
CHAPTER 10 

  

Solutions 

Exercise 1 

1. By definition, the price of a coupon bond will be given by, 

𝑃(0, 𝑡𝑛) = [∑
𝑐

∏ (1 + 𝑦)𝑗𝑖
𝑗=1

𝑛

𝑖=1

] +
100

∏ (1 + 𝑦)𝑗𝑛
𝑗=1

 

 

Since the yield curve is flat, yk = y1 for all k. The forward rate, fi, is 

defined as 

𝑓𝑖 =
∏ (1 + 𝑦)𝑗𝑖

𝑗=1

∏ (1 + 𝑦)𝑗𝑖−1
𝑗=1

− 1 = 𝑦. 

 

 



 

 

2. P(0,30) = $87.59, y = 7%. Bond delta, using the price equation in part a, can be expressed 

as:  where n is years to maturity, and c is the coupon payment.  So initially, bond delta is 

−1116 and forward contract  delta is −100. In order to be delta neutral,  we must short 11 

forward contracts  for each long coupon bond in the portfolio. 

In  order  to  construct  a zero cost  portfolio,  we need,  in addition,  to borrow $87.59 at the 

ongoing interest  rate 7%. (Remember  that  value of the forward contract  is initially zero.) 

𝑑𝑃

𝑑𝑦
= −

𝑐

𝑦2
× [1 − (1 + 𝑦)(−𝑛)] +

𝑐

𝑦
×

𝑛

(1 + 𝑦)𝑛+1
−

100𝑛

(1 + 𝑦)𝑛+1
 

where n is years to maturity, and c is the coupon payment.  So initially, bond delta is −1116 

and forward contract  delta is −100. In order to be delta neutral,  we must short 11 forward 

contracts  for each long coupon bond position in the portfolio. 

According to this result,  if we want to construct  a zero cost portfolio, we  need to borrow 

$87.59 at  on going interest  rate  (7%) (Remember that value of the forward contract  is 

initially zero). 

3. See the table below. Sum of the entries on the last column is the total convexity gain. 

Yield Bond Delta Forward 

Delta 

# of 

Forwards 

Price Mark-to-

Market 

0.07 -1116 -100 11 93 0 

0.09 -754 -100 8 91 22 

0.07 -1116 -100 11 93 -15 

0.09 -754 -100 8 91 22 



0.07 -1116 -100 11 93 -15 

0.09 -754 -100 8 91 22 

0.07 -1116 -100 11 93 -15 

    Gains:  22 

 

4. Other costs are funding cost and other operational costs, fees and commission paid. 

 

Exercise 2 

1. Price of 30 year bond is, 

 𝐵(0,30) =
100

(1+𝑦)30 

and it is equal to $23.14 when y = 5%. In order to meet the zero-cost condition, we borrow 

$23.14 at a rate of 5%. Bond’s delta is given by, 

𝑑𝐵

𝑑𝑦
= −

3000

(1 + 𝑦)31
 

 

So initial bond delta is −661 and euro dollar contract delta is −25. That means for each long 

bond position, we must short 661/25 euro contracts to achieve delta neutrality, initially. 

2. The solution to this problem is very similar to solution given for question 1, part (d) above. 

The sum of the entries on the last column is the convexity gains. 

 

Yield Bond Delta ED Delta # of 

Contracts 

Price of ED Mark-to-

Market 

0.05 -661 -25 26 98.75 0 



0.06 -493 -25 19 98.5 6.5 

0.04 -889 -25 35 99 -9.5 

0.06 -493 -25 19 98.5 17.5 

0.04 -889 -25 35 99 -9.5 

0.06 -493 25 19 98.5 17.5 

0.04 -889 -25 35 99 -9.5 

    Convexity 

Gains:  

13 

 

Exercise 3 

Interest rate fluctuations are wider in this question compared to previous question. That means 

higher volatility which implies higher convexity gains. So, the total rate of return on this bond 

will be higher, while interest rate for 30 year bond decreases. 

 

Exercise 4 

Let f be forward rate on Libor-on-arrears FRA. And F be the forward rate on market traded FRA. 

Then, existence of convexity requires the following adjustment between these two forward rates: 

f = F + σ
2
 

So the spread is equal to σ
2
, (0.02)

 2
. 

 

Exercise 5 

(Engineering Convexity Positions;  Case Study: Convexity of Long bonds, Swaps and Arbitrage)  



1. We now, explain the notion of convexity of long bonds. For a given decrease in the yield, 

bond prices will increase more compared to the linear approximation of the price-yield 

relationship. For a given increase in the yield, bond prices will decrease less compared to the 

linear approximation of the price-yield relationship. 

The Figure 1 shows this. 

Figure 1:  

 

We can also give an example. 

Let us find the bond sensitivities for a 3-year bond and a 30-year bond given the following 

conditions: 

(a) 𝑦0 = 6.5% and Δ𝑦0  = 0.3 

(b) 𝑦1 = 6.9% and Δ𝑦1  = 0.6 

where, 𝑦0, 𝑦1  are the yields of 3 year and 30 year default-free discount bonds, whose prices are 

denoted by 𝐵3 and 𝐵30. These prices will be given by: 



𝐵3 =
100

(1 + 𝑦0)3
 

𝐵30 =
100

(1 + 𝑦0)30
 

The first order sensitivities are related to these bonds duration. For the short bond this will be 

given by: 

𝜕𝐵3

𝜕𝑦0

1

𝐵3
= (−3)

100

(1 + 𝑦0)3+1 

=
−300

(1 + 𝑦0)4 

                                                                =3(
1

(1+𝑦0)

100

(1+𝑦0)3) 

                                                                =3(
1

(1+𝑦0)
𝐵3) 

This means that the percentage in the bond price will be: 

𝜕𝐵3

𝜕𝑦0
= (−3)

100

(1 + 𝑦0)3+1
 

=
−300

(1 + 𝑦0)4
 

= 3 (
1

((1 + 𝑦0))

100

(1 + 𝑦0)3
) 

= 3
1

(1 + 𝑦0)
𝐵3 

𝜕𝐵3

𝜕𝑦0

1

𝐵3
= 3

1

(1 + 𝑦0)
 

Hence the term modified duration. The right hand side in this expression gives the slightly 

modified maturity of the cash payments associated with this security. 



For the long bond we get: 

𝜕𝐵30

𝜕𝑦1

1

𝐵30
= 30

1

(1 + 𝑦1)
 

We can use this in order to get approximate measures of bond price sensitivities. For example: 

∆𝐵3

𝐵3
≅ 3

1

(1 + 𝑦0)
∆𝑦0 

∆𝐵30

𝐵30
≅ 30

1

(1 + 𝑦1)
∆𝑦1 

These measures indicate that, the 30-year bond will be about 10 times more sensitive to an 

interest rate change than a 3-year bond, for the same amount of yield movement. 

We can also calculate second order sensitivities. These convexity or “Gamma” effects will show 

how the first order sensitivities change as the yield moves. 

𝜕2𝐵3

𝐵𝜕𝑦0
2

1

𝐵3
= 12

1

(1 + 𝑦)2
 

and 

𝜕2𝐵30

𝐵𝜕𝑦0
2

1

𝐵30
= 930

1

(1 + 𝑦)2
 

Thus, the long bond duration will be about 80 times more sensitive to changes in the 

yield when compared with the short bond. 

2. Suppose we short the 3-year bond and go long on the 30-year bond. Then, consider three cases 

where interest rates move up +0.3, stay same or move down −0.3. How will all these affect the 

bond portfolio? 

• If interest rates rise we will gain more on the short position of less convex bonds than 

the amount we would lose on the long position of more convex bonds; 



• If interest rates fall we will gain more on the long position of more convex bonds than 

the amount we would lose on the short position of less convex bonds; 

• If interest rates remain unchanged, portfolio’s value will remain the same. 

 

According to this we are short the lesser convex bond and long the more convex bond. As yields 

fall the price of this latter rises higher than the less convex bond and as yields rise its price falls 

less. 

3. Swap convexity will be similar to coupon-bond convexity analysis. Consider the following 

terminology: 

(a) 𝑠𝑡 = Swap rate at time t on a swap that starts at t. 

(b) n = Number of swap settlements. 

(c) δ = Tenor of the floating leg. δ = 1/4 corresponding to a 3-month floating rate leg. 

(d) N = Notional amount. 

(e) 𝐿𝑡𝑖
 = Libor rate to settle in-arrears at time ti+1. 

(f) 𝐹𝑡𝑖
 = The FRA rate that corresponds to the floating Libor rate 𝐿𝑡𝑖

 . 

(g) fixed and floating day basis, both 30/360. 

Under these conditions the value of the swap at time, t0, will be given by: 

𝑉𝑡0
= ∑ [

(𝐹𝑡𝑖−1
− 𝑠𝑡0

)𝑁𝛿

∏ (1 + 𝐹𝑡𝑖−1
𝛿)𝑖

𝑗=1

]

𝑛

𝑖=1

 

Note that this is a convex(concave) function. 

Note that this gives the discounts 𝐵𝑖 as of 𝑡0 as: 

  

𝐵𝑖 =
𝟏

∏ (𝟏 + 𝑭𝒕𝒊−𝟏
𝛿)𝒊

𝒋=𝟏

 



 

Now suppose the we consider two swaps with n = 3 and n = 5 respectively, with δ = 1. The Swap 

notional is 10m. The yield curve is flat at 4%. This makes all forward rates equal 4%. Then we 

can calculate the following numbers using the formula above. 

Changes in the value of the 

swap 

Scenario 1 Scenario 2 

Type of Swap Parallel shift down 1% Parallel shift up 1% 

3 yr swap 

5 yr swap 

- $193,887.49 

- $376,497.28 

$ 188,338.21 (value 0 at t=0) 

$ 358,940.77 (value 0 at t=0) 

 

From these numbers we see that the 5-year swap is more sensitive to the changes in the interest 

rates than 3-year swap; therefore, the trader might gain more by trading long-dated swaps. 

4. We let a Libor-in-arrears instrument pay according to the following function: 

𝑉𝑡 = 100(1 − 𝐿𝑡𝑖
𝛿) 

A eurodollar futures has this pricing function. If a position is taken at time 𝑡0 with the forward 

rate 𝑓𝑡0
 the net payoff at 𝑡𝑖 will be: 

𝑉𝑡𝑖
− 𝑉𝑡0

= (𝑓𝑡0
− 𝐿𝑡𝑖

)𝑁𝛿 

A market traded FRA on the other will have the time 𝑡𝑖 payoff 

𝑊𝑡𝑖
=

(𝐹𝑡0
− 𝐿𝑡𝑖

)𝑁𝛿

(1 + 𝐿𝑡𝑖
𝛿)

 

 

Note that one payoff is Linear in 𝐿𝑡𝑖
 whereas the other is non-linear. 

The 𝜖 in the relationship between 𝑓𝑡0
 and  𝐹𝑡0

 gives the convexity adjustment: 



                                                                    𝐹𝑡0
= 𝑓𝑡0

+𝜖  

Under these conditions the two forward rates would not be the same due to the convexity. 

5. The position taken by the knowledgeable professionals can be summarized as follows: 

 (a) Receive Libor-in-arrears with a Libor-in-arrears FRA 

(b) Pay Libor at the start of the period using a market traded FRA. 

(c) Sell caps against the Libor-in-arrears being received. 

(d) Delta hedge the swap 

In this environment, swaps are more convex as they are equal to a series of FRAs. 

 

6. Knowledgeable market professionals take their position using swaps. We discuss the answer 

using FRAs. Swaps can be reconstructed from FRAs and hence our approach can be 

duplicated for swaps as well. Essentially, the less competent professionals are using the same 

𝑓𝑡0
 in valuing both FRAs, the paid-in-arrears and the Libor-in-arrears.  Thus by buying the 

Libor is arrears FRA and selling the paid arrears FRA, one would end up with the net 

convexity adjustment factor 𝜖. This factor is equal to 

𝜖 = 𝐹𝑡𝑖

2𝜎2∆
1

1 + 𝐹𝑡𝑖
𝛿

 

7. At this point the position taken is not true arbitrage, because the gains depend on the level of 

volatility, although they are always positive. But, once the transaction costs are taken into 

account, the position may lose money if the volatility goes down significantly. This is due to 

the fact that the gains are a function of the σ
2
. 

Besides, there are the usual counterparty risks. 

8. A cap is a series of European interest rate call options covering a different forward time 

periods each with the same strike price. You can think of it as a series of call options on 



FRAs. Caps are priced using Black’s formula, which assumes a forward rate that moves as a 

Martingale. 

9. Smart Traders can lock-in their potential convexity and volatility gains by selling a cap on 

the forward yields. Premium from the cap includes implied volatility expectation for the 

remaining time to the next period as well as the expected convexity gains. 

 

Exercise 6 

(For detailed calculation see also Excel file ‘Exercise 10.6 Solution Matlab Calculation’ on book 

webpage.) 

 

Solution: 

The bond price formula is given by  𝐵(𝑡, 𝑇) = 𝐴(𝑡, 𝑇)𝑒−𝐶(𝑡,𝑇) 

where, 

𝐶(𝑡, 𝑇) =  
(1 − 𝑒−𝛼(𝑇−𝑡))

𝛼
 

𝐴(𝑡, 𝑇) =  𝑒
(𝐶(𝑡,𝑇) −(𝑇−𝑡))(𝛼2𝜇− 

𝜎2

2
)

𝛼2 − 
𝜎2𝐶(𝑡,𝑇)2

4𝛼  
 

And finally we obtain the yield of the bond by  𝑦(𝑡, 𝑇) =  −
log(𝑇−𝑡)

(𝑇−𝑡)
 

 

 

 

Plots 
Term structure plot for the first set of values i.e. [5.9, 0.3, 0.2, 0.1] 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Term structure plot for the second set of values i.e. [3.9, 0.1, 0.3, 0.2] 



 
 

 

 

 

 

 

 

 

 

 

 

 

Term structure plot for the third set of values i.e. [0.1, 0.4, 0.11, 0.1] 



 
 

 

 

 

 

 

 

 

 

 

 

 

Variation of term structure with the change in mean return 𝝁 



 
 

 

 

 

 

 

 

 

 

 

 

 

Variation of term structure with the change in volatility 𝝈 



 
 

 

 

 

 

 

 

 

 

 

 

 

Variation of term structure with the change in initial return r(0) 



 
 

 

 

Exercise 7 

(For detailed calculation see also Excel file ‘Exercise 10.7 Solution Matlab Calculation’ on book 

webpage.) 

 

Solution: 

The bond price formula is given by  𝐵(𝑡, 𝑇) = 𝐴(𝑡, 𝑇)𝑒−𝐶(𝑡,𝑇) 

 

 

where the functions 𝐴(𝑡, 𝑇) and 𝐶(𝑡, 𝑇) are given by, 

𝐴(𝑡, 𝑇) =  (2
𝛾𝑒

1
2⁄ (𝛼+𝛾)(𝑇−𝑡)

(𝛼 + 𝛾)(𝑒𝛾(𝑇−𝑡) − 1) + 2𝛾
)

2
𝛼𝜇
𝜎2

 



𝐶(𝑡, 𝑇) =  (2
𝑒𝛾(𝑇−𝑡) − 1

(𝛼 + 𝛾)(𝑒𝛾(𝑇−𝑡) − 1) + 2𝛾
) 

And where 𝛾 is defined as 

𝛾 =  √𝛼2 + 2𝜎2 
 

And finally we obtain the yield of the bond by  𝑦(𝑡, 𝑇) =  −
log (𝑇−𝑡)

(𝑇−𝑡)
 

 

 

 

 

Plots 

Term structure plot for the first set of values i.e. [0.02, 0.7, 0.02, 0.1] 

 
 

 

 

 

 

 

 

 



 

 

 

Term structure plot for the second set of values i.e. [0.7, 0.1, 0.3, 0.2] 

 
 

 

 

 

 

 

 

 

 

 

 

 

Term structure plot for the third set of values i.e. [0.06, 0.09, 0.5 0.02] 



 
 

 

 

 

 

 

 

 

 

 

 

 

Variation of term structure with the change in mean return 𝝁 



 
 

 

 

 

 

 

 

 

 

 

 

 

Variation of term structure with the change in volatility 𝝈 



 
 

 

 

 

 

 

 

 

 

 

 

 

Variation of term structure with the change in initial return r(0) 



 
 


