BOX 11.1

NEURONAL CABLE THEORY AND COMPUTATIONAL MODELING

One of the seminal contributions to neuroscience is neuronal cable theory, which was developed by Wilfrid Rall in the 1950s–1960s. The theory provided a framework for quantitatively analyzing the effects of dendrites and dendritic spines on the process of synaptic integration. The central concept is that dendrites are conductive cables separated from a conducting surrounding medium (the extracellular space) by a mostly insulating membrane. The cable is characterized by its intracellular resistivity (Ri), its membrane resistivity (Rm), and its specific membrane capacitance (Cm). If the membrane potential is changed at the sealed end of a cable that extends infinitely in one direction, the voltage will decay exponentially, according to the equation: 

ΔVx=ΔV0 * exp(–x/λ)
where ΔV0 is the voltage change imposed at the end, ΔVx is the voltage change at distance x along the cable, and λ is the “space constant” of the cable, given by λ = [(d/4)(Rm/Ri)]1/2, where d is the diameter of the cable. For transient voltage changes, the terminal decay of the voltage over time is governed by the membrane time constant, τ = RmCm. 
The mathematical centerpiece of neuronal cable theory is the cable equation:
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This differential equation describes the change in voltage along a cable in both time and space, where X and T are dimensionless variables (X = x/λ and T = t/τ). The cable equation had been used previously for axons (Cole & Hodgkin, 1939; Davis & Lorente de Nó, 1947; Hodgkin & Rushton, 1946), but Rall extended its application to dendrites. Although much of Rall’s work used this equation to analyze voltage changes in simple linear cables, he also applied it to branching cables and showed that it could be used to analyze dendrites with arbitrary branching geometries. Indeed, one of Rall’s (1959) key contributions was his analysis of the effects of branching in cables: primarily in dendrites, but also in axons (Goldstein & Rall, 1974). 

In its analytical form, the cable equation can only be applied to passive dendrites with current sources (i.e., no synaptic or voltage-gated conductances). Rall realized, however, that dendrites were not likely to function as purely passive cables, so he also applied the cable equation to numerical simulations in order to facilitate simulation of more complex conditions, such as the activation of time- and voltage-dependent conductances in dendrites. Central to this approach is the concept that each segment of a dendrite can be broken up into a number of isopotential compartments, with changes in membrane potential between compartments computed using the cable equation with discrete time steps. The accuracy of such simulations therefore depends on the assignment of appropriately small compartments and short time steps. 

Rall’s calculations and computer simulations provided myriad insights, including many of the principles described in this chapter. Two of them are illustrated here: the distance-dependent filtering of synaptic potentials along cables and the difference in responses to groups of synapses activated in different spatio-temporal patterns along a dendrite (Fig. B11.1). His many other findings are reviewed in the book Theoretical Foundation of Dendritic Function (Segev, Rinzel, & Shepherd, 1995), which compiles and summarizes Rall’s most important contributions to the field. 

Two other aspects of Rall’s work are just as important as his papers. First, Rall pioneered the use of computers to simulate not only single neurons but also small circuits of neurons. Second, Rall realized the importance of a close alliance between theorists and experimentalists, and his work is a testament to the progress that can be achieved using this approach.
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FIGURE B11.1 Simulations of excitatory synaptic inputs in a model dendrite. (A) Somatic membrane potential for excitatory synapses (ε) positioned in different compartments of a dendrite. Synapses positioned further from the soma resulted in progressively smaller and slower somatically recorded synaptic potentials. EPSP amplitude is normalized to the driving force and time is normalized to the membrane time constant. (B) Somatic membrane potential for activation of excitatory synapses in opposite order. For A->B->C->Dthe proximal synapses were activated first; for D->C->B->A the distal synapses were activated first. Synapses were simulated at temporal increments of 0.25τ. Source: Rall (1964).
