

Figure 8.1 The distribution of radiation over two surfaces of a cylinder representing the irradiance of a large number of vertical leaves.

Figure 8.2 Dependence of attenuation coefficient for direct radiation $K s=2 A h / A$ on solar elevation when leaf angle distribution is ellipsoidal with $a / b=$ ratio of vertical to horizontal semi-axis (see p. 97). The case $a / b=1$ corresponds to a spherical distribution.

Table 8.1 Attenuation Coefficients for Model and Real Canopies (from Monteith, 1969)

(a) Idealized leaf distributions	\mathcal{K}_{s}		
		Solar elevation β	
	90	60	30
horizontal	1.00	1.00	1.00
cylindrical	0.00	0.37	1.10
spherical	0.50	0.58	0.58
conical $\alpha=60$	0.50	0.50	0.87
$\alpha=30$	0.87	0.87	
(b) Real canopies		\mathcal{K}	
		1.10	
White clover (Trifolium repens)		0.97	
Sunflower (Helianthus annuus)	0.86		
French bean (Phaseolus vulgaris)		0.94	
Kale (Brassica acephala)	0.70		
Maize (Zea mays)	0.69		
Barley (Hordeum vulgare)	0.63		
Broad bean (Vicia faba)	0.49		
Sorghum (Sorghum vulgare)		0.43	
Ryegrass (Lolium perenne)	0.29		
(Loleum rigidum)	0.20		
Gladiolus			

Figure 8.3 Apparent attenuation coefficient for diffuse radiation from a uniform overcast sky in canopies with differing leaf angle distributions (x is the ratio of averaged projected areas of leaves on vertical and horizontal surfaces, so that $x=1$ is a spherical leaf angle distribution, $x=0$ for a vertical distribution, and $x=\infty$ for a horizontal distribution) (from Campbell and van Evert, 1994).

Figure 8.4 Fractional absorption of visible radiation (or PAR) $\alpha \mathrm{CP}$ (full lines), and fractional interception of total radiation ($1-\tau \mathrm{CT}$) (dashed lines) as functions of leaf area index for three values of the attenuation coefficient for black leaves $K b$ (assuming $\rho \mathrm{p}=\tau \mathrm{p}=0.05$, giving $(\alpha \mathrm{p} / \alpha \mathrm{T}) 0.5=1.34$).

Figure 8.5 Relation between far-red: red reflectivity ratio, $\rho \mathrm{i} / \rho$ r, for a canopy of vegetation and the fraction of PAR, $\alpha c P$ absorbed by the canopy. Leaf absorptivity specified.

Figure 8.6 Theoretical relation between a coat reflection coefficient $\rho *$ calculated from Eq. (8.22), and the ratio of absorption to reflection coefficients α / ρ for a single hair.

Table 8.2 Values of Reflection and Absorption Coefficients for Animal Coats. ρ^{*} is the reflection coefficient of the hair and skin together; α / ρ is the ratio of hair absorption coefficient to reflection coefficient (From Cena and Monteith, 1975)

Coat	ρ^{*}	α / ρ
Sheep, Dorset Down	0.79	0.03
Sheep, Clun Forest	0.60	0.13
Sheep, Welsh Mountain	0.30	0.82
Rabbit	0.81	0.02
Badger	0.48	0.28
Calf, white	0.63	0.11
Calf, red	0.35	0.60
Goat, Toggenburg	0.42	0.40
Fox	0.34	0.64
Fallow deer	0.69	0.07

Table 8.3 Relations Between Radiative Properties of Individual Hairs and the Radiation Budget of Whole Coats (From Cena and Monteith, 1975)

		Welsh Mountain Dorset Down clean	Dorset Down clean	Dorset Down soiled, light skin soiled, dark skin	
	Hair parameters				
	ρ	0.240	0.066	0.240	0.240
	α	0.200	0.002	0.060	0.060
	τ	0.560	0.932	0.700	0.700
	ρ_{s}	0.250	0.800	0.800	0.250
Coat depth					
1 cm	ρ^{*}				
	α^{*}	0.30	0.80	0.51	0.50
	$\left(1-\rho_{\mathrm{s}}\right) \tau^{*}$	0.66	0.03	0.45	0.40
2 cm	ρ^{*}	0.30	0.17	0.04	0.10
	α^{*}	0.70	0.80	0.51	0.50
	$\left(1-\rho_{\mathrm{s}}\right) \tau^{*}$	0	0.05	0.47	0.45
4 cm	ρ^{*}	0.30	0.15	0.02	0.05
	α^{*}	0.70	0.80	0.51	0.50
	$\left(1-\rho_{\mathrm{s}}\right) \tau^{*}$	0	0.09	0.48	0.47
		0.11	0.01	0.03	

Figure 8.7 (a) Farmers at a cattle market in Andhra Pradesh, India. The bareheaded farmer needs the shade of an umbrella. The two with white turbans do not. (Would a white umbrella be more or less effective?).

Figure 8.7(b) Cattle in a field in Israel. The dark cattle have sought shade, but the white animals are apparently comfortable in full sunshine.

Figure 8.8 Net radiation balance of different surfaces in a range of weather conditions as specified in Table 8.4.

Table 8.4 Conditions Assumed for the Radiation Budgets in Figure 8.8

	High sun clear	High sun partly cloudy	Low sun clear	Overcast day	Clear night
Solar elevation β (degrees)	60	60	10	-	-
Direct solar radiation $S_{b}\left(W_{m}^{-2}\right)$	800	800	80	-	-
Diffuse solar radiation $S_{d}\left(W m^{-2}\right)$	100	250	30	250	-
Downward long-wave radiation $\mathbf{L}_{\mathrm{d}}\left(\mathrm{W} \mathrm{m}^{-2}\right)$	320	370	310	380	270
Surface temperature (${ }^{\circ} \mathrm{C}$)					
Air	20	20	18	15	10
Lawn	24	24	15	15	6
Leaf	24	25	15	15	4
Sheep	33	36	15	20	10
Man	38	39	15	20	10
Reflectivities					
Lawn	0.23	0.23	0.25	0.23	-
Leaf	0.25	0.25	0.35	0.25	-
Sheep	0.40	0.40	0.40	0.40	-
Man	0.15	0.15	0.15	0.15	-

