OBJECTIVES
The objective of this lab is to study the role of firewalls and virtual private networks (VPNs) in providing security to shared public networks such as the Internet.

OVERVIEW
Computer networks are typically a shared resource used by many applications for many different purposes. Sometimes the data transmitted between application processes is confidential, and the application users would prefer that others not be able to read it.

A firewall router is a specially programmed router that sits between a site and the rest of the network. It is a router in the sense that it is connected to two or more physical networks, and it forwards packets from one network to another, but it also filters the packets that flow through it. A firewall allows the system administrator to implement a security policy in one centralized place. Filter-based firewalls are the simplest and most widely deployed type of firewall. They are configured with a table of addresses that characterizes the packets they will and will not forward.

A VPN is an example of providing a controlled connectivity over a public network such as the Internet.VPNs utilize a concept called an IP tunnel—a virtual point-to-point link between a pair of nodes that are actually separated by an arbitrary number of networks. The virtual link is created within the router at the entrance of the tunnel by providing it with the IP address of the router at the far end of the tunnel. Whenever the router at the entrance of the tunnel wants to send a packet over this virtual link, it encapsulates the packet inside an IP datagram. The destination address in the IP header is the address of the router at the far end of the tunnel, whereas the source address is that of the encapsulating router.

In this lab, you will set up a network where servers are accessed over the Internet by customers who have different privileges. You will study how firewalls and VPNs can provide security to the information in the servers while maintaining access for customers with the appropriate privilege.

PRE-LAB ACTIVITIES
Read Sections 4.3.3 and 8.4.2 from Computer Networks: A Systems Approach, 5th Edition.
PROCEDURE

Create a New Project

2. Select Project and click OK → Name the project <your initials>_VPN, and the scenario NoFirewall → Click OK.
3. Click Quit on the Startup Wizard.
4. To remove the world background map, select the View menu → Background → Set Border Map → Select NONE from the drop-down menu → Click OK.

Create and Configure the Network

Initialize the network:

1. Open the Object Palette dialog box by clicking . Make sure that the internet_toolbox item is selected from the pull-down menu on the object palette.
2. Add the following objects from the palette to the project workspace (see the following figure for placement): Application Config, Profile Config, an ip32_cloud, one ppp_server, three ethernet4_slip8_gtwy routers, and two ppp_wkstn hosts.
3. Rename the objects you added and connect them using PPP_DS1 links, as shown here:

Several example application configurations are available under the Default setting. For example, “Web Browsing (Heavy HTTP1.1)” indicates a Web browsing application performing heavy browsing using HTTP1.1 protocol.

The ppp_server and ppp_wkstn support one underlying Serial Line Internet Protocol (SLIP) connection at a selectable data rate. PPP_DS1 connects two nodes running PPP. Its data rate is 1.544 Mbps.

Configure the nodes:

1. Right-click on the Applications node → Edit Attributes → Assign Default to the Application Definitions attribute → Click OK.
2. Right-click on the Profiles node → Edit Attributes → Assign Sample Profiles to the Profile Configuration attribute → Click OK.
3. Right-click on the Server node → Edit Attributes → Assign All to the Application: Supported Services attribute → Click OK.
4. Right-click on the Sales A node → Select Similar Nodes (make sure that both Sales A and Sales B are selected).
 a. Right-click on the Sales A node → Edit Attributes → Check the Apply Changes to Selected Objects check-box.
 b. Expand the Application: Supported Profiles attribute → Set rows to 1 → Expand the row 0 hierarchy → Profile Name = Sales Person (this is one of the “sample profiles” we configured in the Profiles node).
5. Click OK, and Save your project.
Choose the Statistics

1. Right-click anywhere in the project workspace and select Choose Individual Statistics from the pop up menu.
2. In the Choose Results dialog box, check the following statistics:
3. Click OK.
4. Right-click on Sales A node, and select Choose Individual Statistics from the menu.
 In the Choose Results dialog box, check the following statistics:
 a. Client DB → Traffic Received (bytes/sec).
 b. Client Http → Traffic Received (bytes/sec).
5. Click OK.
6. Right-click on the Sales B node, and select Choose Individual Statistics from the pop up menu. In the Choose Results dialog box, check the following statistics:
 a. Client DB → Traffic Received (bytes/sec).
 b. Client Http → Traffic Received (bytes/sec).
7. Click OK, and Save your project.

The Firewall Scenario

In the network we just created, the Sales Person profile allows both sales sites to access applications such as database access, email, and Web browsing from the server (check the Profile Configuration of the Profiles node). Assume that we need to protect the database in the server from external access, including the salespeople. One way to do that is to replace Router C with a firewall as follows:

1. Select Duplicate Scenario from the Scenarios menu and name it Firewall → Click OK.
2. In the new scenario, right-click on Router C → Edit Attributes.
3. Assign ethernet2_slip8_firewall to the model attribute.
4. Expand the hierarchy of the Proxy Server Information attribute → Expand the row 1, which is for the database application hierarchy → Assign No to the Proxy Server Deployed attribute as shown:

5. Click OK, and Save your project.

DQ Query Response Time is measured from the time when the database query application sends a request to the server to the time it receives a response packet.

HTTP Page Response Time specifies the time required to retrieve the entire page with all the contained inline objects.

Proxy Server Information is a table defining the configuration of the proxy servers on the firewall. Each row indicates whether a proxy server exists for a certain application and the amount of additional delay that will be introduced to each forwarded packet of that application by the proxy server.
Our Firewall configuration does not allow database-related traffic to pass through the firewall (it filters such packets out). This way, the databases in the server are protected from external access. Your Firewall scenario should look like the following figure.

The Firewall_VPN Scenario

In the Firewall scenario, we protected the databases in the server from “any” external access using a firewall router. Assume that we want to allow the people in the Sales A site to have access to the databases in the server. Because the firewall filters all database-related traffic regardless of the source of the traffic, we need to consider the VPN solution. A virtual tunnel can be used by Sales A to send database requests to the server. The firewall will not filter the traffic created by Sales A because the IP packets in the tunnel will be encapsulated inside an IP datagram.

1. While you are in the Firewall scenario, select Duplicate Scenario from the Scenarios menu and give it the name Firewall_VPN → Click OK.
2. Remove the link between Router C and the Server.
3. Open the Object Palette dialog box by clicking . Make sure that the internet_toolbox is selected from the pull-down menu on the object palette.
 a. Add to the project workspace one ethernet4_slip8_gtwy and one IP VPN Config (see the following figure for placement).
 b. From the Object palette, use two PPP_DS1 links to connect the new router to the Router C (the firewall) and to the Server, as shown in the following figure.
 c. Close the Object Palette dialog box.
4. Rename the IP VPN Config object to VPN.
5. Rename the new router to Router D as shown in the following figure:
Configure the VPN:

1. Right-click on the VPN node → Edit Attributes.
 a. Expand the VPN Configuration hierarchy → Set rows to 1 → Expand row 0 hierarchy →
 Edit the value of Tunnel Source Name and enter Router A → Edit the value of Tunnel
 Destination Name and enter Router D.
 b. Expand the Remote Client List hierarchy → Set rows to 1 → Expand row 0 hierarchy →
 Edit the value of Client Node Name and enter Sales A.
 c. Click OK, and Save your project.

Simulating encryption:

A virtual tunnel between the Sales A and the Server does not guarantee security for the
contents of the transferred database packets. If the contents of these packets are confidential,
encryption of these packets will be needed. In OPNET AE, the effect of packet encryption
can be simulated by the available compression function. Two of the available compression
schemes are the Per-Interface Compression and the Per-Virtual Circuit Compression, as
shown in the following figure. Once you edit the Compression Information attribute of an
interface, OPNET adds the IP Config node to the project.
Per-Interface Compression compresses the entire packet (including the headers). This means
the packet is decompressed and compressed at each hop on the route. Per-Virtual Circuit
Compression compresses the packet payload only. Therefore, compression and decompre-
sion take place only at the end nodes. One of the exercises at the end of this lab requires you
to create a new scenario to utilize the compression function.

Run the Simulation

To run the simulation for the three scenarios simultaneously:

1. Go to the **Scenarios** menu → Select **Manage Scenarios**.
2. Change the values under the **Results** column to `<collect>` (or `<recollect>`) for the three
 scenarios. Keep the default value of the **Sim Duration** (1 hour). Compare with the
 following figure.
3. Click **OK** to run the three simulations. Depending on the speed of your processor, this
 task may take several seconds to complete.
4. After the three simulation runs complete, one for each scenario, click **Close**.

View the Results

To view and analyze the results:

1. Select **Compare Results** from the **Results** menu.
2. Expand the **Sales A** hierarchy → Expand the **Client DB** hierarchy → Select the **Traffic
 Received** statistic.
3. Change the drop-down menu in the middle-lower part of the **Compare Results** dialog box
 from **As Is** to **time_average** as shown.
4. Press Show and the resulting graph should resemble the following figure. Your graph may not match exactly because of node placement.

5. Create a graph similar to the previous one, but for Sales B:
6. Create two graphs similar to the previous ones to depict the Traffic Received by the Client Http for Sales A and Sales B.

Note: Results may vary slightly because of different node placement.
FURTHER READINGS
The Impact of Internet Link Capacity on Application Performance: From the Protocols menu, select Methodologies → Capacity Planning.

EXERCISES
1. From the obtained graphs, explain the effect of the firewall, as well as the configured VPN, on the database traffic requested by Sales A and Sales B.
2. Compare the graphs that show the received HTTP traffic with those that show the received database traffic.
3. Generate and analyze the graph(s) that show the effect of the firewall, as well as the configured VPN, on the response time (delay) of the HTTP pages and database queries.
4. In the Firewall_VPN scenario, we configured the VPN node so that no traffic from Sales A is blocked by the firewall. Create a duplicate of the Firewall_VPN scenario, and name the new scenario Q4_DB_Web. In the Q4_DB_Web scenario, we want to configure the network so that:
 a. The databases in the server can be accessed only by the people in the Sales A site.
 b. The Web sites in the server can be accessed only by the people in the Sales B site.
 Include in your report the diagram of the new network configuration, including any changes you made to the attributes of the existing or added nodes. Generate the graphs of the DB traffic received and the HTTP traffic received for both Sales A and Sales B, to show that the new network meets the previously mentioned requirements.
5. Create a duplicate of the Firewall_VPN scenario, and name the new scenario Q5_Compression. In the new scenario, simulate packet encryption between Sales A and the Server by allowing Per-Virtual Circuit Compression in both nodes. Because encryption takes more time than compression, edit the attributes of the Per-Virtual Circuit Compression row (row 3) in the IP Config node. Assign 3E-006 and 1E-006 to Compression Delay and Decompression Delay, respectively. Study the effect of compression on the DB Query response time between Sales A and the Server.

LAB REPORT
Prepare a report that follows the guidelines explained in the Introduction Lab. The report should include the answers to the preceding exercises as well as the graphs you generated from the simulation scenarios. Discuss the results you obtained, and compare these results with your expectations. Mention any anomalies or unexplained behaviors.