

Figure 4.1 Spectral distribution of radiant energy from a full radiator at a temperature of (a) 6000 K , lefthand vertical and lower horizontal axis and (b) 300 K , right-hand vertical and upper horizontal axis. About 10% of the energy is emitted at wavelengths longer than those shown in the diagram. If this tail were included, the total area under the curve would be proportional to $\mathrm{T}^{4}\left(\mathrm{~W} \mathrm{~m}^{-2}\right) . \lambda_{\mathrm{m}}$ is the wavelength at which the energy per unit wavelength is maximal.

$$
\text { Solid angle } d \omega=d A / r^{2}
$$

$$
\text { Intensity } \quad \mathrm{I}=d \mathrm{~F} / d \omega
$$

(a)

$$
\begin{aligned}
\text { Intensity } d \mathrm{I} & =d \mathrm{~F} / \omega \\
\text { Radiance } & =(d \mathrm{~F} / \omega) \div d \mathrm{~S} \cos \psi \\
& =d \mathrm{I} /(d \mathrm{~S} \cos \psi)
\end{aligned}
$$

(b)

Figure 4.2 (a) Geometry of radiation emitted by a point source. (b) Geometry of radiation emitted by a surface element. In both diagrams a portion of a spherical surface receives radiation at normal incidence, but when the distance between the source and the receiving surface is large, it can be treated as a plane.

Figure 4.3 The amount of radiation received by a radiometer from the surface $X Y$ is independent of the angle of emission, but the flux emitted per unit area is proportional to $\cos \psi$.

Figure 4.4 Method for calculating irradiance at the center of an equatorial plane from a surface element $d S$ at angle b to vertical axis

Figure 4.5 The absorption of a parallel beam of monochromatic radiation in a homogeneous medium with an absorption coefficient $k . \Phi(0)$ is the incident flux, $\Phi(x)$ is the flux at depth x and the flux absorbed in a thin layer $d x$ is $k \Phi(x) d x$

