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SUMMARY
Genomics and the corresponding techniques enabled researchers to sequence the entire 
human genome between 1986 and 2000, with the final draft completed in 2003 with the 
help of Celera Genomics led by Craig Venter. Throughout the many years for the Human 
Genome Project (and the unofficial human genome sequencing by Celera), other genomes 
were sequenced, including Drosophila and the mouse. Prior to the next-generation sequencing 
techniques, DNA sequencing involved constructing genome libraries using BACs and YACs, 
and then each construct was sequenced separately and compiled into the final sequence. 
New advances in sequencing technology allow sequencing of an organism’s entire genome in 
a matter of a few days relatively cheaply when compared to the multiyear, multibillion-dollar 
Human Genome Project. Having an organism’s DNA sequence is only a part of the  
challenge, however. Now, researchers are determining the function of the genes and other 
“junk” or noncoding sequences within the genomes.

Two types of projects are derived from the Human Genome Project. The first type is 
 concerned with understanding the variations among genomes. The second type associated 
DNA sequence with function (or dysfunction). These projects include the HapMap Project, 
Human Epigenome Project, and the Human Microbiome Project.

Maps of the genome help orient the sequences when compiling them. Two types of maps 
exist: genetic maps and physical maps. Genetic maps plot various points, called genetic 
markers, relative to each other within the DNA sequence. The best genetic markers are genes 
that code for specific traits, which can be monitored during breeding experiments. Genetic 
markers in the human genome are based more on physical markers since mating experi-
ments are unethical. Physical markers include restriction fragment length polymorphisms 
(RFLPs), which are easy to identify and follow throughout the generations. Naturally  
occurring tandem repeats that occur naturally within the genome, called variable number 
tandem repeats (VNTRs), are also used as physical markers. Microsatellite polymorphisms 
are similar to VNTRs, but the repeating units are not as lengthy. Additionally, single nucleo-
tide polymorphisms (SNPs), which are substitutions of single nucleotides in the DNA, are 
also used as physical markers. They can occur anywhere in the DNA, including the coding 
region, and sometimes change the coding and can have an affect on protein structure and 
function.

Physical maps are more definitive in terms of the distance between features in the DNA 
sequence and are particularly useful for large genomes because they are more numerous. 
Sequence tagged sites (STSs) are 100–500 base-pair sequences. A specific type of STS is called  
an expression sequence tag (EST) because it actually codes for mRNA. Contig maps contain 
overlapping sequences that are useful to help piece together shorter regions into large segments.

Other types of mapping help solve some of the problems associated with library clones, such 
as two DNA fragments being inserted into the same vector. Radiation hybrid mapping results 
in the formation of a human–hamster hybrid cell with fragmented DNA that can then be 
examined for STSs and ESTs. Cytogenic maps utilize stains that indicate specific banding  
patterns on chromosomes, providing a comparison of genes on a larger scale.

Many techniques exist to sequence genes or whole genomes of organisms. Chromosome 
walking begins with the identification and sequencing of an STS or RFLP. Once that sequence 
is known, overlapping clones to those regions can be identified and sequenced. Eventu-
ally, the entire region of interest is sequenced by continuously walking one direction or the 
other along the chromosome. Shotgun sequencing is a more appropriate method for whole 
genome sequence. Clones from the library are sequenced and the data is compiled and 
ordered by a computer based on the overlapping sequences. The entire 3 billion  base-pair 
human genome was sequenced using the shotgun approach. Unfortunately, because of 
highly condensed regions of the genome called heterochromatin, gaps in the sequence  
information of the human genome still exist.
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The human genome consists of about 3.2 gigabase pairs (Gbp) of only adenine, cytosine, 
guanine, and thymine in the sequence, with 20,805 protein coding genes. Some of the protein 
products from these genes share similarity to other animals, such as worms and flies. The 
total gene numbers are estimated and subject to change. The human genome sequence is also 
broken up by the presence of introns, which can be tens of thousands of base pairs in lengths. 
The interceding exons might be mistaken for separate genes. Another factor that affects the 
estimation of gene number is the presence of pseudogenes, which are duplications of genes 
and are no longer functional. Additionally, within the human genome are large noncoding 
sequences. Many of these areas are conserved when compared to the mouse genome, imply-
ing an undiscovered function. Over 10,000 conserved noncoding elements (CNEs) exist, 
with 500 regions that have 200 or more nucleotides that are perfect matches to the mouse 
genome. Some are even conserved in nonmammalian animals. Proposed  functions for these 
regions include enhancer elements for gene expression or insulator sequences. Repetitive LINE 
and SINE sequences also exist within the noncoding regions of the genome. LINE sequences 
autonomously move locations within the genome. SINE elements cannot move unless they 
have help from LINE proteins. The most common type of SINE is the Alu element.

Bioinformatics is the use of computers to handle the vast amount of data associated with 
biology, such as information regarding DNA sequences, macromolecules, and analyses of 
genome functions. Researchers are able to use multiple websites to examine the immense 
data using a more controlled and searchable method. Because of the immensity of biological 
data, computer programs use a process called data mining to search, sort, and interpret the 
data. Researchers can also search for DNA sequence similarities among different organisms 
and generate reports on the outputs. Other programs exist to help identify specific sequences 
or motifs within specific regions of the genome.

In terms of application of genomics and impact to humans, the greatest impact is in regards to 
disease identification and diagnosis. The identification of gene defects associated with a disease 
opens up the possibility of genetic testing, where an individual is tested for the presence of the 
defect even before symptoms of the disease appear. Muscular dystrophy, cystic fibrosis, and 
sickle cell anemia are just a few examples of diseases linked to a genetic defect. For other  
diseases, such as many cancers, an environmental factor influences the progression of the  
disease even when a genetic defect is present. The identification of the genetic defect might 
allow an individual to live his or her life differently in the hopes of preventing the disease.

Mutations are changes that occur in the sequence of DNA. Some mutations can be  inherited 
if they occurred in the cells that give rise to gametes. Mutations can be classified as base 
substitutions, which, as the name applies, means that a single base in the DNA has been 
changed. If the base substitutions alters the code at that particular position and the amino 
acid is changed, this is called a missense mutation. In some cases, the amino acid is changed 
to an amino acid that has the same property, which is called a conservative substitution. In 
other cases, the change results in an amino acid with a different property that drastically 
changes the structure and function of the protein. A nonsense mutation results when the 
amino acid sequence is changed to a stop codon, which prematurely ends the polypeptide 
at that position. In addition to base substitutions, insertions or deletions may occur. Larger 
mutations also exist. Inversions cause large pieces of the chromosome to turn around and 
reinsert in the opposite direction. Large pieces of DNA can also be cut out and reinserted 
into other locations, sometimes on another chromosome. This is called translocation. 
 Duplications are large pieces of DNA that get copied and moved to another location.  
Recombination hot spots account for much of the genetic variation in the human genome. 
Haplotype blocks, or hapblocks, are passed from parents to offspring and are defined regions 
that are linked as a group or block.

Molecular phylogenetics is the study of evolutionary relationships through comparisons in 
DNA or protein sequences. Essential genes or proteins often do not have as many changes 
within them in contrast to nonessential genes or proteins. Comparing the sequences from 
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two or more species for a given gene or protein generates an alignment of the sequences 
where gaps or differences can be observed. This alignment data can then be used to build 
phylogenetic trees that help determine relatedness of the individuals. The fewer the changes, 
the closer the organisms are related to each other.

Pharmacology has also evolved rapidly from the study of the human genome. 
 Pharmacogenetics attempts to identify and link genes to a certain drug response to reduce 
the numbers of adverse drug reactions. Populations of individuals that do not respond to 
a drug as predicted could be genetically screened to identify any sequences, particularly in 
SNPs, that could account for the differences in drug metabolism. For example, an asthma 
patient’s response to albuterol, a drug used to treat asthma, is partially dictated by the  
presence or absence of mutations in a gene that encodes a receptor affected by the albuterol.

Whether or not a gene is in fact transcribed into mRNA can be investigated at a global  
level using a DNA microarray (DNA chip) with representations of each gene in the genome 
printed onto it. The sequences on the chip act as the probe and hybridize with complementary 
sequences present in the sample. To examine gene expression, scientists extract total RNA from 
the cells grown under specific conditions and label it with fluorescent dyes. Fluorescence is 
monitored and compared with control experiments to indicate which RNA molecules are 

present at specific times and under the tested conditions. The results give an enormous 
amount of data from a global perspective.

There are actually two different types of DNA microarrays. The cDNA microarrays contain 
larger fragments than the oligonucleotide microarrays. Additionally, cDNA microarrays 
require the DNA fragments to be produced separately, purified, and then attached to the 
chip. On the other hand, the DNA is chemically synthesized directly on the chip for  
oligonucleotide microarrays. The experimental sample is hybridized to the complementary 
sequences present on the chips. If secondary structures are present in those sequences bound 
to the chip, hybridization is more difficult to obtain. Oligonucleotide probes tend to have 
more problems with secondary structures. Tiling arrays are oligonucleotide microarrays that 
have smaller sequences back to back, which cover the entire genome of an organism. They 
are useful to identify binding sites for transcription factors as well as many genetic markers.

Monitoring gene expression on a global scale provides valuable information and a starting 
point from which to develop more experiments. RNA-Seq creates complementary DNA libraries 
from fragmented whole cell mRNA. The cDNA is then sequenced and the sequences aligned. 
The copy number of cDNAs for a particular gene indicates the level of gene expression. There 
are numerous advantages to using RNA-Seq over microarrays. RNA-Seq can even be used to 
compare gene expression profiles of the same cells under different conditions. In clinical  
applications, RNA-Seq can identify SNPs and post-translational editing of mRNA.

Single gene monitoring is important to determine very specific conditions for gene expression. 
Gene fusions are genetic constructs that link the regulatory region for a gene of interest to the 
coding region for a reporter gene, such as lacZ or GFP. The lacZ gene encodes β-galactosidase, 
which can be assayed in vitro to monitor expression. GFP can also be monitored by assaying 
for fluorescence, either in vivo or in vitro. Other candidate reporter genes include phoA for  
alkaline phosphatase and lux or luc for monitoring luminescence. The level of expression can 
be determined for the gene of interest by monitoring the product of the reporter gene.

Epigenetic changes are inherited changes in the DNA and chromosome structure that do not 
change the sequence of nucleotides. These changes include DNA methylation patterns and 
histone modifications. In some organisms, RNAi and prions are even inherited, although 
these are not considered true epigenetic effects unless gene expression is altered. True 
epigenetic events must be inherited, either from parents to offspring or from between cells 
within the same organism. The papBA operon of Escherichia coli is an example of epigenetics 
within a single-celled organism. In higher organisms, DNA methylation plays major roles 
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in gene regulation of development. Methylation in humans typically occurs at CpG motifs 
to turn off gene expression. Changes in methylome as humans age contribute to aging and 
acquisition of age-related diseases, such as cancer. The function of epigenetics in mammals 
is significant and is involved in genome stability, X chromosome inactivation, parental 
imprinting, and development and differentiation. Environmental factors, including the diet 
of grandparents and parents, can potentially influence gene expression in future generations. 
From an evolutionary standpoint, this can “pre-adapt” the newer generations to the current 
environmental state.



Genomics and Gene Expression

6

Initially, genomics focused on size and repetitive content of bacterial 

or viral genomes or single genes. Improvements in sequencing tech-

nologies expanded genomics to include entire chromosomes and 

eventually decoding larger genomes, including the human genome. 

Vast improvements in sequencing technologies (next-generation 

sequencing) now enable researchers to use sequencing in clinical 

diagnostics and testing and to examine biological phenomena on a 

genome-wide scale.

As stated in this review, what are the two technical prepara-

tory approaches to investigate selected genomic regions?

The first approach uses PCR with multiplex primers to couple 

high throughput of newer sequencing platforms with the individual 

single DNA products obtained in the mixture. The adapters added 

to the ends of the PCR products create a library that is ready to 

be sequenced. The second approach uses a hybrid capture system 

that probes whole-genome libraries with a mixture of highly specific 

probes. The probes are labeled, enabling a researcher to capture a 

specific probe:library complex.

Techniques to analyze sequenced genomes have also 

improved. What is GWAS? What are some applications of 

GWAS?

Genome-wide association studies (GWAS) compare allele fre-

quencies across the genomes of experimental and control groups 

to define alleles that are common markers for the disease. Thou-

sands of individuals could be screened and genotyped using single-

nucleotide polymorphisms on microarrays. GWAS are also used to 

study diseases, such as Crohn’s disease and age-related macular 

degeneration, and pharmacogenetics.

When genomes are analyzed, sequences are often lined up 

against a reference sequence. Since no two individuals in any 

population are genetically identical, what methods are utilized 

to examine variants?

Regardless of rarity, most variants can be discovered if the appro-

priate technique and analysis are employed. The human genome ref-

erence sequences lacks novel genome content across all humans. 

Single nucleotide polymorphisms (SNPs) from germline cells have 

been detected and typed using new analysis algorithms. Various 

statistical tests and strategies have been developed to examine the 

rare variations and their contribution to complex phenotypes.

What are de novo mutations? What information can be 

gleaned from identification of these types of mutations? Have 

any tools been developed that can assist in the identification of 

de novo mutations?

De novo mutations are rare mutations that arise first with an indi-

vidual. In terms of disease progression, individuals carrying de novo 

mutations likely have the disease phenotype. In addition to disease 

biology, identification of these mutation types can assist research-

ers with defining mutation rates. Multiple computational tools have 

been developed that can assist researchers with identification of de 

novo mutations. These tools generally examine pedigrees, relation-

ships, siblings, and phenotypes; sequence coverage; error rate; and 

expected rates of de novo mutations.

Studying rare Mendelian disorders has helped identify genes 

that play a role in disease biology in humans. However, the stud-

ies often fail in their attempts to search for Mendelian disease 

genes. Why?

Even though the sample sizes are sufficiently large, often the 

identified variants are deemed nonpathogenic. In addition, some dis-

ease variations are not located within conserved regions or coding 

regions and could potentially be missed due to insufficient coverage. 

Also, functional analysis of variants needs improvement. Expected 

genotypic patterns based on incorrect diagnoses or assumed inheri-

tance types could lead to errors in identifying variants associated 

with Mendelian disease genes.

How might comparing an individual’s cancer genome to a 

normal genome be beneficial? Are there any somatic variations 

that are particularly difficult to identify?

When a cancer genome is compared with an unaffected genome, 

the somatic changes that occurred during the transition period can 

be identified. Structural variants, which are highly present in cancer 

genomes, are difficult to predict and must use a different analysis 

type.

The genomic applications for next-generation sequencing 

techniques and applications are numerous. In addition to those 

listed in the preceding questions, how else might this technol-

ogy be used?

This technology and subsequent analyses could potentially 

be used as a noninvasive method for prenatal testing. Fetal DNA 

circulates in maternal blood plasma and can potentially be used 

to examine single nucleotide polymorphisms. There are still limi-

tations to this technology, including cost-prohibitive sequencing 

technologies.

The possibilities for next-generation sequencing technologies are 

immense and range from cancer biology, disease detection, muta-

tion rates, and prenatal testing applications. Some limitations of 

these technologies with regards to applications are due to such fac-

tors including cost and sequence coverage. There are also privacy 

concerns and ethical aspects to consider as we now have the abil-

ity to decode individual genomes and identify mutations  associated 

with diseases.

Case Study  the Next-Generation Sequencing Revolution and Its Impact 
on Genomics

Daniel C. Koboldt et al. (2013). Cell 155, 27–38.
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Genomics is a relatively new scientific discipline, having DNA sequencing as its core technology. As
technology has improved the cost and scale of genome characterization over sequencing’s 40-year
history, the scope of inquiry has commensurately broadened. Massively parallel sequencing has
proven revolutionary, shifting the paradigm of genomics to address biological questions at a
genome-wide scale. Sequencing now empowers clinical diagnostics and other aspects of medical
care, including disease risk, therapeutic identification, and prenatal testing. This Review explores
the current state of genomics in the massively parallel sequencing era.
Prior to the advent of next-generation sequencing (NGS) tech-

nology, genomics initially was concerned with studying

genomes that were tractable from the standpoint of size and

repetitive content (e.g., viruses and bacteria) and with character-

ization of single genes associated with disease (e.g., Cystic

Fibrosis, Huntington disease, and cancer). As the ability to

construct large clone-based physical maps improved, the subcl-

oned fragments of the genome contributing to physical map con-

struction could be sequenced as individual projects, and their

finished sequencesmelded together to represent entire chromo-

somes. Hence, important large genomes, including model or-

ganisms and the human genome, were decoded. Indeed, in

the era of NGS, the short reads obtained from most platforms

absolutely require these reference genomes as a substrate for

read alignment prior to variation discovery. The impact of these

technologies on genomic variant discovery has been profound,

as we will describe. Although we limit the scope of this Review

to genomics, an accompanying Review explores the disruptive

impact of NGS on studies of the epigenome to further highlight

the profound transformation brought on byNGS technology (Riv-

era and Ren, 2013 [this issue of Cell]).

Genomic Techniques
Although NGS technology initially was used to study whole ge-

nomes, a variety of approaches that address defined regions

of the genome have emerged. There are essentially two technical

preparatory approaches to explore selected regions of the

genomewith NGS. The first is by PCR, typically involvingmultiple

primer pairs in a mixture that are combined with genomic DNA of

interest in a multiplex approach to preserve precious DNA. The

use of multiplex primer pairs couples the high throughput of

NGS platforms and the fact that each sequence read represents

a single DNA product in the mixture due to the nature of the

sequencing platforms (Mardis, 2013). Following the PCR, the re-

sulting fragments have platform-specific adapters ligated to their

ends to form a library that is suitable for sequencing. The second

approach involves hybrid capture, which has been developed by
several groups and commercialized (Albert et al., 2007; Gnirke

et al., 2009; Hodges et al., 2007). Essentially, hybrid capture

takes advantage of the hybridization of DNA fragments from a

whole-genome library to complementary sequences that were

synthesized and combined into a mixture of probes designed

with high specificity for the matching regions in the genome.

These probes typically have covalently linked biotin moieties,

enabling a secondary ‘‘capture’’ by mixing the probe:library

complexes with streptavidin-coated magnetic beads. Hence,

the targeted regions of the genome can be selectively captured

from solution by applying a magnetic field, whereas most of the

remainder of the genome is washed away in the supernatant.

Subsequent denaturation releases the captured library frag-

ments from the beads into solution, ready for postcapture ampli-

fication, quantitation, and sequencing. When the probes are

designed to capture essentially all of the known coding exons

in a genome, the capture approach is referred to as ‘‘exome

sequencing.’’ Additional probes may be designed, synthesized,

and added to an exome reagent, typically referred to as ‘‘exome

plus.’’When only a subset of the exome or of the genome outside

of the exome is targeted, this is called a ‘‘targeted panel.’’

Genomic Analysis
As important as techniques to produce the NGS data that

address biological questions are, analytical approaches are

equally critical for successful interpretation of those data.

Many analytical approaches depend on the digital nature of

NGS data, a consequence of the fact that individual DNA frag-

ments of the library are amplified either on beads or on flat sur-

faces (platform specific) prior to the sequencing reaction. Hence,

each sequence read is equivalent to a single DNA fragment.

What follows are selected data analysis techniques from a

dizzying number of advances published in just the last

18 months. The pace of innovation in analytical approaches to

genome-wide data analysis continues to engage and excite

the computational biology community as the number of technical

applications continues.
Cell 155, September 26, 2013 ª2013 Elsevier Inc. 27
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Technological advances have often driven the methods for

discovering new disease genes. Early studies leveraged families

in which a diseasewas segregating to identify the genetic causes

of the phenotype. These linkage analysis studies were success-

ful for highly penetrant, monogenic diseases such as cystic

fibrosis. Standard parametric linkage studies of some complex

traits were successful, particularly when sampling from extreme

ends of the phenotypic distribution. For example, analyzing fam-

ilies segregating early onset Alzheimer’s disease led to the dis-

covery of multiple genes that contribute significantly to the

phenotype and shed light on the biological mechanisms (e.g.,

plaque formation) of disease progression (Goate et al., 1991;

Harrington et al., 1995; Pericak-Vance et al., 1991).

Yet, for many complex diseases and traits, this model was not

as successful because the genetic predispositions to complex

traits are, as their name implies, more difficult to elucidate and

require larger numbers of samples to discern signal from noise.

Theoretically, it was determined that comparing allele fre-

quencies across the genome between large numbers of cases

and controls would be able to capture common disease suscep-

tibility alleles (Risch and Merikangas, 1996), and this ushered in

the era of genome-wide association studies (GWAS). It was

economically practical to screen thousands of individuals by

genotyping hundreds of thousands of common single-nucleo-

tide polymorphisms (SNPs) on microarrays. GWAS are well

suited too and have been successful in studying population

structure (Price et al., 2010b), anthropomorphic traits (Berndt

et al., 2013), targets of natural selection such as variants associ-

ated with high-altitude adaptation (Bigham et al., 2009, 2010;

Scheinfeldt et al., 2012), and some complex diseases such as

Crohn’s disease (Yamazaki et al., 2005) and age-related macular

degeneration (Klein et al., 2005). These studies led to hundreds

of replicable associated loci that cannot be fully enumerated in

this Review. GWAS has perhaps had the most impact in the

area of pharmacogenomics, where robust, highly replicable

associations have impacted clinical actions. For example,

warfarin dose is routinely adjusted based upon VKORC1,

CYP2C9, and CYP4F2 genotypes confirmed by GWAS (Takeu-

chi et al., 2009), which has significantly improved patient out-

comes. Yet, most early GWAS yielded few variants with large

effect sizes; this was perhaps to be expected, given the hetero-

geneity of the phenotypes and sample sizes needed to statisti-

cally detect signals of association.

The exponentially decreasing cost of next-generation

sequencing data generation has put large-scale investigation

of rare variation within reach, and there has been a resultant shift

in the field of complex disease genetics over the past 5 years.

GWAS data strongly suggest that the vast majority of the herita-

bility of complex traits will not be due to a few common variants

with low to moderate effects (Schork et al., 2009). Rare variation

with large effect sizes is likely contributing a significant propor-

tion to the ‘‘missing heritability’’ of complex traits and disease

(Cohen et al., 2006; Manolio, 2009; Zhu et al., 2010). The com-

mon disease-common variant versus common disease-rare

variant debate remains unresolved. There are still questions

that remain as to whether the genetic contribution to common

traits can be attributed to an infinite number of common alleles

with small effect, a large number of rare alleles with large effects,
28 Cell 155, September 26, 2013 ª2013 Elsevier Inc.
or some combination of genes and environment (Gibson, 2011).

But the evaluation of rare variants in common disease is ongoing.

Variant Detection

The advent of NGS has enabled the inquiry of nearly every base

in the genome, and thus techniques to reliably interpret and iden-

tify millions of variants are being developed. As will be described

below, the advantage of sequencing in this regard is that most

variants, common and rare, can be discovered with the appro-

priate sequencing read coverage, algorithmic methods to iden-

tify the variants, and a sufficient careful orthogonal validation

to confirm true from false positives. The exception to this discov-

ery potential is due to the reliance on alignment to the Human

Genome Reference sequence, which is the first step to analysis

of NGS data, as this reference does not contain the entirety of

novel genome content across all humans. Numerous variant-

calling algorithms have been developed for the detection and

genotyping of germline SNPs (DePristo et al., 2011; Koboldt

et al., 2009; Li et al., 2008; McKenna et al., 2010; Shen et al.,

2010) and small indels (Emde et al., 2012; Leone et al., 2013;

Ye et al., 2009) in high-throughput sequencing data. Once de-

tected, these variants can be analyzed in case-control studies

using the same methods that have been developed for GWAS.

Rare Variation and Burden Testing

However, unlike GWAS (which examines common mutations),

sequencing facilitates the discovery of rare mutations that, com-

bined with the continuing unexplained genetic contributions to

complex phenotypes from GWAS (Manolio et al., 2009), has

sparked intense interest in measuring their association with

complex phenotypes. This interest has given rise to a variety of

statistical tests with varying strategies for detecting association

of rare variation with phenotype (Chen et al., 2013; Han and Pan,

2010; Ionita-Laza et al., 2013; Lee et al., 2012a, 2012b; Li and

Leal, 2008; Liu and Leal, 2010; Madsen and Browning, 2009;

Neale et al., 2011; Oualkacha et al., 2013; Price et al., 2010a;

Wu et al., 2011; Zhang et al., 2011). In any single gene, there

are a large number of rare variants due to recent human popula-

tion growth (Coventry et al., 2010; Nelson et al., 2012; Tennessen

et al., 2012), and there may be many nonassociated variants in a

gene. Furthermore, even in large cohorts, there may not be

enough individuals with a given variant to achieve statistical sig-

nificance.

To deal with the aforementioned challenge, all of these types

of tests share the common feature that they group or collapse

rare variation, usually by gene, in order to increase statistical

power (see Wu et al., 2013 for a recent review). Early tests

(such as the cohort allelic sums test [Morgenthaler and Thilly,

2007] and the combined multivariate collapsing method [Li and

Leal, 2008]) assumed that each variant had the same direction

of effect and, in addition, required a fixed minor allele frequency

cutoff to define which variants to include; but these assumptions

are not always valid or optimal. Further innovations have allowed

for weighting of individual variants (for example, by variant fre-

quency in the weighted sum statistic [Madsen and Browning,

2009] or the data [Han and Pan, 2010; Lin and Tang, 2011; Wu

et al., 2011; Zhang et al., 2011]), variants with heterogeneous di-

rection of effect (Han and Pan, 2010; Lin and Tang, 2011; Neale

et al., 2011; Wu et al., 2011; Zhang et al., 2011), and selection of

the ideal frequency cutoff for rare variants (Price et al., 2010a).



Though this remains an active area of research, the SKAT family

of tests (Chen et al., 2013; Ionita-Laza et al., 2013; Lee et al.,

2012a, 2012b; Oualkacha et al., 2013; Wu et al., 2011) has

emerged as one of the most popular. SKAT and its variants allow

for inclusion of covariates for managing both case-control and

quantitative data and family or unrelated data, and they are

computationally undemanding. Although the initial version of

SKAT lost power in cases in which all variants in a gene have

the same direction of effect, the newer SKAT-O (Lee et al.,

2012a) test combines a test handling bidirectional effects and

a test handling unidirectional effects to achieve excellent power

in either case.

Identifying De Novo Mutations

The rarest of variants are de novo mutations: those variants that

arise first in an individual. They have tremendous relevance for

disease biology, as they aremore likely to have functional conse-

quences in rare diseases. Characterizing these mutations also

allows for the estimation of the baseline human mutation rate

as well as its correlation to parental age (Abecasis et al., 2010;

Kong et al., 2012). An entire class of computational tools has

arisen that utilize both sequencing data and pedigree information

to identify de novo mutations genome wide. Most of these tools

currently deal with trios (mother, father, and child) only and can

identify de novo variants arising in the children (Cartwright

et al., 2012; http://sourceforge.net/p/denovogear/wiki/Home/;

Li et al., 2012; Li, 2011). Because sequencing reads have a

higher error rate than traditional genotyping, these tools incorpo-

rate information about coverage, the sequencing error rate, the

expected de novo mutation rate, and family relationships.

Although all of these tools identify potential de novomutations,

there remain significant feature differences between them, and

no single tool has yet emerged as the frontrunner. In addition,

only Samtools, DeNovoGear (DNG), and GATK can also predict

de novo indels. Both DNG and Polymutt can handle larger ped-

igrees, with DNG able to handle multiple siblings and Polymutt

able to handle arbitrarily large pedigrees.

Studying Rare Mendelian Disorders

Rare monogenic disorders have provided unique opportunities

to identify disease genes in humans. Traditionally, such disor-

ders were studied by positional cloning or candidate gene ap-

proaches. Determining their molecular basis, however, was

often hindered by small kindred sizes, genetic heterogeneity,

and diagnostic classifications that may not reflect molecular

pathogenesis. However, high-throughput sequencing of the full

set of protein-coding genes—the exome—helps to overcome

these obstacles by screening thousands of genes in a single

experiment. Although this limits the types of mutations that can

be discovered, rare coding variants that are predicted to have

significant functional consequences can be discovered (Bam-

shad et al., 2011). In fact, it is estimated that, in �60% of pro-

jects, exome sequencing will identify new Mendelian disease

genes (Gilissen et al., 2012), and it is likely this approach also

will contribute to complex disease genetics. Hence, the exome

represents an enriched target space to identify rare variants

with large effect sizes, as opposed to GWAS, wherein variants

have low effect sizes.

The analytical approach applied to most exome sequencing

studies of rare disorders is relatively straightforward. First, ge-
netic variants shared by affected individuals (or segregating

with a phenotype, in family studies) are collected. Hundreds or

thousands of variantsmight be in this initial set. These are filtered

using information from public databases (e.g., dbSNP [Sherry

et al., 2001]) to remove common polymorphisms, based on the

expectation that causal mutations will be extremely rare in

human populations. Next, annotation with gene structure infor-

mation and bioinformatics programs (e.g., SIFT, Polyphen,

CONDEL) further restricts the list of candidates to those most

likely to affect an encoded protein. Ideally, these sequential

filtering steps reduce the list to a handful of candidate causal

variants, which can be further evaluated with mutation screening

(in other family members or unrelated, affected individuals),

pathway analysis, and functional validation.

Somatic Variant Detection

The comparison of an individual’s cancer genome to the normal

genome (derived from an unaffected tissue DNA) provides a

comprehensive description of the somatic changes that have

occurred in the transition from normal to cancerous cells. WGS

approaches to somatic variant detection are more challenging

due to the size of the data and the numerous types of variants

that can be discovered by different algorithmic predictors, rela-

tive to exome sequencing. However, structural variants, which

are most difficult to predict accurately and with a reasonable

false positive rate, occur frequently in cancer genomes and

only can be discovered fromWGSdata.With an increasing focus

on characterizing cancer heterogeneity, discussed below, the

ability of somatic variant detection algorithms to predict low-fre-

quency single-nucleotide variants (SNVs) in cancer cell popula-

tions is becoming critically important. There are several new

algorithms with this capability, including Strelka (Saunders

et al., 2012), VarScan 2 (Koboldt et al., 2012), andMuTect (Cibul-

skis et al., 2013). Strelka implements a Bayesian approach that

treats the tumor and normal allele frequencies as continuous var-

iables. In particular, the normal sample is represented as a

mixture of diploid germline variation with noise, and the tumor

samples are represented as a mixture of the normal sample

with somatic variation. This approach is meant to provide robust

call sensitivity on low-purity samples and, as such, provides the

same robust sensitivity for low-level variants. Accuracy around

indel detection is achieved by Strelka by jointly performing indel

search and read realignment in the context of both samples. Var-

Scan 2 is a somatic variation version of the original VarScan al-

gorithm that applies heuristic methods and a statistical test to

detect SNVs and indels and their somatic status by simulta-

neously analyzing the tumor and normal data. In addition,

VarScan 2 can identify both LOH and somatic copy number

alterations as deviations from the log ratio of sequence coverage

depth within the pair that are quantified statistically. MuTect

takes input data from matched tumor and normal DNA align-

ments and removes low-quality sequence data. Variant detec-

tion is performed in the tumor data by a Bayesian classifier, filters

to remove false positives due to sequencing artifacts that are not

captured by the prior error-model-based filters, and designates

variants as somatic or germline using a second Bayesian classi-

fier. The step to remove rare sources of false positives uses a

panel of normal samples filter that represents rare error modes

only detectable from the comparison to additional samples.
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Table 1. OMIM Phenotypes for which the Molecular Basis Is

Known, 2007 and 2013

Inheritance Pattern January 2007 July 2013

Autosomal 1,851 3,525

X Linked 169 277

Y Linked 2 4

Mitochondrial 26 28

Total 2,048 3,834
Exciting Biological Insights from Recent Studies
Rare Inherited Disorders

Although next-generation sequencing has impacted the human

genetics field as a whole, few areas have benefited more than

the study of rare genetic diseases. Some of the earliest applica-

tions of NGS toMendelian disorders (Table 1) demonstrated that

it was possible to identify disease-causing genes by sequencing

the exomes of a few unrelated individuals (Gilissen et al., 2010;

Hoischen et al., 2010; Lalonde et al., 2010; Ng et al., 2010a,

2010b) or affected family members (Bilgüvar et al., 2010; Bolze

et al., 2010; Johnson et al., 2010; Krawitz et al., 2010; Musunuru

et al., 2010; Walsh et al., 2010; Wang et al., 2010). Even the

exome sequence of a single index case proved sufficient for

genetic diagnosis for some disorders when information about

the molecular underpinnings of the disease was known. For

example, prioritization of mitochondrial proteins helped to iden-

tify ACAD9 in a case with complex I deficiency (Haack et al.,

2010), whereas prior evidence linking STIM1 to recessive immu-

nodeficiency helped to implicate this gene in a pediatric case

with classic Kaposi sarcoma associated with human herpesvirus

8 infection (Byun et al., 2010).

The impact of NGS technologies on rare genetic diseases is

further evidenced by the growth of the Online Mendelian Inheri-

tance in Man (OMIM) database (McKusick, 2007), in which the

number of inherited phenotypes for which the molecular basis

is known has nearly doubled since 2007 (Table 2). The number

of genes associated with rare diseases, too, has grown at an

impressive rate. Yet for many disorders, elucidation of the ge-

netic basis has outstripped an understanding of the molecular

and pathological mechanisms of disease. More work will be

required to determine the precise relationship between genotype

and phenotype.

Lessons from Mendelian Disease Studies

Although NGS offers a powerful strategy to search for Mendelian

disease genes, it is important to realize that many such studies

fail despite sufficient numbers of samples. One failure occurs

when the causal variant is found but is deemed nonpathogenic.

While the majority of known disease-causing mutations affect

highly conserved protein residues, other pathogenic mecha-

nisms—such as synonymous changes of rare codons that affect

the rate of cotranslational folding (Kimchi-Sarfaty et al., 2007)—

may be responsible but not ascribed importance. This empha-

sizes the need for better functional assays of discovered vari-

ants.

It is also possible to miss a causal variant. Even with NGS and

hybrid capture, �5% of target coding bases do not achieve suf-

ficient coverage for reliable variant detection. Furthermore, with
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adequate coverage, certain types of mutations (e.g., inversions,

duplications, and other structural variants) remain challenging to

detect. Causal mutations also may reside outside of the regions

targeted for exome sequencing. Nearly half of familial ALS in

Finnish populations, for example, is caused by a hexanucleotide

repeat expansion in the intron of the C9orf72 gene (Renton et al.,

2011).

Failure also can result when one of the underlying assumptions

was incorrect. Genetic and phenotypic heterogeneity can hinder

correct diagnosis of cases, or the assumed mode of inheritance

(and therefore expected genotype pattern) could be incorrect. In

retinitis pigmentosa (RP), for example, around 8.5% of families

provisionally diagnosed with autosomal dominant disease truly

have X-linked RP (Churchill et al., 2013).

In addition, the reliance on public databases such as dbSNP

may confound some analyses of NGS data. The number of

known variants in the human genome has risen dramatically

over the past decade (Figure 1), fueled in large part by the advent

of NGS technologies. Intriguingly, although the submissions

from 2007 to 2012 grew almost exponentially, the number of

unique reference variants (RefSNPs) followed a more linear

growth. Further, a comparison of the global minor allele fre-

quency (GMAF) distribution between dbSNPbuilds 135 (October

2011) and 137 (June 2012) demonstrates that most of the recent

growth came from variants that were rare (GMAF < 0.01) or

extremely rare (GMAF < 0.001) in human populations (Figure 2).

These trends suggest that the majority of common sequence

variants in humans have already been reported, and those that

remain undiscovered tend to be rare, perhaps specific to an

individual or population. This has important implications for

studies of rare genetic diseases. The ponderous size of dbSNP

certainly makes it a powerful discriminatory tool for common

variation. However, it also suggests that dbSNP filtering

approaches must be applied with caution because dbSNP

entries are associated with disease—variants from Online

OMIM (McKusick, 2007) or mutations from the Catalogue of

Somatic Mutations in Cancer (COSMIC) (Forbes et al., 2010,

2011) —and a growing number are too rare to exclude from

consideration.

Sequencing under GWAS Peaks

One way to leverage the results from GWAS and linkage studies

to identify rare variation is to perform targeted sequencing of the

regions identified under significant peaks. This strategy has been

used to identify a rare variant in a gene under a linkage peak

where common SNPs could not explain the variance in the

phenotype (Bowden et al., 2010). In this study, common poly-

morphisms in the ADIPOQ gene that are highly associated with

circulating plasma adiponectin levels in European populations

wereminimally associatedwith plasma adiponectin levels in His-

panic families; however, a rare coding mutation was identified

that contributes up to 17% of the observed variance in Hispanic

plasma adiponectin levels. Additionally, Wang et al. (2013)

sequenced exons of >1,000 genes identified fromGWAS linkage

peaks that impact human stature. Using a pooled sample strat-

egy of individuals whowere significantly shorter than the average

population but were not diagnosed with any known syndrome

affecting height or with any endocrinological deficiency, the re-

searchers identified unique rare nonsynonymous and splicing



Table 2. Disease-Causing Genes Identified by Exome Sequencing Studies, 2009–2010

Gene Disorder Individuals Citation

DHODH Miller syndrome four affected from three kindreds (Ng et al., 2010b)

FLVCR2 Fowler syndrome two unrelated (Lalonde et al., 2010)

GPSM2 Nonsyndromic hearing loss one proband (Walsh et al., 2010)

MLL2 Kabuki syndrome ten unrelated (Ng et al., 2010a)

WDR62 Severe brain malformations one proband (Bilgüvar et al., 2010)

PIGV Hyperphosphatasia mental retardation three siblings (Krawitz et al., 2010)

WDR35 Sensenbrenner syndrome two unrelated (Gilissen et al., 2010)

STIM1 Kaposi sarcoma one patient (Byun et al., 2010)

ANGPTL3 Familial combined hypolipidemia two family members (Musunuru et al., 2010)

ACAD9 Complex I deficiency one patient (Haack et al., 2010)

SETBP1 Schinzel-Giedion syndrome four unrelated (Hoischen et al., 2010)

TGM6 Spinocerebellar ataxia four family members (Wang et al., 2010)

FADD Autoimmune lymphoproliferative syndrome one proband (Bolze et al., 2010)

VCP Familial ALS two family members (Johnson et al., 2010)
mutations. In a similar study design, researchers were able to

narrow a large 288 Kbp region identified from GWAS of multiple

sclerosis to an 86.5 Kbp haplotype block containing 42 SNPs,

using targeted capture and NGS (Cortes et al., 2013).

Family Studies of Complex Disease

There has been a return to family-based experimental designs

for complex disease genetics recently, as it is expected that

many members of the same family will carry a particular rare

variant; hence, the number of individuals needed for rare variant

discovery ismuch smaller than in cohorts of unrelated individuals

(Bailey-Wilson andWilson, 2011). Using a combination of exome

and whole-genome sequencing of affected individuals in

consanguineous families, researchers can use homozygosity

mapping to identify and characterize the variants contributing

to genetically heterogeneous disorders. Nonconsanguineous,

large multigenerational, and multiplex pedigrees can also be

used to identify rare inherited variants. For example, Weedon

et al. (2011) identified a novel heterozygous mutation in

DYNC1H1, segregating in a four-generation family affected

with Charcot-Marie-Tooth disease by using whole-exome

sequencing (WES). Similarly, WES was performed on a three-

generation family with multiple individuals affected with pulmo-

nary arterial hypertension who did not carry the canonical

TGF-b mutation (Austin et al., 2012). WES revealed a frameshift

mutation in caveolin-1 (CAV1) that reduced the normal caveo-

lin-1 in the endothelial cell layer of the small arteries. In many

cases, the variants identified in these studies can also be inde-

pendently validated in other cohorts. For example, WES of a

large pedigree identified a missense mutation in the affected in-

dividuals that also segregated with other families suffering from

late-onset Parkinson disease (Vilariño-Güell et al., 2011; Zim-

prich et al., 2011), thus bolstering the significance of the associ-

ation. In some studies, WES results provide insights into the

biological pathways involved in disease susceptibility and/or

pathogenicity. For example, Timms et al. (2013) analyzed the

exomes of multiplex families with schizophrenia and identified

rare coding variants in N-methyl-D-aspartate (NMDA) receptor

genes in all of the families. Although the variants were dispersed
over many genes, this pathway was significantly enriched for

rare, deleterious mutations and suggested a possible role for

glutamate signaling in the pathogenesis of schizophrenia.

De Novo Mutation Studies

Although genomic research in the past decade has largely

emphasized inherited variation, NGS technologies also allow

us to study, at base-pair resolution, the mutational processes

that occur in humans from one generation to the next. Family-

based WGS studies have shown that each individual’s genome

harbors �74 germline de novo mutations (DNMs) (Conrad

et al., 2011). These mutations are potentially more deleterious

because they have not been subject to natural selection and

therefore are of considerable interest for sporadic diseases.

Neurological and developmental disorders in particular high-

light the impact of DNMs on disease risk. Exome sequencing

revealed rare de novo protein-altering mutations in seven of

ten individuals with idiopathic intellectual disability (ID) affecting

nine different genes (Vissers et al., 2010). Four large-scale

studies (Iossifov et al., 2012; Neale et al., 2012; O’Roak et al.,

2012; Sanders et al., 2012) evaluated the impact of DNMs in

autism spectrum disorder (ASD) via exome sequencing of family

quartets (patient, parents, and an unaffected sibling). Each study

included >100 families and found that DNM rates were consis-

tently higher in patients than in their unaffected siblings. Similar

WES approaches have implicated genes expressed in the devel-

oping heart for sporadic congenital heart disease (Zaidi et al.,

2013) and genes encoding chromatin regulators for sporadic

ALS (Chesi et al., 2013). De novo mutational paradigms have

also been suggested by exome sequencing in sporadic psychi-

atric disorders, such as schizophrenia (Girard et al., 2011; Xu

et al., 2012). These findings collectively support a role for de

novo mutational processes in sporadic disorders and highlight

the extraordinary locus heterogeneity underlying susceptibility

to complex diseases.

The application of NGS to both rare and common genetic

diseases has offered many insights into disease etiology that

undoubtedly merit deeper investigation. Taken together, these

studies have also served to highlight our incomplete
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Figure 1. Growth in the Numbers of dbSNP

Variants in the Human Genome
Increases in the numbers of SNPs submitted
(dotted line) and cataloged as unique reference
variants (solid line) in dbSNP are charted over the
periodic database releases from August 2002 until
the most recent release in June 2012. As indicated
by the two lines, while overall submissions have
increased exponentially since 2008 (when large
projects such as the 1,000 Genomes Project
began), the number of unique variants has not
increased at a comparable rate.
understanding of themolecular mechanisms by whichmutations

cause disease. Nevertheless, it seems likely that applying NGS

to uncover the genetic underpinnings of disease will help us to

better understand the complex relationship between genotype

and phenotype.

Cancer Genomics Discovery

Over the past two years, the growth in cancer genomics discov-

ery due to NGS is unprecedented, with multiple examples of

large-scale WGS- or WES-based studies published in the litera-

ture for both adult and pediatric cancer types. The growth in our

knowledge of the genes frequently mutated in cancer genomes

is illustrated in Figure 3, based on the number of new mutations

deposited in COSMIC (Forbes et al., 2010, 2011). Here, the num-

ber of unique variants identified in tumor genomes stands in

stark contrast to those in germline DNA shown in Figure 1.

Namely, in dbSNP, there is a clear saturation effect because

the majority of variants in any individual genome are shared

with other members of the population (and thus already in

dbSNP). In COSMIC, however, the number of unique variants

closely mirrors the number of mutations submitted, reflecting

the fact that most mutations in a tumor genome are private to

that tumor.

Cancer Genome Heterogeneity

For >100 years, the view of cancer cells through the pathologist’s

microscope has indicated that not all cancer cells in a tissue

block are entirely similar. Several groups, using the digital nature

of NGS data, now have proven this ‘‘heterogeneity’’ of cancer

cells at the genomic level. Initially, genomic heterogeneity was

demonstrated by copy number comparisons between primary

and metastatic disease (Campbell et al., 2010) and by whole-

genome amplification and low-coverage sequencing of ampli-

fied genomic DNA from single breast cancer cells (Navin et al.,

2011). Within the past year, published studies using either

WES or WGS have demonstrated the changes in genomic het-

erogeneity in cancers over the primary-to-relapse/metastatic

transition or have characterized heterogeneity with primary tu-

mor specimens. Specifically, these changes are determined by
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comparing the associated changes in

the percentage of tumor cells carrying

specific mutations detected by deep

coverage NGS data during disease pro-

gression. These studies evoke an evolu-

tionary aspect to cancer’s response to

survival pressures, including therapy,

and have fueled interest in better under-
standing the genomes of patients who are likely to recur in their

disease.

Early in 2012, Ding et al. described changes in heterogeneity

and subclonal architecture of primary acute myeloid leukemia

(AML) samples compared to their matched first relapse samples

for eight patients (Ding et al., 2012). Using WGS coupled with

secondary deep hybrid capture-based NGS data on variant

sites, clusters of mutations defining the genotypes of a founding

clone and derived subclones were identified. In each case stud-

ied, the primary AML sample was either mono- or multiclonal,

whereas the relapse sample was monoclonal and carried the

somatic profile of one of the primary subclones, as well as new

mutations that were acquired during chemotherapy. An analysis

of transversion and transition mutations indicated that all types

of transversions were elevated in the relapse samples, a DNA

damage phenomenon that is attributable to the use of DNA-

damaging chemotherapy agents.

In genomic analyses of renal cell cancers, Gerlinger and col-

leagues (Gerlinger et al., 2012) studied regional heterogeneity

in four advanced tumors and metastases from a clinical trial of

everolimus (an inhibitor of mTOR) to evaluate the similarities

and differences in the genomic landscapes. Their approach

includedWES, SNP arrays, and gene expression arrays. Their re-

sults indicated a branching evolution of the primary andmetasta-

tic tumors studied, with a combination of universally shared and

primary region-specific ormetastasis-specific privatemutations.

Unlike the previous study, everolimus was shown to not impact

the number and types of new mutations in posttreatment sam-

ples studied. A case was made for phenotypic convergent evo-

lution due to spatially separated, distinct mutations in SETD2,

KDM5C, and PTEN.

A study in breast cancer heterogeneity utilized data from 20

breast cancers selected across the differentmolecular subtypes,

one of which was sequenced to 188-fold depth to provide suffi-

cient sensitivity for heterogeneity analysis (Nik-Zainal et al.,

2012). Much like the AML study mentioned above, clustering of

mutations sharing similar variant fractions from high-coverage



Figure 2. dbSNPGrowth due toRare Variant

Discovery
This graphic illustrates the amount of rare and
extremely rare variant discovery in two recent re-
leases of the NCBI dbSNP database, where a
global minor allele frequency of >0.05 is consid-
ered a common variant. As indicated, rare variant
discovery has increased dramatically in the most
recent build of dbSNP (137).
data was performed to identify the subclones. The clusters were

further refinedby application of aBayesianDirichlet process, and

further associations were made to identify a hierarchy of muta-

tional events in the natural history of the cancer’s development.

Prediction of Targeted Therapy/Actionable Mutations

Since the earliest descriptions of specific mutations in EGFR

predicting response to small-molecule inhibitors such as tyro-

sine kinase inhibitors (Lynch et al., 2004; Paez et al., 2004; Pao

et al., 2004), the association of somatic mutations to drug

response has been of increasing interest. The use of NGS tech-

nologies in this regard has several advantages over the original

methods (PCR and Sanger fluorescent sequencing) used to

acquire these data. Namely, the NGS-based inquiries required

for discovering the gene-therapy association can be less

hypothesis driven and examine all genes, the associated cost

to generate the data for each patient sample is both less expen-

sive and more rapidly obtained, and the ability to detect specific

types of mutations such as insertions or deletions of one or

several nucleotides is facilitated by NGS. The first aspect is

important becausemost small-molecule therapies target a range

of mutated proteins, so multiple genes must be tested in each

patient. The second aspect is important because these queries

are now approaching clinical usage wherein identification of

appropriate therapy(ies) must happen in a 2–3 week period to

be applicable to patient care. Lastly, although small insertion/

deletionmutations are rarer than single-nucleotide substitutions,

their impact on the resulting protein may be more profound.

Because Sanger sequencing typically fails to detect these vari-

ants, it is both likely that the frequency of these mutations is

underestimated and certain that their response to therapy is

less well understood as a result.

One downside of the use of targeted small-molecule inhibitors

is that many patients experience an initial complete pathologic

response or at least stable disease but then acquire resistance

to the therapy and progress (Engelman et al., 2007). This phe-

nomenon has mainly been studied at the protein level (Girotti

et al., 2013; Prahallad et al., 2012) or by focused sequencing (Se-

quist et al., 2011). Here, results often demonstrate that the

cellular pathway blockade affected by targeted therapy is cir-
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cumvented by new mutations and/or

overexpression either of the targeted

gene or of another gene in the same

pathway. Given these discoveries, it

remains to be demonstrated by deep

NGS or single-cell sequencing of pro-

gression disease biopsies whether the

mutations that enable circumvention of

the blockade are pre-existing in a minor
proportion of tumor cells or are new mutations that arise in

response to the pathway blockade.

Circulating Tumor DNA Analysis

Many solid tumors shed cells and/or DNA into the blood stream

at very low levels that are thought to fluctuate with increases or

decreases in the disease burden of the patient. Hence, the ability

to detect these changeswith high sensitivity poses an interesting

and potentially powerful disease-monitoring capability that likely

would complement imaging modalities such as CT or MRI but at

much lower cost and with lower associated morbidities (Diehl

et al., 2005; Diehl et al., 2008; Swisher et al., 2005). In this regard,

several groups have recently published manuscripts describing

the selective capture of circulating tumor cells (CTCs) or the

amplification and sequencing of circulating tumor DNA or RNA.

This so-called ‘‘liquid biopsy’’ approach using plasma can detect

the predominant somatic mutations for that tumor type (Forshew

et al., 2012), or if chromosomal translocations or structural vari-

ants already are known from prior characterization of the cancer

genome, PCR primers can be designed to amplify the tumor-

specific products for NGS and analysis (Dawson et al., 2013;

Leary et al., 2012). Another recently published example of this

type of detection by NGS involved the detection of ovarian or

endometrial cancer by gene-specific assays of PAP test samples

(Kinde et al., 2013).

Noninvasive Prenatal Testing

Asmentioned, clinical use of NGS in cancer diagnosis, therapeu-

tic decision making, and progression monitoring is poised for

introduction. Several large academic centers and a handful of

commercial entities are offering NGS-based assays in the

CLIA-regulated environment. An NGS-based clinical assay that

already has received widespread adoption is noninvasive pre-

natal testing for chromosomal abnormality diagnosis using sam-

ples such asmaternal blood. In 1997, Lo et al. demonstrated that

male sex could be determined from circulating fetal DNA in

maternal plasma and serum samples and that the level of circu-

lating fetal DNA increases with gestational age (Lo et al., 1997).

However, achieving high sensitivity and specificity of fetal geno-

typewas difficult, given the low levels of fetal DNA and the cost of

high-depth sequencing.
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Figure 3. Growth in COSMIC Database Re-

ports of Identified and Unique Mutations
Increases in the numbers of mutations and unique
variants identified from DNA sequencing of cancer
samples as cataloged in the COSMIC database,
from November 2004 until the most recent release
in July 2013. Note that the numbers of unique
variants identified are increasing at a rate equal to
the numbers of mutations discovered.
With the advent of NGS, resolving the whole genome of a fetus

frommaternal blood sources became possible. In 2010, Lo et al.

sequencedmaternal plasma genomic DNA to 653 coverage and

then used the parental SNP genotypes (from SNP array data) to

distinguish fetal versus maternal sequencing reads (Lo et al.,

2010). This elegant proof-of-concept study demonstrated that

the entire fetal genome is represented in the maternal plasma.

Yet, this approach was limited by the use of a chorionic villus

sample and the somewhat circular logic by which parental hap-

lotypes were inferred from common heterozygous SNP geno-

types and then used to predict the fetal haplotype, thereby

missing a large proportion of the rare variation. In addition, the

authors were unable to detect de novo mutations. To overcome

these obstacles, Kitzman et al. used WGS with maternal plasma

as well as fosmid clone pooling to resolve long haplotype blocks

in the mother (i.e., ‘‘phasing’’; Kitzman et al., 2012). The paternal

genome was sequenced but not phased. This approach

achieved >99% genotype accuracy at maternal heterozygous

sites when predicting the fetal genotype. In addition, de novo

mutations and recombination switch breakpoints were detected

using a Hidden Markov model. The results were confirmed by

WGS from cord blood after birth. Similarly, Fan et al. (2012) per-

formed WGS and WES with maternal plasma and maternal

haplotype resolution via direct deterministic phasing using single

cells. The paternal genome was inferred using detection of

paternal-specific alleles and imputation, and the fetal genome

was resolved to >99% accuracy using molecular counting of

parental genotypes in the maternal plasma.

These studies demonstrate the feasibility of prenatal testing at

single-nucleotide resolution, but major limitations likely will hind-

er clinical translation. For example, sequencing to sufficient

depth to detect fetal DNA genotypes is still quite expensive. In

addition, it is prohibitively expensive and time consuming to

routinely create and sequence maternal fosmid pools. As sin-

gle-molecule sequencing technologies improve, it may be real-

istic to routinely resolve extended parental haplotypes to assist
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in fetal genotyping. For the time being,

commercial noninvasive NGS prenatal

tests are offered, but these only detect

common chromosomal aneuploidies

such as Trisomy 21.

Concluding Remarks
In summary, next-generation sequencing

technologies have had an incredible

impact on our knowledge of human ge-

netic diseases over a very short time

frame. Whether this trend will continue
rests on a variety of issues, some quite complex. For example,

the size of whole-human-genome data sets remains large, and

this poses significant challenges for data download and storage

and for computational infrastructure. Data privacy of human sub-

jects is paramount but is increasingly difficult to control, raising

concerns in the public that may inhibit consent by individuals

to participate in genetic studies. Ethical aspects overshadow

the return of information to study participants and individuals

seeking genetic diagnosis due to our remaining ignorance about

the pathologic and functional consequences of variation in the

human genome. The next few years will determine which appli-

cations of NGS are incorporated into the clinical diagnostic

setting, many of which may benefit patients but yet may not be

covered by insurers. Even as this scenario plays out, it is un-

doubtedly the case that NGS will continue to be a revolutionary

force in basic biomedical and biological genomics inquiry for

some time to come.
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Berndt, S.I., Gustafsson, S., Mägi, R., Ganna, A., Wheeler, E., Feitosa, M.F.,

Justice, A.E., Monda, K.L., Croteau-Chonka, D.C., Day, F.R., et al. (2013).

Genome-wide meta-analysis identifies 11 new loci for anthropometric traits

and provides insights into genetic architecture. Nat. Genet. 45, 501–512.

Bigham, A.W., Mao, X., Mei, R., Brutsaert, T., Wilson, M.J., Julian, C.G., Parra,

E.J., Akey, J.M., Moore, L.G., and Shriver, M.D. (2009). Identifying positive

selection candidate loci for high-altitude adaptation in Andean populations.

Hum. Genomics 4, 79–90.

Bigham, A., Bauchet, M., Pinto, D., Mao, X., Akey, J.M., Mei, R., Scherer, S.W.,
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D., Tüysüz, B., Ca�glayan, A.O., Gökben, S., et al. (2010). Whole-exome

sequencing identifies recessive WDR62 mutations in severe brain malforma-

tions. Nature 467, 207–210.

Bolze, A., Byun, M., McDonald, D., Morgan, N.V., Abhyankar, A., Premkumar,

L., Puel, A., Bacon, C.M., Rieux-Laucat, F., Pang, K., et al. (2010). Whole-

exome-sequencing-based discovery of human FADD deficiency. Am. J.

Hum. Genet. 87, 873–881.

Bowden, D.W., An, S.S., Palmer, N.D., Brown, W.M., Norris, J.M., Haffner,

S.M., Hawkins, G.A., Guo, X., Rotter, J.I., Chen, Y.D., et al. (2010). Molecular

basis of a linkage peak: exome sequencing and family-based analysis identify

a rare genetic variant in the ADIPOQ gene in the IRAS Family Study. Hum. Mol.

Genet. 19, 4112–4120.

Byun,M., Abhyankar, A., Lelarge, V., Plancoulaine, S., Palanduz, A., Telhan, L.,

Boisson, B., Picard, C., Dewell, S., Zhao, C., et al. (2010). Whole-exome

sequencing-based discovery of STIM1 deficiency in a child with fatal classic

Kaposi sarcoma. J. Exp. Med. 207, 2307–2312.

Campbell, P.J., Yachida, S., Mudie, L.J., Stephens, P.J., Pleasance, E.D.,

Stebbings, L.A., Morsberger, L.A., Latimer, C., McLaren, S., Lin, M.L., et al.

(2010). The patterns and dynamics of genomic instability in metastatic pancre-

atic cancer. Nature 467, 1109–1113.

Cartwright, R.A., Hussin, J., Keebler, J.E., Stone, E.A., and Awadalla, P. (2012).

A family-based probabilistic method for capturing de novo mutations from

high-throughput short-read sequencing data. Stat. Appl. Genet. Mol. Biol.

11, 11.

Chen, H., Meigs, J.B., and Dupuis, J. (2013). Sequence kernel association test

for quantitative traits in family samples. Genet. Epidemiol. 37, 196–204.

Chesi, A., Staahl, B.T., Jovi�ci�c, A., Couthouis, J., Fasolino, M., Raphael, A.R.,

Yamazaki, T., Elias, L., Polak, M., Kelly, C., et al. (2013). Exome sequencing to

identify de novo mutations in sporadic ALS trios. Nat. Neurosci. 16, 851–855.

Churchill, J.D., Bowne, S.J., Sullivan, L.S., Lewis, R.A., Wheaton, D.K., Birch,

D.G., Branham, K.E., Heckenlively, J.R., and Daiger, S.P. (2013). Mutations in

the X-linked retinitis pigmentosa genes RPGR and RP2 found in 8.5% of fam-

ilies with a provisional diagnosis of autosomal dominant retinitis pigmentosa.

Invest. Ophthalmol. Vis. Sci. 54, 1411–1416.

Cibulskis, K., Lawrence, M.S., Carter, S.L., Sivachenko, A., Jaffe, D., Sougnez,

C., Gabriel, S., Meyerson, M., Lander, E.S., and Getz, G. (2013). Sensitive

detection of somatic point mutations in impure and heterogeneous cancer

samples. Nat. Biotechnol. 31, 213–219.

Cohen, J.C., Pertsemlidis, A., Fahmi, S., Esmail, S., Vega, G.L., Grundy, S.M.,

and Hobbs, H.H. (2006). Multiple rare variants in NPC1L1 associated with

reduced sterol absorption and plasma low-density lipoprotein levels. Proc.

Natl. Acad. Sci. USA 103, 1810–1815.

Conrad, D.F., Keebler, J.E., DePristo, M.A., Lindsay, S.J., Zhang, Y., Casals,

F., Idaghdour, Y., Hartl, C.L., Torroja, C., Garimella, K.V., et al.; 1000 Genomes

Project. (2011). Variation in genome-wide mutation rates within and between

human families. Nat. Genet. 43, 712–714.

Cortes, A., Field, J., Glazov, E.A., Hadler, J., Stankovich, J., Brown, M.A., and

Brown, M.A.; ANZgene Consortium. (2013). Resequencing and fine-mapping

of the chromosome 12q13-14 locus associated with multiple sclerosis refines

the number of implicated genes. Hum. Mol. Genet. 22, 2283–2292.
Coventry, A., Bull-Otterson, L.M., Liu, X., Clark, A.G., Maxwell, T.J., Crosby, J.,

Hixson, J.E., Rea, T.J., Muzny, D.M., Lewis, L.R., et al. (2010). Deep rese-

quencing reveals excess rare recent variants consistent with explosive popu-

lation growth. Nat. Commun. 1, 131.

Dawson, S.J., Tsui, D.W., Murtaza, M., Biggs, H., Rueda, O.M., Chin, S.F.,

Dunning, M.J., Gale, D., Forshew, T., Mahler-Araujo, B., et al. (2013). Analysis

of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med.

368, 1199–1209.

DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C.,

Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A frame-

work for variation discovery and genotyping using next-generation DNA

sequencing data. Nat. Genet. 43, 491–498.

Diehl, F., Li, M., Dressman, D., He, Y., Shen, D., Szabo, S., Diaz, L.A., Jr.,

Goodman, S.N., David, K.A., Juhl, H., et al. (2005). Detection and quantifica-

tion of mutations in the plasma of patients with colorectal tumors. Proc.

Natl. Acad. Sci. USA 102, 16368–16373.

Diehl, F., Schmidt, K., Choti, M.A., Romans, K., Goodman, S., Li, M., Thornton,

K., Agrawal, N., Sokoll, L., Szabo, S.A., et al. (2008). Circulating mutant DNA to

assess tumor dynamics. Nat. Med. 14, 985–990.

Ding, L., Ley, T.J., Larson, D.E., Miller, C.A., Koboldt, D.C., Welch, J.S.,

Ritchey, J.K., Young, M.A., Lamprecht, T., McLellan, M.D., et al. (2012). Clonal

evolution in relapsed acute myeloid leukaemia revealed by whole-genome

sequencing. Nature 481, 506–510.

Emde, A.K., Schulz, M.H., Weese, D., Sun, R., Vingron, M., Kalscheuer, V.M.,

Haas, S.A., and Reinert, K. (2012). Detecting genomic indel variants with exact

breakpoints in single- and paired-end sequencing data using SplazerS. Bioin-

formatics 28, 619–627.

Engelman, J.A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J.O.,

Lindeman, N., Gale, C.M., Zhao, X., Christensen, J., et al. (2007). MET ampli-

fication leads to gefitinib resistance in lung cancer by activating ERBB3

signaling. Science 316, 1039–1043.

Fan, H.C., Gu, W., Wang, J., Blumenfeld, Y.J., El-Sayed, Y.Y., and Quake, S.R.

(2012). Non-invasive prenatal measurement of the fetal genome. Nature 487,

320–324.

Forbes, S.A., Tang, G., Bindal, N., Bamford, S., Dawson, E., Cole, C., Kok,

C.Y., Jia, M., Ewing, R., Menzies, A., et al. (2010). COSMIC (the Catalogue

of Somatic Mutations in Cancer): a resource to investigate acquired mutations

in human cancer. Nucleic Acids Res. 38(Database issue), D652–D657.

Forbes, S.A., Bindal, N., Bamford, S., Cole, C., Kok, C.Y., Beare, D., Jia, M.,

Shepherd, R., Leung, K., Menzies, A., et al. (2011). COSMIC: mining complete

cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic

Acids Res. 39(Database issue), D945–D950.

Forshew, T., Murtaza, M., Parkinson, C., Gale, D., Tsui, D.W., Kaper, F., Daw-

son, S.J., Piskorz, A.M., Jimenez-Linan, M., Bentley, D., et al. (2012). Noninva-

sive identification and monitoring of cancer mutations by targeted deep

sequencing of plasma DNA. Sci. Transl. Med. 4, 136ra168.

Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos,

E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., et al. (2012). Intratumor

heterogeneity and branched evolution revealed by multiregion sequencing.

N. Engl. J. Med. 366, 883–892.

Gibson, G. (2011). Rare and common variants: twenty arguments. Nat. Rev.

Genet. 13, 135–145.

Gilissen, C., Arts, H.H., Hoischen, A., Spruijt, L., Mans, D.A., Arts, P., van Lier,

B., Steehouwer, M., van Reeuwijk, J., Kant, S.G., et al. (2010). Exome

sequencing identifies WDR35 variants involved in Sensenbrenner syndrome.

Am. J. Hum. Genet. 87, 418–423.

Gilissen, C., Hoischen, A., Brunner, H.G., and Veltman, J.A. (2012). Disease

gene identification strategies for exome sequencing. Eur. J. Hum. Genet. 20,

490–497.

Girard, S.L., Gauthier, J., Noreau, A., Xiong, L., Zhou, S., Jouan, L., Dionne-

Laporte, A., Spiegelman, D., Henrion, E., Diallo, O., et al. (2011). Increased

exonic de novo mutation rate in individuals with schizophrenia. Nat. Genet.

43, 860–863.
Cell 155, September 26, 2013 ª2013 Elsevier Inc. 35



Girotti, M.R., Pedersen, M., Sanchez-Laorden, B., Viros, A., Turajlic, S., Nicu-

lescu-Duvaz, D., Zambon, A., Sinclair, J., Hayes, A., Gore, M., et al. (2013).

Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhib-

itor resistance in melanoma. Cancer Discov. 3, 158–167.

Gnirke, A., Melnikov, A., Maguire, J., Rogov, P., LeProust, E.M., Brockman,

W., Fennell, T., Giannoukos, G., Fisher, S., Russ, C., et al. (2009). Solution

hybrid selectionwith ultra-long oligonucleotides formassively parallel targeted

sequencing. Nat. Biotechnol. 27, 182–189.

Goate, A., Chartier-Harlin, M.C., Mullan, M., Brown, J., Crawford, F., Fidani, L.,

Giuffra, L., Haynes, A., Irving, N., James, L., et al. (1991). Segregation of a

missense mutation in the amyloid precursor protein gene with familial Alz-

heimer’s disease. Nature 349, 704–706.

Haack, T.B., Danhauser, K., Haberberger, B., Hoser, J., Strecker, V., Boehm,

D., Uziel, G., Lamantea, E., Invernizzi, F., Poulton, J., et al. (2010). Exome

sequencing identifies ACAD9 mutations as a cause of complex I deficiency.

Nat. Genet. 42, 1131–1134.

Han, F., and Pan, W. (2010). A data-adaptive sum test for disease association

with multiple common or rare variants. Hum. Hered. 70, 42–54.

Harrington, C.R., Anderson, J.R., and Chan, K.K. (1995). Apolipoprotein E type

epsilon 4 allele frequency is not increased in patients with sporadic inclusion-

body myositis. Neurosci. Lett. 183, 35–38.

Hodges, E., Xuan, Z., Balija, V., Kramer, M., Molla, M.N., Smith, S.W., Middle,

C.M., Rodesch, M.J., Albert, T.J., Hannon, G.J., and McCombie, W.R. (2007).

Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39,

1522–1527.

Hoischen, A., van Bon, B.W., Gilissen, C., Arts, P., van Lier, B., Steehouwer,

M., de Vries, P., de Reuver, R., Wieskamp, N., Mortier, G., et al. (2010). De

novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat. Genet.

42, 483–485.

Ionita-Laza, I., Lee, S., Makarov, V., Buxbaum, J.D., and Lin, X. (2013).

Sequence Kernel Association Tests for the Combined Effect of Rare and

Common Variants. Am. J. Hum. Genet. Published online May 14, 2013.

http://dx.doi.org/10.1016/j.ajhg.2013.04.015.

Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., Yam-

rom, B., Lee, Y.H., Narzisi, G., Leotta, A., et al. (2012). De novo gene disrup-

tions in children on the autistic spectrum. Neuron 74, 285–299.

Johnson, J.O., Mandrioli, J., Benatar, M., Abramzon, Y., Van Deerlin, V.M.,

Trojanowski, J.Q., Gibbs, J.R., Brunetti, M., Gronka, S., Wuu, J., et al.;

ITALSGEN Consortium. (2010). Exome sequencing reveals VCP mutations

as a cause of familial ALS. Neuron 68, 857–864.

Kimchi-Sarfaty, C., Oh, J.M., Kim, I.W., Sauna, Z.E., Calcagno, A.M., Ambud-

kar, S.V., and Gottesman, M.M. (2007). A ‘‘silent’’ polymorphism in the MDR1

gene changes substrate specificity. Science 315, 525–528.

Kinde, I., Bettegowda, C., Wang, Y., Wu, J., Agrawal, N., Shih Ie, M., Kurman,

R., Dao, F., Levine, D.A., Giuntoli, R., et al. (2013). Evaluation of DNA from the

Papanicolaou test to detect ovarian and endometrial cancers. Sci. Transl.

Med. 5, 167ra164.

Kitzman, J.O., Snyder, M.W., Ventura, M., Lewis, A.P., Qiu, R., Simmons, L.E.,

Gammill, H.S., Rubens, C.E., Santillan, D.A., Murray, J.C., et al. (2012). Nonin-

vasive whole-genome sequencing of a human fetus. Sci. Transl. Med. 4,

137ra176.

Klein, R.J., Zeiss, C., Chew, E.Y., Tsai, J.Y., Sackler, R.S., Haynes, C.,

Henning, A.K., SanGiovanni, J.P., Mane, S.M., Mayne, S.T., et al. (2005).

Complement factor H polymorphism in age-related macular degeneration.

Science 308, 385–389.

Koboldt, D.C., Chen, K., Wylie, T., Larson, D.E., McLellan, M.D., Mardis, E.R.,

Weinstock, G.M., Wilson, R.K., and Ding, L. (2009). VarScan: variant detection

in massively parallel sequencing of individual and pooled samples. Bioinfor-

matics 25, 2283–2285.

Koboldt, D.C., Zhang, Q., Larson, D.E., Shen, D., McLellan, M.D., Lin, L., Miller,

C.A., Mardis, E.R., Ding, L., and Wilson, R.K. (2012). VarScan 2: somatic

mutation and copy number alteration discovery in cancer by exome

sequencing. Genome Res. 22, 568–576.
36 Cell 155, September 26, 2013 ª2013 Elsevier Inc.
Kong, A., Frigge, M.L., Masson, G., Besenbacher, S., Sulem, P., Magnusson,

G., Gudjonsson, S.A., Sigurdsson, A., Jonasdottir, A., Jonasdottir, A., et al.

(2012). Rate of de novo mutations and the importance of father’s age to dis-

ease risk. Nature 488, 471–475.

Krawitz, P.M., Schweiger, M.R., Rödelsperger, C., Marcelis, C., Kölsch, U.,
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