
Chapter 32

MATHIEU FUNCTIONS

When PDEs such as Laplace’s, Poisson’s, and the wave equation are solved with
cylindrical or spherical boundary conditions by separating variables in a coordinate
system appropriate to the problem, we find radial solutions, which are usually the
Bessel functions of Chapter 14, and angular solutions, which are sinmϕ, cos mϕ in
cylindrical cases and spherical harmonics in spherical cases. Examples are electro-
magnetic waves in resonant cavities, vibrating circular drumheads, and cylindrical
wave guides.

When in cylindrical problems the circular boundary condition is changed to ellipti-
cal we are led to what are now known as Mathieu functions, which, might alternatively
have been called elliptic cylinder functions. In fact, in 1868 Mathieu developed the
leading terms of series solutions of the vibrating elliptical drumhead, and Whittaker
and others in the early 1900s derived higher-order terms as well.

The goal of this chapter is to give an introduction to the rich and complex prop-
erties of Mathieu functions.

32.1 MATHIEU DIFFERENTIAL EQUATIONS

To see how Mathieu functions arise in problems with elliptical boundary conditions,
we need to formulate the relevant PDEs in elliptical coordinates. The essential steps
in this process are to identify the properties of the coordinate system, obtain the
Laplacian operator in the elliptic coordinates, and to carry out a separation of vari-
ables in the elliptical coordinates.

ELLIPTICAL COORDINATE SYSTEM

Elliptical cylinder coordinates ξ, η, z, which are appropriate for elliptical boundary
conditions, are expressed in rectangular coordinates as

x = c cosh ξ cos η , y = c sinh ξ sin η , z = z ,
(32.1)

0 ≤ ξ < ∞, 0 ≤ η < 2π,

with c > 0 a parameter that we will later identify as locating the foci of the elliptical
coordinates. The esssential characteristics of this coordinate system are illustrated
by the lines of constant ξ and constant η on the plane corresponding to an arbitrary
value of z, as shown in Fig. 32.1. The figure suggests that the lines of constant ξ
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2 CHAPTER 32. MATHIEU FUNCTIONS

Figure 32.1: Elliptical coordinates ξ, η.

are confocal ellipses (those with common foci), and that the lines of constant η are
quarter-hyperbolas with the same foci. A quarter-hyperbola is half of one hyperbolic
branch; the half-branch corresponding to a given value of η is the part of the branch
in the quadrant corresponding to η.

To confirm that the lines of constant ξ (for fixed z) are confocal ellipses, we can
combine the x and y equations of Eq. (32.1), taking for convenience z = 0 (the
xy-plane), obtaining

x2

c2 cosh2 ξ
+

y2

c2 sinh2 ξ
= 1 . (32.2)

For any fixed value of ξ, Eq. (32.2) describes an ellipse with foci at (±c, 0) and with
major and minor half-axes

a = c cosh ξ , b = c sinh ξ , (32.3)

respectively. Thus, we have identified the parameter c as half the distance between
the foci of the confocal set of ellipses.

We next look at the ratio b/a of the axes of our ellipses:

b

a
= tanh ξ =

√
1− 1

cosh2 ξ
≡

√
1− e2 . (32.4)

where e = 1/ cosh ξ, which must lie in the range 0 ≤ e ≤ 1, is known as the eccen-
tricity of the ellipse. As ξ → ∞, e → 0 and the ellipses become circles, as can be
seen in Fig. 32.1. As ξ → 0, the ellipse becomes more elongated until, at ξ = 0, it
has shrunk to the line segment between the foci.

The limiting behavior of the elliptic coordinates as c → 0 is that essentially all
nonzero (x, y) correspond to very large ξ values; in this limit e = 0 and the lines of
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constant ξ become circles. To make the limiting process explicit, we could replace
c cosh ξ ≈ c sinh ξ by ρ, thereby recovering the usual circular polar coordinates.

Moving next to the lines of constant η, we return to Eq. (32.1) and eliminate ξ
from the x and y equations, obtaining

x2

c2 cos2 η
− y2

c2 sin2 η
= 1 , (32.5)

For any fixed η Eq. (32.5) describes a hyperbola with foci at (±c, 0). The different
partial branches are reached by choosing the signs of x and y.

Differentiating the equation for the constant-ξ ellipse, we obtain

x dx

cosh2 ξ
+

y dy

sinh2 ξ
= 0 ,

equivalent to

dy

dx
= −x sinh2 ξ

y cosh2 ξ
or (dx, dy) = (−y cosh2 ξ, x sinh2 ξ) , (32.6)

the formula for a vector tangent to the ellipse at the point (x, y).
From the equation for the constant-η hyperbola, we obtain in a similar fashion

x dx

cos2 η
− y dy

sin2 η
= 0 , leading to (dx, dy) = (y cos2 η, x sin2 η). (32.7)

If we now take the scalar product of these vectors at any point x, y, we get

−y2 cosh2 ξ cos2 η + x2 sinh2 ξ sin2 η = −y2x2

c2
+

x2y2

c2
= 0 . (32.8)

This result means that these confocal ellipses and hyperbolas have tangents that are
orthogonal at their intersection points, and we therefore have an orthogonal coordi-
nate system, in the sense of Section 3.10.

To extract the scale factors hξ, hη from the differentials of the elliptical coordinates

dx = c sinh ξ cos η dξ − c cosh ξ sin η dη ,
(32.9)

dy = c cosh ξ sin η dξ + c sinh ξ cos η dη ,

we sum their squares, finding

dx2 + dy2 = c2(sinh2 ξ cos2 η + cosh2 ξ sin2 η)(dξ2 + dη2)

= c2(cosh2 ξ − cos2 η)(dξ2 + dη2) ≡ h2
ξ dξ2 + h2

η dη2 (32.10)

and yielding
hξ = hη = c(cosh2 ξ − cos2 η)1/2. (32.11)

Note that there is no cross term involving dξ dη, showing again that we are dealing
with orthogonal coordinates.

Since it is our objective to solve PDE’s in the elliptical coordinates, we proceed
now to develop the Laplacian. Letting q1, q2, q3 stand for ξ, η, z, we have h1 = h2 =
c(cosh2 ξ − cos2 η)1/2 and h3 = 1. Then, noting that the ratio h1/h2 is unity and
that neither h1 nor h2 depend upon q3, we find that the general expression for the
Laplacian in curvilinear coordinates, Eq. (3.142), reduces to

∇2 =
1

c2(cosh2 ξ − cos2 η)

(
∂2

∂ξ2
+

∂2

∂η2

)
+

∂2

∂z2
. (32.12)
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SEPARATION OF VARIABLES IN PDEs

We begin our study of Mathieu equations by considering an example in which these
ODEs naturally occur.

Example 32.1.1. Elliptical Drum

An elliptical drumhead with vertical displacement z = z(x, y, t) has oscillations gov-
erned by the wave equation

∂2z

∂x2
+

∂2z

∂y2
=

1
v2

∂2z

∂t2
, (32.13)

with the wave velocity squared given by v2 = T/d, where the drumhead is under
tension T (force per unit length at the boundary) and d is its mass per unit area, with
both T and d assumed constant. We first separate the harmonic time dependence,
writing

z(x, y, t) = u(x, y)w(t) ,

where w(t) = cos(ωt+ δ), with ω the frequency and δ a constant phase. Substituting
this functional form for z(x, y.t) into Eq. (32.13) yields

1
u

(
∂2u

∂x2
+

∂2u

∂y2

)
=

1
v2w

∂2w

∂t2
= −ω2

v2
= −k2 = constant, (32.14)

which is the two-dimensional Helmholtz equation for the displacement u. Since the
drumhead is elliptical, it is desirable to use elliptical coordinates such that ξ = ξ0

describes the boundary of the drumhead, on which the vertical displacement will
have the value zero. We therefore use Eq. (32.12) to convert the Laplacian ∇2 to the
elliptical coordinates, then dropping the z-coordinate. This gives

∂2u

∂x2
+

∂2u

∂y2
+ k2u =

1
c2(cosh2 ξ − cos2 η)

(
∂2u

∂ξ2
+

∂2u

∂η2

)
+ k2u = 0 ,

which can be rearranged to the usual expression for the Helmholtz equation in ellip-
tical ξ, η coordinates:

∂2u

∂ξ2
+

∂2u

∂η2
+ c2k2(cosh2 ξ − cos2 η)u = 0 . (32.15)

Lastly, we separate the variables ξ and η in our Helmholtz equation, writing u(ξ, η) =
R(ξ)Φ(η), reaching

1
R

d2R

dξ2
+ c2k2 cosh2 ξ = λ +

1
2
c2k2 ,

(32.16)

c2k2 cos2 η − 1
Φ

d2Φ
dη2

= λ +
1
2
c2k2 .

We have chosen λ+c2k2/2 as the separation constant because we can move its second
term to the left-hand side of each of these equations, obtaining c2k2(cosh2 ξ− 1

2 ) and
c2k2(cos2 η − 1

2 ), which can then be written in the respective forms 1
2 cosh 2ξ and

1
2 cos 2η. To bring our analysis to the usual notation, we now define a quantity

q =
1
4

c2k2 =
c2ω2

4v2
, (32.17)
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in terms of which the Φ equation assumes the form

d2Φ
dη2

+
(

λ− 2q cos 2η
)

Φ(η) = 0 . (32.18)

This ODE is known as the Mathieu equation, and in problems with elliptical
symmetry the solutions which are nonsingular (with period π or 2π in the variable
η) will normally be required. These periodic solutions are referred to as Mathieu
functions. They are elliptic analogs of the sine and cosine functions that are the
angular solutions in systems with circular symmetry. The Mathieu equation also has
solutions that are nonperiodic; they are of less interest in physics and for the most
part will not be discussed here.

The R equation of Eq. (32.16) has a form quite similar to Eq. (32.18):

d2R

dξ2
−

(
λ− 2q cosh 2ξ

)
R(ξ) = 0 . (32.19)

In fact, it becomes a Mathieu equation with η replaced by iξ. Because a similar
change of variables relates the modified Bessel functions In(x) and Kn(x) to the
ordinary Bessel functions Jn(x) and Yn(x), the R equation is called the modified
Mathieu equation. Thus, if we identify a specific solution to the Mathieu equation
as Φ(λ, q; η), a corresponding solution of the modified Mathieu equation will be

R(λ, q; ξ) = Φ(λ, q; iξ) . (32.20)

The solutions R(λ, q; η) that correspond (by η → iξ) with periodic functions Φ are re-
ferred to as modified Mathieu functions. It will be found that they are oscillatory
but (for real ξ) not periodic.

Although we defer a detailed solution of this drum problem until after some general
properties of Mathieu functions have been discussed, we can now sketch our solution
strategy. Because the R and Φ equations have been obtained from the process of
separation of variables, they must both contain the same value of λ and also a common
value of q. Neither q nor λ is directly given by the input to our problem; in fact,
different values of q will correspond to different oscillation frequencies, as can be seen
from Eq. (32.17). As already mentioned, the angular functions Φ(λ, q; η) will need to
be periodic, and for any given value of q this condition will only be possible for certain
discrete λ values. In other words, Φ will be a solution to a q-dependent boundary
value problem with eigenvalue λ.

We will also need to solve the R equation subject to the boundary condition
R(λ, q; ξ0) = 0 and subject to a requirement of continuity as the line segment ξ = 0
is crossed; note that the (ξ, η) values (0, η) and (0,−η) describe the same point.
These solutions to the R equation are elliptical analogs to the Bessel functions Jn

that arise in problems with circular symmetry. The situation is more complicated
here, however, because the locations of the zeros of R depend upon both λ and q.
Combining our discussions of the radial and angular equations, we see that it will be
necessary to find values of λ and q that simultaneously solve both the angular and the
radial boundary value problems. The practical difficulties of carrying out this process
have in the past made it rather difficult to work with the Mathieu equation, but
these difficulties have been overcome when the problem under study was sufficiently
important. Fortunately, computers (and computer software) have now evolved to
where Mathieu functions can be used with only moderate intellectual strain.

This example indicates how the interrelation of the eigenvalues λ and the con-
tinuous parameter q cause Mathieu functions to be among the most difficult special
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functions used in physics.

¥

Although the presence of the parameter q and its associated trigonometric term
make it complicated to deal with Mathieu functions, they do have the redeeming fea-
ture that they are solutions of Sturm-Liouville systems, because the Mathieu equation
is self-adjoint and we normally have appropriate boundary conditions.

Sometimes Mathieu functions arise in problems which do not have both a radial
and an angular equation, in contrast to the previous example. One such situation is
illustrated by the following example.

Example 32.1.2. The Quantum Pendulum

A plane pendulum of length l and mass m with gravitational potential V (θ) =
−mgl cos θ is called a quantum pendulum if its wave function Ψ obeys the Schrödinger
equation

− ~2

2ml2
d2Ψ
dθ2

+ [V (θ)− E]Ψ = 0,

where the variable θ is the angular displacement from the vertical direction. For
further details and illustrations we refer to Gutiérrez-Vega et al. in the Additional
Readings. A boundary condition requires Ψ to be single-valued; that is, Ψ(θ + 2π) =
Ψ(θ). Substitution of

θ = 2η, λ =
8Eml2

~2
, q = −4m2gl3

~2

into the Schrödinger equation yields the Mathieu ODE with the boundary condition
Ψ(2(η + π)) = Ψ(2η). In other words, the boundary condition on the wave function
expressed as a function of η is that it be periodic, with period π.

In this problem q does not appear as a parameter that must be chosen to make the
radial and angular equations consistent, but is instead given by the problem input.
And λ is obtained from a single Mathieu boundary-value problem and is proportional
to the energy of the quantum state being described.

¥

For many other applications involving Mathieu functions we refer to Ruby in the
Additional Readings.

ALGEBRAIC FORM

It is sometimes useful to bring the Mathieu ODE to a form in which the coefficients
are algebraic. This can be accomplished by making the so-called Lindemann-Stieltjes
substitution z = cos2 η, with dz/dη = − sin 2η. This substitution converts the Math-
ieu ODE to an equation in z. Writing

d

dη
=

dz

dη

d

dz
= − sin 2η

d

dz
and

d2

dη2
= −2 cos 2η

d

dz
+ sin2 2η

d2

dz2
,

we obtain

4z(1− z)
d2Φ
dz2

+ 2(1− 2z)
dΦ
dz

+
[
λ + 2q(1− 2z)

]
Φ = 0 . (32.21)
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Before transformation, the Mathieu equation had no singularities in the finite com-
plex plane; only an irregular singularity at infinity. The transformation leading to
Eq. (32.21) has produced an equation with regular singularities at z = 0 and z = 1;
an irregular singularity remains at infinity. By comparison, the hypergeometric ODE
has three regular singularities. We note in closing that not all ODEs with two regular
singularities and one essential singularity can be transformed into an ODE of the
Mathieu type.

Exercises

32.1.1. Find equations giving the elliptic coordinates ξ and η as explicit functions of x
and y.

32.2 GENERAL PROPERTIES

Now that we have introduced the Mathieu ODE and identified some problems for
which it is useful, we proceed to a survey of the general properties of solutions to the
Mathieu ODE, with particular emphasis on the periodic solutions that are needed for
both the problems we have already introduced as examples.

EXPANSION ABOUT q = 0

Although one often requires solutions to Mathieu’s ODE for large values of the pa-
rameter q, valuable insight can be obtained by studying the behavior of this ODE for
small q, writing all the quantities appearing in the ODE as expansions about q = 0.
If we set q = 0 and let η be an angular coordinate with range 0 ≤ η < 2π, our ODE
becomes

d2ψ

dη2
+ λψ = 0 . (32.22)

After applying the periodic boundary conditions, this equation has solutions

cm(η) = cos mη with λ = m2, m = 0, 1, 2, · · · ,
(32.23)

sm(η) = sin mη with λ = m2, m = 1, 2, · · · ,

where the solutions of index m will exhibit m complete oscillations in the interval
0 ≤ η < 2π. Because of the circular symmetry, the sine and cosine functions of the
same m have identical values of the eigenvalue λ and are similar in form except for a
displacement in phase. Moreover, linear combinations of the sine and cosine solutions
for the same λ are also solutions of our boundary value problem, a consequence of
the complete circular symmetry.

Continuing to the more general case of the Mathieu ODE with q 6= 0, the term
−2q cos 2η reduces the symmetry of the ODE to that of an interval of length π (but
with reflection symmetry about η = 0, π/2, π, and 3π/2). This reduced symmetry
causes the ODE to have some periodic solutions that are even functions of η, while
others are odd. It is no longer possible to have solutions that are identical except for
phase. In fact, the even solutions (elliptic analogs of the cosine solution) correspond
to different λ values than the odd solutions (analogs of the sine), with differences
in λ that increase with |q|. For q > 0, the directions η = 0 and η = π correspond
to maxima in 2q cos 2η. Since these are directions of maximum importance for the
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cosine-like solutions of the ODE, they will have larger λ values than the corresponding
sine-like solutions. A qualitative analysis of this point is the topic of Exercise 32.2.3.
See also the power series expansions below.

Proceeding now to a formal treatment of the power-series expansion, we write, for
the cosine-like solution which for q = 0 has λ = m2 with m=1 and which we choose
to scale such that its cos η term has for all q the coefficient unity,

Φ(q; η) = cos η + c1(η) q + c2(η) q2 + c3(η) q3 + · · · , (32.24)

λ(q) = 1 + α1q + α2q
2 + α3q

3 + · · · , (32.25)

where the αi and ci(η) are to be determined under the condition that Φ be an even
function of η and periodic in η (with period 2π, like cos η).

Substituting these expansions into the individual terms of the Mathieu ODE, we
get

d2Φ
dη2

= − cos η + c′′1(η)q + c′′2(η)q2 + c′′3q3 + · · · . (32.26)

λΦ = cos η + (c1(η) + α1 cos η)q + (c2(η) + α1c1(η) + α2 cos η)q2

+ (c3(η) + α1c2 + α2c1 + α3 cos η)q3 + · · · (32.27)

−(2q cos 2η)Φ = −2 cos 2η cos ηq − 2 cos 2η c1(η)q2 − 2 cos 2η c2(η)q3 − · · ·

= −(cos η + cos 3η)q − 2 cos 2η c1(η)q2 − 2 cos 2η c2(η)q3 − · · · .
(32.28)

In the second line of the expression for −(2q cos 2η)Φ we have used the trigonometric
formula cos nη cos η = (cos(n + 1)η + cos(n− 1)η)/2 to obtain terms of types arising
in a Fourier series.

The Mathieu ODE is satisfied only if the overall coefficient of each power of q
vanishes. The q0 term is automatically zero since we chose the expansion form to be
exact at q = 0, but the q1 and higher terms provide meaningful conditions on the
coefficients. The first two such terms yield

Coefficient of q1: c′′1(η) + c1(η)− cos 3η + (α1 − 1) cos η = 0 , (32.29)

Coefficient of q2: c′′2(η) + c2(η) + α1c1(η)− 2c1(η) cos 2η + α2 cos η = 0 . (32.30)

These ODEs for the coefficients are inhomogeneous. Taking first the coefficient of q1,
it will have a particular integral (specific solution to the inhomogeneous equation)
which is the sum of that corresponding to − cos 3η and that corresponding to (α1 −
1) cos η. The particular integral for − cos 3η is c1 = −(cos 3η)/8; that for (α1−1) cos η
is (1− α1)η sin η. Since it is our intention to obtain a periodic solution, we must set
α1 = 1 to eliminate the nonperiodic quantity η sin η. The general solution to the
homogeneous equation for c1 is A cos η + B sin η; sin η must be rejected because it is
odd and we are constructing an even solution; a cos η contribution would change the
scaling from our agreed-upon setting and must also be rejected. Thus, we must have

c1(η) = −cos 3η

8
. (32.31)
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Continuing to the coefficient of q2, we insert the already established values of c1

and α1, and after rewriting cos 2η cos 3η as (cos 5η + cos η)/2, we reach

c′′2(η) + c2(η)− cos 3η

8
+

cos 5η

8
+

(
α2 +

1
8

)
cos η = 0 . (32.32)

Once again, the particular integral corresponding to cos η is nonperiodic, causing us
to set α2 = −1/8, and we discard the general solution to the homogeneous equation
for the same reason we did so for c1. The particular integral for (− cos 3η + cos 5η)/8
leads to

c2(η) = −cos 3η

64
+

cos 5η

192
. (32.33)

The above process may be continued, leading to power series expansions for the
Φ and λ describing the solution to Mathieu’s ODE that for q = 0 corresponds to
cos η. This solution is denoted ce1, where ce stands for cosine-elliptic, and the first
few terms of its expansion and that of the corresponding λ value (denoted a1, and
sometimes referred to as the characteristic number corresponding to ce1) are

ce1(q; η) = cos η − 1
8

q cos 3η +
1
64

q2

(
− cos 3η +

1
3

cos 5η

)

− 1
512

q3

(
1
3

cos 3η − 4
9

cos 5η +
1
18

cos 7η

)
+ · · · , (32.34)

a1(q) = 1 + q − 1
8

q2 − 1
64

q3 − 1
1536

q4 +
11

36864
q5 + · · · .

In a similar fashion we can generate the functions cem(q; η) that correspond at q = 0
with cos mη, with m = 0, 2, 3, · · · , with respective λ values am(q). Those of even
m have symmetry such that they have period π; those of odd m have period 2π.
Graphs of the cem reveal that for arbitrary q they exhibit m complete oscillations in
the range 0 ≤ η < 2π. See Fig. 32.2. However, note that the individual oscillations
are not periodic; the only periodicity is that on the interval π or 2π.

There are also Mathieu functions that correspond at q = 0 to sin mη. These
functions are designated sem(q, η) (se for sine-elliptic), with corresponding λ values
(characteristic numbers) denoted bm(q). The expansion for se1 takes the form

se1(q; η) = sin η − 1
8

q sin 3η +
1
64

q2

(
sin 3η +

1
3

sin 5η

)

− 1
512

q3

(
1
3

sin 3η +
4
9

sin 5η +
1
18

sin 7η

)
+ · · · , (32.35)

b1(q) = 1− q − 1
8

q2 +
1
64

q3 − 1
1536

q4 − 11
36864

q5 + · · · .

The sem have period π if m is even and period 2π if m is odd. The first few sem are
plotted in Fig. 32.3. For the power series expansions of additional cem and sem the
reader is referred to AMS-55 (Abramowitz and Stegun, Additional Readings).

Notice that the characteristic numbers a1 and b1 are not equal, so ce1 and se1

are not two independent solutions of the same Mathieu equation. In fact, the second
solution correponding to ce1 is a nonperiodic function, as is also the second solution
corresponding to se1. It will be shown in the next section that for q 6= 0 and any m
the eigenvalues am and bm are unequal, and that the second solutions corresponding
to cem and sem are nonperiodic.
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Figure 32.2: cem, m = 0 · · · 5. Left, q = 1; right, q = 10.

Figure 32.3: sem, m = 1 · · · 5. Left, q = 1; right, q = 10.

FOURIER EXPANSIONS

The power series expansions show that the Mathieu functions cem and sem can be
viewed as Fourier series with q-dependent coefficients. These expansions take the
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generic forms (for m ≥ 0)

ce2m(q; η) =
∞∑

n=0

A
(2m)
2n (q) cos 2nη , (32.36)

ce2m+1(q; η) =
∞∑

n=0

A
(2m+1)
2n+1 (q) cos(2n + 1)η , (32.37)

se2m+1(q, η) =
∞∑

n=0

B
(2m+1)
2n+1 (q) sin(2n + 1)η , (32.38)

se2m+2(q, η) =
∞∑

n=0

B
(2m+2)
2n+2 (q) sin(2n + 2)η . (32.39)

By insertion of these expansions into Mathieu’s ODE we can obtain recurrence for-
mulas connecting the coefficients A or B in the above expansions. Illustrating for
ce2m:

(
d2

dη2
+ λ

)
ce2m(q, η) =

∞∑
n=0

(−4n2 + a2m(q))A(2m)
2n (q) cos 2nη , (32.40)

−2q cos(2η) ce2m(q, η) =
∞∑

n=0

A
(2m)
2n (q) cos 2nη

= −2qA
(2m)
0 (q) cos 2η − 2q

∞∑
n=1

A
(2m)
2n (q) cos 2η cos 2nη

= −2qA
(2m)
0 (q) cos 2η − q

∞∑
n=1

A
(2m)
2n (q)(cos(2n + 2)η + cos(2n− 2)η) . (32.41)

Equating coefficients of cos 2nη for n = 0, 1, · · · , we find, abbreviating a2m(q) to a

and A
(2m)
2n (q) to A2n,

For ce2m(q, η) : aA0 − qA2 = 0 ,

(a− 4)A2 − q(A4 + 2A0) = 0 , (32.42)

(a− 4n2)A2n − q(A2n+2 + A2n−2) = 0 , n ≥ 2.

Similar procedures for ce2m+1, se2m+1, and se2m+2, with b an abbreviation for bm(q)
and Bn short for B

(2m+1)
n (q) or B

(2m+2)
n (q) yield

For ce2m+1(q, η) : (a− 1− q)A1 − qA3 = 0 ,
(32.43)[

a− (2n + 1)2
]
A2n+1 − q

(
A2n+3 + A2n−1

)
= 0 , n ≥ 1,

For se2m+1(q, η) : (b− 1 + q)B1 − qB3 = 0 ,
(32.44)[

b− (2n + 1)2
]
B2n+1 − q

(
B2n+3 + B2n−1

)
= 0 , n ≥ 1,

For se2m+2(q, η) : (b− 4)B2 − qB4 = 0 ,
(32.45)

(b− 4n2)B2n − q
(
B2n+2 + B2n−2

)
= 0 , n ≥ 2.



12 CHAPTER 32. MATHIEU FUNCTIONS

EVALUATION OF CHARACTERISTIC NUMBERS

The recurrence relations for the Fourier coefficients permit the effective generation
of expressions for cem, sem, but before they can be used for this purpose we need
to have values for the characteristic numbers am and bm that enter the recurrence
formulas. One way to proceed is to work with ratios of the coefficients. Illustrating
for ce2m, we rewrite the second of Eqs. (32.42) as

(
a2m(q)− 4

)
r0 − qr2r0 − 2q = 0 , equivalent to

r0 = −q

2
1

1− 1
4

(
a2m(q)− qr2

) , (32.46)

where rn = A
(2m)
n+2 /A

(2m)
n . Notice that we wrote A

(2m)
4 /A

(2m)
0 as r2r0.

We next note that the instance of r2 in the denominator of Eq. (32.46) can be
written in terms of r4 by using the third of Eqs. (32.42). We first convert that
equation to the form

r2n−2 = − q

4n2

1

1− 1
4n2

(
a2m(q)− qr2n

) , n ≥ 2,

after which we use it for n = 2. Equation (32.46) becomes

r0 = −q

2
1

1− 1
4 a2m(q)− q2

64
1

1− 1
16

(
a2m(q)− qr4

)
.

Repeating this process indefinitely, we obtain r0 as a continued fraction:

r0 = −q

2
1

1− 1
4 a2m(q)− q2

64
1

1− 1
16

a2m(q)− q2

576
1

1− 1
36

a2m(q)− · · ·

This is an awkward notation, and it has become customary to write continued frac-
tions in a somewhat idiosyncratic more condensed form. Rewriting the above, and
shortening a2m(q) to a, the usual notation is

r0 = −
1
2q

1− 1
4a −

1
64q2

1− 1
16a −

1
576q2

1− 1
36a − · · · q2/16n2(n− 1)2

1− a/4n2 − · · · , (32.47)

where n refers to the n-th term on the right-hand side of Eq. (32.47).
Now that we have an expression for r0, we can return to the first of Eqs. (32.42)

and write

a2m(q) = qr0 = −
1
2q2

1− 1
4a −

1
64q2

1− 1
16a −

1
576q2

1− 1
36a − · · · . (32.48)

Equation (32.48) defines a2m(q) but is not in solved form. However, it is easily solved
by a successive approximation procedure, and can lead to accurate values of a2m even
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when q is large. Once a2m(q) has been computed to sufficient accuracy, we can then
return to Eqs. (32.42) to obtain values of the coefficients A

(2m)
n (q). Because Mathieu’s

ODE is homogeneous, its solutions are arbitrary as to scale and we can ordinarily
choose any constant or even q-dependent value we like for A

(2m)
0 (q).1

The analysis we have given for ce2m(q) can also be carried out (with suitable mod-
ifications) for ce2m+1(q), se2m+1(q), and se2m+2(q). The resulting continued fractions
for a2m+1(q), b2m+1(q) and b2m+2(q) can be found in AMS-55 (Additional Readings).
This and other sources also provide tabulations of the characteristic numbers for a
range of m and q. Figure 32.4 shows graphically the behavior of am and bm as a
function of q. The figure illustrates the key issues of the present discussion. We see
that at q = 0, am and bm are equal, but as q increases, am becomes larger than bm.
Because we will show that the Mathieu equation can have (for given λ and q) at most
one solution of period π or 2π these curves cannot cross, so for any q > 0 they will
satisfy

a0 < b1 < a1 < b2 < a2 · · · . (32.49)

We do not prove it, but we also see that at large q, the curves for am and bm+1

approach each other asymptotically.

Example 32.2.1. Numerical Evaluation of a2(q) for q = 10

This example shows how the value of a2 can be extracted from its implicit represen-
tation as a continued fraction. Our starting point will be a guess for a2(10), which
we can read from Fig. 32.4. Since the same continued fraction applies to all a2m, an
inappropriate starting point can lead us to a characteristic number a2m other than
a2. If we had absolutely no knowledge of the approximate value of a2m, we could
start from its value at q = 0 (namely 4m2), and increase q in small steps to ensure
that we are converging upon the desired result.

A reasonable starting point for a2(10) is 8. Using this value and keeping the first
three terms of Eq. (32.48) (thus approximating r6 as zero), we find, working backward

−qr4

16
≈ q2/576

1− a/36
=

100/576
1− 8/36

= 0.2232 ,

−qr2

4
≈ q2/64

1− a/16− 0.2232
=

100/64
1− 8/16− 0.2232

= 5.6449 ,

a = qr0 ≈ − q2/2
1− a/4− 5.6449

= − 100/2
1− 8/4− 5.6449

= 7.5246 .

Taking the average of this result and our initial estimate, (7.5246 + 8)/2 = 7.7623

1This statement is an oversimplification. For all nonzero m there are specific q values for which
A0(q) vanishes and an arbitrary value of A0(q) cannot be selected. For further discussion of this
point, see McLachlan, Additional Readings.
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Figure 32.4: am (characteristic number for cem) and bm (characteristic number of
sem).
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and repeating the process, this time keeping six terms:

−qr10

100
≈ q2/14400

1− a/144
=

100/14400
1− 7.7623/144

= 0.0073401 ,

−qr8

64
≈ q2/6400

1− a/100− 0.0073401
=

100/6400
1− 7.7623/100− 0.0073401

= 0.0170758

−qr6

36
≈ q2/2304

1− a/64− 0.0170758
=

100/2304
1− 7.7623/64− 0.0170758

= 0.0503724 ,

−qr4

16
≈ q2/576

1− a/36− 0.0503724
=

100/576
1− 7.7623/36− 0.0503724

= 0.2365248 ,

−qr2

4
≈ q2/64

1− a/16− 0.2365248
=

100/64
1− 7.7623/16− 0.2365248

= 5.6138104 ,

a = qr0 ≈ − q2/2
1− a/4− 5.6138104

= − 100/2
1− 7.7623/4− 5.6138104

= 7.62848 .

Averaging 7.7623 and 7.6285, we get 7.6954, and two more iterations bring us to
7.7124 as the average of the last input and output. These numbers are converging
toward the accurate value of a2(10), which is 7.7174.

¥

Example 32.2.2. Computation of Coefficients

Here we illustrate the use of the recurrence formulas, Eqs. (32.42)–(32.45) for com-
putation of the coefficients in the Fourier series for the Mathieu functions. For this
purpose we compute the first few coefficients for ce2(q, η) for q = 10, the same param-
eter values that were studied in Example 32.2.1. From that example (or elsewhere)
we need as input the value of the charateristic number a2(10); we use the accurate
value a = 7.7174.

In principle one could choose an arbitrary value (such as unity) for the initial
coefficient A

(2)
0 (hereinafter abbreviated to A0), after which Eqs. (32.42) could be

used to obtain successively A2, A4, etc. This procedure works fine for a few steps,
but on continuing further extremely severe differencing errors are encountered. That
is to be expected, as the A2n should approach zero as n increases because the Fourier
series for ce2 is convergent. In the present example, we take A0 = 1, then (doing the
arithmetic to five significant figures) we find

A2 =
aA0

q
=

(7.7174)(1)
10

= 0.77174 ,

A4 =
(a− 4)A2

q
− 2A0 =

(3.7174)(0.77174)
10

− 2(1) = −1.7131 ,

A6 =
(a− 16)A4

q
−A2 =

(−8.2826)(−1.7131)
10

− 0.77174 = 0.64716 .
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Continuing, the next few coefficients are A8 = −0.1173, A10 = 0.013, A12 = −0.003,
A14 = 0.03, and differencing errors make all further coefficients completely meaning-
less.

An alternate approach is to use the ratios r2n which were found useful in com-
puting the characteristic numbers. From the procedure outlined in Example 32.2.1
(but using data more accurate that were given in that example) we can get values of
the rn, from which, starting with A0 = 1, we can form A2 = r0A0, A4 = r2A2, etc.
Doing the arithmetic to five significant figures, we get the numeric values

A2 = 0.77174, A4 = −1.7131, A6 = 0.64717, A8 = −0.11726,

A10 = 0.01281, A12 = −0.00094, A14 = 0.00005, · · · .

We are now basically running the recursion sequence in descending order, starting
from a coefficient A2N which is assumed negligible. In the present illustrative case, it
would be difficult to get all the coefficients needed to give ce2 to five-digit accuracy
by a straightforward upward recursion.

¥

MODIFIED MATHIEU FUNCTIONS

Upon replacing the angular elliptic variable η by iξ, the Mathieu ODE, Eq. (32.18),
becomes the modified Mathieu equation, Eq. (32.19). and is the ODE for the radial
variable ξ is problems like the elliptical drum. For this reason the modified Mathieu
ODE is sometimes referred to as the radial Mathieu equation.

The replacement η → iξ motivates the definitions of modified Mathieu functions
as

Cen(q; ξ) = cen(q; iξ), n = 0, 1, . . . ,

Sen(q; ξ) = −isen(q; iξ), n = 1, 2, . . . .

The factor −i in the second of these equations causes Se to be real. Because these
functions have Maclaurin expansions, they correspond to the regular solutions of the
modified Mathieu ODE. It can be shown that they are no longer periodic but remain
oscillatory. Notice that Cen is computed using the value λ = an(q) that was needed
to make cen periodic. In other words, λ is found by considering the η equation, not
the ξ equation. Corresponding remarks apply to Sen.

In physical problems involving elliptical coordinates, the radial Mathieu ODE,
Eq. (32.19), plays a role corresponding to Bessel’s ODE in circular cylindrical ge-
ometry. Because there are four families of independent Bessel functions, namely the
regular solutions Jn and irregular Neumann functions Yn, along with the modified
Bessel functions In and Kn, we expect four kinds of modified Mathieu functions to be
relevant for describing ξ dependence. For q > 0 (the usual equation), many authors
label the regular (or first-kind) solutions

Jen(q; ξ) = Cen(q; ξ), Jon(q; ξ) = Sen(q; ξ) .

The irregular or second-kind solutions have been denoted2

Nen(q; ξ), Non(q; ξ).
2Here “N” stands for Neumann; this naming convention corresponds to an older notation for

Bessel functions which uses N where most authors now use Y , and no consensus has yet emerged as
to the preferred notation for these Mathieu functions.
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Figure 32.5: Modified Mathieu functions, q = 1 (solid line), q = 2 (dashed line), q = 3
(dotted line). [From Gutiérrez-Vega et al., Am. J. Phys. 71: 233 (2003).]

All the above functions are oscillatory; some of them are plotted in Fig. 32.5.
The replacement of η by iξ makes the expansions given for cen and sen completely

unsatisfactory, and alternate formulations are essential. We give, without proof, the
following expansions of Cem and Sem in terms of Bessel functions (see AMS-55,
Additional Readings). These formulas are at arbitrary scale. That reference also
gives additional expansions that may for some parameter values be more rapidly
convergent.

Ce2m(q; ξ) =
∞∑

k=0

A2kJ2k(2
√

q sinh ξ) , (32.50)

Ce2m+1(q; ξ) =
∞∑

k=0

(−1)k+1A2k+1J2k+1(2
√

q cosh ξ) , (32.51)

Se2m+1(q; ξ) =
∞∑

k=0

B2k+1J2k+1(2
√

q sinh ξ) , (32.52)

Se2m+2(q; ξ) = tanh ξ
∞∑

k=1

(−1)k2kB2kJ2k(2
√

q cosh ξ) . (32.53)
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In the above equations the coefficients Ap are abbreviations for Ar
p(q), where r is the

subscript appearing on the equation’s left-hand side; the notations Bp are similar
abbreviations.

FUNCTIONS WITH q < 0

For problems involving oscillations, the parameter q in the Mathieu ODE will be
positive, since it is proportional to the square of an oscillation frequency. Compare
Eq. (32.17). However, there are some problems in which negative values of q are
encountered. For the (unmodified) Mathieu equation, a change in the sign of q
corresponds to the replacement of η by 1

2π − η. Applying this replacement to the
Fourier series expansion corresponding to ce2m, and defining the result as shown
below, we find

ce2m(−q; η) = (−1)mce2m(q; 1
2π − η) = (−1)m

∞∑
n=0

(−1)nA2m
2n (q) cos 2nη . (32.54)

The factor (−1)n appears because

cos 2n( 1
2π − η) = cos(nπ − 2nη) = cos nπ cos 2nη = (−1)n cos 2nη .

The factor (−1)m is included in the definition to cause ce2m(−q) to have the same
sign as ce2m(+q) in the limit q → 0. Noticing that the recurrence relations for A2n

remain unchanged if we replace q by −q and A2n by (−1)nA2n, we see that the value
of a2m obtained from the equations will remain unchanged, meaning that

a2m(q) = a2m(−q) . (32.55)

Thus the expansion of a2m in powers of q will contain only even powers.
An analysis similar to that leading to Eq. (32.54) shows that se2m+2(−q; η) can

be defined consistently as (−1)mse2m+2(q; 1
2π − η), and

se2m+2(−q; η) = (−1)m
∞∑

n=0

(−1)nB2m+2
2n+2 (q) sin(2n + 2)η . (32.56)

Moreover,
b2m+2(−q) = b2m+2(q) . (32.57)

For ce2m+1 the situation is different. The substitution η → 1
2π − η now changes

the cosine into the sine, and a consistent definition of ce2m+1 is obtained from
(−1)mse2m+1(q, 1

2π − η):

ce2m+1(−q; η) = (−1)m
∞∑

n=0

(−1)nB2m+1
2n+1 (q) cos(2n + 1)η . (32.58)

The recurrence formula for se2m+1 is invariant under the substitutions q → −q and
B2n+1 → (−1)nB2n+1, so the characteristic number associated with ce2m+1(−q; η) is
b2m+1(q), or

a2m+1(−q) = b2m+1(q) . (32.59)

A corresponding definition for se2m+1 yields

se2m+1(−q; η) = (−1)m
∞∑

n=0

(−1)nA2m+1
2n+1 (q) sin(2n + 1)η . (32.60)
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The characteristic number b2m+1(−q) is given by Eq. (32.59) with q → −q.
For q < 0 (the elliptical analog of the modified Bessel equation), the solutions of

the radial Mathieu ODE are denoted by

Ien(ξ, q), Ion(ξ, q), regular or first kind,

Ken(ξ, q), Kon(ξ, q), irregular or second kind.

These functions, like the corresponding Bessel functions, are nonoscillatory and are
known as the evanescent modified Mathieu functions.

Exercises

32.2.1. Show that after setting α2 = 0 the particular integral of Eq. (32.32) is that
given in Eq. (32.33).

32.2.2. Obtain the terms through q2 in the expansion in powers of q of ce0(q; η), the
solution to Mathieu’s PDE that for q = 0 is a constant. Obtain also the terms
through q2 in the expansion of the characteristic number a0(q).

32.2.3. Since the eigenvalues an(q) and bn(q) cannot cross, their relative ordering can
be determined by comparing them at any convenient q value. Show that for
small nonzero q (and therefore for all q > 0) an > bn.

32.2.4. Using the procedure of Example 32.2.1, obtain a value of a3(q) for q = 8 that
is accurate to three decimal places.
Hint. Use Fig. 32.4 as a guide toward selection of an initial guess.

32.2.5. Using the more accurate of the two approaches for determining coefficients that
were described in Example 32.2.2, obtain the first several terms of the expansion
of ce3(q, η) for q = 8 at a scale such that A1 = 1.

32.2.6. Write the first few terms of the expansion in powers of q of the modified Mathieu
function Ce1(q; ξ).

Hint. Do not derive it by a process similar to that for ce1 because its definition
has nothing to do with periodicity.

32.3 PERIODICITY OF SOLUTIONS

There is a significant body of theory regarding the solutions of ODEs that are periodic
in form, as is the Mathieu equation. The key result in this area is a theorem by
Floquet. The present section considers the conditions needed in order that solutions
to such an ODE be periodic. We have already found solutions, cem and sem, that are
periodic, but with different characteristic numbers λ (called am and bm). Because
am 6= bm, cem and sem are solutions to different Mathieu equations. That raises the
question “Where is the second solution for the parameter values leading to cem (or
sem), and what are its properties?”
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NONPERIODICITY OF SECOND SOLUTION

We now show that if ce2m is a solution of the Mathieu ODE with given values of q
and a2m (here abbreviated to a), the second solution is nonperiodic.3 Since ce2m is
an even function with period π, the second solution, if also periodic, can be chosen
to be an odd function of η and have an expansion of the form

y(η) =
∞∑

n=0

C2n+2 sin(2n + 2)η . (32.61)

The coefficients Cn in the expansion of y must satisfy the recurrence relations for a
solution of its type, namely Eqs. (32.45), while the periodic solution ce2m has an ex-
pansion whose coefficients A

(2m)
2n (q) (here abbreviated A2n) must satisfy Eqs. (32.42).

In particular,

(a− 4)A2 − q(A4 + 2A0) = 0 ,

(a− 4)C2 − qC4 = 0 .

Multiplying the first of these equations by C2, the second by A2, and subtracting, we
get (assuming q 6= 0)

A2C4 −A4C2 =

∣∣∣∣∣
A2 A4

C2 C4

∣∣∣∣∣ = 2A0C2 . (32.62)

For n ≥ 2, from the recurrence relations

(a− 4n2)A2n = q(A2n+2 + A2n−2) ,

(a− 4n2)C2n = q(C2n+2 + C2n−2) ,

division of the first by the second leads to a result that can be written
∣∣∣∣∣

A2n A2n+2

C2n C2n+2

∣∣∣∣∣ =

∣∣∣∣∣
A2n−2 A2n

C2n−2 C2n

∣∣∣∣∣ . (32.63)

Since Eq. (32.63) must be satisfied for all n ≥ 2, we can combine it with Eq. (32.62)
to reach ∣∣∣∣∣

A2N A2N+2

C2N C2N+2

∣∣∣∣∣ = 2A0C2 ,

where N can be as large as desired, and in particular can be chosen large enough that
A2N and A2N+2 approach zero (which they must do because the Fourier expansion
of ce2m converges). Since A0 does not vanish, we conclude that C2 = 0, and the
recurrence relations show that all the other C2n then vanish. There is thus no second
solution of the form given in Eq. (32.61), and the second solution (which must exist)
will be nonperiodic. A similar analysis can be carried out to show that if our Mathieu
equation has periodic solution ce2m+1 or sem, the corresponding second solution will
be nonperiodic.

3This analysis is that of McLachlan, Additional Readings.
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FLOQUET’S THEOREM

Floquet’s theorem derives from the observation that an arbitrary solution Φ(η) of a
linear homogeneous second-order ODE can at most be a linear combination of two
linearly independent solutions Φ1(η) and Φ2(η), as in

Φ(η) = c1Φ1(η) + c2Φ2(η) . (32.64)

Because the Mathieu ODE has exactly the same form at η + π as it has at η, the
solution Φ(η + π) must be a linear combination of Φ1(η) and Φ2(η). Notice that
we are not arguing that Φ(η + π) = Φ(η); there is no inherent requirement that all
solutions of the ODE have periodicity. We are only claiming that Φ(η + π) must be
a solution to the same ODE as Φ(η) and therefore must be of the form

Φ(η + π) = h1Φ1(η) + h2Φ2(η) . (32.65)

But it is also true that

Φ1(η + π) = a1Φ1(η) + a2Φ2(η) ,
(32.66)

Φ2(η + π) = b1Φ1(η) + b2Φ2(η) ,

and, from Eq. (32.64) evaluated for η + π,

Φ(η + π) = c1Φ1(η + π) + c2Φ2(η + π) . (32.67)

Combining Eqs. (32.66) and (32.67), we have

Φ(η + π) = (a1c1 + b1c2)Φ1(η) + (a2c1 + b2c2)Φ2 . (32.68)

From Eqs. (32.65) and (32.68), it is obvious that

a1c1 + b1c2 = h1 ,
(32.69)

a2c1 + b2c2 = h2 .

Floquet’s analysis now proceeds by observing that we can choose c1 and c2 in
such a way that h1 = µc1 and h2 = µc2, with the result that Φ(η +π) = µΦ(η). This
choice amounts to requiring c1 and c2 to be obtained from a solution of the eigenvalue
problem

{
a1c1 + b1c2 = µc1

a2c1 + b2c2 = µc2

}
or

(
a1 b1

a2 b2

) (
c1

c2

)
= µ

(
c1

c2

)
. (32.70)

Summarizing, Floquet’s theorem states that we can choose Φ so that it satisfies
the condition Φ(η + π) = µΦ(η), with µ a root of

∣∣∣∣∣
a1 − µ b1

a2 b2 − µ

∣∣∣∣∣ = 0 (32.71)

and with the ci given as an eigenvector of Eqs. (32.70) corresponding to µ. A solution
to Mathieu’s ODE in the form given by Floquet’s theorem is sometimes called a
Floquet solution, and its qualitative behavior is associated with the eigenvalue µ.
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Note that a Floquet solution will only be periodic for special values of µ; a necessary
condition for periodicity is that |µ| = 1.

To gain more understanding of the Floquet solutions, let’s assume that Φ is a
solution corresponding to µ and define quantities ν and y such that µ = exp(iνπ)
and y(η) = exp(−iνη)Φ(η), meaning also that Φ(η + π) = exp(iνπ)Φ(η). These
definitions have the effect that

y(η +π) = e−iν(η+π)Φ(η +π) = e−iνη
[
e−iνπΦ(η +π)

]
= e−iνηΦ(η) = y(η) , (32.72)

showing that y(η) is a periodic function of η with period π. Moreover,

Φ(η) = eiνηy(η) , (32.73)

showing that a Floquet solution Φ(η) consists of a periodic function of η multiplied by
a complex exponential in η. The quantity ν which controls the exponential behavior
is referred to as the characteristic exponent of Φ.

Our present interest is in identifying periodic solutions to the Mathieu equation.
We can distinguish various cases dependent upon the characteristic exponent ν. If
Im ν > 0, our Floquet solution will asymptotically approach zero as η is increased,
while if Im ν < 0, it will grow as η increases. Only if ν is real will Φ remain at the
same magnitude through successive cycles of length π. Since Φ contains the factor y
that is periodic with period π, Φ will be periodic with period

(a) π if ν = 0, 2 · · · (corresponding to µ = 1)
(b) 2π if ν = 1, 3, · · · , (corresponding to µ = −1), or
(c) sπ if ν = 2r/s, where r and s > 2 are integers with no common divisor.

For the Mathieu equation, take now Φ1 to be an even function of η, scaled such
that Φ1(0) = 1 and Φ′1(0) = 0. Choose Φ2 to be odd and scaled such that Φ2(0) = 0
and Φ′2(0) = 1. Then, from Eqs. (32.66) evaluated for η = 0, we have

Φ1(π) = a1 , Φ2(π) = b1 ,

From the derivatives of Eqs. (32.66) we also have

Φ′1(π) = a2 , Φ′2 = b2 .

Our eigenvalue equation, Eq. (32.71), then becomes
∣∣∣∣∣

Φ1(π)− µ Φ2(π)

Φ′1(π) Φ′2(π)− µ

∣∣∣∣∣ = µ2 − [Φ1(π) + Φ′2(π)] µ + W = 0 , (32.74)

where
W = Φ1(π)Φ′2(π)− Φ2(π)Φ′1(π) , (32.75)

the Wronskian of the Φi, evaluated at η = π. But the Wronskian of the Mathieu
ODE is a constant, see Eq. (7.62), and we can therefore evaluate W at η = 0, where
clearly W = 1.

From the properties of quadratic equations, we now identify W as the product of
the two roots, so we have

µ1 µ2 = 1 . (32.76)

We can now enumerate the various possibilities for the µi. If |µ1| < 1, then |µ2| > 1
and vice versa. In these cases neither solution is periodic. If |µ1| = |µ2| = 1, we
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write the roots in the form eiνiπ and see that Eq. (32.76) is only satisfied if ν2 = −ν1,
meaning that µ2 = µ∗1. Thus, we can have solution(s) of period π if µ = 1, solution(s)
of period 2π if µ = −1, and solution(s) of period sπ (s > 2) if the νi are rational
fractions. In the cases µ = 1 and µ = −1 we will have a double root (µ1 = µ2); if the
µi are complex, we will have distinct roots.

How many periodic solutions will we get? If the µi are distinct, we will get
two periodic solutions, as there must be at least one eigenvector (i.e., periodic ODE
solution) for each distinct eigenvalue. This means that periodic solutions of period
sπ, s > 2, must come in pairs. But if the µi are degenerate, corresponding to
periodicity π or 2π, we will only get two eigenvectors (ODE solutions) if the matrix
in Eq. (32.70) is not defective.4 While defectiveness may seem to be a far-fetched or
unlikely possibility, it is exactly what happens when one of the Φ, say Φ1, is periodic
with period π or 2π. For periodicity π, the coefficients b1 and b2 describing Φ2(π)
are both nonzero; our matrix from Eq. (32.70) has the form

(
1 b1

0 1

)
,

and its only eigenvector is Φ1.
For physical reasons the solutions of most importance are those with periods π

or 2π, and these are the cem and sem we analyzed in a previous section. We do not
discuss further the solutions of periods sπ with s > 2.

32.4 BOUNDARY-VALUE PROBLEMS

We are now ready to proceed to a more complete discussion of boundary value prob-
lems such as the vibrating drumhead that was already introduced in Example 32.1.1.

After separating the equation for the drum into the elliptical coordinates ξ and
η, we note the existence of an infinite number of solutions that satisfy the boundary
conditions, each describing a particular mode of vibration of the drumhead. The
angular solution will be a Mathieu function that must be periodic in η, with period
2π; Mathieu functions with period π are acceptable solutions, as they also have 2π as
an interval of periodicity. This means the angular part of a solution will be a function
from the set cen(q; η) and sen(q; η). The radial part of the same solution must be a
function from the set Cen(q; ξ) and Sen(q, ξ), where the values of q and n must be the
same as those entering the η equation, as q and n together determine the separation
constant λ.

We have one additional condition on our choice of Mathieu functions. They must
be selected in a way that leads to continuity and differentiability across the line
segment ξ = 0. If we have chosen the ξ dependence to be Cen, the solution will
approach ξ = 0 from either side with nonzero amplitude but zero slope, and that
behavior will lead to continuity only if the η dependence is even (so the contributions
at η and −η will match). Thus a choice of Cen(q; ξ) must be accompanied by a choice
of cen(q; η). Likewise, a choice of Sen(q; ξ), causing ξ = 0 to be a nodal line which is
approached with nonzero slope, must be accompanied with sen(q; η) so the solution
will change sign and have a continuous slope as it passes through the node.

The possibiities for this problem are now clearer: we choose Cen and cen or Sen

and sen, and then vary q as needed to obtain a node in ξ at the elliptical boundary

4A subsection of Section 6.5 discusses defective matrices and their eigenvectors.
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ξ0 of our drumhead. Since Ce and Se are oscillatory (but not periodic), there will
be an infinite number of choices of q that can meet this condition. The fundamental
frequency (that with no nodes within the drumhead) will be obtained from the choice
of ce0 and Ce0, with the first zero of Ce0 at ξ = ξ0. Other low-lying frequencies will
correspond to the first few zeros of Cen or of Sen with small values of n.

The finding of the q value placing a given zero of Cen or Sen at ξ0 can in principle
be done by table look-up but is probably much easier to do on a computer. Once q
has been determined, the vibration frequency is readily obtained using Eqs. (32.17).

If we have a problem with inner and outer radial boundaries, as for example
the oscillations of a confocal annular elliptic lake (a possibility that would only seem
reasonable to a mathematician), the ODE solutions have to include the Mathieu func-
tions of the second kind. In addition, the standing wave solutions for a lake must obey
Neumann boundary conditions; that is, the normal derivatives of the water surface
vanish at each point of the boundaries. Satisfying these boundary conditions may be
complicated and will not be pursued further here. However, numerical examples and
plots, including some for traveling waves, are given by Gutiérrez-Vega et al. in the
Additional Readings.

For zeros of Mathieu functions, their asymptotic expansions, and a more complete
listing of formulas we refer to Abramowitz and Stegun (AMS-55), Jahnke and Emde,
Gutiérrez-Vega et al., and Gradshteyn and Ryzhik in the Additional Readings.

Example 32.4.1. Completion of Elliptical Drum Problem

We are now ready to complete the problem of the vibrational modes of the elliptical
drum, introduced in Example 32.1.1. We take the boundary at ξ0 = 1; for the purpose
of this illustrative example we seek only the cosine-like solutions whose η dependence
is given by ce1. There are an infinite number of solutions of this type that differ in
the number of nodes they exhibit in the ξ (radial) direction. We shall find only a few
solutions with small numbers of radial nodes.

The solutions we seek will have a spatial dependence Ce1(q; ξ)ce1(q; η), and our
present task is to find the values of q that are consistent with the boundary condition
Ce1(q; ξ0) = 0. This problem would be quite difficult in the absence of computer
support, so we assume the availability of a computer program that can calculate
values of Ce1(q; ξ). We start our solution by making plots of Ce1 to give us preliminary
information about its nodal structure. Figure 32.6 plots Ce1 for 0 ≤ ξ ≤ 1 for the q
values 4, 10, 16, and 32. The plots show that the oscillations become more rapid as q
increases, and that somewhere between q = 0 and q = 4 there will be a q value that
places the first zero of Ce1 at the boundary ξ = 1. Between q = 4 and q = 10 there
will be another value of q that places a zero of Ce1 at the boundary, but with one
node in ξ (an elliptical node) within the drumhead. Somewhere between q = 10 and
q = 16 we will again have a q value that places a zero on the boundary and yields a
solution with two interior elliptical nodes. A fourth mode of oscillation, with three
interior elliptical nodes, will occur at a q value between 16 and 32.

We can find the q values that satisfy the boundary conditions (we can call them
roots) by a successive approximation process; two reasonable approaches are suc-
cessive bisection of an interval known to contain exactly one root, or the Newton-
Raphson (NR) method, where we linearly interpolate (or extrapolate) from previously
evaluated data points. Applying the NR method, we make the initial guess q1 = 2
for the smallest root, and compute f1 =Ce1(q1; ξ0) (remember, ξ0 = 1). Our value
for f1 is negative, meaning that there is a node within the drumhead, so we try a
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Figure 32.6: Plots of Ce1(q; ξ), showing how many nodes occur for ξ < 1 for q = 4,
10, 16, and 32 (in decreasing order of their ξ = 0 intercepts on the graph). The
vertical scales are arbitrary and different for each q.

smaller value of q, namely q2 = 1.8, and compute the corresponding function value,
f2. Our data at this point consist of

q1 = 2 , f1 = −0.074678 , q2 = 1.8 , f2 = +0.006504 .

The NR interpolation gives the next trial value of q by the formula

qn+1 = qn − (qn − qn−1)fn

fn − fn−1
. (32.77)

From the data for the first two points, we get q3 = 1.816, yielding f3 = −0.000605, and
another iteration, using q2 and q3, produces q4 = 1.8146 and f4 = −0.000004. This
q value is a good approximation to that of the lowest-frequency mode of oscillation
with ce1 angular dependence.

Figure 32.6 indicates that the next ce1 mode will have a q value between 4 and
10, and the plots suggest that the root will be near the middle of that range. Trying
q1 = 7, we get f1 = +0.010539. For this root, the positive value for f1 indicates
that two nodes are within the drumhead, so the actual root is less than q1. We try
q2 = 6.8, getting f2 = +0.002326. We haven’t bracketed the root with q1 and q2, but
the NR method should still work. It leads to q3 = 6.743 and f3 = −0.00024, and on
one more iteration, we get q4 = 6.7483 and f4 = +0.000005.

If this were an actual problem of practical interest, we could now use the physical
data for the drumhead (mass, tension, and focal distance) to convert the q values
into oscillation frequencies. The relevant formula is Eq. (32.17).

¥
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ORTHOGONALITY, SAME q

Both the Mathieu ODE and the 2-D PDE from which it arose in the elliptic drum
problem are Sturm-Liouville systems, with the effect that these systems will possess
orthogonal sets of solutions which can be used for the expansion of arbitrary functions.
Consider here the functions cem(q; η). The Mathieu ODE is self-adjoint, and if we take
an interval of length 2π the periodic boundary conditions (irrespective of the parity
of m) cause the cem of different m (ansd therefore different λ) to be orthogonal,
with unit weight. Notice that the orthogonality of the cem is only established if
both the functions involved are for the same value of q; the Sturm-Liouville theory
applies to eigenvalue equations for the same differential operator, which here means
that the cem must be solutions for the same q. For a more detailed discussion of
orthogonality conditions, see Eq. (8.13) and the discussion leading to that equation.
A similar orthogonality condition applies to the functions sem, and the fact that these
functions have opposite parity guarantees that the cem are orthogonal to the sem.
These relations are summarized in the following equations:

∫ 2π

0

cemcen dη =
∫ 2π

0

semsen dη = 0 , if m 6= n;

(32.78)∫ 2π

0

cemsen dη = 0 .

Because the functions cem(q; η) and sem(q; η) are solutions to a homogeneous
ODE, they can be defined to have any scale that proves convenient. When writing
expansions in powers of q, we adopted a particular normalization by specifying that
the term independent of q in the power series be, for cem, cos mη, and for sem, sinmη.
This normalization was convenient then, but becomes less so when making expansions
in terms of these orthogonal functions, because integrals such as

∫ 2π

0

[cem(q; η)]2 dη

then have values that are dependent upon q. A more convenient normalization for
these functions is a choice that contains no q dependence. Various conventions exist;
the most common, used by Whittaker and Watson and by Hochstadt (Additional
Readings) is such that

∫ 2π

0

[cen]2 dη =
∫ 2π

0

[sen]2 dη = π, if n ≥ 1;
∫ 2π

0

[ce0]
2

dη = 2π. (32.79)

This normalization also agrees with that in AMS-55 (Additional Readings) except for
ce0; the normalization integral for that function in AMS-55 is set to π. The variety
of choices used for normalization make it incumbent to use care when combining
formulas from different sources.

If Mathieu functions are given by their Fourier series expansions at arbitrary
scale, they can be given the normalization of Eq. (32.79) by multiplying the original
coefficients by a factor N−1/2, where N is given by the appropriate member of the
following set of formulas:

N =
∞∑

n=0

[
A

(2m)
2n

]2

or
∞∑

n=0

[
A

(2m+1)
2n+1

]2

or
∞∑

n=0

[
B

(2m+1)
2n+1

]2

or
∞∑

n=0

[
B

(2m+2)
2n+2

]2

.

(32.80)
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The cen and the sen separately form complete orthogonal sets on (0, π), and each
of the four subsets ce2n, ce2n+1, se2n, and se2n+1 is complete and orthogonal on
the smaller interval (0, π/2). For example, the above definitions enable the following
expansion (for any q > 0) of a function f(η) which is periodic with period 2π:

f(η) =
1
2

a0 ce0(q; η) +
∞∑

n=1

[αn cen(q; η) + βn sen(q; η)] . (32.81)

The coefficients in Eq. (32.81) are given by

αn =
1
π

∫ 2π

0

f(η)cen(q; η) dη, n ≥ 0;

(32.82)

βn =
1
π

∫ 2π

0

f(η)sen(q; η) dη, n ≥ 1.

Similar expansions exist for the ranges (0, π) and (0, π/2) using various subsets of cen

and/or sen.
The solutions of the radial Mathieu equation for the same q but different λ also

exhibit orthogonality, with unit weight, on any interval for which the associated
λ values cause them to satisfy Dirichlet or Neumann boundary conditions. This
feature is usually not relevant when the radial and angular Mathieu functions are
used together because the q values of the Cem or Sem usually differ, but it does
become relevant for the 2-D orthogonality to be discussed next.

ORTHOGONALITY, 2-D FUNCTIONS

In addition to the orthogonality of the cem and sem for a given value of q, there
are orthogonality relations over the two-dimensional space of the coordinates η and
ξ. Looking back at the elliptical drum problem, Example 32.4.1, we note that its
solutions could be identified as of the form

Ze
m,n(ξ, η) = cem(qe

mn; η)Cem(qe
mn; ξ) or Zo

m,n(ξ, η) = sem(qo
mn; η)Sem(qo

mn; ξ).
(32.83)

Here e and o stand respectively for “even” and “odd”; m labels the function of η
and is equal to the number of oscillations of the angular functions, while qe

mn (qo
mn)

denotes the value of q that causes Cem (Sem) to have n interior radial nodes.
Considering now the PDE from which the separate ξ and η equations arose, we

see that it is a two-dimensional self-adjoint equation subject to boundary conditions
that make it a Sturm-Liouville system. Viewed from this perspective, the quantity
q is an eigenvalue. Moreover, λ no longer corresponds to an eigenvalue; it is merely
a separation constant which must have a value such that the η and ξ dependence
of the solutions to the PDE are consistent with the boundary conditions. Noting
also that the element of area for the scalar product is, in the elliptical coordinates,
cosh2 ξ − cos2 η, which can also be written 1

2 (cosh 2ξ − cos 2η), we see that there will
be orthogonality conditions of the type

∫ ξ0

0

dξ

∫ 2π

0

dη Ze
mn(ξ, η)Ze

rs(ξ, η)(cosh2 ξ − cos2 η) = 0 when qe
mn 6= qe

rs. (32.84)
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We need to convert this fairly general observation into specific statements in which
orthogonality is identified with the index values m,n, r, s.

Take first the case m = r. If n = s the two functions are identical and have the
same value of q. This is the normalization case and the integral of Eq. (32.84) must
be nonzero. But if n 6= s the functions will have different values of q and they will
be orthogonal in the sense of Eq. (32.84). The other case is that m 6= r. If Ze

mn and
Ze

rs have different values of q they will, in the sense of Eq. (32.84), be orthogonal.
The only remaining possibility is that m 6= r but n and s have values that cause Ze

mn

and Ze
rs to have a common value of q. But in that case we know that the λ values of

Ze
mn and Ze

rs must differ, because the equality of these λ values would indicate that
we have two different periodic solutions to the same Mathieu equation.

Continuing with the case m 6= r, n 6= s, qe
mn = qe

rs = q but λmn 6= λrs, we look
further at the integral in Eq. (32.84). Expanding the integral into

∫ ξ0

0

Cem(q; ξ)Cer(q; ξ) cosh2 ξ dξ

∫ 2π

0

cem(q; η)cer(q; η) dη

−
∫ ξ0

0

Cem(q; ξ)Cer(q; ξ) dξ

∫ 2π

0

cem(q; η)cer(q; η) cos2 η dη ,

we note that the first term vanishes because of the orthogonality (with unit weight)
of the η integral while the second term vanishes due to the orthogonality (again with
unit weight) of the ξ integral. Summarizing,

∫ ξ0

0

dξ

∫ 2π

0

dη Ze
mn(ξ, η)Ze

rs(ξ, η)(cosh2 ξ − cos2 η) = 0 unless m = r and n = s.

(32.85)
A parallel result can be obtained for the odd 2-D functions, and the even-odd sym-
metry causes all the Ze to be orthogonal to all the Zo. Thus,

∫ ξ0

0

dξ

∫ 2π

0

dη Zo
mn(ξ, η)Zo

rs(ξ, η)(cosh2 ξ − cos2 η) = 0 unless m = r and n = s,

(32.86)

∫ ξ0

0

dξ

∫ 2π

0

dη Ze
mn(ξ, η)Zo

rs(ξ, η)(cosh2 ξ − cos2 η) = 0 all m, n, r, s. (32.87)
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