Chapter 11

Analog and Mixed-Signal Testing
What is this chapter about?

- Introduces AMS circuits, failure modes and fault models.
- Addresses analog testing, including DC and AC parametric testing.
- Discusses mixed-signal circuits, ADC and DAC, and their testing approaches.
- Studies IEEE Std. 1149.4, the standard for mixed-signal test buses.
Chapter 11
Analog and Mixed-Signal Testing

- Introduction
- Analog Circuit Testing
- Mixed-Signal Testing
- IEEE Std. 1149.4 Standard for Mixed-Signal Test Bus
- Concluding Remarks
11.1 Introduction

- Analog Circuit Properties
- Analog Defect Mechanism and Fault Models
Analog, Digital, and Mixed-Signal Signals
Analog Circuit Properties

- Continuous Signal
- Large Range of Circuits
- Nonlinear Characteristics
- Feedback Ambiguity
- Complicated Cause-Effect Relationship
- Absence of Suitable Fault Model
- Accurate Measurements Required
Properties - Continuous Signal

Digital Signal

- Logic 1, Logic 0
- VIH, VIL, VOH, VOL
- Rise Time, Fall Time
- Propagation Delay H-L/L-H
- Noise Margin High/Low

Analog Signal

- Voltage/Current
- Slew Rate
- Overshoot
- Damping Factor
- Frequency
- Bandwidth

VLSI Test Principles and Architectures
Chap. 11 - Analog and Mixed-Signal Testing - P.7
Properties - Large Ranges of Circuits

Digital Circuits
- Operation
 - Static Logic
 - Dynamic Logic
- Structure
 - Gates
 - PLA
 - Memory

Analog Circuits
- Operation
 - Current Mode
 - Voltage Mode
 - Switching Cap
- Structure
 - Amplifier
 - Multiplier
 - Rectifier
 - Resonator
Properties - Nonlinear Characteristics

- Analog circuits are nonlinear in nature
- Nonlinear cause effect

\[I_D = I_s \cdot e^{V_D / n \times V_T} \]

\[I_D = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{gs} - V_t)^2 \]
Properties - Feedback Ambiguities

- Feedback puts circuit parameters together
- Difficult to identify fault location
Properties - Complicated Cause-Effect Relationship

- Difficult to determine the cause of error.

\[
A_V = \frac{V_0}{V_i} = -\frac{R_2}{R_1}
\]

\[
A = \frac{V_0}{V_i} = -\left(1 + \frac{A}{R_2}\right)R_1
\]
Properties – Absence of Suitable Fault Models

Digital Faults

- Good Logic Fault Model
- Generally Accepted
 - Stuck-at-1, Stuck-at-0
 - Stuck-Open, Stuck-On
 - Short. Open
 - Memory Faults
 - PLA Faults
Properties - Absence of Suitable Fault Models

Analog Faults

- No Good Fault Model
- Not Generally Accepted
 - Open Short
 - Missing/Extra Devices
 - Parameter Variation
 - Performance Deviation
 - Circuit Structure Related
 - Functional Faults
 - ??????????????
Properties — Accurate Measurements Required

Digital Instrument

- Oscilloscope
- Function Generator
- Logic Analyzer
- Frequency Counter
Properties – Accurate Measurements Required

- Oscilloscope
- Function Gen
- Freq. Counter
- Spectrum Analyzer
- Network Analyzer
- Impedance Analyzer
- Timing Analyzer
- Communication Analyzer
- RF Instrument
- Optical Instrument
- Microwave Instrument
11.1 Introduction

- Analog Circuit Properties
- Analog Defect Mechanism and Fault Models
Defect Mechanisms (1)

- **Material Defects**
 - cracks
 - crystal imperfection
 - surface impurities
 - ion migration

- **Processing Faults**
 - oxide thickness
 - mobility change
 - impurity density
 - diffusion depth
 - dielectric constants
 - metal sheet resistance
 - missing contacts
 - dust
Defect Mechanisms (2)

- **Time-Dependent Failures**
 - dielectric breakdown
 - electron migration

- **Packaging Failures**
 - contact degradation
 - seal leakage
Analog Fault Model

Defects/Failure

Hard Faults

Soft Faults
Analog Faults - Defect

- Defects
 - Extra Defects
 - Etching Defects
- Source
 - Dust
 - Lithography
- Layout Oriented
- Statistical Model
Analog Faults - Hard Faults

- **Fault Models**
 - Open
 - Short
 - Missing Device
 - Extra Devices

- **Faulty Effects**
 - Catastrophic Error
 - Module Malfunction
 - System Failure
Analog Faults - Soft Faults

- Parametric Faults
 - I_o: 100uA -> 50uA
 - W: 20um -> 10um

- Deviation Faults
 - f_o: 10MHz -> 5MHz
 - Gain: 10000 -> 2000

- Sources
 - Mobility
 - Oxide Thickness
 - Impurity Density
 - Defusion Depth
 - Dielectric Constants
 - Metal Sheet Resistance
Analog Fault - Model Mapping

- Functional Level
 - Deviation Faults

- Circuit Level
 - Parametric Faults
 - Extra Defects
 - Etching Defects

- Layout Level
Analog Faults - Model Mapping

Layout to Parametric
- **Defect Statistics**
 - Randomly insert dusts of random size.
- **Parameter Statistics**
 - Simulate the effect of dust on transistor parameters

\[
K = \mu C_{ox} \frac{W}{L}
\]
Analog Faults - Model Mapping

Parametric to Deviation
- Use SPICE simulation and statistics to derive the performance deviation.

\[K = \mu C_{ox} \frac{W}{L} \]
11.1 Summary

- Studied the analog test properties
 - Nonlinearity, Feedback Ambiguity
 - No good fault model

- Overview the analog test plan
 - Test Code, Binning, Sequence Control
 - Focused Calibrations, DIB Checkers
 - Characterization and Simulation Code

- Analog Fault Model
 - Extra and Etching Defects
 - Parametric and Deviation faults
 - Model Mapping
11.2 Analog Circuit Testing

- Analog Test Approaches
- Analog Test Waveforms
- DC Parametric Testing
- AC Parametric Testing
Analog Testing

Spec Oriented

Waveform Oriented
Specification Oriented Test

OP777/OP727/OP747—SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (© $V_o = 5 \text{ V}$, $V_{CM} = 2.5 \text{ V}$, $T_A = 25{\degree} \text{C}$ unless otherwise noted.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset Voltage OP777</td>
<td>V_{OS}</td>
<td>$+25{\degree} \text{C} < T_A < +85{\degree} \text{C}$</td>
<td>20</td>
<td>100</td>
<td></td>
<td>μV</td>
</tr>
<tr>
<td>Offset Voltage OP727/OP747</td>
<td>V_{OS}</td>
<td>$-40{\degree} \text{C} < T_A < +85{\degree} \text{C}$</td>
<td>50</td>
<td>200</td>
<td></td>
<td>μV</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_N</td>
<td>$+25{\degree} \text{C} < T_A < +85{\degree} \text{C}$</td>
<td>30</td>
<td>160</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I_{OS}</td>
<td>$-40{\degree} \text{C} < T_A < +85{\degree} \text{C}$</td>
<td>60</td>
<td>300</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td></td>
<td></td>
<td>5.5</td>
<td>11</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>CMRR</td>
<td></td>
<td></td>
<td>0</td>
<td>4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>A_{VOL}</td>
<td></td>
<td>104</td>
<td>110</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Offset Voltage OP777</td>
<td>$V_{OS}/\Delta T$</td>
<td></td>
<td>500</td>
<td>500</td>
<td></td>
<td>V/mV</td>
</tr>
<tr>
<td>Offset Voltage OP727/OP747</td>
<td>$V_{OS}/\Delta T$</td>
<td></td>
<td>0.3</td>
<td>1.3</td>
<td></td>
<td>μV/$^\circ$C</td>
</tr>
<tr>
<td>OUTPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td>0.4</td>
<td>1.5</td>
<td></td>
<td>μV/$^\circ$C</td>
</tr>
<tr>
<td>Output Voltage High</td>
<td>V_{OH}</td>
<td></td>
<td>4.88</td>
<td>4.91</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage Low</td>
<td>V_{OL}</td>
<td>$-40{\degree} \text{C} < T_A < +85{\degree} \text{C}$</td>
<td>120</td>
<td>140</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Output Circuit</td>
<td>I_{OUT}</td>
<td>$V_{DROP} < 1 \text{ V}$</td>
<td>±10</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>$PSRR$</td>
<td>$V_{OS} = 3 \text{ V} \text{ to } 30 \text{ V}$</td>
<td>120</td>
<td>130</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Supply Current/Amplifier OP777</td>
<td>I_{SV}</td>
<td>$V_{OS} = 0 \text{ V}$</td>
<td>220</td>
<td>270</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Supply Current/Amplifier OP727/OP747</td>
<td>I_{SV}</td>
<td>$-40{\degree} \text{C} < T_A < +85{\degree} \text{C}$</td>
<td>270</td>
<td>320</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>DYNAMIC PERFORMANCE</td>
<td></td>
<td></td>
<td>235</td>
<td>290</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>SR</td>
<td></td>
<td>290</td>
<td>350</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Gain Bandwidth Product</td>
<td>GBP</td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td>V/μS</td>
</tr>
<tr>
<td>NOISE PERFORMANCE</td>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Voltage Noise</td>
<td>$e_{d\mu}$</td>
<td>$0.1 \text{ Hz} \text{ to } 10 \text{ Hz}$</td>
<td>0.4</td>
<td></td>
<td></td>
<td>μV/\sqrt{Hz}</td>
</tr>
<tr>
<td>Voltage Noise Density</td>
<td>e_a</td>
<td>$f = 1 \text{ kHz}$</td>
<td>15</td>
<td></td>
<td></td>
<td>nV/\sqrt{Hz}</td>
</tr>
<tr>
<td>Current Noise Density</td>
<td>i_b</td>
<td>$f = 1 \text{ kHz}$</td>
<td>0.13</td>
<td></td>
<td></td>
<td>pA/\sqrt{Hz}</td>
</tr>
</tbody>
</table>

NOTES

- Typical specifications: >50% of units perform equal to or better than the "typical" value.
- Specifications subject to change without notice.
Specification Oriented Test

- Specification Oriented Test
 - Check whether all the specs are met
 - Tedious and inflexible

- Example: Operational Amplifier

- DC Specifications
 - Input Offset Voltage
 - Input Bias Offset Current
 - Open-Loop Gain
 - Noise
 - Common Rejection Ratio
 - Temperature Drift

- AC Specifications
 - Bandwidth
 - Harmonic Distortion
 - Slew Rate
 - Settling Time
 - Noise
Waveform Oriented Test

- Compare waveform to the simulated ones
Waveform Oriented Test

<table>
<thead>
<tr>
<th>A</th>
<th>DC Bias, Input Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Slew Rate, Damping Factor</td>
</tr>
<tr>
<td>C</td>
<td>Overshoot, Damping Factor, Bandwidth</td>
</tr>
<tr>
<td>D</td>
<td>Settling Time, DC Gain</td>
</tr>
</tbody>
</table>
Analog Testing - Comparison

- Specification Oriented Test
 - Require more test runs and time
 - Require accurate instrument
 - Specifications are guaranteed
 - *Low defect level*

- Waveform Oriented Test
 - Less test runs and test time
 - More forgiving on instrument
 - Specifications are not guaranteed
 - *Low cost*
11.2 Analog Circuit Testing

- Analog Test Approaches
- **Analog Test Waveforms**
- DC Parametric Testing
- AC Parametric Testing
Analog Test Waveforms

- Sine
- Square (Step)
- Ramp
- Triangular
- Chirp (Sweep Sine)
- Arbitrary
- Modulated
For transient response testing
- Application: Filter, OPs, VCO, etc
- Difficult to generate good steps

\[\theta = \pm 45^\circ \sim \pm 60^\circ \]

\[f = \frac{1}{(4 \sim 3)T_r} \]

\[f = \frac{1}{3.5T_r} \]
Waveform - Step

- Step change in voltage: Transient testing
- Step change in frequency: PLL testing
- Step change in amplitude: AGC testing
Waveform - Ramp

- Triangular Wave Generation

- Sawtooth Wave Generation
Waveform - Chirp

- Also called Sweep Sine
- Generation: Triangular to VCO
- Application: Frequency response plotting
Waveform - Chirp

Application: Frequency response plotting

Diagram showing a VCO connected to a CUT (under test) which is then passed through a filter and a LPF (low-pass filter). The waveform changes are depicted at different stages of the process.
Waveform - Arbitrary

- Synthesized by DACs
- Combinations of all kinds of waveform
Modulated/Synthesized Waveforms

- Communication System Testing
 - GSM, CDMA, 1394, USB2, etc.

- Modulation
 - AM, FM, PCM, PWM, QAM, PSK, QPSK

Generated by dedicated instrument
11.2 Analog Circuit Testing

- Analog Test Approaches
- Analog Test Waveforms
- DC Parametric Testing
- AC Parametric Testing
DC Parametric Testing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated output current</td>
<td>Rated output voltage</td>
</tr>
<tr>
<td>Open-loop gain</td>
<td>Slewing rate</td>
</tr>
<tr>
<td>Unity gain full power response</td>
<td>Unity gain small signal response</td>
</tr>
<tr>
<td>Overload recovery</td>
<td>Input bias current</td>
</tr>
<tr>
<td>Input offset voltage</td>
<td>Input offset current</td>
</tr>
<tr>
<td>Input noise</td>
<td>Input impedance</td>
</tr>
<tr>
<td>Supply voltage sensitivity</td>
<td>Common mode rejection</td>
</tr>
<tr>
<td>Maximum voltage between inputs</td>
<td>Maximum common mode voltage</td>
</tr>
<tr>
<td>Temperature drift</td>
<td></td>
</tr>
</tbody>
</table>

Source: [Sata 1967]
DC Test – Open-Loop Gain Measurement

\[A_o = 101 \cdot \frac{\Delta V_x}{\Delta V_y} \]
DC Test – Unit Gain Bandwidth Measurement

\[f_t = A_o \cdot f_{3dB} \]

- **Inverting Configuration**
 \[V_i \leq \frac{SR}{2\pi f_t} \]

- **Noninverting Configuration**
 \[V_i \leq \frac{SR}{2\pi f_t} \]

VLSI Test Principles and Architectures
Chap. 11 - Analog and Mixed-Signal Testing - P.46
DC Test – Common Mode Rejection Ratio

\[V_{CM,i} = \frac{\Delta V_o}{A_o} = \Delta V_o / \frac{R2}{R1} \]

\[CMRR = 20\log(A_o / \frac{\Delta V_o}{\Delta V_{CM}}) \]
DC Test – Power Supply Rejection Ratio

\[PSRR = 20 \log(A_o / \frac{\Delta V_o}{\Delta V_{DD}}) \]
11.2 Analog Circuit Testing

- Analog Test Approaches
- Analog Test Waveforms
- DC Parametric Testing
- **AC Parametric Testing**
Analog AC Testing

- Test Types
 - Gain
 - Phase
 - Distortion
 - Signal Rejection
 - Noise

- Test Setup
 - AGW: Arbitrary Waveform Generator (DAC)
 - Digitizer: Sample and convert to digital (ADC)
AC – Maximal Output Amplitude

- Input sine wave (1KHz) with fixed amplitude
- Digitize the output waveform
- DSP (FFT) to eliminate distortion and noise.
- Check the fundamental amplitude.
- Detect first order defects in a circuit.
- Voltage in dBV or dBm
AC - Frequency Response

- **LPF**: Low Pass Filter
- **HPF**: High Pass Filter
- **BPF**: Band Pass Filter
- **BRF**: Band Reject Filter
AC - Frequency Response

Bode Plot

\[A(jw) = \frac{10^2 \left(1 + \frac{jw}{10^6}\right)}{(1 + \frac{jw}{10^2})(1 + \frac{jw}{10^4})} \]

- Open Loop Gain: \(10^2\)
- Pole 1: \(10^2\)
- Pole 2: \(10^4\)
- Zero: \(10^6\)

VLSI Test Principles and Architectures
AC - Frequency Response

- Pass Band Ripple
- Stop Band Rejection
- Stop Band
- Pass Band
- Stop Band
AC - Frequency Response
Frequencies of special interests
AC - Frequency Response

- Multi-tone Test Waveform

$$A(t) = \sum_{i=1}^{i=k} A_i \sin(\omega_i t + \phi_i)$$
AC - Frequency Response

- Multi-tone Test Waveform

\[A(t) = \sum_{i=1}^{i=k} A_i \sin(\omega_i t + \phi_i) \]
AC – Noise and Distortion

• Distortion
 • Harmonic Distortion
 • Intermodulation Distortion
 • Crossover

• Cause
 • Nonlinearity of the circuit
 • Clip (saturation)
 • Mismatch of the devices
AC – Noise and Distortion

- Apply sinusoidal waveform
- Do Fourier transform on response waveform
- Obtain F domain properties mathematically.
AC – Noise and Distortion

\[
THD = 10 \log \frac{F^2}{\sum H_i^2} = 100 \times \frac{F^2}{\sum H_i^2} \%
\]

\[
SNR = 10 \log \frac{F^2}{\sum N_i^2}
\]

\[
SNDR = 10 \log \frac{F^2}{\sum H_i^2 + \sum N_i^2}
\]
\[v(t) = A_1 \sin 2\pi f_1 t + A_2 \sin 2\pi f_2 t \]
11.2 Summary

- Studied the analog test approaches
 - Specification oriented testing
 - Waveform oriented testing
-Outlined the analog test waveforms
 - Sine, step, triangular, chirp, arbitrary, modulated
- Discussed DC parametric testing
 - Open-loop gain, unit gain bandwidth
 - CMRR, PSRR
- Discussed AC parametric testing
 - Use AWG, Digitizer, and DSP
 - Frequency response, Noise, and Distortion
11.3 Mixed-Signal Testing

- Introduction to Analog-Digital Conversion
- ADC and DAC Circuit Structure
- ADC/DAC Specification and Fault Models
- IEEE Std. 1057
- Time-Domain ADC Testing
- Frequency-Domain ADC Testing
AD Model - Quantization

\[X_{\text{out}} \text{ LSBs} \]

\[X_{\text{in}} \]

VLSI Test Principles and Architectures
Chap. 11 - Analog and Mixed-Signal Testing - P.65
Quantization error is sawtooth-like.
Uniform distribute between \((-q/2, q/2)\) (\(q=\text{LSB}\)).

Quantization Noise Model

\[x(t) \quad \text{Original signal} \quad \text{Quantized signal} \]

\[n_q(t) \quad \text{Quantization error} \]
Quantization – Noise Model

- The error contains a lot of jumps.
- Error spectral is much wider than the original signal.
- The bandwidth of the quantization is proportional to the slope of the signal and inversely proportional to the quantum size q.

$$n_q(t)$$

Quantization error

$$q/2$$

$$-q/2$$

t
A sine wave is quantized by a B-bit ADC. How large is the SNR.

\[2V_p = 2^n q \]

\[P_S = \frac{V_p^2}{2} \]

\[P_N = \left(\frac{q/2}{\sqrt{3}} \right)^2 = \frac{q^2}{12} \]
Quantization - Noise Model

\[SNR = 10 \log \frac{P_s}{P_N} = 10 \log \left(\frac{\frac{V_p^2}{2}}{\frac{q^2}{12}} \right) = 10 \log (6 \cdot 4^{n-1}) \]

\[SNR = (1.76 + 6n) \text{dB} \]

For \(n=10 \), \(SNR = 61.8 \text{dB} \)
11.3 Mixed-Signal Testing

- Introduction to Analog-Digital Conversion
- ADC and DAC Circuit Structure
- ADC/DAC Specification and Fault Models
- IEEE Std. 1057
- Time-Domain ADC Testing
- Frequency-Domain ADC Testing
ADC Architecture - Gain Stage

- **Gain:** Provide offset and full scale conversion
- **Filter:** Reject off-band noise (anti-aliasing filter)
- **MUX:** Provide multiple channel access
- **S/H:** Provide steady signal for A-to-D conversion
- **ADC:** Actual analog to digital conversion
ADC Architecture - Gain Stage

- **Function:** Provides gain and offset
- **Achieve the maximal A/D resolution by scaling the input signal to match the full A/D input range.**
- **Drawbacks:**
 - Introduces noise, nonlinearity, drift
 - Expense of tight-tolerance
 - Require calibration
ADC Architecture - Filter Stage

- Function: Attenuate the out-of-band noise to prevent aliasing
- Filter Position
 - Before the MUX (1 per channel): maximize speed in switching channels.
 - After the MUX: minimize mismatching among channels.
ADC Architecture - Filter Stage

- Anti-Aliasing Filter

\[A(w) \quad \text{Anti Aliasing Filter} \]

Signal Spectrum

Nyquist Rate Sampling

4X Over Sampling
Function: Provides multiple access

Crosstalk:
- The most severe problem
- Frequency dependent
- Can be minimized by placing amplifier before the MUX.

Load Issues
- Avoid too many fanins.
- Use hierarchical structure.
ADC Architecture - S/H Stage

- **Function:**
 - Provides steady signal
 - Provides signal synchronization,

- **S/H position:**
 - After the MUX for cost reason
 - Before MUX for synchronization and crosstalk reduction.
ADC Architecture - S/H Check List

- **Aperture Time**: The time aperture \((t3)\)
- **Acquisition Time**: The total time for the S/H to acquire a full-scale step input signal. \((t3 - t1)\)
- **Aperture Jitter**: The uncertainty of aperture time due to noise or jitter in clock. \((t4-t2)\)

\[
\begin{align*}
V_{\text{droop}} &= \frac{I_{\text{leak}}}{C_H} \\
\Delta V_c &\leq X\% \cdot \text{LSB}
\end{align*}
\]
ADC Architecture - ADC Stage

- ADC

- Gain
- Filter
- MUX
- S/H

Executes analog to digital conversion

Check List:

- Bit length
- Accuracy
- Conversion Rate
- System Error Budget
- Input Signal Range
- Total System Cost Target
- Input Impedance
- AC or DC Inputs BW

VLSI Test Principles and Architectures Chap. 11 - Analog and Mixed-Signal Testing - P.78
DAC Example - R-2R Ladder

\[
V_o = S_5 \cdot \frac{V_{ref}}{2^1} + S_4 \cdot \frac{V_{ref}}{2^2} + S_3 \cdot \frac{V_{ref}}{2^3} + S_2 \cdot \frac{V_{ref}}{2^4} + S_1 \cdot \frac{V_{ref}}{2^5} + S_0 \cdot \frac{V_{ref}}{2^6}
\]

\[
= (S_5 \cdot 2^5 + S_4 \cdot 2^4 + S_3 \cdot 2^3 + S_2 \cdot 2^2 + S_1 \cdot 2^1 + S_0 \cdot 2^0) \cdot \frac{V_{ref}}{2^6}
\]
ADC Example – Pipelined ADC

S/H → X 4 → S/H → X 4 → S/H → X 4 → S/H

ADC 3 bits → DAC 3 bits → ADC 3 bits → DAC 3 bits → ADC 2 bits

Calibration and Correction Circuit

d0 → d7
ADC – Bits v.s. Throughput

<table>
<thead>
<tr>
<th>ADC</th>
<th>Bit-Length</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash</td>
<td>~ 6 bits</td>
<td>100 M ~</td>
</tr>
<tr>
<td>Pipelined</td>
<td>8 ~ 16 bits</td>
<td>10 ~ 100 MHz</td>
</tr>
<tr>
<td>Sigma-Delta</td>
<td>14 ~ bits</td>
<td>~ 10 M</td>
</tr>
</tbody>
</table>
ADC – Selection Matrix

<table>
<thead>
<tr>
<th>Bits</th>
<th><10kbps</th>
<th>10Kbps to 100Kbps</th>
<th>100Kbps to 1Mbps</th>
<th>1Mbps to 10Mbps</th>
<th>10 to 100Mbps</th>
<th>100Mbps +</th>
</tr>
</thead>
<tbody>
<tr>
<td>17+</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>14-16</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>12-13</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>10-11</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>8-9</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td><8</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

From Analog Devices Inc.
AD775 – Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AD775J (Typ)</th>
<th>AD775J (Max)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESOLUTION</td>
<td>8</td>
<td></td>
<td>Bits</td>
</tr>
<tr>
<td>DC ACCURACY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral Nonlinearity (INL)</td>
<td>+0.5</td>
<td>1.3</td>
<td>LSB</td>
</tr>
<tr>
<td>Differential Nonlinearity (DNL)</td>
<td>+0.3</td>
<td>+0.5</td>
<td>LSB</td>
</tr>
<tr>
<td>No Missing Codes</td>
<td>GUARANTEED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset</td>
<td>-10</td>
<td>-35</td>
<td>mV</td>
</tr>
<tr>
<td>To Top of Ladder VREF</td>
<td>0</td>
<td>+15</td>
<td>mV</td>
</tr>
<tr>
<td>To Bottom of Ladder VREF</td>
<td></td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>VIDEO ACCURACY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Gain Error</td>
<td>1.0</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Differential Phase Error</td>
<td>0.5</td>
<td></td>
<td>Degrees</td>
</tr>
<tr>
<td>ANALOG INPUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Range (VREF – VSS)</td>
<td>2.0</td>
<td></td>
<td>V p-p</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>11</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>AC SPECIFICATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal-to-Noise and Distortion (S/N + D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fN = 1 MHz</td>
<td>47</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>fN = 5 MHz</td>
<td>41</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Total Harmonic Distortion (THD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fN = 1 MHz</td>
<td>-51</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>fN = 5 MHz</td>
<td>-42</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>REFERENCE INPUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Input Resistance (RREF)</td>
<td>230</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>Case 1: VREF = VMAX, VSS = VMIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Bottom Voltage (VSS)</td>
<td>0.60</td>
<td>0.64</td>
<td>0.68</td>
</tr>
<tr>
<td>Reference Span (VREF – VSS)</td>
<td>1.96</td>
<td>2.09</td>
<td>2.21</td>
</tr>
<tr>
<td>Reference Ladder Current (IREF)</td>
<td>4.4</td>
<td>7.0</td>
<td>9.6</td>
</tr>
<tr>
<td>Case 2: VREF = VMIN, VSS = AVSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Span (VREF – VSS)</td>
<td>2.25</td>
<td>2.39</td>
<td>2.53</td>
</tr>
<tr>
<td>Reference Ladder Current (IREF)</td>
<td>5</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>POWER SUPPLIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Voltages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVDD</td>
<td>+4.75</td>
<td>+5.25</td>
<td>Volts</td>
</tr>
<tr>
<td>DVDD</td>
<td>+4.75</td>
<td>+5.25</td>
<td>Volts</td>
</tr>
<tr>
<td>Operating Current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAVDD</td>
<td>9.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>IDVDD</td>
<td>2.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>IAVDD + IDVDD</td>
<td>12</td>
<td>17</td>
<td>mA</td>
</tr>
<tr>
<td>POWER CONSUMPTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td>60</td>
<td>85</td>
<td>mW</td>
</tr>
<tr>
<td>TEMPERATURE RANGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td>-20</td>
<td>+75</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES

1. NTSC 40 IRE modulation ramp. CLOCK = 14.3 MSPS.
2. fN amplitude = 0.3 dB full scale.
3. Specifications subject to change without notice. See Definition of Specifications for additional information.
11.3 Mixed-Signal Testing

- Introduction to Analog-Digital Conversion
- ADC and DAC Circuit Structure
- **ADC/DAC Specification and Fault Models**
- IEEE Std. 1057
- Time-Domain ADC Testing
- Frequency-Domain ADC Testing
ADC – Offset Error

• **Offset**: constant component of the error that is independent of the inputs

![Graph showing Offset Error](image)
ADC – Gain Error

- **Gain Error**: difference between the actual transfer ratio and the ideal ratio
- Also called Calibration Error

![Graph showing the difference between actual and ideal gain transfer](image)
ADC – Nonlinearity Error

Nonlinearity error: The deviation of the output quantity from a specified linear reference.
ADC – Nonlinearity Error

- **Integral Nonlinearity:**
 Worst-case deviation from the ideal transfer characteristic curve

- **Differential Nonlinearity:**
 Difference between the actual transfer ratio and the ideal ratio

IN = 2 LSB
DN = 0.5 LSB
ADC – Temperature-Dependent Error

- **Temperature-Dependent Error:** Due to the change in ambient temperature or temperature variation due to self-heating (temperature stability, temperature coefficient)

![Graph showing temperature-variant ADC responses](image)

\[X_{out} \quad X_{in} \]

- Temperature-variant response \(T_1, T_2, T_3 \)
Load Error: Loading error is due to the effect of a load impedance upon the converter or signal source driving it.
ADC – Hysteresis Error

Hysteresis Error: The difference between the increasing and decreasing input values that produce the same output.
ADC – Resolution Error

- **Resolution Error**: The error due to the inability to respond to change of a variable smaller than a given increment.
ADC – Missing Code Error

Ideal Input Waveform

Quantized with missing Code

Quantization Error

Missing Codes
11.3 Mixed-Signal Testing

- Introduction to Analog-Digital Conversion
- ADC and DAC Circuit Structure
- ADC/DAC Specification and Fault Models
- **IEEE Std. 1057**
- Time-Domain ADC Testing
- Frequency-Domain ADC Testing
IEEE 1057 Standard

Scope

- Covers electronic digitizing waveform recorders, waveform analyzers and digitizing oscilloscopes with digital outputs.
- Applies to, but is not restricted to, general-purpose waveform recorders and analyzers.
IEEE 1057 Standard

Purpose

- Provides common methods for testing and terminology for describing the performance of waveform recorders.
- Benefits users and manufacturers of such devices.
- Presents many performance features, sources of error, and test methods.
IEEE 1057 – General Information

<table>
<thead>
<tr>
<th>Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions and weight</td>
</tr>
<tr>
<td>Power Requirement</td>
</tr>
<tr>
<td>Environmental conditions (tem., humidity, EMC/EMI, etc.)</td>
</tr>
<tr>
<td>Any special or peculiar characteristics</td>
</tr>
<tr>
<td>Available options and accessories</td>
</tr>
<tr>
<td>Exception to the above parameters where applicable</td>
</tr>
<tr>
<td>Calibration interval</td>
</tr>
</tbody>
</table>
IEEE 1057 – Minimum Specification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of digitizing bits</td>
<td>Input impedance</td>
</tr>
<tr>
<td>Sample rates</td>
<td>Analog bandwidth</td>
</tr>
<tr>
<td>Memory length</td>
<td>Input signal ranges</td>
</tr>
</tbody>
</table>
IEEE 1057 – Additional Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>Fixed error in sample time</td>
</tr>
<tr>
<td>Offset</td>
<td>Trigger delay and jitter</td>
</tr>
<tr>
<td>Differential nonlinearity</td>
<td>Trigger sensitivity</td>
</tr>
<tr>
<td>Integral nonlinearity</td>
<td>Trigger minimum rate of change</td>
</tr>
<tr>
<td>Harmonic distortion</td>
<td>Trigger hysteresis band</td>
</tr>
<tr>
<td>Spurious response</td>
<td>Trigger coupling to signal</td>
</tr>
<tr>
<td>Maximal static error</td>
<td>Crosstalk</td>
</tr>
<tr>
<td>Signal to noise ratio</td>
<td>Monotonicity</td>
</tr>
<tr>
<td>Effective bits</td>
<td>Hysteresis</td>
</tr>
<tr>
<td>Peak error</td>
<td>Over voltage recovery</td>
</tr>
<tr>
<td>Random noise</td>
<td>Word error rate</td>
</tr>
<tr>
<td>Frequency response</td>
<td>Cycle time</td>
</tr>
<tr>
<td>Settling time</td>
<td>Common mode rejection ratio</td>
</tr>
<tr>
<td>Slew limit</td>
<td>Differential input impedance</td>
</tr>
<tr>
<td>Overshoot and precursors</td>
<td>Maximum operating common</td>
</tr>
<tr>
<td>Aperture uncertainty</td>
<td>Mode signal level</td>
</tr>
<tr>
<td>Long-term stability</td>
<td>Transition duration of step response</td>
</tr>
<tr>
<td>Maximum common mode signal level</td>
<td></td>
</tr>
</tbody>
</table>
IEEE 1057 – Test Methods

<table>
<thead>
<tr>
<th>General methods</th>
<th>Triggering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input impedance</td>
<td>Crosstalk</td>
</tr>
<tr>
<td>Gain and offset</td>
<td>Monotonicity</td>
</tr>
<tr>
<td>Noise</td>
<td>Hysteresis</td>
</tr>
<tr>
<td>Analog bandwidth</td>
<td>Overvoltage Recovery</td>
</tr>
<tr>
<td>Frequency response</td>
<td>Word Error Rate</td>
</tr>
<tr>
<td>Step Response parameters</td>
<td>Cycle Time</td>
</tr>
<tr>
<td>Time base errors</td>
<td>Differential Input Specification</td>
</tr>
<tr>
<td>Linearity, harmonic distortion, and spurious responses</td>
<td></td>
</tr>
</tbody>
</table>
11.3 Mixed-Signal Testing

- Introduction to Analog-Digital Conversion
- ADC and DAC Circuit Structure
- ADC/DAC Specification and Fault Models
- IEEE Std. 1057
- Time-Domain ADC Testing
- Frequency-Domain ADC Testing
Histogram – Code Bins

Code Bin

<table>
<thead>
<tr>
<th>Code Level</th>
<th>Bin Count $H[k]$</th>
<th>Code Width $W[k]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T[1]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T[2]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T[3]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T[4]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T[5]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T[6]$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>302</td>
<td>529</td>
<td>472</td>
<td>345</td>
<td>372</td>
<td>456</td>
<td>543</td>
<td>245</td>
</tr>
</tbody>
</table>

Test Methods - Code Transition Level

Static Test Method
- Start from 2% below the transition level.
- Take a number of samples.
- Adjust the input level until the 50% codes are greater than k.

![Diagram showing code transition levels and precision percentages](image)

<table>
<thead>
<tr>
<th>Code Bin</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T[6]</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T[6]</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T[5]</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T[4]</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T[3]</td>
<td>443</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T[2]</td>
<td>454</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T[1]</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Samples</th>
<th>64</th>
<th>256</th>
<th>1024</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>45%</td>
<td>23%</td>
<td>12%</td>
<td>6%</td>
</tr>
</tbody>
</table>

% of rms noise
Test Methods - Code Transition Level

Dynamic Test Method
- Apply full range sine wave
- Calculate the transition level from the bin counts

\[
T[k] = C - A \cos \left(\frac{\pi \cdot H_c[k - 1]}{M} \right)
\]

- **A**: Amplitude
- **C**: Offset
- **\(H_c[j]\)**: The code count of bin j.
- **M**: Total number of samples
- **Record Length M and Number of Cycles Mc must not have common term.**

<table>
<thead>
<tr>
<th>[H_c[j]]</th>
<th>(T[k])</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>245</td>
</tr>
<tr>
<td>6</td>
<td>543</td>
</tr>
<tr>
<td>5</td>
<td>456</td>
</tr>
<tr>
<td>4</td>
<td>372</td>
</tr>
<tr>
<td>3</td>
<td>345</td>
</tr>
<tr>
<td>2</td>
<td>472</td>
</tr>
<tr>
<td>1</td>
<td>529</td>
</tr>
<tr>
<td>0</td>
<td>302</td>
</tr>
</tbody>
</table>
Test Methods - Gain and Offset

- Apply a slow ramp signal
- Construct the code bin table

\[G \cdot T[k] + V_{os} + \varepsilon[k] = Q \cdot (k - 1) + T_1 \]

\[V_{os} = T_1 + Q \left(2^N - 1\right) - \frac{G}{2^{N-1}} \sum_{k=1}^{2^{N-1}} T[k] \]

\[G = Q \frac{\left(2^N - 1\right)^2 \sum_{k=1}^{2^{N-1}} kT[k]}{\left(2^N - 1\right)^2 \sum_{k=1}^{2^{N-1}} T^2[k] - \left(\sum_{k=1}^{2^{N-1}} T[k]\right)^2} - Q \frac{\left(2^N - 1\right) \sum_{k=1}^{2^{N-1}} T[k]}{\left(2^N - 1\right) \sum_{k=1}^{2^{N-1}} T^2[k] - \left(\sum_{k=1}^{2^{N-1}} T[k]\right)^2} \]
Test Methods - Gain and Offset (Example)

Transfer Curves

Histograms

Ideal Gain Error Offset Error Game/Offset

128 128 128 128
Test Methods - Nonlinearity

Differential Nonlinearity

\[
DNL \[k\] = \frac{G \cdot W[k] - Q}{Q}
\]

Integral Nonlinearity

\[
INL = 100 \max \left| \frac{\varepsilon[k]}{Q \cdot 2^N} \right|
\]

Maximal Static Error

\[
MSE = 100 \max \left| \frac{T[k] - Q(k - 1) - T_1}{Q \cdot 2^N} \right|
\]
Test Methods - Sine Wave Fitting

- Try to fit the sine wave to find the gain A', offset C_0, and phase shift θ.
- There are matrix based and nonmatrix methods.

\[
\begin{align*}
(y_1, y_2, \cdots y_m) &= \left(t_1, t_2, \cdots t_m \right) \\
y_i &= A \sin \omega t_i + C_0 \\
y_i' &= A' \sin(\omega t_i + \theta) + C \\
y_i' &= A \sin(\omega t_i) + B \cos(\omega t_i) + C \\
\min \left[\sum_{i=1}^{m} (y_i - A \cos(\omega t_i) - B \cos(\omega t_i) - C)^2 \right]
\end{align*}
\]
Test Methods - Sine Wave Fitting

Original Signal:
\[y(t) = A_o \sin(\omega_o t) + C_o \]

Curve Fitted:
\[y'(t) = A \sin(\omega t) + B \cos(\omega t) + C \]

Gain Error:
\[\frac{\sqrt{A^2 + B^2} - A_o}{A_o} \]

Offset Error:
\[C - C_o \]

Phase Error:
\[\theta = \tan^{-1}\left(-\frac{B}{A}\right) \]

Frequency Error:
\[\frac{\omega - \omega_o}{\omega_o} \]
11.3 Mixed-Signal Testing

- Introduction to Analog-Digital Conversion
- ADC and DAC Circuit Structure
- ADC/DAC Specification and Fault Models
- IEEE Std. 1057
- Time-Domain ADC Testing
- Frequency-Domain ADC Testing
ADC – Frequency Domain Testing

• Similar to Analog AC Testing
• Apply sinusoidal waveform
• Do Fourier transform on response waveform
• Obtain F domain properties mathematically.
ADC – Frequency Domain Testing

\[
THD = 10 \log \left(\frac{F^2}{\sum H_i^2} \right) = 100 \times \frac{F^2}{\sum H_i^2} \%
\]

\[
SNR = 10 \log \frac{F^2}{\sum N_i^2}
\]

\[
SNDR = 10 \log \frac{F^2}{\sum H_i^2 + \sum N_i^2}
\]
11.4 IEEE Std. 1149.4 Standard for a Mixed-Signal Test Bus

- IEEE Std. 1149.4 Overview
- IEEE Std. 1149.4 Circuit Structures
- IEEE Std. 1149.4 Instructions
- IEEE Std. 1149.4 Test Modes
IEEE 1149.4 - Overview

- Target mixed signal Printed Circuit Assembles (PCA).
- Components:
 - Mixed Signal
 - Digital
 - Analog
 - Discrete

M: Mixed-signal Component
A: Analog Component
D: Digital Component

VLSI Test Principles and Architectures Chap. 11 - Analog and Mixed-Signal Testing - P.114
IEEE 1149.4 - Scope

- Provide standardized approaches to
 - Interconnect Test
 - Parametric Test
 - Internal Test
IEEE 1149.4 - Interconnect Test

Open Defects

Short Defects
IEEE 1149.4 - Parametric Test

Simple Interconnect

Extended Interconnect

VLSI Test Principles and Architectures Chap. 11 - Analog and Mixed-Signal Testing - P.117
11.4 IEEE Std. 1149.4 Standard for a Mixed-Signal Test Bus

- IEEE Std. 1149.4 Overview
- **IEEE Std. 1149.4 Circuit Structures**
- IEEE Std. 1149.4 Instructions
- IEEE Std. 1149.4 Test Modes
IEEE 1149.4 - ABM

Test Control Circuitry
TAP Controller

CUT

VTH VH VL VG

CD

AB1 AB2

AT1 AT2

TBIC

Core Circuit

AB1 AB2

IEEE 1149.4

ABM

VLSI Test Principles and Architectures
Chap. 11 - Analog and Mixed-Signal Testing - P.123
1149.4 – Mixed-Signal Architecture

- Digital Inputs
- Analog Inputs
- TDI
- ABM
- Digital Outputs
- DBM
- Analog Outputs
- TDO

VLSI Test Principles and Architectures
Chap. 11 - Analog and Mixed-Signal Testing - P.124
11.4 IEEE Std. 1149.4 Standard for a Mixed-Signal Test Bus

- IEEE Std. 1149.4 Overview
- IEEE Std. 1149.4 Circuit Structures
- **IEEE Std. 1149.4 Instructions**
- IEEE Std. 1149.4 Test Modes
IEEE 1149.4 - Instructions

- Mandatory Instructions
 - BYPASS
 - SAMPLE/PRELOAD
 - EXTEST
 - PROBE

- Same as IEEE 1149.1
IEEE 1149.4 - Instructions

- Optional Instructions
 - INTEST
 - IDC/USERCODE
 - RUNBISt
 - CLAMP
 - HIGHZ

- Same as IEEE 1149.1
11.4 IEEE Std. 1149.4 Standard for a Mixed-Signal Test Bus

- IEEE Std. 1149.4 Overview
- IEEE Std. 1149.4 Circuit Structures
- IEEE Std. 1149.4 Instructions
- IEEE Std. 1149.4 Test Modes
1149.4 – Open/Short Interconnect Test

Chip 1

AB1

AB2

VH

VL

Chip 2

AB1

AB2

VTH

0

1
1149.4 — Extended Interconnect Test

- Grounded Impedance Measurement
- Apply current and measure voltage
1149.4 — Extended Interconnect Test

- Equivalent Circuit Model.

\[I_{DUT}(t) = I_s(t) \cdot \frac{R_{SIO}}{R_{SIO} + Z_{P1} + Z_{DUT}} \]

\[V_M(t) = V_{DUT}(t) \cdot \frac{R_{SVI}}{R_{SVI} + Z_{P2} + Z_{DUT}} \]
1149.4 – Extended Interconnect Test

- Floating Impedance Zd Measurement
1149.4 — Extended Interconnect Test

- Floating Impedance Z_D with optional V_g
1149.4 – Extended Interconnect Test

- Apply voltage and measure current
1149.4 – Extended Interconnect Test

• Equivalent Circuit Model

\[
V_{\text{DUT}}(t) = V_s(t) \cdot \frac{Z_{\text{DUT}}}{R_{\text{SVO}} + Z_{P1} + Z_{\text{DUT}} + Z_{P2} + R_{\text{SII}}}
\]

\[
I_m(t) = \frac{V_s(t)}{R_{\text{SVO}} + Z_{P1} + Z_{\text{DUT}} + Z_{P2} + R_{\text{SII}}}
\]

With Ideal Voltage Source and Current Meter

\[
V_{\text{DUT}}(t) = V_s(t) \cdot \frac{Z_{\text{DUT}}}{Z_{P1} + Z_{\text{DUT}} + Z_{P2}}
\]

\[
I_m(t) = \frac{V_s(t)}{Z_{P1} + Z_{\text{DUT}} + Z_{P2}}
\]
1149.4 – Extended Interconnect Test

• Measure complex interconnect network
1149.4 – Extended Interconnect Test

![Diagram of an interconnect test circuit](image)

Notations
- **Vs**: Apply Voltage
- **Vm**: Measure Voltage
- **Is**: Apply Current
- **Im**: Measure Current

Formulas
- \(h_{11} = \frac{V_1}{I_1} \bigg|_{V_2 = 0} \)
- \(h_{21} = \frac{I_2}{I_1} \bigg|_{V_2 = 0} \)
- \(h_{12} = \frac{V_1}{V_2} \bigg|_{I_1 = 0} \)
- \(h_{22} = \frac{I_2}{V_2} \bigg|_{I_1 = 0} \)

Table of Test Conditions

<table>
<thead>
<tr>
<th>H</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>h11</td>
<td>Is/Vm</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>h12</td>
<td>Vm</td>
<td>GND</td>
<td>Vs</td>
<td>GND</td>
</tr>
<tr>
<td>h21</td>
<td>Is</td>
<td>GND</td>
<td>Im</td>
<td>GND</td>
</tr>
<tr>
<td>h22</td>
<td>Open</td>
<td>GND</td>
<td>Vs/Im</td>
<td>GND</td>
</tr>
</tbody>
</table>

- **Notations**
 - Is: Apply Current
 - Vm: Measure Voltage
 - Vs: Apply Voltage
 - Im: Measure Current
1149.4 - High Speed Applications

- Use buffers for better frequency response

- Current Buffer
- Voltage Buffer

VLSI Test Principles and Architectures Chap. 11 - Analog and Mixed-Signal Testing - P.138
11.5 Concluding Remarks

- AMS testing requires specialized approaches and experienced engineers because of the large varieties of signals, functions and circuits.
- DSP approaches are so pervasive that even basic analog test items can be accomplished.
- IEEE 1057 with formal terminologies and standardized test methods provides a solid theoretical background for ADC/DAC testing.
- IEEE 1149.4 is one solution to extending and incorporating the digital counterpart.