Preface 00
Contributors 00

PART 1

Theoretical, Experimental and Numerical Techniques

1 History of Shock Waves
by P. Krehl

1.1 Introduction 00
1.2 Shock Waves: Definition and Scope 00
1.3 Early Percussion Research 00
1.4 Evolution of Shock Waves 00
 1.4.1 Natural Supersonic Phenomena and Early Speculations 00
 1.4.2 Shock Waves in Gases 00
 1.4.3 Shock Waves in Liquids 00
 1.4.4 Shock Waves in Solids 00
1.5 Evolution of Detonation Physics 00
1.6 Milestones in Early High Speed Diagnostics 00
1.7 Further Reading 00
1.8 Chronological Table
General Laws for Propagation of Shock Waves through Matter

by L.F. Henderson

2.1 Introduction 00
2.2 The Riemann Problem 00
2.3 Length and Time Scales 00
2.4 The Conservation Laws for a Single Shock Wave 00
 2.4.1 Laboratory Frame Coordinates 00
 2.4.2 Shock Fixed Coordinates 00
2.5 The Hugoniot Adiabatic 00
 2.5.1 The Hugoniot Equation 00
 2.5.2 The Raleigh Equations 00
 2.5.3 Solution of a Simple Shock Riemann Problem 00
2.6 Thermodynamic Properties of Materials 00
2.7 Thermodynamic Constraints on the EOS 00
2.8 Non-Thermodynamic Constraints on the EOS 00
 2.8.1 Convexity 00
 2.8.2 Shock Wave Stability Constraints 00
2.9 Other Non-Thermodynamic EOS Constraints 00
2.10 The Bethe-Weyl (B-W) Theorem 00
2.11 Shock Wave Interactions 00
 2.11.1 Dimensions of the Interactions 00
 2.11.2 Two-Dimensional Shock Wave Interactions 00
 2.11.3 Three-Dimensional Shock Wave Interactions 00
2.12 The Triple-Shock Theory and Related Theorems 00
 2.12.1 The Theorems 00
 2.12.2 Application of Shock Wave Interactions 00
2.13 Crocco’s Theorem 00
2.14 The Refraction Law 00
2.15 Concluding Remarks 00
2.16 References 00

Theory of Shock Waves

3.1 Shock Waves in Gases

by G. Emanuel

3.1.1 Introduction 00
3.1.2 Jump Conditions 00
 3.1.2.1 Steady Normal Shock Waves 00
 3.1.2.2 Mach Number 00
 3.1.2.3 Jump Direction 00
Contents

3.1 Shock Wave Configurations

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2.4 Unsteady Normal Shock Waves</td>
<td>00</td>
</tr>
<tr>
<td>3.1.2.5 Oblique Waves</td>
<td>00</td>
</tr>
<tr>
<td>3.1.3 Shock Wave Configurations</td>
<td>00</td>
</tr>
<tr>
<td>3.1.3.1 Local vs. Global Analysis</td>
<td>00</td>
</tr>
<tr>
<td>3.1.3.2 Single Shock System</td>
<td>00</td>
</tr>
<tr>
<td>3.1.3.3 Multiple Shock System</td>
<td>00</td>
</tr>
<tr>
<td>3.1.4 Interactions</td>
<td>00</td>
</tr>
<tr>
<td>3.1.4.1 Shock Impingement</td>
<td>00</td>
</tr>
<tr>
<td>3.1.4.2 Shock-Expansion and Expansion-Shock Interactions</td>
<td>00</td>
</tr>
<tr>
<td>3.1.4.3 Boundary-Layer Interaction</td>
<td>00</td>
</tr>
<tr>
<td>3.1.5 Real Gas Phenomena</td>
<td>00</td>
</tr>
<tr>
<td>3.1.5.1 Low Temperature Phenomena</td>
<td>00</td>
</tr>
<tr>
<td>3.1.5.2 High Temperature Phenomena</td>
<td>00</td>
</tr>
<tr>
<td>3.1.6 Perfect Gas Shock Waves</td>
<td>00</td>
</tr>
<tr>
<td>3.1.6.1 Steady Shock Waves</td>
<td>00</td>
</tr>
<tr>
<td>3.1.6.2 Unsteady Shock Waves</td>
<td>00</td>
</tr>
<tr>
<td>3.1.6.3 Characteristic Theory</td>
<td>00</td>
</tr>
<tr>
<td>3.1.6.4 Shock Formation</td>
<td>00</td>
</tr>
<tr>
<td>3.1.6.5 Steady, Two-Dimensional Axisymmetric Shock waves</td>
<td>00</td>
</tr>
<tr>
<td>3.1.6.6 General Theory</td>
<td>00</td>
</tr>
</tbody>
</table>

3.2 Shock Waves in Liquids

by S. Itoh

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Fundamental Properties of Liquid</td>
<td>00</td>
</tr>
<tr>
<td>3.2.1.1 Density of Liquid</td>
<td>00</td>
</tr>
<tr>
<td>3.2.1.2 Compressibility of Liquid</td>
<td>00</td>
</tr>
<tr>
<td>3.2.1.3 Viscosity of Liquid</td>
<td>00</td>
</tr>
<tr>
<td>3.2.2 Wave Motion in Liquids and Equation of State</td>
<td>00</td>
</tr>
<tr>
<td>3.2.2.1 Pressure Wave in Liquids</td>
<td>00</td>
</tr>
<tr>
<td>3.2.2.2 Equation of State for Liquids</td>
<td>00</td>
</tr>
<tr>
<td>3.2.2.3 Plane Shock Relation for Water</td>
<td>00</td>
</tr>
<tr>
<td>3.2.3 Shock Waves in Water Due to Underwater Explosion of High Explosives</td>
<td>00</td>
</tr>
<tr>
<td>3.2.3.1 Observational Investigation</td>
<td>00</td>
</tr>
<tr>
<td>3.2.3.2 Numerical Procedure</td>
<td>00</td>
</tr>
<tr>
<td>3.2.3.3 Experiments of Underwater Shock Waves</td>
<td>00</td>
</tr>
<tr>
<td>3.2.4 Von Neumann Reflection of Underwater Shock Wave</td>
<td>00</td>
</tr>
<tr>
<td>3.2.4.1 Introduction</td>
<td>00</td>
</tr>
</tbody>
</table>
3.2.4.2 Experimental Method
3.2.4.3 Wave Configuration of Oblique Interaction of Underwater Shock Waves
3.2.5 Application of Underwater Shock Waves
3.2.5.1 Shock Compaction of Powders
3.2.5.2 Explosive Forming by Underwater Shock Waves
3.2.6 References

3.3 Shock Waves in Solids
by K. Nagayama
3.3.1 Introduction
3.3.2 Basics
3.3.2.1 Shock Jump Conditions
3.3.2.2 Weak Shock Formulae
3.3.3 Experimental Method
3.3.3.1 Procedure of Shock Wave Generation
3.3.3.2 Measurement Methods
3.3.4 Shock Hugoniot Curve and High-Pressure Equation of State for Solids
3.3.4.1 Empirical Linear Relation
3.3.4.2 Reflection and Transmission of Shock Waves at the Material Interface
3.3.5 Shock Thermodynamics
3.3.5.1 Grüneisen Equation of State for Condensed Media
3.3.5.2 Irreversibility of Shock Compression Process
3.3.5.3 Temperature Calculation
3.3.6 Topics of Applications
3.3.6.1 Elastic-Plastic Shock Waves
3.3.6.2 Wave Splitting by Elastic-Plastic Transition or High-Pressure Phase
3.3.7 References

3.4 Rarefaction Shocks
by A. Kluwick
3.4.1 Introduction
3.4.2 Shock Adiabat
3.4.3 Shock Admissibility
3.4.4 Shock Structure
3.4.5 Weak Shocks
3.5 Stability of Shock Waves

by N. M. Kuznetsov

3.5.1 Introduction

3.5.2 Hydrodynamic Conditions of Shock Wave Stability

3.5.2.1 One-Dimensional Conditions of Shock Wave Stability

3.5.2.2 Corrugation Stability of Shock Waves

3.5.2.3 Nonuniqueness of Shock Front Representation

3.5.2.4 Regions Where a Shock Wave Discontinuity is Unstable and Where Its Representation is Nonunique

3.5.2.5 On the Physical Meaning of the Solutions with Steady-State Corrugation Perturbations of a Shock Wave and with Acoustic Waves Emanated by the Shock Front

3.5.2.6 Resonance Reflection of a Sound Wave and Shock Wave Stability

3.5.2.7 General Characteristics and a Simple Example of Relation between Instability and Nonuniqueness of Steady-State Regimes

3.5.2.8 Stability of Shock Waves Pertaining to the Lower and Upper Branches of the Z-Shaped Segment of the Shock Wave Hugoniot Curve. Splitting of an Unstable Shock Wave

3.5.2.9 Simple Interpretation of the Instability Mechanisms and Criteria for Instability

3.5.2.10 Feasibility of Experimental Observation of Hydrodynamic Instability of Shock Waves

3.5.2.11 Stability of Shock Wave Supported by a Piston
3.5.3 Stability of the Structure of Shock and Detonation Waves

3.5.3.1 The Experimental Data on Structural Instability of Shock Waves

3.5.3.2 The Structure of Shock Waves and Stability of Viscous Compression Discontinuities

3.5.3.3 On the Hydrodynamic Approach to Flows with Structurally Unstable Shock Waves

3.5.3.4 On the Mechanisms of Structural Instability of Shock and Detonation Waves

3.5.3.5 Two-Fronts Model of a Shock (or Detonation) Wave with Instantaneous Heat Release

3.5.3.6 Two-Fronts Model of Shock and Detonation Waves with Non-Instantaneous Relaxation

3.5.4 References

3.6 Shock Waves in Space

by M. Gedalin

3.6.1 Introduction

3.6.2 MHD Shocks

3.6.3 Shock Morphology

3.6.4 Bow Shock Observations

3.6.5 Collisionless Shock Theory

3.6.5.1 Field Structure

3.6.5.2 Nonlinear Waves and Ramp Width

3.6.5.3 Noncoplanar Magnetic Field

3.6.5.4 Ion Motion

3.6.5.5 Electron Heating

3.6.6 Shock Particle Acceleration

3.6.6.1 Shock Drift Acceleration

3.6.6.2 Diffusive Acceleration

3.6.6.3 Electron Acceleration

3.6.7 Conclusions

3.6.8 References

3.7 Geometrical Shock Dynamics

by Z-Y Han and X-Z Yin

3.7.1 Shock Waves Propagation through Quiescent Gases
3.7.1 Fundamental Concepts and Theoretical Basis 00
3.7.1.2 Two-Dimensional Shock Diffraction 00
3.7.1.3 Three-Dimensional Shock Wave Diffraction 00
3.7.1.4 Diffraction of Shock Waves Propagating into Non-Uniform Quiescent Gases 00
3.7.2 Shock Waves Propagation through Moving Gases 00
3.7.2.1 Shock Waves Propagation through Uniform Flow Fields 00
3.7.2.2 Shock Waves Propagation through Non-Uniform Flow Fields 00
3.7.3 References

4 Shock Tubes and Tunnels: Facilities, Instrumentation and Techniques

4.1 Shock Tubes

by M. Nishida

4.1.1 Introduction 00
4.1.2 Shock Jump Relation 00
4.1.3 One-Dimensional Propagation of a Small Disturbance 00
4.1.4 Shock Tube Theory 00
4.1.4.1 General Description of a Shock Tube 00
4.1.4.2 Relation between Region (1) and Region (2) 00
4.1.4.3 Relation between Region (2) and Region (3) 00
4.1.4.4 Relation between Region (3) and Region (4) 00
4.1.4.5 Reflection of a Shock Wave from the Shock Tube End Wall 00
4.1.4.6 Interaction between the Reflected Shock Wave and Contact Surface 00
4.1.5 Technique for Shock Tube Operation 00
4.1.5.1 Diaphragm 00
4.1.5.2 Variable Cross Section Shock Tube 00
4.1.5.3 Shock Tube for Generating Strong Shock Waves 00
4.1.6 References
4.2 Shock Tunnels
 by R. Morgan

4.3 Piston Driven Shock and Expansion Tunnels
 by R. Morgan

4.4 Blast Tubes
 by R. Robey
 4.4.1 General Description 00
 4.4.2 Experimental Design Specification 00
 4.4.3 Experimental Design Configurations 00
 4.4.3.1 Centered Explosive Design 00
 4.4.3.2 Explosive at the End of the Blast Tube 00
 4.4.3.3 Explosive Outside the Blast Tube 00
 4.4.4 Driver Design 00
 4.4.5 Detonable Gas Driver 00
 4.4.6 Simulation Scaling 00
 4.4.7 Simulation Envelope 00
 4.4.8 Instrumentation 00
 4.4.9 Applications 00
 4.4.9.1 Non-Ideal Blast Wave Simulations 00
 4.4.9.2 Model Studies 00
 4.4.9.3 Civil Defense Studies 00
 4.4.9.4 Detonation Studies 00
 4.4.10 Conclusions 00
 4.4.11 References 00

4.5 Supersonic and Hypersonic Wind Tunnels
 by B. Chanetz and A. Chpoun
 4.5.1 Introduction 00
 4.5.2 The Nozzle 00
 4.5.3 The Diffuser 00
 4.5.4 Start-Up Process 00
 4.5.5 Supersonic and Hypersonic Continuous Wind Tunnels 00
 4.5.5.1 Return-Circuit Continuous Wind Tunnels 00
 4.5.5.2 Open-Circuit Continuous Wind Tunnels 00
 4.5.6 Blow-Down Wind Tunnels 00
 4.5.6.1 Preliminary Remarks 00
 4.5.6.2 Description of a Classical Cold Blow-Down Wind Tunnel 00
5 Measurement Techniques and Diagnostics

5.1 Flow Visualization

by H. Kleine

5.1.1 Density-Sensitive Flow Visualization 00
5.1.2 The Shadow Technique 00
5.1.3 Schlieren Method 00
5.1.4 Color Schlieren Techniques 00
5.1.5 Direction-Indicating Color Schlieren Method 00
5.1.6 Interferometry 00
5.1.7 Shearing Interferometry 00
5.1.8 Holographic Interferometry 00
5.1.9 Light Sources and Recording Materials 00
5.1.10 Time Evolution Visualization and Animation 00
5.1.11 References 00

5.2 Spectroscopic Diagnostics

by D.F. Davidson & R.K. Hanson

5.2.1 Introduction 00
5.2.2 Absorption Theory and Line Shapes 00
5.2.3 Ultraviolet and Visible Laser Absorption Techniques 00
 5.2.3.1 Visible and Near Ultraviolet Transitions Available without Frequency Doubling: CN, SiH, CH, NCO, C2, SiH2, NH2, TiN 00
 5.2.3.2 Ultraviolet Transitions Available with Frequency Doubling: OH, NH 00
5.2.3.3 Ultraviolet Transitions Available Using BBO Frequency Doubling: CH₃, NO, O₂, HO₂
5.2.3.4 Lamp Absorption: Working without Lasers
5.2.4 Frequency Modulation Methods
5.2.4.1 Theory and Experiment
5.2.4.2 NH₂ and ¦CH₂
5.2.5 Infrared Laser Absorption and Emission Techniques
5.2.5.1 Room Temperature Diodes
5.2.5.2 Pb Salt Diode Lasers
5.2.5.3 CO Discharge Lasers
5.2.5.4 Emission Methods
5.2.6 Atomic Resonance Absorption Spectroscopy
5.2.6.1 Experimental Methods
5.2.6.2 Calibrations and Applications
5.2.6.3 Shock Tube Impurities
5.2.7 Planar Laser Induced Fluorescence
5.2.7.1 Theory
5.2.7.2 Measurement Strategies
5.2.8 References

6 Numerical Methods

by P. Roe

6.1 Introduction

6.2 Analytical Background

6.2.1 Conservation

6.2.2 Weak Solutions

6.2.3 Physical Solutions — Entropy Conditions

6.2.4 Quasilinear Form, Jacobians

6.2.5 Wave Speeds, Hyperbolicity, Nonlinearity and Convexity

6.2.6 Characteristic Variables, Centered Waves

6.2.7 Riemann Problems

6.3 Numerical Background

6.3.1 Finite-Volume Methods — The Lax-Wendarff Theorem

6.3.2 Error and Accuracy

6.3.3 The Simplest Hyperbolic Problem
6.3.3.1 Flux Estimation
6.3.3.2 Some Numerical Experiments
6.3.3.3 Von Neumann Analysis
6.3.3.4 Godunov’s Theorem
6.3.4 Time-Stepping Flux Integration, Semi-Discretization

6.4 One-Dimensional Methods
6.4.1 The Godunov Scheme
6.4.2 A Linearized Riemann Solver
 6.4.2.1 Choice of Linearization
 6.4.2.2 Failings of Linearized Solvers
6.4.3 The Entropy Fix
6.4.4 Positivity
 6.4.4.1 Dubroca’s Proposal
 6.4.4.2 Kinetic Schemes
6.4.5 High Resolution Schemes
 6.4.5.1 MUSCL-Type Schemes
 6.4.5.2 More Experiments
 6.4.5.3 Hancock’s Scheme
 6.4.5.4 Flux Limiting, Fluxutation Splitting
 6.4.5.5 Application to Nonlinear Systems
6.4.6 Essentially Non-Oscillatory (ENO) Schemes
6.4.7 Avoiding the Riemann Problem
 6.4.7.1 Lax-Friedrichs
 6.4.7.2 Nessayhu-Tadmor
 6.4.7.3 HLL, HLLE, HLLC . . .
 6.4.7.4 Flux-Vector Splitting, CUSP, AUSM
 6.4.7.5 Flux-Corrected Transport
 6.4.7.6 Jameson’s Method
 6.4.7.7 Chang

6.5 Source Terms
6.6 Multidimensional Application
 6.6.1 Flux Calculation
6.7 Grid Generation and Adaptivity
6.8 Anomalous Solutions
6.9 “Genuinely” Multidimensional Methods
6.10 Further Reading
6.11 An Example
6.12 Concluding Remarks
6.13 References
6.14 Appendix A: A Simple Code for One-Dimensional Gasdynamics
PART 2

Shock Wave Interactions and Propagation

7 One-Dimensional Interactions
by O. Igra

7.1 Background and Introduction 00
7.2 Head-on Collision between Two Shock Waves 00
7.3 Head-on Collision between a Shock Wave and a Rarefaction Wave 00
7.4 Head-on Collision of a Shock Wave with a Contact Discontinuity 00
7.5 Head-on Collision of a Rarefaction Wave with a Contact Discontinuity 00
7.6 Shock Wave Overtaking Another Shock Wave 00
7.7 Shock Wave Overtaken by a Rarefaction Wave 00
7.8 Shock Wave Overtaking a Rarefaction Wave 00
7.9 The General Riemann Problem (GRP) Solver
 7.9.1 Concluding Remarks 00
7.10 Head-on Collision of a Planar Shock Wave with a Non-Rigid Boundary 00
7.11 Summary and Conclusions 00
7.12 References 00

8 Two-Dimensional Interactions

8.1 The Reflection of Oblique Shock Waves
by G. Ben-Dor

8.1.1 Introduction and Historical Background 00
8.1.2 Analytical Approaches for Describing Regular and Mach Reflections 00
 8.1.2.1 Two-Shock Theory 00
 8.1.2.2 Three-Shock Theory 00
 8.1.2.3 Shock Polars 00
 8.1.2.4 Suggested RR ∩ IR Transition Criteria 00
 8.1.2.5 Dual-Solution Domain 00
 8.1.2.6 Hysteresis Phenomenon in the RR ∩ IR Transition 00
8.1.3 Steady Flows 00
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.3.1</td>
<td>Categories of Steady Shock Wave Reflections</td>
</tr>
<tr>
<td>8.1.3.2</td>
<td>Hysteresis Phenomena</td>
</tr>
<tr>
<td>8.1.3.3</td>
<td>Analytical Prediction of the Mach Reflection Wave Configuration</td>
</tr>
<tr>
<td>8.1.3.4</td>
<td>Modification of the Perfect Two- and Three-Shock Theories</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Pseudo-Steady Flow</td>
</tr>
<tr>
<td>8.1.4.1</td>
<td>Shock Wave Diffraction Process</td>
</tr>
<tr>
<td>8.1.4.2</td>
<td>Shock Wave Reflection Phenomena</td>
</tr>
<tr>
<td>8.1.4.3</td>
<td>Regular Reflection-RR</td>
</tr>
<tr>
<td>8.1.4.4</td>
<td>Single-Mach Reflection-SMR</td>
</tr>
<tr>
<td>8.1.4.5</td>
<td>Transitional-Mach Reflection-DMR</td>
</tr>
<tr>
<td>8.1.4.6</td>
<td>Double-Mach Reflection-DMR</td>
</tr>
<tr>
<td>8.1.4.7</td>
<td>von Neumann Reflection-vNR</td>
</tr>
<tr>
<td>8.1.4.8</td>
<td>Triple Point Trajectory Angles</td>
</tr>
<tr>
<td>8.1.4.9</td>
<td>Transition Criteria</td>
</tr>
<tr>
<td>8.1.4.10</td>
<td>Domains of Different Types of Reflections</td>
</tr>
<tr>
<td>8.1.4.11</td>
<td>Modifications of the Two- and Three-Shock Theories</td>
</tr>
<tr>
<td>8.1.5</td>
<td>Unsteady Flow</td>
</tr>
<tr>
<td>8.1.5.1</td>
<td>Reflection of Constant Velocity Shock Waves over Non-Straight Surfaces</td>
</tr>
<tr>
<td>8.1.5.2</td>
<td>Non-Constant Velocity Shock Wave Reflections over Straight Surfaces</td>
</tr>
<tr>
<td>8.1.5.3</td>
<td>Spherical Shock Wave Reflections over Straight and Non-Straight Surfaces</td>
</tr>
<tr>
<td>8.2</td>
<td>The Refraction of Shock Waves by L.F. Henderson</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>8.2.2.1</td>
<td>The Wave Systems</td>
</tr>
<tr>
<td>8.2.2.2</td>
<td>The Wave Impedance</td>
</tr>
<tr>
<td>8.2.2.3</td>
<td>Two-Dimensional Refraction</td>
</tr>
<tr>
<td>8.2.2.4</td>
<td>Solution of Fast-Slow Refraction $\eta_a > 1$</td>
</tr>
<tr>
<td>8.2.2.5</td>
<td>Solution of Slow-Fast Refraction $\eta_a < 1$</td>
</tr>
<tr>
<td>8.2.2.6</td>
<td>Solution of One-Dimensional Refraction</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Two Dimensional Refraction</td>
</tr>
<tr>
<td>8.2.3.1</td>
<td>Two Dimensional Wave Analysis</td>
</tr>
<tr>
<td>8.2.3.2</td>
<td>The Wave Impedance of an Oblique Shock</td>
</tr>
</tbody>
</table>
8.2.3.3 The Refraction Law 00
8.2.3.4 The Relative Refractive Index 00
8.2.3.5 The Shock Polar 00
8.2.4 Solution of Fast–Slow Refraction $\eta_a > 1$ 00
8.2.5 Solution of Slow–Fast Refraction $\eta_a > 1$ 00
8.2.6 The Minimum Time Principle 00
8.2.7 References 00

8.3 Shock Wave/Boundary Layer Interactions

by J.M. Delery

8.3.1 Introduction 00
8.3.2 Properties of Shock Induced Interactions 00
 8.3.2.1 The Different Kinds of Interaction 00
 8.3.2.2 Interaction Without Boundary Layer Separation 00
 8.3.2.3 Interaction With Boundary Layer Separation 00
 8.3.2.4 Hypersonic Interaction 00
 8.3.2.5 Other Aspects of Shock-Induced Interaction 00
8.3.3 Interaction Control Methods 00
 8.3.3.1 Mechanisms for Control Action 00
 8.3.3.2 Examination of Some Control Actions 00
8.3.4 Problems Raised by Interaction Modeling 00
 8.3.4.1 Numerical Accuracy of the Codes 00
 8.3.4.2 The Physical Modeling 00
8.3.5 Concluding Remarks 00
8.3.6 References 00

9 Axi-Symmetric Shock Wave Reflections

by B.E Milton

9.1 Introduction 00
9.2 External Reflection over Simple Upstream Facing Cones 00
 9.2.1 Simple Cones in Steady Supersonic Flows 00
 9.2.2 Moving Shock Waves 00
9.3 Generalized Solution of Conical Moving Shock Waves 00
 9.3.1 Formulation for Ray-Shock Calculations in Conical Mach Reflection 00
 9.3.2 Equations for the Generalized Ray-Shock Solution 00
9.3.3 Curved Mach Stems 00
9.3.4 Solution Procedures for Cases Without Self-Similarity 00
9.3.5 Post-Reflection Rays Parallel to the Centerline 00
9.4 Some Conical Mach Reflection Results from the Ray-Shock Theory 00
9.4.1 External (Expanding) Flows 00
9.4.2 Converging (Internal) Cases 00
9.5 Experimental Conical Mach Reflection Studies 00
9.5.1 Validation for External Cases 00
9.5.2 Mach Reflection within Conical Contractions 00
9.6 Numerical Experiments (CFD) 00
9.6.1 CFD Scheme for Conical Mach Reflection 00
9.6.2 Comparison of the Ray-Shock Theory CFD Results 00
9.7 Some Theoretical Aspects of Conical Mach Reflection 00
9.7.1 von Neumann Mach Reflection Effects in Conical Reflections 00
9.7.2 Self-Similar and Non Self-Similar Axi-Symmetric Mach Reflection 00
9.7.3 Transition from Regular to Mach Reflection in Conical Problems 00
9.8 Some Applications of Axi-Symmetric Calculations 00
9.8.1 Mach Reflection over a Simple Cone 00
9.8.2 Axi-Symmetric Shock Wave Focusing 00
9.9 Final Discussion 00
9.10 References 00

10 The Propagation of Shock Waves in Channels

by W. Heilig & O. Igra

10.1 Introduction 00
10.2 Scenarios of the Shock Wave Propagation in Channels 00
10.3 Phenomenology of the Shock Wave Propagation in Channels 00
10.3.1 Brief Description of the Conventional Shock Tube 00
10.3.2 Visualization of ShockWave Propagation in Various Channel Configurations 00
10.3.3 Comments on the Usefulness of Flow Visualization and its Evaluation 00
10.4 Approximate Analytical Methods
 10.4.1 The Unsteady Quasi-One-Dimensional Flow
 10.4.2 Rudinger’s Method
 10.4.3 The Chester-Chisnell-Whitham Channel Formula
 10.4.4 Whitham’s Theory of Shock Dynamics
 10.4.5 Analytical Treatment of Shock Propagation Through a Class of Bifurcated Ducts using Whitham’s Theory

10.5 Numerical Methods
 10.5.1 Example Calculations Using Wave Propagation Codes
 10.5.2 The GRP (General Riemann Problem) Code
 10.5.3 Solving a Quasi One-Dimensional Flow using the Random Choice Method (RCM)

10.6 Data Bases
10.7 Final Remarks
10.8 References

11 Shock Wave Focusing
 by F. Higashino

11.1 Introduction
11.2 Theoretical Analyses
 11.2.1 Basic Equations
 11.2.2 Characteristics Method and CCW Approximation
 11.2.3 Similarity Method for Imploding Shock Wave

11.3 Results and Discussion
 11.3.1 Shock Tube Experiment
 11.3.2 Blast Waves

11.4 References

12 Application of Shock Waves in Medicine
 by A.M. Loske

12.1 Introduction
12.2 Brief Physical Background
 12.2.1 Lithotripsy Pressure Pulses
 12.2.2 Shock Wave Propagation and Interaction with Matter
12.3 Extracorporeal Shock Wave Lithotripsy (ESWL)

12.3.1 Electrohydraulic Shock Wave Lithotripters
12.3.2 Electromagnetic Shock Wave Lithotripters
12.3.3 Piezoelectric Shock Wave Lithotripters
12.3.4 Micro-Explosive Lithotripters

12.4 Shock Waves in Orthopaedics
12.5 Shock Waves in Ophthalmology
12.6 Shock Waves in Oncology and Gene Therapy
12.7 Shock Waves as Possible Method for Food Preservation
12.8 Shock Wave Thrombus Ablation
12.9 References

13 Spherical Shock Waves

13.1 Expanding Spherical Shocks (Blast Waves)

by J.M. Dewey

13.1.1 Introduction
13.1.2 Physical Properties of Expanding Spherical Shock Waves

13.1.2.1 Physical Properties in Radius-Time (r-t) Plane
13.1.2.2 Shock Front Properties
13.1.2.3 The Shape of the Shock Wave
13.1.2.4 A Compendium of Physical Properties

13.1.3 Scaling Laws
13.1.4 Analytical Solutions
13.1.5 Analytical Solutions

13.1.5.1 Numerical Modeling
13.1.5.2 Numerical Reconstruction

13.1.6 Experimental Measurement Techniques

13.1.6.1 Introduction
13.1.6.2 Electronic Methods
13.1.6.3 Photogrammetric Methods
13.1.6.4 Passive methods

13.1.7 Spherical Shock Reflections

13.1.7.1 Regular and Mach Reflections
13.1.7.2 Height-Of-Burst Curves

13.1.8 References

13.2 General Attenuation Law for Spherical Shock Wave Propagating in Pure Gases

by F. Aizik, G. Ben-Dor, T. Elperin & O. Igra
14 Shock Induced Instabilities of Interfaces

by D. Shvarts, O. Sadot, D. Oron, A. Rikanati and U. Alon

14.1 Introduction — Hydrodynamic Instability

14.2 The Rayleigh-Taylor Instability — Two Dimensional Case

14.2.1 Linear Analysis

14.2.2 Analysis of the Early Nonlinear Stages

14.2.3 The Late Nonlinear Stage (Layzer Model)

14.2.4 Density Ratio Dependence

14.2.5 Spike Behavior

14.2.6 Dimensionality Dependence

14.3 The Richtmyer-Meshkov Instability

14.4 Experimental Studies

14.4.1 Experimental Studies of the Single Mode Rayleigh-Taylor Instability

14.4.2 Experimental Studies of the Richtmyer-Meshkov Instability

14.5 Random Initial Conditions

14.5.1 Two-Dimensional Statistical Mechanics Model and Late Time Scaling Laws

14.5.2 Three-Dimensional Effects on the Late Time Scaling Laws

14.5.3 Shock Wave Experiment to Study the Bubble Competition Process

14.5.4 Re-Shock Experiments

14.6 Summary

14.7 References

15 Shock Wave Propagation in Multi-Phase Media

15.1 Shock Wave Propagation in Porous Media

by B. Skews, A. Levy & D. Levi-Hevroni

15.1.1 Introduction

15.1.2 General Description of the Wave Propagation

15.1.3 The Nature of Porous Foams

15.1.4 Scientific Background
15.1.4.1 Systems with Flexible Skeletons
15.1.4.2 Systems with Rigid Skeletons
15.1.4.3 Blast Wave Loading
15.1.4.4 Multi-Dimensional Studies
15.1.4.5 Theory and Modeling
15.1.5 Macroscopic Governing Equations
15.1.5.1 The Assumptions
15.1.5.2 The Balance Equations
15.1.6 Case Studies
15.1.6.1 One-Dimensional Shock Wave Interaction with Rigid Porous Material
15.1.6.2 One-Dimensional Shock Wave Interaction with Flexible Porous Material
15.1.6.3 Regular Reflection from a Rigid Porous Surface in Pseudo-Steady Flows
15.1.7 References

15.2 Weak Shock Wave Interaction with Inert Granular Media
by A. Britan & A. Levy

15.2.1 Introduction
15.2.2 Experimental Methods and Materials
15.2.3 2D Packing of Cylinders and Discs
15.2.3.1 Unsteady Flow Pattern
15.2.3.2 Dynamics of the Contact Stress Transfer
15.2.3.3 Role of the Sidewall Friction
15.2.4 3D Packing of Spherical Particles
15.2.4.1 Behavior of the Unsteady End-Wall Peak
15.2.4.2 Bridging effect and Size of the Pressure Transducer
15.2.4.3 Packing Density and Gas Filtration
15.2.4.4 Effective Stress Behavior
15.2.5 Dynamics of the Granular Layer Compression
15.2.5.1 Wave Processes
15.2.5.2 Dynamic Young Moduli
15.2.6 Shielding Characteristics of Granular Filters
15.2.6.1 Problem Description
15.2.6.2 Attenuation Performance of the Granular Bulk
15.2.7 Physical Models and Simulations
15.2.8 Conclusions
15.2.9 References
15.3 Shock Waves in Inert and Reactive Bubbly Liquids

by V. Kedrinskii

15.3.1 Shock Waves in Inert Bubbly Liquids

15.3.1.1 Introduction

15.3.1.2 Plane Shock Waves and Spherical Bubbles

15.3.1.3 Plane Shock Waves and Plane Gas Layers

15.3.1.4 Plane Shock Waves and Bubbly Layers

15.3.1.5 The Iordansky-Kogarko-van-Wijngaarden Non-Equilibrium Two Phase Model of a Bubbly Liquid

15.3.1.6 Amplification, Collision and Focusing of Shock Waves in Bubbly Liquids

15.3.2 Bubbly Detonation Waves in Reactive Bubbly Liquids

15.3.2.1 Introduction

15.3.2.2 Single Bubble Dynamics

15.3.2.3 Single Bubble Dynamics: Chemical Reaction and the Interface Mass Transfer

15.3.2.4 Shock Waves in Reactive Bubbly Liquids

15.3.2.5 Initiation, Formation and Collision of Bubbly Detonation Waves: “Hot Spots” Mechanism

15.3.3 References

15.4 Shock Wave Interactions with Liquid-Gas Suspensions

by M.E.H. van Dongen

15.4.1 Introduction

15.4.2 Thermodynamic Properties of a Liquid Gas Suspension

15.4.3 Speeds of Sound

15.4.3.1 Fully Frozen Sound Speed

15.4.3.2 Partly Frozen Sound Speed

15.4.3.3 Equilibrium Sound Speed

15.4.4 Jump Conditions Across a Normal Shock Wave in a Liquid Gas Suspension

15.4.4.1 Approximate Rankine-Hugoniot Relations for Weak Shocks

15.4.4.2 Guha’s Exact Analytical Solution for Specified p_1, T_1, T_2 and f_g
15.4.5 Transfer of Momentum, Mass and Energy from Gas to Droplets; Dilute Condensable Component
15.4.5.1 Continuum Regime
15.4.5.2 The Free Molecular Regime
15.4.5.3 The Transition Regime

15.4.6 Estimate of Characteristic Relaxation Times
15.4.6.1 Exchange of Momentum
15.4.6.2 Exchange of Heat
15.4.6.3 Exchange of Mass: Evaporation
15.4.6.4 Comparison of the Characteristic Relaxation Times

15.4.7 Shock Induced Evaporation in the Wet-Bulb Regime

15.4.8 Experimental Observations

15.4.9 Shock Waves in Wet Steam

15.4.10 Fully Dispersed Shock Waves in Wet Steam

15.4.11 Conclusions

15.4.12 References

PART 3

Chemical Reactions in Shock Wave

16 Chemical and Combustion Kinetics

16.1 Mass Spectrometric Methods for Chemical Kinetics in Shock Tubes
 by R.D. Kern, H.J. Singe & Q. Zhang
 16.1.1 Introduction
 16.1.2 Coupling of a Time-of-Flight Mass Spectrometer to a Shock Tube
 16.1.3 Chemical Kinetics Results from the TOF Shock Tube Technique
 16.1.4 Summary
 16.1.5 References

16.2 The Application of Densitometric Methods to the Measurement of Rate Processes in Shock Tubes
 by J.H. Kiefer
 16.2.1 Introduction
 16.2.2 Methods for the Observation of Gas Density
16.4.5.1 Justification 00
16.4.5.2 Experimental Configurations 00
16.4.5.3 Internal Standard and the Comparative Rate Technique 00
16.4.6 Specific Systems and Generalizations 00
16.4.6.1 Complex Reactions 00
16.4.6.2 Single Step Kinetics 00
16.4.7 Summary and Future Directions 00
16.4.8 References 00
16.4.9 Appendix: Summary and Experimental Results 00
16.4.9.1 Complex Kinetics 00
16.4.9.2 Single Step Rate Expressions 00

16.5 Ignition Delay Times
by A. Lifshitz

16.5.1 Introduction 00
16.5.2 Basic Concepts 00
16.5.3 Methodology 00
16.5.3.1 Experimental Methods 00
16.5.3.2 Design of an Experiment and Data Processing 00
16.5.3.3 Modeling Procedures 00
16.5.4 Kinetic Systems 00
16.5.4.1 Introductory Remarks 00
16.5.4.2 Ignition of Small Molecules, “The Loop Concept” 00
16.5.4.3 Thermal Ignition Without Chain Branching, N₂O + COS, N₂O + CO 00
16.5.4.4 The Concept of Energy Branching, H₂ + Cl₂, H₂ + F₂ 00
16.5.4.5 Correlation of Ignition Delay Times with Bond Dissociation Energies. The Role of Initiation vs Chain Branching 00
16.5.4.6 The Dependence of the Ignition Delay Times on the Fuel Concentration 00
16.5.4.7 Inhibiting Effects of the Diluent 00
16.5.4.8 Effect of Additives 00
16.5.5 Computer Modeling 00
16.5.5.1 Reaction Scheme 00
16.5.5.2 Sensitivity Spectrum 00
16.5.6 Conclusions 00
16.5.7 References 00
16.6 Particulate Formation and Analysis

by H. Wang

16.6.1 Introduction

16.6.2 Particle Size Distribution Function

16.6.3 Particle Analysis Techniques

 16.6.3.1 Laser Light Extinction and Scattering
 16.6.3.2 Complex Refractive Index
 16.6.3.3 Light Emission
 16.6.3.4 Other Detection Techniques

16.6.4 Soot Formation

 16.6.4.1 Induction Time
 16.6.4.2 Soot Yield
 16.6.4.3 Soot Growth Rate
 16.6.4.4 REM and Tem Studies

16.6.5 Nano-Particle Synthesis

16.6.6 Homogeneous Nucleation of Metal Particles

16.6.7 Summary

16.6.8 References

17 Combustion, Detonation and Deflagration

by J. Lee