Bow thruster

The sketch shows a schematic sketch of the bow thruster flow. The hull is limited by two parallel
planes which are penetrated by a cylindrical tunnel with cross section S. The tunnel has axis in
y-direction and is orthogonal to the hull walls. We consider the case where the flow induced by
the bow thruster is from left to right, i.e. in direction of the y-axis. The problem is considered
as stationary. The thruster propeller turns around axis y.
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The basic model simplifications are:

— The fluid is ideal and gravity can be neglected.

— The flow is uniform inside the thruster tunnel (except in the vicinity of the propeller and
the openings)

— Seen from far away, the inlet to the tunnel can be approximated by a sink located at the
origin O, with volume flow @. Thus the flow is radial and the velocity depends only on
the distance R from the origin O.

— At the outlet of the tunnel, a cylindrical jet of cross section S exits with uniform velocity
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— The pressure at infinity (both in 4y direction) is po.
— The fluid is at rest far upstream (y — —o0).

— The fluid is at rest outside the exiting jet.

Derivation of force of water on propeller

We apply Bernoulli’s equation to calculate the pressure between far upstream and the section
S1 directly before the propeller:
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We apply Bernoulli’s equation to calculate the pressure between section Sy directly behind the

propeller and far downstream:
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Thus the pressure difference between the upstream section S; and the downstream section S5
is:
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The volume flow through the cross section S is Q@ =V - S [m3/s].

The force, the water exerts on the propeller, follows from the pressure jump upstream and
downstream of the propeller:
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Derivation of force on propeller and sh1p

We apply the Euler equation to the volume Q encased by the boundaries 31, ¥ and Yo, letting
R — o0, to get the force T the propeller exerts on the water. Remember that the theorem
of Gauss-Ostrogradsky allows to convert a volume integral to a surface integral: [(VV)dQ =

[(V#R)dT.
p/V ‘7 /pn ds

I'=X1+P+P+X+3. P an a P, are suction ana pressure surfaces of the propeller.

Now we consider each of the boundaries separately:
- Xy ‘7—>Oandp—>p0 as R — oo
~ PPy V-7i=0
- % V-i=0

- Yo V.i=0 except on the cross section S, where we have p = pg
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The component in y-direction gives for the three terms:

This yields:
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At a large distance from the tunnel, we can approximate the effect of the tunnel as a sink.
For a sink, the flux to the sink is constant over each circumference ¥; (each R). The part in
y-direction is decreasing with increasing circumference, thus:
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T is the total force the water exerts on the propeller and the tunnel:

T = / pit dS
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Combining the above, we get then:
pQ>
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T is thus twice as big as T); the difference between T, and T is the force on ship (tunnel). The
thrust of a propeller in a tunnel is twice the thrust of a propeller in free stream.



