state, show that

σ′2
Y
= − σ

′
1

2Y
secψ = cos2n ψ − cos2 ψ

1+ 2cos3ψ

(
Eδ

Yl

)n

Assuming δ to be three times that at the initial yielding, calculate σ′1 and the residual deflection δ′ when
n= 0.25 and ψ= 45◦.

Answer: σ′1/Y =−0.372, Eδ′/Yl= 1.312.

1.16 Two uniform vertical wires AB and CD, shown in Fig. E, support a load W acting at the free end
of an initially horizontal rigid bar hinged at O. The lower ends of the wires are attached to blocks which
can slide along a frictionless groove in the rigid bar. The strain-hardening exponents for the wires AB
and CD are n and 2n respectively. If plastic instability occurs simultaneously in them when the load is
increased to a critical value, show that

b

a
= en + (en − 1)(e2n − 1)

1− en
√

2− e2n

Figure E

1.17 Let σ1 >σ2 >σ3 be the principal stresses at any point P in a stressed body, and consider a straight
line through P having direction cosines

√
σ1 − σ2

σ1 − σ3
, 0,

√
σ2 − σ3

σ1 − σ3

with respect to the principal axes. Show that the resultant shear stress at P across any plane containing
the given straight line is in the direction of this line.

1.18 At a typical point O in a stressed body, the normal stress across a certain plane is equal to the
intermediate principal stress, while the shear stress is the geometric mean of the principal shear stresses
other than the absolute maximum. Assuming σ1 >σ2 >σ3, show that the direction cosines of the normal
to the plane with respect to the principal axes are

1

2

√
σ2 − σ3

σ1 − σ3
,

√
3

2
,

1

2

√
σ1 − σ2

σ1 − σ3

Find the direction of the shear stress across the plane, and show that it coincides with that of the greatest
shear stress at O when σ1+ σ3= 2σ2.



Chakra-01.tex 26/12/2005 12: 41 Page 52

52 theory of plasticity

1.19 Referring to the oblique triangle of Fig. 1.10a, where CF is drawn along the shear stress vector to
meet the side AB at F, show that

AF

AB
=
(
σ2 − σ
σ − σ3

)
m2

n2

Show also that AB is divided internally or externally at F according as the ratio (σ2− σ3)/(σ1− σ2) is
greater or less than l2/n2.

1.20 A typical point O in a stressed body is taken as the origin of coordinates with rectangular axes in
the directions of the principal stresses σ1, σ2, and σ3. If P is any point on the surface of the quadric

σ1x2 + σ2y2 + σ3z2 = ±c2

where c is a constant, show that the normal stress at O acting on the plane perpendicular to OP has the
magnitude c2/r2, where OP= r. Show also that the resultant stress across this plane is directed along
the normal to the quadric surface at P, and is of magnitude c2/hr, where h is the perpendicular distance
of O from the tangent plane through P.

1.21 The rectangular components of the stress tensor at a certain point are found to be proportional to
the elements of the square matrix 

2 3 2
3 2 1
2 1 c




Find the value of c for which there will be a traction-free plane passing through the given point. Compute
the direction cosines of the normal to the traction-free plane.

Answer: c= 0.4, l= 0.154, m=−0.617, n= 0.772.

1.22 If OP represents the resultant stress vector across a plane passing through O, show that P will lie
on the surface of an ellipsoid, known as stress ellipsoid, whose principal axes coincide with those of
the stress at O. Prove that the given plane is parallel to the tangent plane of the stress director surface

x2

σ1
+ y2

σ2
+ z2

σ3
= const

at the point where it is intersected by OP, the coordinate axes being taken through O along the principal
stress axes.

1.23 The resultant stress at a given point O across an oblique plane is 135 MPa, acting in the direction
(1/3, 2/3,−1/3) with respect to a set of rectangular axes. If the normal to the plane is inclined at 45◦
to the x axis, and makes equal acute angles with the y and z axes, find the normal and shear components
of the stress. Assuming the state of stress at O to correspond to σx = σy, τxy= τyz, and τzx = 0, determine
the nonzero components of the stress tensor.

Answer: In units of MPa, σ= 86.13, τ= 103.95, σx = σy = 105.44, σz =−120.88, τxy = τyz = 30.88.

1.24 The state of stress at a certain point in a material body is defined by the following rectangular
components:

σx = 64 MPa σy = −76 MPa σz = 48 MPa

τxy = 30 MPa τyz = −25 MPa τzx = 55 MPa

Determine the normal and shear stresses acting on a plane whose normal in inclined at 40 and 70◦ to the
x and y axes respectively. Find also the direction cosines of the shear stress, assuming an acute angle
between the normal and the z axis.

Answer: σ= 95.12 MPa, τ= 52.42 MPa, ls= 0.312, ms=−0.937, ns= 0.152.
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1.25 In a prismatic beam subjected to combined bending and twisting, the components of the stress
tensor at a given point are

σx = 72.5 MPa σy = −12.8 MPa σz = 0

τxy = 62.3 MPa τyz = 0 τzx = −45.4 MPa

where the x axis is along the centroidal axis of the beam. Find the values of the principal stresses, the
greatest shear stress, and the direction cosines of the largest principal stress.

Answer: σ1= 119.2 MPa, σ2=−4.0 MPa, σ3=−55.5 MPa, l1= 0.855, m1= 0.404, n1=−0.326.

1.26 A strain rosette, consisting of three strain gauges OP, OQ, and OR (Fig. F), is constructed to
measure simultaneously three extensional small strains εP , εQ, and εR along the surface of a strained
body. Using the transformation formula for ε, show that the directions of the principal surface strains
make angles α and π/2+α with OQ in the counterclockwise sense, where

tan 2α = (εP − εR)tanψ

εP + εR − 2εQ

In the special case of an equiangular rosette (ψ=π/3), show that the principal values of the surface
strain are

1
3 (εP + εQ + εR)± 1

3

√
3(εP − εR)2 + (εP + εR − 2εQ)2

Figure F

1.27 A simple shear is a state of plane strain in which the final coordinates (x, y) of a typical particle
are related to the initial coordinates (x0, y0) by the transformation

x = x0 + y0 tan φ y = y0

where tan φ is the amount of shear. Show that the straight lines which suffer the maximum extension
and contraction are inclined to the x axis at angles ±π/4−α/2 in the strained state, where

α = tan−1( 1
2 tan φ

)
Show also that the logarithms of the length ratios associated with maximum extension and contraction
are ±sinh−1(tanα).

1.28 A state of uniform plane strain of arbitrary magnitude is given by the coordinate transformation

x = cx0 y = dy0

where c and d are positive constants. Assuming c> 1> d, show that the straight lines whose lengths
remain unchanged make angles ±β and ±β0 with the x-axis in the final and initial states respectively,
where

tan β = d

c

√
c2 − 1

1− d2 =
d

c
tan β0
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Prove that the deformation is associated with a change in volume unless cd= 1, which corresponds to
pure shear. Show also that the maximum engineering shear strain is (c2− d2)/(2cd), associated with
lines that are inclined at ±π/4 with the x axis in the unstrained state.

1.29 Find the relationship between the constants A, B, and C in the following expressions, which
represent a possible deformation rate in a two-dimensional field:

ε̇x = Ax2(x2 + y2) ε̇y = By2(x2 + y2)

γ̇xy = Cxy(x2 + y2)

Show that the associated velocity field, to within a rigid-body motion, is given by

u = Cx3
(

3
5 x2 + y2

)
+ Dy

v = Cy3
(

x2 + 3
5 y2

)
− Dx

where D is an arbitrary constant. Obtain an expression for the component of spin in the xy plane, if a
rigid body rotation of the material as a whole is excluded.

1.30 An element of material deforms in plane strain such that the principal axes of the strain rate remain
fixed in the element as it rotates during its motion. The directions of ε̇1 and ε̇2 are assumed to be parallel
to the x and y axes respectively in the initial state. Show that the principal natural strains produced by
an arbitrary small deformation of the element are

ε1 = ∂u

∂x
+ 1

2

{(
∂u

∂y

)2

−
(
∂u

∂x

)2
}

ε2 = ∂v

∂y
+ 1

2

{(
∂v

∂x

)2

−
(
∂v

∂y

)2
}

to second order, where u and v are the components of the displacement of the center of the element
whose initial coordinates are x and y.

1.31 Let ai and xi be the initial and final coordinates of a typical particle P with respect to a fixed set of
rectangular axes. Show that the ratio of the final and initial squared lengths of the material line elements
through P, parallel to the coordinate axes in the initial state, are equal to the diagonal elements of the
matrix of the tensor

gij = ∂xk

∂ai

∂xk

∂aj

Prove that the ratio of the initial and final densities of the material in the neighborhood of the considered
particle is equal to the jacobian |∂xi/∂aj| of the transformation of coordinates.

1.32 Green’s strain tensor γij at a typical particle in a finitely deformed body, having initial coordinates
ai, is defined as that whose scalar product with the tensor 2dai daj is equal to the difference between
the final and initial squared lengths of a material line element emanating from the particle. Show that

γij = 1

2

(
∂ui

∂aj
+ ∂uj

∂ai
+ ∂uk

∂ai

∂uk

∂aj

)

where ui is the displacement of the principle. Show also that the material rate of change of γij , when
the initial reference state coincides with the instantaneous state, is identical to the rate of deformation.

1.33 The curve obtained by plotting the nominal stress against the engineering strain in simple tension
may be represented by the empirical equations s=Bem/(1+ e), where B and m are constants. If a



Chakra-01.tex 26/12/2005 12: 41 Page 55

stresses and strains 55

specimen of the same material is loaded in simple compression, show that the relationship between the
nominal stress and the engineering strain becomes

s = B

1− e

(
e

1− e

)m

Also show that the magnitude of the engineering strain at the point of inflection on the (s, e) curve is
e= [m(1+m)/2]1/2−m.

1.34 A compound bar is composed of a solid cylinder exactly fitting into a hollow cylinder of identi-
cal length and cross-sectional area, the two cylinders being firmly bonded at their interface. If the true
stress–strain curves for the inner and outer cylinders are given by σ=C1ε

n1 and σ=C2ε
n2 , respectively,

show that the longitudinal true strain at the onset of instability, when the compound bar is subjected to
axial tension, is given by (

ε− n1

n2 − ε
)
εn1−n2 = C2

C1

Assuming n1= 0.2, n2= 0.3, and C2/C1= 1.5, compute the value of the instability strain.
Answer: ε= 0.257.

1.35 A thin-walled cylindrical tube with open ends in subjected to a gradually increasing internal
pressure p, the initial thickness and mean radius of the tube being t0 and r0 respectively. Show that
the condition for plastic instability, which occurs when the pressure attains a maximum, is given by
dσ/dε= 3σ/2, where σ and ε are the stress and strain in the circumferential direction. If the true stress–
strain curve of the material is expressed by the power law σ=Cεn, show that the instability or bursting
pressure is given by

p

C
= t0

r0

(
2n

3

)n

exp(−n)

1.36 Considering small elastic/plastic deformation of the vertical wires in the configuration of Fig. E,
let the line of action of the load W be situated at a distance c from the vertical wall. Each wire is assumed
to be of length l, cross-sectional area A, and made of a material whose stress–strain curve in the plastic
range is given by σ=Y (Eε/Y )n, where n is constant. Show that the relationship between the applied
load W and the deflection δ of its point of application is given by

W

AY
= a

c

(
Eaδ

Ycl

)m

+ b

c

(
Ebδ

Ycl

)n

where m= 1 for cY/bE� δ/l� cY/aE, and m= n for δ/l� cY/aE. Taking b= 2a, c= 3a and n= 0.25,
obtain a graphical plot of W/AY against Eδ/Yl� 1.5.


