
8B-Spline Curves

B-splines were investigated as early as the nineteenth century by N. Lobachevsky
(see Renyi [506], p. 165); they were constructed as convolutions of certain prob-
ability distributions.1 In 1946, I. J. Schoenberg [542] used B-splines for statistical
data smoothing, and his paper started the modern theory of spline approxima-
tion. For the purposes of this book, the discovery of the recurrence relations
for B-splines by C. de Boor [137], M. Cox [129], and L. Mansfield was one of
the most important developments in this theory. The recurrence relations were
first used by Gordon and Riesenfeld [284] in the context of parametric B-spline
curves.

This chapter presents a theory for arbitrary degree B-spline curves. The orig-
inal development of these curves makes use of divided differences and is math-
ematically involved and numerically unstable; see de Boor [138] or Schumaker
[546]. A different approach to B-splines was taken by de Boor and Höllig [143];
they used the recurrence relations for B-splines as the starting point for the the-
ory. In this chapter, the theory of B-splines is based on an even more fundamental
concept: the blossoming method proposed by L. Ramshaw [498] and, in a dif-
ferent form, by P. de Casteljau [147]. More literature on blossoms: Gallier [252],
Boehm and Prautzsch [87].

1 However, those were only defined over a very special knot sequence.

119

120 Chapter 8 B-Spline Curves

8.1 Motivation

B-spline curves consist of many polynomial pieces, offering much more versatility
than do Bézier curves. Many B-spline curve properties can be understood by
considering just one polynomial piece—that is how we start this chapter.

The Bézier points of a quadratic Bézier curve may be written as blossom values

b[0, 0], b[0, 1], b[1, 1].

Based on this, we could get the de Casteljau algorithm by repeated use of the
identity t = (1− t) · 0 + t · 1. The pairs [0, 0], [0, 1], [1, 1] may be viewed as being
obtained from the sequence 0, 0, 1, 1 by taking successive pairs.

Let us now generalize the sequence 0, 0, 1, 1 to a sequence u0, u1, u2, u3. The
quadratic blossom b[u, u] may be written as

b[u, u] = u2 − u
u2 − u1

b[u1, u] + u − u1

u2 − u1
b[u, u2]

= u2 − u
u2 − u1

(
u2 − u
u2 − u0

b[u0, u1] + u − u0

u2 − u0
b[u1, u2]

)

+ u − u1

u2 − u1

(
u3 − u
u3 − u1

b[u1, u2] + u − u1

u3 − u1
b[u2, u3]

)
.

This uses the identity

u = u2 − u
u2 − u1

u1 + u − u1

u2 − u1
u2

for the first step and the two identities

u = u2 − u
u2 − u0

u0 + u − u0

u2 − u0
u2

and

u = u3 − u
u3 − u1

u1 + u − u1

u3 − u1
u3

8.1 Motivation 121

for the second step. Note that we successively express u in terms of intervals of
growing size.

Starting with the b[ui, ui+1] as input control points, we may rewrite this as:

b[u0, u1]
b[u1, u2] b[u1, u]
b[u2, u3] b[u, u2] b[u, u].

This is a first instance of the de Boor generalization of the de Casteljau
algorithm. See Example 8.1 for a detailed computation.

Figure 8.1 illustrates the algorithm, but using the knot sequence u0, u1, u2, u3 =
0, 1, 3, 4 and u = 2.0.

Example 8.1 The de Boor algorithm for n = 2.

Let u0, u1, u2, u3 = 0, 2, 4, 6. Let the control points be given by

b[u0, u1] =
[

0
0

]
, b[u1, u2] =

[
8
8

]
, b[u2, u3] =

[
8
0

]
.

Setting u = 3, we now compute the point b[3, 3]. At the first level, we compute
two points

b[2, 3] = 4 − 3
4 − 0

[
0
0

]
+ 3 − 0

4 − 0

[
8
8

]
=

[
6
6

]

and

b[3, 4] = 6 − 3
6 − 2

[
8
8

]
+ 3 − 2

6 − 2

[
8
0

]
=

[
8
6

]
.

Finally,

b[3, 3] = 4 − 3
4 − 2

[
6
6

]
+ 3 − 2

4 − 2

[
8
6

]
=

[
7
6

]
.

122 Chapter 8 B-Spline Curves

b[u1,u2]

b[u,u2]

b[u2,u3]

b[u,u]

b[u,u1]

b[u0,u1]

u0 u1 u u2 u3

U 1
1

U 1
2 U 2

2

Figure 8.1 The de Boor algorithm: the quadratic case.

8.2 B-Spline Segments

B-spline curves consist of a sequence of polynomial curve segments. In this
section, we focus on just one of them.

Let U be an interval [uI, uI+1] in a sequence {ui} of knots. We define ordered
sets Ur

i of successive knots, each containing uI or uI+1. The set Ur
i is defined such

that:

Ur
i consists of r + 1 successive knots.

uI is the (r − i)th element of Ur
i , with i = 0 denoting the first of Ur

i ’s elements.

We also observe

Ur
i = Ur+1

i ∩ Ur+1
i+1 .

When the context is unambiguous, we also refer to the Ur
i as intervals, having

the first and last elements of Ur
i as endpoints. In that context, U1

1 = U. We also
define U = [U0

0, U0
1] and use the term interval only if U0

0 = U0
1.

A degree n curve segment corresponding to the interval U is given by n + 1
control points di which are defined by

8.2 B-Spline Segments 123

di = b[Un−1
i]; i = 0, . . . , n. (8.1)

The point x(u) = b[u<n>] on the curve is recursively computed as

dr
i (u) = b[u<r>, Un−1−r

i]; r = 1, . . . , n; i = 0, . . . , n − r (8.2)

with x(u) = dn
0(u).2 This is known as the de Boor algorithm after Carl de Boor

see [137]. See Example 8.2 for the case n = 3 and Figure 8.2 for an illustration.
Equation (8.2) may alternatively be written as

dr
i (u) = (1− tn−r+1

i+1)dr−1
i + tn−r+1

i+1 dr−1
i+1; r = 1, . . . , n; i = 0, . . . , n − r, (8.3)

where tn−r+1
i+1 is the local parameter in the interval Un−r+1

i+1 .
A geometric interpretation is as follows. Each intermediate control polygon

leg dr
i , dr

i+1 may be viewed as an affine image of Un−r+1
i+1 . The point dr+1

i is then
the image of u under that affine map.

For the special knot sequence 0<n>, 1<n> and U = [0, 1], the de Boor algorithm
becomes

dr
i (u) = b[u<r>, 0<n−r−i>, 1<i>]; r = 1, . . . , n; i = 0, . . . , n − r, (8.4)

which is simply the de Casteljau algorithm.
If the parameter u happens to be one of the knots, the algorithm proceeds as

before, except that we do not need as many levels of the algorithm. For example,
if a quadratic curve segment is defined by b[u0, u1], b[u1, u2], b[u2, u3] and we
want to evaluate at u = u2, then two of the intermediate points in the de Boor
algorithm are already known, namely, b[u1, u2] and b[u2, u3]. From these two,
we immediately calculate the desired point b[u2, u2], thus the de Boor algorithm
now needs only one level instead of two.

Derivatives of a B-spline curve segment are computed in analogy to the Bézier
curve case (5.17)

ẋ(u) = nb[u<n−1>, �1]. (8.5)

Expanding this expression and using the control point notation, this becomes

ẋ(u) = n
|U| (d

n−1
1 − dn−1

0), (8.6)

2 This notation is different from the one used in previous editions of this book.

124 Chapter 8 B-Spline Curves

Example 8.2 The de Boor algorithm for n = 3.

Let part of a knot sequence be given by

. . . u3, u4, u5, u6, u7, u8, . . .

and let U = [u5, u6]. The standard blossom computation of b[u, u, u] proceeds as
follows:

b[u3, u4, u5]

b[u4, u5, u6] b[u, u4, u5]

b[u5, u6, u7] b[u, u5, u6] b[u, u, u5]

b[u6, u7, u8] b[u, u6, u7] b[u, u, u6] b[u, u, u].

We now write this as

b[U2
0]

b[U2
1] b[u, U1

0]

b[U2
2] b[u, U1

1] b[u, u, U0
0]

b[U2
3] b[u, U1

2] b[u, u, U0
1] b[u, u, u].

In terms of control points:

d0

d1 d1
0

d2 d1
1 d2

0

d3 d1
2 d2

1 d3
0.

The labeling in the first scheme depends on the subscripts of the knots, whereas
the last two employ a relative numbering.

where |U| = U0
1 − U0

0 denotes the length of the interval U. Thus the last two
intermediate points dn−1

0 and dn−1
1 span the curve’s tangent, in complete analogy

to the de Casteljau algorithm.
Higher derivatives follow the same pattern:

dr

dur
x(u) = n!

(n − r)!
b[u<n−r>, �1<r>]. (8.7)

8.2 B-Spline Segments 125

b[u0,u1,u2]

b[u,u1,u2]
b[u,u3,u4]

b[u1,u2,u3]

b[u3,u4,u5]

b[u2,u3,u4]

u0 u1 u2 u u3 u4 u5

U 1
1

U 2
2

U 1
2

U 3
3

U 2
3

U 1
3

Figure 8.2 The de Boor algorithm: a cubic example. The solid point is the result b[u, u, u]; it is on
the line through b[u, u, u2] and b[u, u, u3].

In the case of Bézier curves, we could use the de Casteljau algorithm for curve
evaluation, but we could also write a Bézier curve explicitly using Bernstein
polynomials. Since we changed the domain geometry, we will now obtain a
different explicit representation, using polynomials3 Pn

i :

x(u) =
n∑

i=0

diP
n
i (u). (8.8)

The polynomials Pn
i satisfy a recursion similar to the one for Bernstein polyno-

mials, and the following derivation is very similar to that case:

3 These will later become building blocks of B-splines.

126 Chapter 8 B-Spline Curves

x(u) =
n−1∑
i=0

d1
i P

n−1
i (u)

=
n−1∑
i=0

(1− tn
i+1)diP

n−1
i (u) +

n−1∑
i=0

tn
i+1di+1P

n−1
i (u)

=
n∑

i=0

(1− tn
i+1)diP

n−1
i (u) +

n∑
i=1

tn
i diP

n−1
i−1 (u)

(8.9)

For the first step, we used the de Boor algorithm, letting tn
i be the local parameter

in the interval Un
i+1. For the second step, we used the convention Pn−1

n ≡ 0 to

modify the first term. Using a similar argument: Pn−1
−1 ≡ 0, we may extend the

second term to start with i = 0. We conclude

Pn
i (u) = (1− tn

i+1)P
n−1
i (u) + tn

i Pn−1
i−1 (u). (8.10)

This recursion has to be anchored in order to be useful. This is straightforward
for the case n = 1:

P1
0(u) = ur − U0

1

|U| , P1
1(u) = u − U0

0

|U| ,

where |U| = U0
1 − U0

0. For the special knot sequence 0<n>, 1<n> and U = [0, 1],
this is the Bernstein recursion.

8.3 B-Spline Curves

A B-spline curve consists of several polynomial curve segments, each of which
may be evaluated using a de Boor algorithm. A B-spline curve is defined by

the degree n of each curve segment,

the knot sequence u0, . . . , uK, consisting of K + 1 knots ui ≤ ui+1,

the control polygon d0, . . . , dL with L = K − n + 1.

Some comments: the numbering of the control points di in this definition is
global, whereas in Section 8.2 it was local relative to an interval U. Each di
may be written as a blossom value with n subsequent knots as arguments. Hence
the number L + 1 of control points equals the number of n-tuples in the knot
sequence.

8.3 B-Spline Curves 127

Example 8.3 Some examples of B-spline curve definitions.

Let n = 1, and let the knot sequence be 0, 1, 2, hence K = 2. There will be control
points d0, d1, d3. The curve’s domain is [u0, u3], and there are two linear curve
segments.
Let n = 2 with the knot sequence 0, 0.2, 0.4, 0.5, 0.7, 1, hence K = 5. There will
be control points d0, d1, d2, d3, d4 and three quadratic curve segments. If we now
change the knot sequence to 0, 0.2, 0.45, 0.45, 0.7, 1, then the number of curve
segments will drop to two.

Each knot may be repeated in the knot sequence up to n times. In some cases it
is approriate to simply list those knots multiple times. For other applications, it is
better to list the knot only once and record its multiplicity in an integer array. For
example, the knot sequence 0.0, 0.0, 1.0, 2.0, 3.0, 3.0, 4.0, 4.0 could be stored as
0.0, 1.0, 2.0, 3.0, 4.0 and a multiplicity array 2, 1, 1, 2, 2.

There is a different de Boor algorithm for each curve segment. Each is “started”
with a set of Un

i , that is, by sequences of n + 1knots. In order for local coordinates
to be defined in (8.3), no successive n + 1 knots may coincide.

In Section 8.2, we assumed that we could find the requisite Un
i for each interval

U. This is possible only if U is “in the middle” of the knot sequence; more
precisely, the first possible de Boor algorithm is defined for U = [un−1, un] and
the last one is defined for U = [uK−n, uK−n+1]= [uK−n, uL]. We thus call [un−1, uL]
the domain of the B-spline curve. A B-spline curve has as many curve segments
as there are nonzero intervals U in the domain. Example 8.3 illustrates these
comments.

For more examples of B-spline curves, see Figure 8.3.
Since a B-spline curve consists of a number of polynomial segments, one might

ask for the Bézier form of these segments. For a segment U = [uI, uI+1] of the
curve, we simply evaluate its blossom bU and obtain the Bézier points bU

0 , . . . , bU
n

as

bU
k = bU[u<n−k>

I , u<k>
I+1].

An example is shown in Figure 8.4. Several constituent curve pieces of the same
curve are shown in Figure 8.5.

When dealing with B-spline curves, it is convenient to treat it as one curve, not
just as a collection of polynomial segments. A point on such a curve is denoted
by d(u), with u ∈ [un−1, uK−n+1]. In order to evaluate, we perform the following
steps:

128 Chapter 8 B-Spline Curves

0 0 1 2 3 4 5 6 7 8 9

n = 2

0 0 0 1 2 3 4 5 6 7 8 9

n = 3

0 0 0 1 1 2 2 3 3 4 4 4

n = 3

0 0 0 0 0 3 3 3 3 5 5 5 5 5

n = 5

0 0 0 0 0 0 0 0 0 5 5 5 5 5 5 5 5 5

n = 9

Figure 8.3 B-spline curves: several examples.

1. Find the interval U = [uI, uI+1) that contains u.

2. Find the n + 1 control points that are relevant for the interval U. They are,
using the global numbering, given by dI−n+1, . . . , dI+1.

3. Renumber them as d0, . . . , dn and evaluate using the de Boor algorithm
(8.3).

In terms of the global numbering of knots, we observe that the intervals Uk
i

from the previous section are given by

8.3 B-Spline Curves 129

Figure 8.4 Conversion to Bézier form: the Bézier points of a segment of a cubic B-spline curve.

Figure 8.5 Individual curve segments: the first four cubic segments of a cubic B-spline curve are
shown, alternating between dashed and black.

Uk
i = [uI−k+i, uI+i].

The steps in the de Boor algorithm then become

dk
i (u) = (1− αk

i)d
k−1
i (u) + αk

i dk−1
i+1 (u)

with

αk
i = u − uI−k+i

uI+i − uI−k+i

for k = r + 1, . . . , n, and i = 0, . . . , n − k. Here, r denotes the multiplicity of u.
(Normally, u is not already in the knot sequence; then, r = 0.)

The fact that each curve segment is only affected by n + 1 control points is
called the local control property.

We also use the notion of a B-spline blossom d[v1, . . . , vn], keeping in mind
that each domain interval U has its own blossom bU and that consequently
d[v1, . . . , vn] is piecewise defined.

B-spline curves enjoy all properties of Bézier curves, such as affine invariance,
variation diminution, etc. Some of these properties are more pronounced now
because of the local control property. Take the example of the convex hull

130 Chapter 8 B-Spline Curves

Figure 8.6 The local convex hull property: top, quadratic; bottom, cubic.

Figure 8.7 The local control property: changing one control point of a cubic B-spline curve has only
a local effect.

property: the curve is in the convex hull of its control polygon, but also each
segment is in the convex hull of its defining n + 1 control points; see Figure 8.6.

A consequence of the local control property is that changing one control point
will only affect the curve locally. This is illustrated in Figure 8.7.

8.4 Knot Insertion

Consider a B-spline curve segment defined over an interval U. It is defined by
all blossom values d[Un−1

i]; i = 0, . . . , n where each n-tuple of successive knots
Un−1

i contains at least one of the endpoints of U. If we now split U into two
segments by inserting a new knot û, the curve will have two corresponding

8.4 Knot Insertion 131

Example 8.4 Knot insertion.

In Figure 8.8, just one de Boor step is carried out for the parameter value û. The
two new resulting points, in blossom notation, are b[u1, û] and b[û, u2]. Let us
now consider the points

b[u0, u1], b[u1, û], b[û, u2].

These are the B-spline control points of our curve b[u, u] for the interval [u1, û]!
Similarly, the B-spline control points for the interval [û, u2] are given by

b[u1, û], b[û, u2], b[u2, u3].

b[u1,u2]

b[û,u2]

b[u2,u3]

b[û,u1]

b[u0,u1]

u0 u1 û u2 u3

Figure 8.8 Knot insertion: a quadratic example.

segments. What are the control points for these two segments? The answer is
surprisingly simple: all blossom values d[Ûn−1

i]; i = 0, . . . , n + 1 where each n-
tuple of successive knots Ûn−i

i contains at least one of the endpoints of U. This
result is due to W. Boehm [68], although it was not originally derived using
blossoms. See Example 8.4.

Knot insertion works since B-spline control points are nothing but blossom
values of successive knots—now they involve the new knot û. We may also view
the process of knot insertion as one level of the de Boor algorithm, as illustrated
in Example 8.4.

132 Chapter 8 B-Spline Curves

Figure 8.9 Chaikin’s algorithm: starting with a (closed) control polygon B-spline curve, two levels of
the algorithm are shown.

An interesting application of repeated knot insertion is due to G. Chaikin
[105]. Consider a quadratic B-spline curve over a uniform knot sequence. Insert
a new knot at the midpoint of every interval of the knot sequence. If the “old”
curve had control vertices di and those of the new one are d(1)

i , it is easy to show
that

d(1)
2i−1 = 3

4
di + 1

4
di−1 and d(1)

2i = 3
4

di + 1
4

di+1.

If this procedure is repeated infinitely often, the resulting sequence of polygons
will converge to the original curve, as follows from our previous considerations.
Figure 8.9 shows the example of a closed quadratic B-spline curve; two levels of
the iteration are shown.

Chaikin’s algorithm may be described as corner cutting: at each step, we chisel
away the corners of the initial polygon. This process is, on a high level, similar
to that of degree elevation for Bézier curves, which is also a convergent process.
One may ask if corner-cutting processes will always converge to a smooth curve.
The answer is yes, with some mild stipulations on the corner-cutting process, and
was first proved by de Boor [140]. One may thus use a corner-cutting procedure
to define a curve—and only very few of the curves thus generated are piecewise
polynomial! Recent work has been carried out by Prautzsch and Micchelli [495]
and [426], based on earlier results by de Rham [150], [151].

R. Riesenfeld [508] realized that Chaikin’s algorithm actually generates uni-
form quadratic B-spline curves. A general algorithm for the simultaneous inser-
tion of several knots into a B-spline curve has been developed by Cohen, Lyche,
and Riesenfeld [121]. This so-called Oslo algorithm needs a theory of discrete
B-splines for its development (see Bartels, Beatty, and Barsky [47]).

8.5 Degree Elevation 133

8.5 Degree Elevation

We may degree elevate in (almost) the same way we could degree elevate Bézier
curves using (6.2). The difference: a given B-spline is a piecewise degree n
curve over a given knot sequence. Its differentiability is determined by the knot
multiplicities. If we write it as a piecewise degree n + 1 curve, we need to
increase the multiplicity of every knot by one, thus maintaining the original
differentiability properties. For example, if we degree elevate a C0 piecewise
linear curve to piecewise quadratic, it is still C0. But for a piecewise quadratic
to be C0, it has to have double knots. Let us denote the knots in this augmented
knot sequence by ûi.

Let Vn be a sequence of n + 1 real numbers v1, . . . , vn+1. Let Vn|vi denote the
sequence Vn with the value vi removed. Then the degree n + 1 blossom b̂ may be
expressed in terms of the degree n blossom b via

b̂[V (n+1)] = 1
n + 1

(
b[V (n+1)|v1] + . . . + b[V (n+1)|vn+1]

)
. (8.11)

The proof is identical to that for degree elevation of Bézier curves. The control
points are then recovered from the blossom as before (see Example 8.5).

The inverse process—degree reduction is more important for practical ap-
plications. Following the example of the analogous Bézier case, we write the
elevation process as a matrix product and invert it by a least squares technique
for the reduction process; see Section 6.4. This method is described in detail in
[617]. Other methods exist, see [481] and [624].

Example 8.5 B-spline degree elevation and blossoms.

Let a cubic B-spline curve be defined over {u0 = u1 = u2, u3, . . .}. Then the
interval [u4, u5] corresponds to [û7, û8]. We denote the corresponding blossoms
by d4[a, b, c] and d7[a, b, c, d]. The new control point d̂4 is computed as follows:

d̂4 = d̂7[û4, û5, û6, û7]

= 1
4

(
d4[û4, û5, û6] + d4[û4, û5, û7] + d4[û4, û6, û7] + d4[û5, û6, û7]

)

= 1
2

(
d4[u3, u3, u4] + d4[u3, u4, u4]

)
.

For the last step, we have used û4 = û5 = u3 and û6 = û7 = u4.

134 Chapter 8 B-Spline Curves

8.6 Greville Abscissae

Let l[u]= u be the blossom of the (nonparametric) linear function u. If we want
to write this linear blossom as a quadratic one: l2[u, v] = l[u], we easily see that

l(2)[u, v] = 1
2

l[u] + 1
2

l[v]

gives the desired quadratic form of our linear blossom. If we asked for a cubic
form l(3)[u, v, w] of l[u], we find that

l(3)[u, v, w] = 1
3

l2[v, w] + 1
3

l2[u, w] + 1
3

l2[u, v].

If we denote a degree n version of the linear blossom by l(n)[Vn] with Vn =
v1, . . . , vn, it follows that

l(n)[Vn] = 1
n

(v1 + . . . + vn).

The proof is by induction and was anchored by the earlier examples. The
inductive step starts with the degree elevation formula (8.11):4

l(n+1) = 1
n + 1

n+1∑
i=1

1
n

[V (n+1)|vi]

This is easily transformed to

ln+1 = 1
n + 1

(v1 + . . . + vn+1),

thus finishing the proof.
If we are given a knot sequence u0, . . . , uK and a degree n, then we know that

any B-spline function d(u) has control vertices d[u0, . . . , un−1], . . . , d[uK−n+1, . . . ,
uK]. In the case of a linear function l, we thus have control vertices

1
n

(u0 + . . . + un−1), . . . ,
1
n

(uK−n+1 + . . . + un).

4 We do not have to work with augmented knot sequences here since we always deal with
one linear function.

8.7 Smoothness 135

ξ0 ξ1 ξ2 ξ3 ξ4 ξ5

d0

u0 u3 u4 u5

u1 u6

u2 u7

d5

Figure 8.10 Nonparametric B-spline curves: a cubic example.

These terms are called Greville abscissae and are abbreviated as

ξi = 1
n

(ui + . . . + ui+n−1).

A nonparametric B-spline function d(u) may thus be written as a parametric
curve with points

di =
[

ξi
di

]
; i = 0, . . . , L

with the usual L = K − n + 1. Figure 8.10 gives an example.
For the special case of the knot sequence 0<n>, 1<n>, we obtain ξi = i

n , as
already encountered in Section 6.5.

8.7 Smoothness

A B-spline curve consists of several polynomial segments, one for each domain
interval U. What is the smoothness of this piecewise curve?

Figures 8.11, 8.12, and 8.13 show how knot multiplicities affect smoothness.
In general, if a knot û is of multiplicity r, then a B-spline curve of degree n

has smoothness Cn−r at that knot. This follows from considering the osculants

136 Chapter 8 B-Spline Curves

b[u0,u1,u2]

b[u2,u3,u3]

b[u3,u3,u3]

b[u1,u2,u3]

b[u3,u4,u5]

b[u4,u5,u6]

b[u3,u3,u4]

b[u2,u3,u4]

u0 u3 u4

u2 u6

u1 u5

Figure 8.11 Smoothness: an interior knot of multiplicity one results in a C2 piecewise cubic curve.

b[u0,u1,u2]

b[u1,u2,u3]

b[u3,u4,u5]
b[u5,u6,u7]

b[u4,u5,u6]

b[u3,u3,u4]

b[u2,u3,u4]

u0 u3 u5

u2 u7

u1 u4 u6

Figure 8.12 Smoothness: an interior knot of multiplicity two results in a C1 piecewise cubic curve.

8.7 Smoothness 137

b[u0,u1,u2]

b[u1,u2,u3]

b[u3,u4,u5]

b[u5,u6,u7]

b[u4,u5,u6]
b[u6,u7,u8]

b[u2,u3,u4]

u0

u2

u1

u3

u5

u4

u6

u8

u7

Figure 8.13 Smoothness: an interior knot of multiplicity three results in a C0 piecewise cubic curve.

at û.5 The highest-order osculant is given by

on−r(u) = b[û<r>, u<n−r>],

assuring continuity of derivatives up to order n − r. Higher-order continuity is
possible, but cannot be guaranteed.

An important special case is given by piecewise Bézier curves. These are B-
spline curves of degree n where each knot is of full multiplicity n. In general, such
curves will only be C0, but under certain conditions, they may be smoother.

For concreteness, take two cubic Bézier curves with control polygons b0, b1,
b2, b3 and c0, c1, c2, c2, defined over a knot sequence u0, u0, u0, u1, u1, u1, u2, u2, u2.
They are C0 if b3 = c0, or, in terms of the associated blossoms, if b[u1, u1, u1] =
c[u1, u1, u1]. Two such curves are shown in Figure 8.14.

The two curves are C1 if they may be written as a B-spline curve with a double,
not a triple knot u1. Then our triple knot at u1 is the result of knot insertion and
the three points b2, b3, c1 are collinear and in the ratio �0 : �1 with �0 = u1 − u0

5 The osculant of order r of an nth degree polynomial curve x(u) at paramter value û is the
degree r polynomial that agrees with x for all derivatives up to order r.

138 Chapter 8 B-Spline Curves

b0
c2

c3
c1

b3c0

b2b1

u0 u1 u2

u0 u1 u2

u0 u1 u2

Figure 8.14 Smoothness of Bézier curves: the C1 case.

and �1 = u2 − u1. In terms of blossoms:

c1 = b[u1, u1, u2] and b2 = c[u0, u1, u1].

For C2 smoothness, the knot u1 must have been the result of two knot
insertions. It follows that

b[u0, u1, u2] = c[u0, u1, u2]. (8.12)

is our desired C2 condition. It is illustrated in Figure 8.15.
If we are to check if two given Bézier curves are C2 or not, all we have to do is

construct the two points appearing in (8.12). If they disagree, as in Figure 8.16,
we conclude that the given curve is not C2.

In most practical cases, a C2 check would have to check for approximate
satisfaction of (8.12), since reals or floats are rarely equal. In other words, a
tolerance has to be used. The practical value of (8.12) lies in the fact that it is
amenable to using a point tolerance that determines when two distinct points
are to be considered the same point. Checking for C2 smoothness by comparing
second derivatives would require a different, and less intuitive, tolerance.

8.7 Smoothness 139

b0
c3

b2

c2

c1

b3

b1

u0 u1 u2

u0 u1 u2

u0 u1 u2

c[u0,u1,u2]
b[u0,u1,u2]

Figure 8.15 Smoothness of Bézier curves: the C2 case.

u0 u1

u0 u1

u0 u1

u2

u2

u2

b0

c3

b2

c2

c1

c0 b3

b1

c[u0,u1,u2]

b[u0,u1,u2]

Figure 8.16 Smoothness of Bézier curves: the C2 condition is violated.

140 Chapter 8 B-Spline Curves

8.8 B-Splines

Consider a knot sequence u0, . . . , uM and the set of piecewise polynomials
of degree n defined over it, where each function in that set is n − ri times
continuously differentiable at knot ui. All these piecewise polynomials form a
linear space, with dimension

dim = (n + 1) +
M−1∑
i=1

ri. (8.13)

For a proof, suppose we want to construct an element of our piecewise polyno-
mial linear space. The number of independent constraints that we can impose
on an arbitrary element, or its number of degrees of freedom, is equal to the
dimension of the considered linear space. We may start by completely specifying
the first polynomial segment, defined over [u0, u1]; we can do this in n + 1 ways,
which is the number of coefficients that we can specify for a polynomial of degree
n. The next polynomial segment, defined over [u1, u2], must agree with the first
segment in position and n − r1 derivatives at u1, thus leaving only r1 coefficients
to be chosen for the second segment. Continuing further, we obtain (8.13).

We are interested in B-spline curves that are piecewise polynomials over the
special knot sequence [un−1, uL]. The dimension of the linear space that they form
is L + 1, which also happens to be the number of B-spline vertices for a curve in
this space. If we can define L + 1 linearly independent piecewise polynomials in
our linear function space, we have found a basis for this space. We proceed as
follows.

Define functions Nn
i (u), called B-splines by defining their de Boor ordinates

to satisfy di = 1 and dj = 0 for all j = i. The Nn
i (u) are clearly elements of the

linear space formed by all piecewise polynomials over [un−1, uL]. They have local
support:

Nn
i (u) = 0 only if u ∈ [ui−1, ui+n].

This follows because knot insertion, and hence the de Boor algorithm, is a local
operation; if a new knot is inserted, only those Greville abscissae that are “close”
will be affected.

B-splines also have minimal support: if a piecewise polynomial with the same
smoothness properties over the same knot vector has less support than Nn

i , it
must be the zero function. All piecewise polynomials defined over [ui−1, ui+n],
the support region of Nn

i , are elements of a function space of dimension 2n + 1,
according to (8.13). A support region that is one interval “shorter” defines a
function space of dimension 2n. The requirement of vanishing n − ri−1 derivatives
at ui−1 and of vanishing n − ri+n derivatives at ui+n imposes 2n conditions on

8.8 B-Splines 141

any element in the linear space of functions over [ui−1, ui+n−1]. The additional
requirement of assuming a nonzero value at some point in the support region
raises the number of independent constraints to 2n + 1, too many to be satisfied
by an element of the function space with dimension 2n.

Another important property of the Nn
i is their linear independence. To demon-

strate this independence, we must verify that

L∑
j=0

cjN
n
j (u) ≡ 0 (8.14)

implies cj = 0 for all j. It is sufficient to concentrate on one interval [uI, uI+1] with
uI < uI+1. Because of the local support property of B-splines, (8.14) reduces to

I+1∑
j=I−n+1

cjN
n
j (u) ≡ 0 for u ∈ [uI, uI+1].

We have completed our proof if we can show that the linear space of piecewise
polynomials defined over [uI−n, uI+n+1] does not contain a nonzero element that
vanishes over [uI, uI+1]. Such a piecewise polynomial cannot exist: it would have
to be a nonzero local support function over [uI+1, uI+n+1]. The existence of such
a function would contradict the fact that B-splines are of minimal local support.

Because the B-splines Nn
i are linearly independent, every piecewise polynomial

s over [un−1, uL] may be written uniquely in the form

s(u) =
L∑

j=0

djN
n
j (u). (8.15)

The B-splines thus form a basis for this space. This reveals the origin of their
name, which is short for Basis splines. Figure 8.17 gives examples of some cubic
B-splines.

If we set all di = 1 in (8.15), the function s(u) will be identically equal to 1,
thus asserting that B-splines form a partition of unity.

u0

u2

u1

u3 u4 u5 u6 u7

u9

u8

N0
3 N1

3 N4
3 N6

3 N7
3

Figure 8.17 B-splines: some cubic examples.

142 Chapter 8 B-Spline Curves

B-spline curves are simply the parametric equivalent of (8.15):

x(u) =
L∑

j=0

djN
n
j (u).

Just as the de Casteljau algorithm for Bézier curves is related to the recursion
of Bernstein polynomials, the de Boor algorithm yields a recursion for B-splines.
It is given by

Nn
l (u) = u − ul−1

ul+n−1 − ul−1
Nn−1

l (u) + ul+n − u

ul+n − ul
Nn−1

l+1 (u), (8.16)

with the “anchor” for the recursion being given by

N0
i (u) =

{
1 if ui−1 ≤ u < ui
0 else

. (8.17)

Its proof relates the local recursion (8.10) to the global indexing scheme. An
example is shown in Figure 8.18.

Equation (8.16) is due to L. Mansfield, C. de Boor, and M. Cox; see de Boor
[137] and Cox [129]. For an illustration of (8.16), see Figure 8.18. This formula
shows that a B-spline of degree n is a strictly convex combination of two lower-
degree ones; it is therefore a very stable formula from a numerical viewpoint. If
B-spline curves must be evaluated repeatedly at the same parameter values uk, it
is a good idea to compute the values for Nn

i (uk) using (8.16) and then to store
them.

Figure 8.18 The B-spline recursion: top, two linear B-splines yield a quadratic one; bottom, two
quadratic B-splines yield a cubic one.

8.9 B-Spline Basics 143

A comment on end knot multiplicities: the widespread data format IGES uses
two additional knots at the ends of the knot sequence; in our terms, it adds knots
u−1 and uL+2n−1. The reason is that formulas like (8.16) seemingly require the
presence of these knots. Since they are multiplied only by zero factors, their values
have no influence on any computation. There is no reason to store completely
inconsequential data, and hence the “leaner” notation of this chapter.

8.9 B-Spline Basics

Here, we present a collection of the most important formulas and definitions of
this chapter. As before, n is the (maximal) degree of each polynomial segment,
L + 1 is the number of control points, and K is the number of intervals.

Knot sequence: {u0, . . . , uK}.

Control points: d0, . . . , dL, with L = K − n + 1.

Domain: Curve is only defined over [un−1, . . . , uL].

Greville abscissae: ξi = 1
n (ui + · · · + ui+n−1).

Support: Nn
i is nonnegative over [ui−1, ui+n].

Knot insertion: To insert uI ≤ u < uI+1, first find new Greville abscissae ξ̂i, then
set new di = P(ξ̂i).

de Boor algorithm: Given uI ≤ u < uI+1, renumber the relevant control points
dI−n+1, . . . , dI+1 as d0, . . . , dn and then set

dk
i (u) = (1− αk

i)d
k−1
i (u) + αk

i dk−1
i+1 (u)

with

αk
i = u − uI+i+1

uI−n+k+i − uI+i+1

for k = r + 1, . . . , n, and i = 0, . . . , n − k. Here, r denotes the multiplicity of
u. (Normally, u is not already in the knot sequence; then, r = 0.)

Mansfield, de Boor, Cox recursion:

Nn
l (u) = u − ul−1

ul+n−1 − ul−1
Nn−1

l (u) + ul+n − u

ul+n − ul
Nn−1

l+1 (u).

144 Chapter 8 B-Spline Curves

Derivative:

d
du

Nn
l (u) = n

un+l−1 − ul−1
Nn−1

l (u) − n
ul+n − ul

Nn−1
l+1 (u).

Derivative of B-spline curve:

d
du

s(u) = n
L−1∑
i=0

�di

un+i−1 − ui−1
Nn−1

i (u).

Degree elevation:

Nn
i (u) = 1

n + 1

n+i∑
j=i−1

Nn+1
i (u; uj),

where Nn+1
i (u; uj) is defined over the original knot sequence except that the

knot uj has its multiplicity increased by one. This identity was discovered by
H. Prautzsch in 1984 [493]. Another reference is Barry and Goldman [39].

8.10 Implementation

Here is the header for the de Boor algorithm code:

float deboor(degree,coeff,knot,u,i)
/* uses de Boor algorithm to compute one

coordinate on B-spline curve for param. value u in interval i.
Input: degree: polynomial degree of each piece of curve

coeff: B-spline control points
knot: knot sequence
u: evaluation abscissa
i: u’s interval: u[i]<= u < u[i+1]

Output: coordinate value.
*/

This program does not need to know about L. The next program generates a
set of points on a whole B-spline curve—for one coordinate, to be honest—so it
has to be called twice for a 2D curve and three times for a 3D curve.

bspl_to_points(degree,l,coeff,knot,dense,points,point_num)
/* generates points on B-spline curve. (one coordinate)
Input: degree: polynomial degree of each piece of curve

l: number of active intervals

8.10 Implementation 145

coeff: B-spline control points
knot: knot sequence: knot[0]...knot[l+2*degree-2]
dense: how many points per segment

Output:points: output array with function values.
point_num: how many points are generated. That number is

easier computed here than in the calling program:
no points are generated between multiple knots.

*/

The main program deboormain.c generates a postscript plot of a B-spline curve.
A sample input file is in bspl.dat; it creates the outline of the letter r from Figure
5.11.

As a second example, the input data for the y-values of the curve in Figure
8.10 are

degree = 3; l = 3; coeff = 1,4,4,0,0,1;
knot = 0,0,0,3,9,12,12,12; dense = 10.

Next, we include a B-spline blossom routine:

deboor_blossom(control,degree,deboor,deboor_wts,
knot,uvec,interval,point,point_wt)

/*

FUNCTION: deBoor algorithm to evaluate a B-spline curve blossom.
For polynomial or rational curves.

INPUT: control[] [0]: indicates type of input curve
0 = polynomial
1 = rational

[1]: indicates if input/output is
in R3 or R4;
3 = R3
4 = R4

degree polynomial degree of each piece
of the input curve, must be <=20

deboor[][3] deboor control points
deboor_wts[] rational weights associated with

the control points if control[0]=1;
otherwise weights not used

146 Chapter 8 B-Spline Curves

knot[] knot sequence with multiplicities
entered explicitly

uvec[] blossom (parameter) values
to evaluate

interval interval within knot sequence
with which to evaluate wrt u
(typically: i=interval then
knot[i]<= u < knot[i+1])

OUTPUT: point[3] evaluation point;
depending on control[] values,
this point will be in R3 or R4

point_wt if control[0]=1 then this is the
rational weight associated with
the point

*/

8.11 Problems

1 For the case of a planar parametric B-spline curve, does symmetry of the
polygon with respect to the y-axis imply that same symmetry for the curve?

*2 Derive (8.16) from (8.10).

*3 Find the Bézier points of the closed B-spline curves of degree four whose
control polygons consist of the edges of a square and have (a) uniform knot
spacing and simple knots and (b) uniform knot spacing and knots all with
multiplicity two.

P1 Use de_boor_blossom to program degree elevation for B-spline curves.

