Chapter 23

Solutions

Exercise 1

TBC

Exercise 2

Let the principal amount to be invested (in dollars) be $\mathrm{N}=100$.
The iTraxx XO follows the path $\{330,360,320\}$. The Libor rate is fixed at $L_{t}=5 \%$. The leverage ratio is $\lambda=2$.
(a) The general strategy is to go through the following steps:

- Set $V_{t_{0}}=N_{t_{0}}=100$. Calculate the floor

$$
F_{t_{0}}=\frac{V_{t_{0}}}{\left(1+r_{t}\right)^{5}}=\frac{100}{(1+0.05)^{5}}=78.35
$$

- The cushion is:

$$
C u_{t_{0}}=100-78.35=21.65 .
$$

- Amount to be invested in risky asset is

$$
R_{t_{0}}=\lambda \times \mathrm{C} u_{t_{0}} 2.65=43.30
$$

which is the amount invested on iTraxx XO index. At the end of the year the spread received on the notional is $3.3 \times R_{t_{0}}=1.43$. The balance $D_{t_{0}}=100-43.30=$ 56.70 is kept in a default-free deposit account enjoying Libor. At the end of the year the spread received on the notional is $3.3 \times R_{t_{0}}=1.43$.

- As the crossover index changes over time $\mathrm{t} 1, \mathrm{t} 2, \ldots$, the positions on i Traxx XO and default-free bond investments are changed so as to keep the leverage ratio constant.
(b)

Period 1

Calculate $V_{t_{1}}=100 \times\left(1+L_{t_{0}}\right)+R_{t_{0}} \times c_{t_{0}}=105+43.30 \times 0.033=106.43$.
Now
$F_{t_{1}}=\frac{100}{1.05^{4}}=82.27$.
Thus, the new

$$
R_{t_{1}}=2 \times\left(V_{t_{1}}-F_{t_{1}}\right)=2 \times 24.16=48.32
$$

Period 2

Calculate

$$
\begin{aligned}
V_{t_{2}} & =V_{t_{1}} \times\left(1+L_{t_{0}}\right)+R_{t_{1}} \times c_{t_{1}} \\
=111.75+48.32 \times(0.036) & =113.49 .
\end{aligned}
$$

Hence
$F_{t_{2}}=\frac{100}{1.05^{3}}=86.38$.
Thus, the new

$$
R_{t_{2}}=2 \times\left(V_{t_{2}}-F_{t_{2}}\right)=2 \times 27.11=54.22
$$

Period 3

Calculate

$$
\begin{aligned}
& V_{t_{3}}=V_{t_{2}} \times\left(1+L_{t_{0}}\right)+R_{t_{2}} \times c_{t_{2}} \\
& =119.16+54.22 \times 0.032=120.90 .
\end{aligned}
$$

Here

$$
F_{t_{3}}=\frac{100}{1.05^{2}}==90.70
$$

Thus, the new

$$
R_{t_{3}}=2 \times\left(V_{t_{3}}-F_{t_{3}}\right)=2 \times 30.200=60.40
$$

(c) Now there is a default and the index is $c_{t_{3}}=370$. The notional investment iTraxx XO was 53.30 which becomes $53.40 \times 29 / 30$. An amount of $60.40 / 30$ has to be paid, but with recovery rate $40 \%, 60.40 / 30 \times 0.40$ is recovered. Hence

$$
\begin{aligned}
& V_{t_{4}}=V_{t_{3}} \times\left(1+L_{t_{0}}\right)+\frac{R_{t_{2}}}{30} \times(1-0.4) \times R_{t_{2}} \times c_{t_{3}} \\
& =120.90 \times(1.05)-60.40 / 30 \times(1-0.4)+60.40 \times 29 / 30 \times 0.037=127.90 . \\
& F_{t_{4}}=\frac{100}{1.05}==95.24 .
\end{aligned}
$$

Thus, the new
$R_{t_{4}}=2 \times\left(V_{t_{4}}-F_{t_{4}}\right)=2 \times 32.68=65.36$

