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David Hilbert
(1862–1943)

David Hilbert was born in Königsberg, East Prus-
sia (now Kaliningrad, Russia), on January 23, 1862.
He was the first of two children of Otto and Maria
Therese Hilbert.

In 1872, Hilbert entered the Friedrichskolleg Gym-
nasium (senior secondary school) but transferred in
the fall of 1879 to the more science oriented Wil-
helm Gymnasium, where he graduated in 1880. Sub-

sequently, he attended the University of Königsberg and received his doctorate
there in 1885. In 1886, Hilbert qualified as an unpaid lecturer at the University
of Königsberg and acted in this capacity until 1892, when he replaced Adolf
Hurwitz as assistant professor. In 1895, he was appointed to chair at the Uni-
versity of Göttingen, where he remained until he retired in 1930.

Influenced by Ferdinand von Lindemann (who proved the transcendence
of π), Hilbert’s first work was on the theory of invariants. His activity moved
from algebraic forms to algebraic number theory, foundations of geometry,
analysis (including the calculus of variations and integral equations), theoreti-
cal physics, and, finally, to the foundations of mathematics. The invention of
the space that bears Hilbert’s name grew from his work in the field of integral
equations.

The treatise Der Zahlbericht (literally, “report on numbers”) was begun
in 1893 in partnership with Hermann Minkowski (who subsequently abandoned
the project). In this report, Hilbert collected, reorganized, and reshaped the in-
formation of algebraic number theory into a master work of mathematical
literature—for 50 years, Der Zahlbericht was the sacred canon of algebraic
number theory. Hilbert also wrote Grundlagen der Geometrie (Foundations of
Geometry), a text first published in 1899 and reaching its ninth edition in 1962,
which put geometry in a formal axiomatic setting.

In 1925, Hilbert contracted pernicious anemia, and although he recovered
from this illness, he did not resume his full scientific activity. Hilbert died in
Göttingen, Germany, on February 14, 1943.
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13
Hilbert Spaces
and Banach Spaces

The theory of normed spaces applies ideas from linear algebra, geometry, and
topology to problems of analysis. In this chapter we will study in detail the most
important examples of normed spaces, namely, Hilbert spaces and the classical
Banach spaces. These spaces, which are natural generalizations of Euclidean
n-space Rn and unitary n-space Cn, are ubiquitous in analysis. The examples
we study in this chapter also serve to motivate some general theorems that appear
in Chapter 14.

Section 13.1 discusses preliminaries on normed spaces; Sections 13.2 and 13.3
consider Hilbert spaces and bases and duality of Hilbert spaces; Section 13.4
examines Lp spaces; and Sections 13.5 and 13.6 investigate nonnegative linear
functionals on C(Ω) and the dual spaces of C(Ω) and C0(Ω).

13.1 PRELIMINARIES ON NORMED SPACES

In this section, we study some elementary properties of normed spaces. Specifi-
cally, we examine the relationship between continuity and linearity for mappings
of a normed space. We also present a criterion for a normed space to be complete.

In calculus, the following properties of derivative and integral are used so
often that their fundamental importance is indisputable:

(αf + βg)′(t) = αf ′(t) + βg′(t)∫ b

a

(αf + βg)(t) dt = α

∫ b

a

f(t) dt+ β

∫ b

a

g(t) dt.

These two formulas show that differentiation and integration are linear mappings
on appropriate spaces of functions.
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DEFINITION 13.1 Linear Mappings, Operators, and Functionals

Let Ω and Λ be linear spaces with the same scalar field. A function L: Ω → Λ is
said to be a linear mapping if for all x, y ∈ Ω and all scalars α the following
two conditions are satisfied:
a) L(x+ y) = L(x) + L(y).
b) L(αx) = αL(x).

Linear mappings are also referred to as linear operators or linear transfor-
mations; and in cases where Λ is the scalar field, linear mappings are usually
called linear functionals.

It follows easily from Definition 13.1 that a linear mapping L takes the linear
combination

∑n
j=1 αjxj to the linear combination

∑n
j=1 αjL(xj); that is, for

each n ∈ N ,

L

( n∑
j=1

αjxj

)
=

n∑
j=1

αjL(xj)

for all x1, x2, . . . , xn ∈ Ω and scalars α1, α2, . . . , αn.

EXAMPLE 13.1 Illustrates Definition 13.1

a) Let C1([0, 1]) denote the collection of all complex-valued functions on [0, 1]
that have everywhere defined and continuous derivatives. Then the function
D:C1([0, 1]) → C([0, 1]) defined by D(f) = f ′ is a linear mapping.

b) The function J :C([0, 1]) → C([0, 1]) defined by J(f)(x) =
∫ x

0
f(t) dt is a lin-

ear operator.

c) The function �:C([0, 1]) → C defined by �(f) =
∫ 1

0
f(t) dt is a linear func-

tional.
d) Let A be an m× n real matrix. Then the function T :Rm → Rn defined

by T (x) = xA is a linear mapping. Here xA denotes the product of x with A
as matrices, where x is considered a 1 ×m matrix. Such mappings are the
classical linear transformations studied in linear algebra.

The next proposition, whose proof is left to the reader as Exercise 13.1, con-
siders the relationship between continuity and linearity of mappings of normed
spaces. In the statement of the proposition, as often elsewhere in the text, we use
the symbol ‖ ‖ as a generic norm, letting context determine its exact meaning.

PROPOSITION 13.1

Let Ω and Λ be normed spaces with the same scalar field and L: Ω → Λ a linear
mapping. Then the following properties are equivalent:
a) L is continuous.
b) L is continuous at some point of Ω.
c) L is continuous at 0.
d) sup{ ‖L(x)‖ : ‖x‖ ≤ 1 } <∞.
e) There is a constant c such that ‖L(x)‖ ≤ c‖x‖ for all x ∈ Ω.
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Part (d) of Proposition 13.1 motivates the definition of a bounded linear
mapping, as given in Definition 13.2.

DEFINITION 13.2 Bounded Linear Mapping

Suppose Ω and Λ are normed spaces with the same scalar field and that L: Ω → Λ
is a linear mapping. If

‖L‖ = sup{ ‖L(x)‖ : ‖x‖ ≤ 1 } <∞,

then L is said to be a bounded linear mapping.

Proposition 13.1 shows that a linear mapping is bounded if and only if it
is continuous. Note that if L is a bounded linear mapping on Ω, then we
have ‖L(x)‖ ≤ ‖L‖‖x‖ for all x ∈ Ω.

EXAMPLE 13.2 Illustrates Definition 13.2

a) Let Ω be a normed space and let I: Ω → Ω be the identity function, that
is, I(x) = x for all x ∈ Ω. Then I is a bounded linear operator and we
have ‖I‖ = 1; I is called the identity operator on Ω.

b) The linear operator J defined in Example 13.1(b) is bounded and, in fact, it
is easy to show that ‖J‖ = 1.

c) The linear functional � defined in Example 13.1(c) is also bounded and, again,
it is easy to show that ‖�‖ = 1.

d) The linear mapping D defined in Example 13.1(a) is not bounded if C1([0, 1])
is given the norm ‖ ‖[0,1]. To establish this fact, consider the sequence of
functions defined by sn(x) = sinnπx. Clearly, ‖sn‖[0,1] = 1. However, be-
cause ‖D(sn)‖[0,1] = nπ, it follows that ‖D‖ = ∞.

e) The linear mappings discussed in Example 13.1(d) are bounded, as is implied
by Exercise 13.11(b).

When Ω and Λ are normed spaces with the same scalar field, the collection
of all bounded linear operators from Ω to Λ is denoted by B(Ω,Λ). If we define
addition and scalar multiplication in B(Ω,Λ) by

(L1 + L2)(x) = L1(x) + L2(x) and (αL1)(x) = αL1(x),

then B(Ω,Λ) becomes a linear space. Furthermore, ‖ ‖, as given in Defini-
tion 13.2, defines a norm on B(Ω,Λ). See Exercise 13.3.

From now on, unless specified otherwise, we will abbreviate the normed space
(B(Ω,Λ), ‖ ‖) by B(Ω,Λ). When Ω = Λ, we usually denote B(Ω,Λ) by B(Ω);
and when Λ is the scalar field, B(Ω,Λ) is denoted by Ω∗ and the norm ‖ ‖
by ‖ ‖∗. This latter space has a special name.

DEFINITION 13.3 Dual Space

Let Ω be a normed space. Then the space (Ω∗, ‖ ‖∗) of bounded linear functionals
on Ω is called the dual space of Ω.
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The following proposition, whose proof is left to the reader as Exercise 13.6,
provides a sufficient condition for the completeness of B(Ω,Λ).

PROPOSITION 13.2

Let Ω and Λ be normed spaces. If Λ is complete, then so is B(Ω,Λ). In particular,
the dual space (Ω∗, ‖ ‖∗) is complete.

We will discover that in many notable cases it is possible to find a concrete
description of the dual of a normed space. For example, we will prove later
that � ∈ C([0, 1])∗ if and only if there is a unique complex Borel measure μ
on [0, 1] such that �(f) =

∫
f dμ for all f ∈ C([0, 1]).

Banach Spaces

For normed spaces, completeness is a property of such consequence that those
possessing it are called Banach spaces, after the noted mathematician Stefan
Banach. (See the biography at the beginning of Chapter 14 for more on Banach.)

DEFINITION 13.4 Banach Space

A complete normed space is called a Banach space.

EXAMPLE 13.3 Illustrates Definition 13.4

a) Exercises 10.59 and 10.60 on page 378 show Rn and Cn are Banach spaces.
b) By Proposition 13.2, B(Ω,Λ) is a Banach space whenever Λ is; in particular,

Ω∗ is always a Banach space.
c) If Ω is a compact topological space, then C(Ω) is a Banach space.
d) If Ω is locally compact but not compact, then Exercise 11.57(c) on page 422

shows that C0(Ω) and Cb(Ω) are Banach spaces.
e) If (Ω,A, μ) is a measure space, then L∞(μ) is a Banach space.

Our next proposition characterizes completeness in normed spaces in terms
of infinite series. First let us recall some concepts from Chapter 10. If {xn}∞n=1

is a sequence of elements in a normed space Ω, then the expression
∑∞

n=1 xn
is called an infinite series. The sequence {sn}∞n=1 of elements of Ω defined
by sn =

∑n
k=1 xk is called the associated sequence of partial sums. We say

the infinite series converges if the sequence of partial sums converges, that is,
if limn→∞ sn exists.

Closely related to the concept of convergence of series is the concept of ab-
solute convergence of series. If {xn}∞n=1 is a sequence of elements in a normed
space Ω, then the infinite series

∑∞
n=1 xn is said to be absolutely convergent

or to converge absolutely if
∑∞

n=1 ‖xn‖ <∞. In the normed space R, a se-
ries of nonnegative terms converges if and only if it converges absolutely. On the
other hand, the series

∑∞
n=1(−1)n/n converges but does not converge absolutely.

From calculus, we know that every absolutely convergent series of real num-
bers converges. The following proposition shows that this property characterizes
Banach spaces.
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PROPOSITION 13.3

A normed space Ω is a Banach space if and only if every absolutely convergent
series in Ω converges.

PROOF Suppose Ω is a Banach space. Let
∑∞

n=1 xn be an absolutely convergent series.
The sequence of partial sums sn =

∑n
k=1 xn satisfies ‖sn − sm‖ ≤

∑n
k=m+1 ‖xk‖

for m < n. Therefore, it follows that {sn}∞n=1 is a Cauchy sequence. So, by
completeness, limn→∞ sn exists.

Conversely, suppose that every absolutely convergent series in Ω converges.
Let {yn}∞n=1 be a Cauchy sequence. In view of Exercise 10.79 on page 385,
to prove that {yn}∞n=1 converges, we need only show that it has a conver-
gent subsequence. By repeatedly applying the Cauchy property, we obtain
a subsequence {ynk

}∞k=1 such that ‖ynk+1
− ynk

‖ < 2−k. Now, let x1 = yn1

and xk = ynk
− ynk−1

for k ≥ 2. Then
∑∞

k=1 xk converges absolutely. Because

ynk
=

∑k
j=1 xj , we conclude that limk→∞ ynk

exists.

Exercises for Section 13.1

13.1 Prove Proposition 13.1 on page 454.

13.2 Let L ∈ B(Ω,Λ), where Ω and Λ are normed spaces. Prove that

‖L‖ = sup{ ‖L(x)‖ : ‖x‖ < 1 } = sup{ ‖L(x)‖ : ‖x‖ = 1 }.

13.3 Suppose that Ω and Λ are normed spaces. Prove that ‖ ‖, as defined in Definition 13.2
on page 455, is a norm on the space B(Ω,Λ).

13.4 Let g ∈ C([0, 1]), and consider the linear operator Lg:C([0, 1]) → C([0, 1]) defined by
Lg(f) = gf . Show that Lg is continuous and find ‖Lg‖.

13.5 Show that each of the following functions is a continuous linear functional on C([0, 1])
and find its norm:
a) �(f) = f(0).

b) �(f) =
∫ 1

0
f(t) dt.

c) �(f) =
∫ 1

0
f(t)h(t) dt, where h ∈ L1([0, 1]).

13.6 Prove Proposition 13.2.

13.7 Let C1([0, 1]) be defined as in Example 13.1(a) on page 454.
a) Show that C1([0, 1]) is not a closed subspace of C([0, 1]).
b) Conclude that C1([0, 1]) equipped with the norm ‖ ‖[0,1] is not a Banach space.

13.8 Show that the space C1([0, 1]) defined in Example 13.1(a) on page 454 becomes a
Banach space if it is equipped with the norm ‖f‖ = |f(0)| + ‖f ′‖[0,1].

13.9 Refer to Example 10.6 on pages 366–367, and let Ω be a nonempty set. Show that the
spaces �1(Ω), �2(Ω), and �∞(Ω) are all Banach spaces.

13.10 Prove that there exist discontinuous linear functionals on any infinite dimensional
normed space.

13.11 This exercise shows that all linear mappings on Euclidean n-space or unitary n-space
are continuous.
a) Show that all linear functionals on Cn or Rn are continuous.
b) Show that all linear mappings from Cn or Rn into a normed space are continuous.

13.12 Let S be a linear subspace of the normed space Ω. Prove that if S◦ �= ∅, then S = Ω.
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13.13 Let Γ and Λ be normed spaces. Define

‖(x, y)‖1 = ‖x‖ + ‖y‖,
‖(x, y)‖2 = (‖x‖2 + ‖y‖2)1/2,

‖(x, y)‖∞ = max{‖x‖, ‖y‖}.
a) Prove that each of the three expressions defines a norm on the Cartesian product

space Γ × Λ.
b) Prove that all three norms are equivalent.

13.14 Let ‖ ‖1 be the norm on C([0, 1]) defined by ‖f‖1 =
∫ 1

0
|f(t)| dt.

a) Show that ‖f‖1 ≤ ‖f‖[0,1].
b) Are ‖ ‖1 and ‖ ‖[0,1] equivalent?

13.2 HILBERT SPACES

Perhaps because they are such natural generalizations of the standard Euclidean
space (Rn, ‖ ‖2), Hilbert spaces appear more frequently in mathematics than
other Banach spaces. In addition to being intrinsically important, the theory of
Hilbert spaces also merits an extensive discussion because it serves as a model
for the general theory of Banach spaces. In this section, we begin our treatment
of Hilbert space theory.

DEFINITION 13.5 Inner Product, Inner Product Space

Let X be a linear space with scalar field F either R or C. An inner product
on X is a function 〈 , 〉:X × X → F that satisfies the following conditions for
all x, y, z ∈ X and α, β ∈ F :
a) 〈αx+ βy, z〉 = α〈x, z〉 + β〈y, z〉.
b) 〈x, y〉 = 〈y, x〉 if F = R or 〈x, y〉 = 〈y, x〉 if F = C.
c) 〈x, x〉 ≥ 0.
d) 〈x, x〉 = 0 if and only if x = 0.

If 〈 , 〉 is an inner product on X , then the pair (X , 〈 , 〉) is called an inner
product space.

Note: When it is clear from context which inner product is being considered,
the inner product space (X , 〈 , 〉) will be indicated simply by X . And, although
we usually denote an inner product by 〈 , 〉, it is sometimes convenient to have
slight variations of this notation such as 〈 , 〉2 or [ , ].

EXAMPLE 13.4 Illustrates Definition 13.5

a) Cn is an inner product space if we define

〈z, w〉 =
n∑

k=1

zkwk,

where z = (z1, . . . , zn) and w = (w1, . . . , wn).
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b) Rn is an inner product space if we define

〈x, y〉 =

n∑
k=1

xkyk,

where x = (x1, . . . , xn) and y = (y1, . . . , yn). This inner product is the clas-
sical “dot product” encountered in vector-calculus courses.

Note: When we consider Cn or Rn as an inner product space, we will assume
that the inner product is as in this example unless we state otherwise.

THEOREM 13.1

Let X be an inner product space. Then, for all x, y ∈ X ,
a) 〈x+ y, x+ y〉 = 〈x, x〉 + 2
〈x, y〉 + 〈y, y〉.
b) |〈x, y〉|2 ≤ 〈x, x〉〈y, y〉. (Cauchy’s inequality)

Moreover, if y �= 0, then equality holds in (b) if and only if x = αy for some
scalar α.

PROOF a) From Definition 13.5, we have

〈x+ y, x+ y〉 = 〈x, x+ y〉 + 〈y, x+ y〉
= 〈x, x〉 + 〈x, y〉 + 〈x, y〉 + 〈y, y〉
= 〈x, x〉 + 2
〈x, y〉 + 〈y, y〉,

(13.1)

as required.
b) If in (13.1) we replace y by −ty where t is a real scalar, then we obtain the

polynomial
p(t) = 〈x− ty, x− ty〉 = γ + βt+ αt2,

where α = 〈y, y〉, β = −2
〈x, y〉, γ = 〈x, x〉. By Definition 13.5(c), we have
p(t) ≥ 0. It follows that p(t) has at most one real root. Thus, β2 − 4αγ ≤ 0,
that is,

(
〈x, y〉)2 ≤ 〈x, x〉〈y, y〉. (13.2)

The proof of (b) is now complete in the case of real scalars. If the scalar field
is C, we choose θ ∈ [0, 2π) so that eiθ〈x, y〉 = |〈x, y〉| and use Definition 13.5
and (13.2) to obtain

|〈x, y〉|2 = (
〈eiθx, y〉)2 ≤ 〈eiθx, eiθx〉〈y, y〉
= eiθe−iθ〈x, x〉〈y, y〉 = 〈x, x〉〈y, y〉.

Therefore, (b) holds in any case.

Suppose now that the scalar field is R, y �= 0, and that equality holds in (b).
Then the polynomial p(t) has a root at t = −β/(2α). It follows from Defini-
tion 13.5(d) that x = −(β/(2α))y. If the scalar field is C, we choose θ as in
the preceding paragraph. Then equality in (b) yields eiθx = −(β/(2α))y by an
argument similar to that used in the real case.

We have referred to the inequality in part (b) of Theorem 13.1 as Cauchy’s
inequality. But it is also known as the Schwarz, Cauchy-Schwarz, Bunyakovski,
or Cauchy-Bunyakovski-Schwarz (CBS) inequality.
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EXAMPLE 13.5 Illustrates Definition 13.5 and Theorem 13.1

Suppose z1, . . . , zn, w1, . . . , wn ∈ C. Then it follows from Theorem 13.1 and Ex-
ample 13.4 that ∣∣∣∣

n∑
k=1

zkwk

∣∣∣∣
2

≤
( n∑

k=1

|zk|2
)( n∑

k=1

|wk|2
)
.

This result is Cauchy’s inequality for finite sequences of complex numbers.

EXAMPLE 13.6 Illustrates Definition 13.5 and Theorem 13.1

Refer to Example 10.6(b) on page 367. Let (Ω,A, μ) be a measure space. Re-
call that L2(μ) consists of all complex-valued A-measurable functions that sat-
isfy

∫
Ω
|f |2 dμ <∞. Also recall that we identify functions that are equal μ-ae.

We will show that

〈f, g〉 =

∫
Ω

fg dμ (13.3)

defines an inner product on L2(μ).
Because of properties of Lebesgue integration that we established in Chapter 5,

we need only prove that

f, g ∈ L2(μ) ⇒ fg ∈ L1(μ). (13.4)

But this follows immediately from the simple inequality 2|fg| ≤ |f |2 + |g|2.
From now on, whenever we consider L2(μ) in the context of inner product

spaces, we will always use the inner product defined by (13.3).

EXAMPLE 13.7 Illustrates Definition 13.5 and Theorem 13.1

Let (Ω,A, P ) be a probability space. By Example 13.6, the function 〈 , 〉 defined
by 〈X,Y 〉 = E(XY ) is an inner product on the space of all random variables with
finite variances where, again, we identify two random variables that are equal
with probability one. Note that

Cov(X,Y ) = E((X − E(X))(Y − E(Y ))) = 〈(X − E(X)), (Y − E(Y ))〉

and, in particular, Var(X) = 〈(X − E(X)), (X − E(X))〉.
The correlation coefficient of two random variables X and Y with finite

variances is defined by

ρX,Y = Cov(X,Y )/
√

Var(X)Var(Y ).

This quantity is used extensively in probability, statistics, and stochastic pro-
cesses. From Cauchy’s inequality, we see that −1 ≤ ρX,Y ≤ 1.

COROLLARY 13.1

Let X be an inner product space. Define ‖ ‖:X → R by

‖x‖ =
√

〈x, x〉.
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Then the following properties hold.
a) The function ‖ ‖ is a norm on X .
b) We have

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

for all x, y ∈ X .
c) The inner product is continuous with respect to the product topology induced

on X × X by the norm ‖ ‖.

PROOF a) Definition 10.9 on page 365 gives the three conditions for being a norm. It is
easy to check that ‖ ‖ satisfies the first two conditions. To verify the third
condition, we use Theorem 13.1 to conclude that

‖x+ y‖2 = ‖x‖2 + 2
〈x, y〉 + ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2

= (‖x‖ + ‖y‖)2.

This display gives the required result.
b) Applying Theorem 13.1 again, we obtain that

‖x+ y‖2 = ‖x‖2 + 2
〈x, y〉 + ‖y‖2

and, replacing y by −y in the previous equation, we get

‖x− y‖2 = ‖x‖2 − 2
〈x, y〉 + ‖y‖2.

Adding corresponding sides of the two preceding equalities yields (b).
c) We leave the proof of part (c) to the reader as Exercise 13.15.

In the future, we will assume that every inner product space is also a normed
space, equipped with the norm defined in Corollary 13.1. If an inner product
space is complete, it is called a Hilbert space in honor of the mathematician
David Hilbert. (See the biography at the beginning of this chapter for more
about Hilbert.)

DEFINITION 13.6 Hilbert Space

An inner product space that is complete with respect to its norm is called a
Hilbert space.

We already know that Rn and Cn are Hilbert spaces. Later in this chapter,
we will prove that all spaces of the form L2(μ) are Hilbert spaces. But for now,
we will content ourselves with knowing that L2(μ)-type spaces are inner product
spaces, as we showed in Example 13.6.
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Nearest Points

The standard Euclidean plane (R2, ‖ ‖2) serves to illustrate an essential property
of Hilbert spaces that we will prove in Theorem 13.2. We know that the linear
subspaces of R2 are {(0, 0)}, R2, and lines passing through (0, 0). If L is a line
through (0, 0) and if x ∈ R2, then the point y0 of intersection of L and the line
through x perpendicular to L is the unique point on L that is nearest to x. What
is important for us is that y0 is completely determined by the conditions

y0 ∈ L and 〈x− y0, y〉 = 0 for all y ∈ L,

as seen in Fig. 13.1.

y0

0

L
x− y0

yx

FIGURE 13.1

This property of the Euclidean plane serves to motivate the following impor-
tant theorem about Hilbert spaces.

THEOREM 13.2

Let H be a Hilbert space and K a closed linear subspace of H. For each x ∈ H
there is a unique point y0 ∈ K such that

‖x− y0‖ = ρ(x,K),

where ρ(x,K) = inf{ ‖x− y‖ : y ∈ K }. Furthermore, the point y0 is determined
by the conditions

y0 ∈ K and 〈x− y0, y〉 = 0 for all y ∈ K. (13.5)

In other words, (13.5) determines the unique nearest point of K to x.
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PROOF We establish the theorem when the scalar field is C; the proof for real scalars is
obtained by a slight modification. To begin, we select a sequence {yn}∞n=1 ⊂ K
such that limn→∞ ‖x− yn‖ = ρ(x,K). We claim that {yn}∞n=1 is a Cauchy se-
quence. Setting x = x− yn and y = x− ym in Corollary 13.1, we obtain

4‖x− (yn + ym)/2‖2 + ‖yn − ym‖2 = 2‖x− yn‖2 + 2‖x− ym‖2.

Since K is a linear subspace, (yn + ym)/2 ∈ K. It follows that

‖yn − ym‖2 ≤ 2‖x− yn‖2 + 2‖x− ym‖2 − 4ρ(x,K)2. (13.6)

Because the right-hand side of (13.6) tends to 0 as n,m→ ∞, we conclude
that {yn}∞n=1 is a Cauchy sequence.

By completeness, y0 = limn→∞ yn exists and, because K is closed, y0 ∈ K.
Moreover,

‖x− y0‖ = lim
n→∞ ‖x− yn‖ = ρ(x,K).

To verify (13.5), it suffices to consider the case where y ∈ K \ {0}. Suppose
that y0 is a point of K nearest to x. By Theorem 13.1(a), we have

‖x− y0 − αy‖2 = ‖x− y0‖2 − 2
α〈x− y0, y〉 + |α|2‖y‖2

for all scalars α. Choosing α = 〈x− y0, y〉/‖y‖2, we obtain

‖x− y0 − αy‖2 = ‖x− y0‖2 − |〈x− y0, y〉|2/‖y‖2.

Because K is a linear subspace, it follows that y0 + αy ∈ K. Hence,

‖x− y0‖2 = ρ(x,K)2 ≤ ‖x− (y0 + αy)‖2 = ‖x− y0‖2 − |〈x− y0, y〉|2/‖y‖2

and, consequently, 〈x− y0, y〉 = 0.
Suppose, on the other hand, that y0 is an element of K that satisfies (13.5).

Then, for every y ∈ K,

‖x− y‖2 = ‖x− y0 + y0 − y‖2

= ‖x− y0‖2 + 2
〈x− y0, y0 − y〉 + ‖y0 − y‖2

= ‖x− y0‖2 + ‖y0 − y‖2 ≥ ‖x− y0‖2.

(13.7)

Thus, y0 is a point of K nearest to x.
It remains to prove that y0 is unique. Let y1 be a point of K nearest to x.

Then, by (13.7),

‖x− y0‖2 = ‖x− y1‖2 = ‖x− y0‖2 + ‖y0 − y1‖2

and, therefore, ‖y0 − y1‖2 = 0. It follows that y0 = y1.
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EXAMPLE 13.8 Illustrates Theorem 13.2

a) Let (x1, y1), (x2, y2), . . . , (xn, yn) be n points in the plane. In statistics and
other fields, it is important to find the straight line that best fits the n points
in the sense of minimizing the sum of squared errors. That is, the problem is
to find real numbers α and β that minimize

n∑
j=1

(
yj − (α+ βxj)

)2
.

The resulting line is called the least-squares line or regression line.
We can apply Theorem 13.2 to determine the regression line by proceed-

ing as follows. Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), w = (1, 1, . . . , 1),
and K = { aw + bx : a, b ∈ R}. Finding the regression line is equivalent to
obtaining the element y0 of K nearest to y. Writing y0 = αw + βx, we ap-
ply (13.5) to get the equations

〈αw + βx,w〉 = 〈y, w〉 and 〈αw + βx, x〉 = 〈y, x〉

or, equivalently,

nα+ β
n∑

j=1

xj =

n∑
j=1

yj and α

n∑
j=1

xj + β

n∑
j=1

x2
j =

n∑
j=1

xjyj .

We thus have two linear equations in the two unknowns α and β. The so-
lution, which we leave to the reader, gives the slope and y-intercept of the
regression line.

b) Let μ be the measure on [−1, 1] defined by μ(E) = λ(E)/2. The quantity

‖f − g‖2 =

(
1

2

∫ 1

−1

|f(x) − g(x)|2 dx
)1/2

can be thought of as the average distance between f and g. We will use
Theorem 13.2 to find the function of the form g(x) = αx+ β that minimizes
the average distance to f(x) = x2. The function g must satisfy

∫ 1

−1

(x2 − αx− β)(γx+ δ) dx = 0

for all γ, δ ∈ C. A calculation shows that 2(δ − αγ)/3 − 2βδ = 0 for all γ
and δ. It follows that α = 0 and β = 1/3. Thus, the best approximation
to x2 of the form αx+ β in the sense of the L2(μ)-norm is the constant
function g(x) = 1/3.

c) Refer to Example 13.7. Let (Ω,A, P ) be a probability space and X a ran-
dom variable with finite variance. We will use Theorem 13.2 to determine
the constant c that minimizes E((X − c)2). Applying (13.5) to the subspace
generated by the random variable 1, we obtain the equation E((X − c)1) = 0.
Thus, c = E(X) minimizes E((X − c)2), and we see that the minimum value
is Var(X).
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A close reading of the proof of Theorem 13.2 reveals that more than just that
theorem has been established. We did not fully use the assumption that H is
complete; rather, we only needed the completeness of the linear subspace K.
The assumption that K is a linear subspace of H can also be relaxed.

Recall that a subset S of a linear space is said to be a convex set if for
all x, y ∈ S and 0 ≤ α ≤ 1, we have αx+ (1 − α)y ∈ S; in words, whenever S
contains two points, it also contains the entire line segment that connects the
two points. If C is a closed convex subset, but not necessarily a linear subspace,
of a Hilbert space H, then we can still obtain a unique nearest point. However,
(13.5) is in general no longer valid. (See Exercise 13.22.)

Theorem 13.2 enables us to associate with each closed linear subspace K of
a Hilbert space H the function PK :H → H, where PK(x) is the point of K
nearest to x. The properties of the function PK are explored in Exercise 13.26
where, in particular, it is shown that it is a bounded linear operator on H with
range K. The operator PK is often referred to as the orthogonal projection
of H onto K.

Orthogonality

From calculus, the ordinary dot product on R2 satisfies 〈x, y〉 = ‖x‖‖y‖ cos θ,
where θ is the angle between x and y. Thus, two vectors in R2 are perpen-
dicular if and only if their dot product is 0. Similarly, the condition 〈x, y〉 = 0
captures the notion of perpendicularity of two elements of a general inner prod-
uct space X . The term used for “perpendicular” in the context of inner product
spaces is orthogonal.

DEFINITION 13.7 Orthogonality

Let X be an inner product space. Two elements x and y of X are said to
be orthogonal if 〈x, y〉 = 0. For a subset S of X , we define the orthogonal
complement of S, denoted S⊥, to be the set of all elements of X that are
orthogonal to every element of S, that is,

S⊥ = { y ∈ X : 〈x, y〉 = 0 for all x ∈ S }.

EXAMPLE 13.9 Illustrates Definition 13.7

a) The elements (1, 0) and (0, 1) of R2 are orthogonal and the orthogonal com-
plement of {(1, 0)} is { (0, y) : y ∈ R}.

b) Recall that two random variables with finite variances are said to be uncor-
related if Cov(X,Y ) = 0. We see from Example 13.7 on page 460 that two
random variables are uncorrelated if and only if X − E(X) and Y − E(Y ) are
orthogonal.

It is left to the reader as Exercise 13.23 to prove that S⊥ is always a closed lin-
ear subspace. Moreover, it can be shown that in Hilbert spaces, (S⊥)⊥ = spanS,
as the reader is asked to verify in Exercise 13.25. Here we are using spanS to rep-
resent the span of S, that is, the linear subspace of all finite linear combinations
of elements of S.
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Our next result is a version of Theorem 13.2 that emphasizes the role of the
orthogonal complement. It also serves as the prototype for an important theorem
in the general theory of normed spaces that appears in Chapter 14.

THEOREM 13.3

Let K be a proper closed linear subspace of the Hilbert space H and x ∈ Kc.
Then there exists a unique z0 ∈ K⊥ such that ‖z0‖ = 1 and

ρ(x,K) = inf{ ‖x− y‖ : y ∈ K }
= sup{ |〈x, z〉| : z ∈ K⊥ and ‖z‖ ≤ 1 } = 〈x, z0〉.

(13.8)

PROOF Let y0 be the nearest point of K to x. If z ∈ K⊥ is such that ‖z‖ ≤ 1, then, by
the definition of K⊥ and Theorem 13.1, we have

|〈x, z〉| = |〈x− y0, z〉| ≤ ‖x− y0‖‖z‖ ≤ inf{ ‖x− y‖ : y ∈ K }. (13.9)

It follows that inf{ ‖x− y‖ : y ∈ K } ≥ sup{ |〈x, z〉| : z ∈ K⊥ and ‖z‖ ≤ 1 }. Let
z0 = (x− y0)/‖x− y0‖. By (13.5), z0 ∈ K⊥ and, furthermore,

inf{ ‖x− y‖ : y ∈ K } = ‖x− y0‖ = 〈x− y0, z0〉 = 〈x, z0〉
≤ sup{ |〈x, z〉| : z ∈ K⊥ and ‖z‖ ≤ 1 }.

(13.10)

The equations in (13.8) now follow from (13.9) and (13.10). The uniqueness of z0
is left to the reader as Exercise 13.28.

As a visual aid to understanding Theorem 13.3, we have constructed a simple
illustration of the theorem in Fig. 13.2.

y0

K

z0

x

K⊥

FIGURE 13.2
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Exercises for Section 13.2
Note: A ★ denotes an exercise that will be subsequently referenced.

13.15 Prove part (c) of Corollary 13.1 on pages 460–461.

13.16 Let (X , ‖ ‖) be a normed space with scalar field R.
a) Suppose the norm satisfies the identity in Corollary 13.1(b) on page 461. Show that

there is an inner product on X such that ‖ ‖ is the induced norm.
b) Repeat part (a) in case the scalar field is C.

13.17 A semi inner product on a linear space X is a function 〈 , 〉:X × X → F that satisfies
conditions (a), (b) and (c) of Definition 13.5 on page 458 and the following weakening
of condition (d): 〈x, x〉 = 0 if x = 0. Show that (a) and (b) of Theorem 13.1 remain
valid for semi inner products.

13.18 Let X be a linear space with inner product 〈 , 〉 and L:X → X a linear operator.
Show that [x, y] = 〈L(x), L(y)〉 defines a semi inner product on X in the sense of Ex-
ercise 13.17.

13.19 Let Ω be a nonempty set. Prove that �2(Ω) is a Hilbert space with respect to the inner
product given by 〈f, g〉 =

∫
Ω
fg dμ, where μ is counting measure on Ω.

13.20 Let (Ω,A, μ) be a measure space. Show that if f ∈ L2(μ), then there is a sequence of
simple functions {rn}∞n=1 ⊂ L2(μ) such that, as n → ∞, ‖f − rn‖2 → 0, ‖rn‖2 → ‖f‖2,
and rn → f μ-ae.

13.21 Let {Hn}∞n=1 be a sequence of Hilbert spaces and set

H =

{
x ∈

∞×
n=1

Hn :

∞∑
n=1

‖xn‖2 < ∞
}

.

Denote by 〈 , 〉 the inner product for each Hn. Show that H is a Hilbert space with
respect to the inner product defined by [x, y] =

∑∞
n=1

〈xn, yn〉.
13.22 Let C be a closed convex subset of a Hilbert space H. Show that for each x ∈ H, there

is a unique point y0 ∈ C such that ‖x− y0‖ = ρ(x,C).

13.23 Let S be a subset of an inner product space X . Show that S⊥ is a closed linear subspace
of X .

13.24 Verify the following properties of orthogonal complements:

a) A ⊂ B ⇒ B⊥ ⊂ A⊥.

b) A⊥ = (spanA)⊥.

c) D⊥ ∩ E⊥ = (D ∪ E)⊥.

13.25 Prove that in Hilbert spaces, (A⊥)⊥ = spanA.

★13.26 Let K be a closed linear subspace of a Hilbert space H and PK the associated orthogonal
projection. Verify the following properties.
a) PK is linear.
b) ‖PK(x)‖ ≤ ‖x‖, so that PK is continuous.
c) PK ◦ PK = PK .
d) P−1

K ({0}) = K⊥.
e) The range of PK is K.
f) PK⊥ = I − PK , where I is the identity operator on H. (See Exercise 13.25.)
g) Deduce from part (f) that each x ∈ H can be written uniquely as x = y + y⊥,

where y ∈ K and y⊥ ∈ K⊥.

13.27 Let y0 be a nonzero element of a Hilbert space H and set K = span{y0}. Find an
explicit formula for PK .

13.28 Verify the uniqueness of z0 in Theorem 13.3.
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13.3 BASES AND DUALITY IN HILBERT SPACES

As we know, the concepts of linear independence and basis play an essential role
in the theory of finite dimensional linear spaces. In the infinite dimensional case,
one can use Zorn’s lemma to prove the existence of a Hamel basis— a maximal
linearly independent set B— and then show that every element of the space can
be written uniquely as a finite linear combination of members of B.

Hamel bases are of little use in analysis, however, because they generally
cannot be obtained by a formula or constructive process. Fortunately, in Hilbert
spaces, there is an analogue of Hamel basis that is much better suited to the
needs of analysis. It is this notion of basis to which we now turn our attention.

DEFINITION 13.8 Orthogonal Set; Orthonormal Set and Basis

Let (X , 〈 , 〉) be an inner product space. A subset S ⊂ X is said to be an orthog-
onal set if every two distinct elements of S are orthogonal, that is, if 〈x, y〉 = 0
for all x, y ∈ S with x �= y. An orthogonal set S is said to be an orthonormal
set if ‖x‖ = 1 for each x ∈ S. If S is a nonempty orthonormal set and is con-
tained in no strictly larger orthonormal set, then S is called an orthonormal
basis, or simply a basis.

EXAMPLE 13.10 Illustrates Definition 13.8

a) The set of elements {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1)} is an
orthonormal set in Cn. Clearly, it is also a basis.

b) Let Ω be a nonempty set. For each x ∈ Ω, let dx denote the function that
is 1 at x and 0 at all other points of Ω. Then { dx : x ∈ Ω } is an orthonormal
set in �2(Ω). We will see later that it is also an orthonormal basis.

c) For each n ∈ Z, define en(x) = (2π)−1/2einx. It is easy to see that the col-
lection of functions { en : n ∈ Z } is an orthonormal set in L2([−π, π]). Later
we will show that it is an orthonormal basis as well.

Our next theorem provides some fundamental properties of orthonormal sets.

THEOREM 13.4

Let X be an inner product space and E = {e1, e2, . . . , en} a finite orthonormal
subset of X . Then the following properties hold.

a) E is linearly independent.

b) ‖
∑n

j=1 αjej‖2 =
∑n

j=1 |αj |2 for any choice of scalars α1, α2, . . . , αn.

c) For each x ∈ X , we have
∑n

j=1 |〈x, ej〉|2 ≤ ‖x‖2.

d) x =
∑n

j=1 〈x, ej〉ej for each x ∈ spanE.

e) spanE is a complete subspace of X , in particular, a closed subset of X .

f) For each x ∈ X , y0 =
∑n

j=1 〈x, ej〉ej is the unique nearest point of spanE to x,
that is, it is the unique member y of spanE such that ‖x− y‖ = ρ(x, spanE).
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PROOF The proofs of (a), (b), and (d) are left to the reader as Exercise 13.30. To
prove (c), let x ∈ X and y =

∑n
j=1 〈x, ej〉ej . By (b), ‖y‖2 =

∑n
j=1 |〈x, ej〉|2.

Also,

〈x, y〉 = 〈x,
∑n

j=1 〈x, ej〉ej〉 =

n∑
j=1

〈x, ej〉〈x, ej〉 =

n∑
j=1

|〈x, ej〉|2.

Applying Theorem 13.1(a) on page 459, we now obtain that

0 ≤ ‖x− y‖2 = ‖x‖2 − 2
〈x, y〉 + ‖y‖2 = ‖x‖2 −
n∑

j=1

|〈x, ej〉|2,

from which (c) follows immediately.
To prove (e), let {ym}∞m=1 be a Cauchy sequence in spanE. From Cauchy’s

inequality, we have

|〈ym, ek〉 − 〈y�, ek〉| ≤ ‖ym − y�‖.

Thus, {〈ym, ek〉}∞m=1 is a Cauchy sequence for k = 1, 2, . . . , n. Applying part (d)
and using the completeness of the scalars, we conclude that the limit

y = lim
m→∞ ym =

n∑
k=1

(
lim

m→∞ 〈ym, ek〉
)
ek

exists. Clearly, y ∈ spanE. We have now shown that spanE is complete. Since a
complete subset of a metric space is closed, it follows that spanE is closed in X .

Next we establish (f). By Theorem 13.2 on page 462 and the defining prop-
erties of inner product, it is enough to show that 〈x− y0, ek〉 = 0 for k = 1, 2,
. . . , n. Using the fact that E is an orthonormal set, we get

〈x− y0, ek〉 = 〈x, ek〉 −
n∑

j=1

〈x, ej〉〈ej , ek〉 = 〈x, ek〉 − 〈x, ek〉 = 0,

as required.

As an immediate consequence of Theorem 13.4(c), we get the following im-
portant result, known as Bessel’s inequality. Refer to Exercise 2.37 on page 46
for the meaning of the summation that occurs in that inequality.

COROLLARY 13.2 Bessel’s Inequality

Let E be an orthonormal subset of an inner product space X . Then

∑
e∈E

|〈x, e〉|2 ≤ ‖x‖2

for all x ∈ X .
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EXAMPLE 13.11 Illustrates Theorem 13.4

In the space L2([−π, π]), consider the linear subspace

Un = span{ ek : −n ≤ k ≤ n },

where ek(x) = (2π)−1/2eikx. As we noted in Example 13.10(c) on page 468,
{ en : n ∈ Z } is an orthonormal set. Therefore, { ek : −n ≤ k ≤ n } is a finite
orthonormal subset of L2([−π, π]). It is clear that Un is the space of complex
trigonometric polynomials of degree at most n.

Let f ∈ L2([−π, π]). Then, from Theorem 13.4(f), the nearest member of Un

to f is given by

sn =
∑
|k|≤n

〈f, ek〉ek.

The number

f̂(k) = (2π)−1/2〈f, ek〉 =
1

2π

∫ π

−π

f(x)e−ikx dx

is called the kth Fourier coefficient of f . Thus, the best approximation,

sn(x) =
∑
|k|≤n

〈f, ek〉ek =

n∑
k=−n

f̂(k)eikx,

is the nth partial sum of the Fourier series
∑∞

k=−∞ f̂(k)eikx associated with
the function f .

More examples of orthonormal sets can be found by using the procedure de-
scribed in the proof of the following theorem.

THEOREM 13.5

Let {xm}∞m=1 be a sequence of elements in an inner product space X and as-
sume that x1 �= 0. Then there is a countable orthonormal set {y1, y2, . . .} and a
nondecreasing sequence of integers {k(m)}∞m=1 such that

span{x1, x2, . . . , xm} = span{y1, y2, . . . , yk(m)}

for each m ∈ N .

PROOF We outline an argument by mathematical induction, but leave the details for
Exercise 13.31.

Let y1 = x1/‖x1‖. Proceeding inductively, suppose y1, y2, . . . , yk(m) have
been chosen so that {y1, y2, . . . , yk(m)} is an orthonormal set and

span{x1, x2, . . . , xm} = span{y1, y2, . . . , yk(m)}.

Define

v = xm+1 −
k(m)∑
j=1

〈xm+1, yj〉yj .

Then we find that v is orthogonal to yj for j = 1, 2, . . . , k(m).
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If v = 0, then xm+1 ∈ span{y1, y2, . . . , yk(m)}, and we let k(m+ 1) = k(m).
If v �= 0, we let k(m+ 1) = k(m) + 1, and we define yk(m+1) = v/‖v‖; then
{y1, y2, . . . , yk(m), yk(m+1)} is an orthonormal set. In either case, we have that

span{x1, x2, . . . , xm, xm+1} = span{y1, y2, . . . , yk(m+1)},

as required.

The following theorem provides several equivalent conditions for an orthonor-
mal set in a Hilbert space to be a basis. It also makes clear why bases in the
sense of Definition 13.8 are appropriate analogues of Hamel bases.

Before stating the theorem, we need to discuss generalized sums in normed
spaces. Let {xι}ι∈I be an indexed collection of elements of a normed space.
Then we say that the sum

∑
ι∈I xι converges if there are only countably many

nonzero terms and if for every enumeration of these terms, the resulting series
converges to the same element.

THEOREM 13.6

Let H be a Hilbert space and E an orthonormal subset of H. Then the following
properties are equivalent:

a) E is a basis.

b) spanE = H.

c) 〈x, e〉 = 0 for each e ∈ E implies x = 0.

d) For each x ∈ H, we have x =
∑

e∈E 〈x, e〉e.
e) ‖x‖2 =

∑
e∈E |〈x, e〉|2 for each x ∈ H.

PROOF (a) ⇒ (b): If spanE �= H, then by Theorem 13.2 on page 462, we can find
a nonzero element z ∈ (spanE)⊥. Let e0 = z/‖z‖. We note that E ∪ {e0} is
orthonormal and properly contains E. Thus, E is not a basis.

(b) ⇒ (c): Suppose that 〈x, e〉 = 0 for each e ∈ E. It follows from the properties
of an inner product that 〈x, y〉 = 0 for each y ∈ spanE. Using the continuity of
the inner product, we conclude that x is orthogonal to every element of spanE,
which by assumption equals H. Therefore, 〈x, x〉 = 0 and, so, x = 0.

(c) ⇒ (d): It follows from Bessel’s inequality that
∑

e∈E |〈x, e〉|2 <∞. Using
that fact and Exercise 2.37(c) on page 46, we see that E0 = { e ∈ E : 〈x, e〉 �= 0 }
is either countably infinite or finite. We will deal with the former case; the
latter one is handled in a similar manner. Let {en}∞n=1 be an enumeration
of E0 and define xn =

∑n
j=1 〈x, ej〉ej . If n < m, then Theorem 13.4(b) implies

that ‖xn − xm‖2 =
∑m

j=n+1 |〈x, ej〉|2. It now follows that {xn}∞n=1 is Cauchy
and, therefore, converges to some y ∈ H. We claim that y = x. For each e ∈ E,
we have

〈x− y, e〉 = 〈x, e〉 −
∞∑
j=1

〈x, ej〉〈ej , e〉. (13.11)

If e is not in E0, then 〈x, e〉 = 0 and 〈ej , e〉 = 0 for each j. If e = ek for some k,
then the right-hand side of (13.11) reduces to 〈x, ek〉 − 〈x, ek〉. Thus, x− y is
orthogonal to each element of E. It follows from (c) that y = x.
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(d) ⇒ (e): It follows from (d) and the continuity of the inner product that

‖x‖2 = 〈x, x〉 =
∑
e∈E

〈x, e〉〈e, x〉 =
∑
e∈E

|〈x, e〉|2,

as required.

(e) ⇒ (a): If E is not a basis, we can find an element e0 ∈ H such that ‖e0‖ = 1
and 〈e0, e〉 = 0 for each e ∈ E. Thus,

‖e0‖2 = 1 �= 0 =
∑
e∈E

|〈e0, e〉|2.

The proof of the theorem is now complete.

EXAMPLE 13.12 Illustrates Theorem 13.6

Assume as known that L2([−π, π]) is complete, a fact that will be proved in the
next section. We will show that the orthonormal set { en : n ∈ Z }, introduced
in Example 13.10(c), is a basis for L2([−π, π]). By Theorem 13.6, it suffices to
show that if f ∈ L2([−π, π]) is such that∫ π

−π

f(x)e−inx dx = 0, n ∈ Z, (13.12)

then f = 0 ae.
From (13.12), it follows immediately that

∫ π

−π
f(x)p(x) dx = 0 for all trigono-

metric polynomials p. As the reader is asked to show in Exercise 13.34, there is a
sequence {pn}∞n=1 of trigonometric polynomials such that limn→∞ ‖f − pn‖2 = 0.
Using the continuity of the inner product, we conclude that∫ π

−π

|f(x)|2 dx =

∫ π

−π

f(x)f(x) dx = lim
n→∞

∫ π

−π

f(x)pn(x) dx = 0.

Hence, f vanishes ae.
Because { en : n ∈ Z } is a basis for L2([−π, π]), Theorem 13.6(d) implies that

each function f ∈ L2([−π, π]) has the Fourier series expansion

f(x) =

∞∑
n=−∞

f̂(n)einx,

where the convergence is in L2([−π, π]). Furthermore, Theorem 13.6(e) yields

1

2π

∫ π

−π

|f(x)|2 dx =

∞∑
n=−∞

|f̂(n)|2,

which is called Parseval’s identity.

Unless we know that a Hilbert space possesses a basis, Theorem 13.6 is of
little consequence. That every Hilbert space does in fact have a basis is part of
our next theorem.
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THEOREM 13.7

Let H be a Hilbert space, not {0}. Then the following properties hold.
a) H has a basis.
b) If E is a basis for a closed linear subspace K of H, then there exists a basis

for H that contains E as a subset.
c) H has a countable basis if and only if H is separable.

PROOF We prove (a) and leave (b) and (c) to the reader as Exercises 13.35 and 13.36.
Let O denote the collection of orthonormal subsets of H, ordered by ⊂. Suppose
that C is a chain of O. Then

⋃
O∈C O ∈ O is an upper bound for C. Thus, we

may apply Zorn’s lemma (page 15) to obtain a maximal element of O.

The Dual of a Hilbert Space

Let y be an element of the Hilbert space H. The mapping defined by

�(x) = 〈x, y〉, x ∈ H, (13.13)

is a linear functional and satisfies |�(x)| ≤ ‖x‖‖y‖. Thus, � belongs to the dual
space H∗. It is an important property of Hilbert spaces that all continuous linear
functionals are of the form (13.13).

THEOREM 13.8

Let H be a Hilbert space. Then � ∈ H∗ if and only if there is a y ∈ H such
that �(x) = 〈x, y〉 for each x ∈ H. Furthermore, ‖�‖∗ = ‖y‖.

PROOF We have already observed that functionals of the form (13.13) belong to H∗. Con-
versely, suppose that � ∈ H∗. If � is identically 0, then (13.13) holds with y = 0.
Otherwise, K = �−1({0}) is a proper closed linear subspace of H and, conse-
quently, K⊥ contains at least one nonzero element z. For each x ∈ H, we
have �(�(z)x− �(x)z) = 0. Thus,

0 = 〈�(z)x− �(x)z, z〉 = �(z)〈x, z〉 − �(x)〈z, z〉.

It follows that �(x) = 〈x, y〉, where y = (�(z)/〈z, z〉)z.
To find the norm of the linear functional �, we first apply Cauchy’s inequality

to get
‖�‖∗ = sup{ |〈x, y〉| : ‖x‖ ≤ 1 } ≤ ‖y‖.

Thus, if y = 0, then, trivially, ‖�‖∗ = ‖y‖. If y �= 0, we choose w = y/‖y‖ in
order to obtain ‖y‖ = 〈w, y〉 ≤ ‖�‖∗.

Remark: If E is a basis for a Hilbert space H, then we can write a formula for
the element y given in Theorem 13.8 in terms of the basis elements. Indeed,
noting that �(e) = 〈e, y〉, we have by Theorem 13.6 that

y =
∑
e∈E

〈y, e〉e =
∑
e∈E

�(e)e.

Theorem 13.8 is a prototype for results appearing in subsequent sections where
we find explicit formulas for bounded linear functionals on various Banach spaces.
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Exercises for Section 13.3

13.29 Verify the assertions of parts (b) and (c) of Example 13.10 on page 468.

13.30 Prove (a), (b), and (d) of Theorem 13.4 on page 468.

13.31 Provide the details for the proof of Theorem 13.5 on page 470.

13.32 In this exercise, E denotes an orthonormal set and H a Hilbert space.
a) Show that if e and e′ are distinct members of E, then ‖e− e′‖2 = 2.
b) Show that if the closed unit ball B1(0) of H is compact, then H is finite dimensional.

13.33 Let [a, b] be a closed bounded interval.
a) Prove that the continuous functions are dense in L2([a, b]).
b) Formulate and prove a similar result for unbounded intervals.

13.34 Prove that the trigonometric polynomials are dense in L2([−π, π]). Hint: Refer to
Exercise 13.33.

13.35 Prove part (b) of Theorem 13.7 on page 473.

13.36 Prove part (c) of Theorem 13.7 on page 473.

13.37 Let E be an orthonormal set of a Hilbert space H. Establish the following facts.
a) P

spanE(x) =
∑

e∈E
〈x, e〉e for all x ∈ H.

b) ρ(x, spanE)2 = ‖x‖2 −∑
e∈E

|〈x, e〉|2 for all x ∈ H.

c) If α is a scalar-valued function on E such that
∑

e∈E
|α(e)|2 < ∞, then the sum∑

e∈E
α(e)e converges.

13.38 Refer to Theorem 13.5 on page 470.
a) Apply the technique used in the proof of that theorem to the subset of L2([−1, 1])

that consists of 1, x, x2, . . . to obtain an orthonormal set of polynomials L0, L1, . . . .
Show that

Ln(x) = (n + 1/2)1/2(2nn!)−1dn(x2 − 1)n/dxn.

The polynomials (2nn!)−1dn(x2 − 1)n/dxn are called Legendre polynomials.
b) Show that {L0, L1, . . .} is a basis for L2([−1, 1]).

13.39 The Haar functions are functions on [0, 1] defined as follows. H0(t) = 1,

H1(t) =

{
1, t ∈ [0, 1/2];
−1, t ∈ (1/2, 1],

and

Hj(t) =

{
2n/2H1(2

nt− j + 2n), t ∈ [−1 + j/2n,−1 + (j + 1)/2n];
0, otherwise,

for 2n ≤ j < 2n+1. Show that the Haar functions form a basis for L2([0, 1]).

13.40 Let n ∈ N . Define a linear functional S on L2([−π, π]) by

S(f) =

n∑
k=−n

f̂(k).

Find a function g ∈ L2([−π, π]) such that S(f) =
∫ π

−π
f(x)g(x) dx.
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In Exercises 13.41–13.44, we will need the concepts of an isometric function and an
isomorphism of normed spaces. Let Ω and Λ be normed spaces and L: Ω → Λ. Then L
is said to be isometric (or to be an isometry) if ‖L(x)‖ = ‖x‖ for each x ∈ Ω. It is
said to be an isomorphism if it is linear, one-to-one, onto, and continuous and L−1

is also continuous.

13.41 Let H be a separable Hilbert space. Show that there is an isometric isomorphism
from H onto �2(N ).

13.42 Let H be a Hilbert space. Prove there is an isometric isomorphism from H onto �2(S)
for some set S.

13.43 Prove that the function g → 〈·, g〉 defines an isometric linear mapping from L2(μ)
onto L2(μ)

∗
.

13.44 Show that there is no isometric isomorphism from L2(R) onto L1(R).

13.4 Lp-SPACES

In Example 10.6 on pages 366–367, we introduced three normed spaces of mea-
surable functions: L1(μ), L2(μ), and L∞(μ). Now we will generalize to Lp(μ),
where p is any positive extended real number. These spaces are called Lp-spaces.

We will show that for p ≥ 1, Lp(μ) is a Banach space and will describe its
dual space in the spirit of Theorem 13.8 (page 473). The Lp-spaces, along with
spaces of the form C(Ω) where Ω is a compact Hausdorff space, are sometimes
referred to in the literature as the classical Banach spaces.

DEFINITION 13.9 Lp-Spaces

Let (Ω,A, μ) be a measure space, f a complex-valued A-measurable function
on Ω, and 0 < p ≤ ∞.

• For 0 < p <∞, we define

σp(f) =

∫
Ω

|f |p dμ

and

‖f‖p =

(∫
Ω

|f |p dμ
)1/p

.

• For p = ∞, we define

‖f‖∞ = inf{M : |f | ≤M μ-ae }.

The collection of complex-valued A-measurable functions f such that ‖f‖p <∞
is denoted Lp(Ω,A, μ) or, when no confusion can arise, simply Lp(μ). The
spaces Lp(Ω,A, μ), 0 < p ≤ ∞, are called Lp-spaces.
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Note: Under certain conditions, special notation is used for Lp-spaces:

• When μ is Lebesgue measure restricted to some Lebesgue measurable subset Ω
of Rn, we write Lp(Ω) for Lp(μ).

• When μ is counting measure on some set Ω, we write �p(Ω) for Lp(μ) and, in
the special case, Ω = N , we sometimes write simply �p.

As mentioned earlier, we identify functions that are equal μ-ae. Keeping
that in mind, we will see later that ‖ ‖p is a norm on the linear space Lp(μ)
when 1 ≤ p ≤ ∞. When 0 < p < 1, the space Lp(μ) is still a linear space,
but ‖ ‖p is no longer a norm. Rather, in this case, Lp(μ) is a metric space
with metric given by ρp(f, g) = σp(f − g). See Exercises 13.53–13.55.

EXAMPLE 13.13 Illustrates Definition 13.9

a) Let [a, b] be a closed bounded interval of R and 0 < p <∞. A complex-
valued Lebesgue measurable function f on [a, b] is in Lp([a, b]) if and only

if
∫ b

a
|f(x)|p dx <∞.

b) Let μ be counting measure on {1, 2}. Then the space of real-valued functions
in �p({1, 2}) can be identified with R2. We have

‖(x1, x2)‖p =

{
(|x1|p + |x2|p)1/p, 0 < p <∞;
max{|x1|, |x2|}, p = ∞.

Figure 13.3 shows the unit “circles” centered at (0, 0) in the metric space
(R2, ρ0.5) and in the normed space (R2, ‖ ‖p) for p = 1, 2, 3, and ∞.

x2

x1

p=0.5

p=1

p=2

p=3

p=∞

FIGURE 13.3 Selected unit circles
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c) Refer to Example 7.10(c) on page 251. Let (Ω,A, P ) be a probability space.
The random variables with finite nth moments are precisely those in Ln(P ).

d) Let μ be counting measure on N and 0 < p <∞. A sequence {an}∞n=1 of
complex numbers is in �p if and only if

∑∞
n=1 |an|p <∞.

Our next proposition, whose proof is left to the reader as Exercise 13.45,
provides some basic properties of Lp-spaces.

PROPOSITION 13.4

Let p be a positive extended real number. Then the following properties hold.
a) ‖αf‖p = |α|‖f‖p for all f ∈ Lp(μ) and scalars α.
b) Lp(μ) is a linear space.
c) For each f ∈ Lp(μ), there exists a sequence of simple functions {sn}∞n=1

in Lp(μ) such that sn → f μ-ae, ‖f − sn‖p → 0, and
∫
Ω
|sn|p dμ→

∫
Ω
|f |p dμ,

as n→ ∞.

In Section 13.2, we used Cauchy’s inequality to prove that an inner prod-
uct 〈 , 〉 induces a norm via ‖x‖ =

√
〈x, x〉. Similarly, we will use Hölder’s

inequality, a generalization of Cauchy’s inequality, to show that ‖ ‖p is a norm
when p ≥ 1.

THEOREM 13.9 Hölder’s Inequality

Let 1 ≤ p ≤ ∞ and q be such that 1/p+ 1/q = 1. Then for any two A-measurable
functions f and g, we have ∫

Ω

|fg| dμ ≤ ‖f‖p‖g‖q. (13.14)

Furthermore, if 1 < p <∞, then equality holds in (13.14) if and only if there are
constants α and β not both zero such that α|f |p = β|g|q.

PROOF Without loss of generality we can assume that ‖f‖p and ‖g‖q are finite and
nonzero. Suppose that 1 < p <∞. By the concavity of the natural log function
we have

ln |fg| = (1/p) ln |f |p + (1/q) ln |g|q ≤ ln((1/p)|f |p + (1/q)|g|q).

Thus,
|fg| ≤ (1/p)|f |p + (1/q)|g|q. (13.15)

If ‖f‖p = ‖g‖q = 1, it follows from (13.15) that∫
Ω

|fg| dμ ≤ (1/p)

∫
Ω

|f |p dμ+ (1/q)

∫
Ω

|g|q dμ = 1/p+ 1/q = 1 (13.16)

and, hence, (13.14) holds in that case. In general, we can replace f and g
by f/‖f‖p and g/‖g‖q, respectively, and use Proposition 13.4(a) and (13.16) to
obtain (‖f‖p‖g‖q)−1

∫
Ω
|fg| dμ ≤ 1.

We leave the cases p = 1 and p = ∞ and the “Furthermore, . . . ” part to the
reader as Exercises 13.46–13.47.
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THEOREM 13.10 Minkowski’s Inequality

Let 1 ≤ p ≤ ∞. Then
‖f + g‖p ≤ ‖f‖p + ‖g‖p

for all f, g ∈ Lp(μ).

PROOF The case p = 1 follows immediately from the inequality |f + g| ≤ |f | + |g|, and
the case p = ∞ follows from the fact that if |f | ≤M1 μ-ae and |g| ≤M2 μ-ae,
then |f + g| ≤M1 +M2 μ-ae.

Suppose that p ∈ (1,∞) and let q be defined via 1/p+ 1/q = 1. From

|f + g|p ≤ |f ||f + g|p−1 + |g||f + g|p−1

we get

‖f + g‖pp ≤
∫

Ω

|f ||f + g|p−1 dμ+

∫
Ω

|g||f + g|p−1 dμ. (13.17)

Noting that ∫
Ω

(|f + g|p−1)q dμ =

∫
Ω

|f + g|qp−q dμ = ‖f + g‖pp,

it follows from (13.17) and Hölder’s inequality that

‖f + g‖pp ≤ ‖f‖p‖f + g‖p/qp + ‖g‖p‖f + g‖p/qp .

Hence,
‖f + g‖p−p/q

p ≤ ‖f‖p + ‖g‖p.

Whereas p− p/q = 1, the proof is complete.

It follows from Proposition 13.4 and Theorem 13.10 that Lp(μ) is a normed
space when p ∈ [1,∞]. The next theorem shows that it is in fact a Banach space.

THEOREM 13.11 Riesz’s Theorem

For 1 ≤ p ≤ ∞, the normed space (Lp(μ), ‖ ‖p) is a Banach space, that is, a
complete metric space in the metric induced by the norm ‖ ‖p.

PROOF We leave the case p = ∞ to the reader as Exercise 13.51. By Proposition 13.3
on page 457, it suffices to show that the series

∑∞
n=1 fn converges with respect

to the norm ‖ ‖p whenever
∑∞

n=1 ‖fn‖p <∞.
Consider the nondecreasing sequence of functions defined by gn =

∑n
k=1 |fk|,

and set g = limn→∞ gn. It follows immediately from Minkowski’s inequality
that

∫
Ω
gpn dμ ≤ (

∑n
k=1 ‖fk‖p)p. Applying the monotone convergence theorem,

we obtain ∫
Ω

gp dμ ≤
( ∞∑

n=1

‖fn‖p
)p

<∞.

Hence, g must be finite μ-ae.
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It is easy to see that, whenever g(x) <∞, the sequence of partial sums
sn(x) =

∑n
k=1 fk(x) is Cauchy and, hence, convergent. Let

s(x) =

{
limn→∞ sn(x), if g(x) <∞;
0, if g(x) = ∞.

Then s ∈ Lp(μ) because
∫
Ω
|s|p dμ ≤

∫
Ω
|g|p dμ <∞. Also, by using the fact

that |s− sn|p ≤ gp and applying the dominated convergence theorem, we get

lim
n→∞ ‖s− sn‖pp = lim

n→∞

∫
Ω

|s− sn|p dμ = 0.

We have now shown that the series
∑∞

n=1 fn converges with respect to the
norm ‖ ‖p.

The Dual Space of Lp(μ)

We will now consider the problem of describing the bounded linear functionals
on Lp(μ). At this point, we restrict ourselves to the case where 1 < p <∞. To
begin, we observe that for g ∈ Lq(μ), where 1/p+ 1/q = 1, the linear functional
defined by

�(f) =

∫
Ω

fg dμ (13.18)

is continuous on Lp(μ). Indeed, by Hölder’s inequality, |�(f)| ≤ ‖f‖p‖g‖q and,
therefore,

‖�‖∗ ≤ ‖g‖q. (13.19)

We claim that equality holds in (13.19). If g = 0, there is nothing to prove. So
assume ‖g‖q �= 0 and set

s(x) =

{
g(x)/|g(x)|, if g(x) �= 0;
0, if g(x) = 0.

Then the function f0 = s|g|q−1/‖g‖q−1
q satisfies

∫
Ω

|f0|p dμ =

∫
Ω

|s|p|g|pq−p/‖g‖pq−p
q dμ =

∫
Ω

|g|q/‖g‖qq dμ = 1.

Hence, f0 ∈ Lp(μ) and ‖f0‖p = 1. Furthermore,

�(f0) =
1

‖g‖q−1
q

∫
Ω

s|g|q−1g dμ =
1

‖g‖q−1
q

∫
Ω

|g|q dμ = ‖g‖q.

It follows from this last equality and (13.19) that ‖�‖∗ = ‖g‖q.
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We have shown that functions in Lq(μ) induce bounded linear functionals
on Lp(μ) via the formula (13.18). Now the question is whether these exhaust
all bounded linear functionals on Lp(μ). The following theorem shows that the
answer is yes!

THEOREM 13.12 Riesz Representation Theorem

Let 1 < p <∞ and 1/p+ 1/q = 1. Then � ∈ Lp(μ)
∗

if and only if there exists a
unique g ∈ Lq(μ) such that

�(f) =

∫
Ω

fg dμ, f ∈ Lp(μ).

Furthermore, g satisfies ‖�‖∗ = ‖g‖q.

PROOF In view of our discussion directly before this theorem, we need only prove
necessity. So, assume that � ∈ Lp(μ)

∗
. We will work under the assumption

that (Ω,A, μ) is a finite measure space and leave the general case to the reader
as Exercises 13.62–13.65. We also leave the proof of the uniqueness of g for
Exercise 13.59.

Define the complex measure ν on A by ν(E) = �(χE). If μ(E) = 0, then we
have χE = 0 μ-ae and, so, ν(E) = �(χE) = 0. Thus, ν is absolutely continuous
with respect to μ. Applying the complex version of the Radon-Nikodym theorem
(page 326), we conclude that there exists a function g ∈ L1(μ) such that

�(χE) =

∫
E

g dμ, E ∈ A.

By linearity, it follows that �(φ) =
∫
Ω
φg dμ for all (A-measurable) simple func-

tions φ. Thus, |
∫
Ω
φg dμ| ≤ ‖�‖∗‖φ‖p for all simple functions. Let

s(x) =

{
g(x)/|g(x)|, if g(x) �= 0;
0, if g(x) = 0.

As the reader is asked to show in Exercise 13.60, we can find a sequence of simple
functions {ψn}∞n=1 such that |ψn| ≤ 1 μ-ae and ψn → s μ-ae. We have

∣∣∣∣
∫

Ω

ψnφg dμ

∣∣∣∣ ≤ ‖�‖∗‖ψnφ‖p ≤ ‖�‖∗‖φ‖p

and, applying the dominated convergence theorem, we obtain

∣∣∣∣
∫

Ω

φ|g| dμ
∣∣∣∣ ≤ ‖�‖∗‖φ‖p. (13.20)

We will use (13.20) to show that g belongs to the space Lq(μ).
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Let n ∈ N and En = {x : |g(x)| ≤ n }. The function f0 = χEn
|g|q−1 belongs

to Lp(μ). Hence, by Proposition 13.4 on page 477, there is a sequence {φk}∞k=1

of simple functions such that, as k → ∞, φk → f0 μ-ae and ‖φk‖p → ‖f0‖p. Re-
placing φk by χEn |φk| if necessary, we may assume without loss of generality
that the φks are nonnegative and vanish outside of En. Using Fatou’s lemma
and (13.20), we obtain

∫
En

|g|q−1|g| dμ ≤ lim inf
k→∞

∫
Ω

φk|g| dμ ≤ ‖�‖∗ lim inf
k→∞

‖φk‖p = ‖�‖∗‖f0‖p

= ‖�‖∗
(∫

En

|g|p(q−1) dμ

)1/p

= ‖�‖∗
(∫

En

|g|q dμ
)1/p

and, hence, that

(∫
En

|g|q dμ
)1/q

=

(∫
En

|g|q dμ
)1−1/p

≤ ‖�‖∗.

Letting n→ ∞ and applying the MCT, we get that ‖g‖q ≤ ‖�‖∗. Thus, g belongs
to Lq(μ).

Because g ∈ Lq(μ), the function �g defined by �g(f) =
∫
Ω
fg dμ is in Lp(μ)

∗
.

As � and �g agree on simple functions, Proposition 13.4 implies that they are
identical.

Remark: If p = 1, Theorem 13.12 remains valid under the additional assumption
that (Ω,A, μ) is σ-finite, as the reader is asked to prove in Exercise 13.61. An
example given in Chapter 14 shows that Theorem 13.12 fails when p = ∞.

In view of Theorem 13.12, we can write Lp(μ)
∗

= Lq(μ), for 1 < p <∞, and,
in the σ-finite case, for p = 1. However, for p = ∞, we can assert only that

L∞(μ)
∗ ⊃ L1(μ). (13.21)

See Exercise 13.58.

EXAMPLE 13.14 Illustrates Theorem 13.12

Refer to Example 13.11 on page 470. Let x ∈ [−π, π] and 1 < p <∞. Define the
linear functional �x on Lp([−π, π]) by

�x(f) =

n∑
k=−n

f̂(k)eikx.

Of course, �x just gives the value at x of the nth partial sum of the Fourier
series of f .
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First we show that �x is bounded and then we find the function g ∈ Lq([−π, π])
guaranteed by Theorem 13.12. From Hölder’s inequality,

|f̂(k)| =

∣∣∣∣ 1

2π

∫ π

−π

f(y)e−iky dy

∣∣∣∣ ≤ ‖f‖p
2π

(∫ π

−π

|e−iky|q dy
)1/q

= ‖f‖p(2π)−1/p.

It follows at once that |�x(f)| ≤ (2n+ 1)(2π)−1/p‖f‖p. Thus, �x is bounded.
Finally, we write

�x(f) =

n∑
k=−n

1

2π

∫ π

−π

f(y)eik(x−y) dy =

∫ π

−π

f(y)Dn(x− y) dy,

where

Dn(t) =
1

2π

n∑
k=−n

eikt =

⎧⎪⎪⎨
⎪⎪⎩

sin((n+ 1/2)t)

2π sin(t/2)
, t �= 0;

2n+ 1

2π
, t = 0.

Thus, the function g guaranteed by Theorem 13.12 is g(y) = Dn(x− y).

Exercises for Section 13.4

13.45 Prove Proposition 13.4 on page 477.

13.46 Prove the “Furthermore, . . . ” part of Hölder’s inequality (Theorem 13.9 on page 477).

13.47 Verify Hölder’s inequality (Theorem 13.9 on page 477) for p = 1 and p = ∞.

13.48 Discuss the case of equality in (13.14) on page 477 when p = 1 or p = ∞.

13.49 Suppose that p, q ∈ (0,∞].
a) Let r be such that 1/r = 1/p + 1/q. Show that if f ∈ Lp(μ) and g ∈ Lq(μ), then

fg ∈ Lr(μ) and ‖fg‖r ≤ ‖f‖p‖g‖q.
b) Suppose that (Ω,A, μ) is a finite measure space. Show that if 0 < s < r ≤ ∞,

then Lr(μ) ⊂ Ls(μ).

13.50 Let (Ω,A, μ) be a finite measure space. Show that for each f ∈ L∞(μ), ‖f‖p → ‖f‖∞
as p → ∞.

13.51 Prove that the normed space (L∞(μ), ‖ ‖∞) is a Banach space.

13.52 Show that (Lp([0, 1]), ‖ ‖p) is not an inner product space unless p = 2.

13.53 Show that ‖ ‖p does not define a norm on Lp([0, 1]) when 0 < p < 1.

★13.54 Refer to Definition 13.9 on page 475.
a) Show that if 0 < p < 1, then σp(f + g) ≤ σp(f) + σp(g).
b) Deduce that ρp(f, g) = σp(f − g) defines a metric on Lp(μ) for 0 < p < 1.

13.55 Refer to Exercise 13.54. Show that if 0 < p < 1, then (Lp(μ), ρp) is a complete metric
space.

★13.56 Let J be a nonempty interval in R and 0 < p < ∞.
a) Show that if J is closed and bounded, then C(J) is dense in Lp(J).
b) Refer to Example 11.9 on page 421. Show that Cc(J) is dense in Lp(J).
c) Show that Cc(J) is not dense in L∞(J).

13.57 Let 0 < p < ∞. Prove that the trigonometric polynomials are dense in Lp([−π, π]).
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13.58 The result of this exercise gives meaning to the relation (13.21) on page 481. Prove
that if g ∈ L1(μ), then �(f) =

∫
Ω
fg dμ defines a bounded linear functional on L∞(μ)

and that ‖�‖∗ = ‖g‖1.

13.59 Prove the uniqueness of the function g in Theorem 13.12 (page 480).

★13.60 Suppose f ∈ L∞(μ). Show that there exists a sequence of simple functions {φn}∞n=1

such that |φn| ≤ ‖f‖∞ μ-ae and limn→∞ φn = f μ-ae.

★13.61 Prove Theorem 13.12 (page 480) when p = 1 under the assumption that (Ω,A, μ) is a
σ-finite measure space.

In Exercises 13.62–13.65, we complete the proof of Theorem 13.12 (page 480) by elim-
inating the restriction μ(Ω) < ∞.

13.62 Suppose that (Ω,A, μ) is a measure space. For E ∈ A, define the measure μE on A
by μE(A) = μ(E ∩A).
a) Show that f ∈ Lp(μE) if and only if χEf ∈ Lp(μ).
b) Show that if � ∈ Lp(μ)∗, then �E(f) = �(χEf) defines a continuous linear functional

on Lp(μE) and ‖�E‖∗ ≤ ‖�‖∗.
c) If μ(E) < ∞, show there is a unique function gE ∈ Lq(μ) such that gE vanishes

outside of E, �E(f) =
∫
Ω
fgE dμ for each f ∈ Lp(μE), and ‖�E‖q∗ =

∫
Ω
|gE |q dμE .

13.63 Use Exercise 13.62 to prove Theorem 13.12 in case (Ω,A, μ) is σ-finite.

13.64 Let (Ω,A, μ) be an arbitrary measure space and 1 < p < ∞. Show that if � ∈ Lp(μ)∗,
then there exists a sequence {Ωn}∞n=1 of A-measurable sets such that μ(Ωn) < ∞ for
each n ∈ N and �(χA) = 0 for each A ∈ A such that μ(A) < ∞ and A ⊂ (

⋃∞
n=1

Ωn)c.

13.65 Employ Exercises 13.62–13.64 to establish Theorem 13.12 for an arbitrary measure
space (Ω,A, μ).

13.5 NONNEGATIVE LINEAR FUNCTIONALS ON C(Ω)

We have now characterized the dual spaces of Hilbert spaces (Theorem 13.8 on
page 473) and Lp-spaces (Theorem 13.12 on page 480). Our next task, which
we will begin in this section and complete in the following one, is to characterize
the dual spaces of C(Ω) and C0(Ω).

We will see that the linear functional defined on C([0, 1]) by

�λ(f) =

∫ 1

0

f(x) dx =

∫
[0,1]

f dλ

is typical in the sense that all bounded linear functionals on C(Ω) arise from
integration with respect to some complex measure. Here we lay the foundation
for the general result by characterizing those that arise from integration with
respect to a (nonnegative) measure.

Borel Sets and Regular Borel Measures

In Chapter 3 we defined the collection B of Borel sets of R. We showed in
Theorem 3.4 that B is the smallest σ-algebra of subsets of R that contains the
open sets of R. This characterization allows us to extend the concept of Borel
sets to any topological space.
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DEFINITION 13.10 Borel Set, Measure, and Measurable Function

Let Ω be a topological space. The smallest σ-algebra of subsets of Ω that contains
all the open sets is denoted B(Ω). We use the following terminology:

• Borel set: a member of B(Ω).

• Borel measurable function: a function measurable with respect to B(Ω).

• Borel measure: a signed or complex measure on B(Ω).

EXAMPLE 13.15 Illustrates Definition 13.10

a) B(R) = B, as defined in Chapter 3.
b) B(R2) = B2 = B × B, as discussed in Exercise 6.53 on page 211. More gen-

erally, we have that B(Rn) = Bn = B × B × · · · × B, as discussed in Exer-
cise 6.77 on page 223.

c) Let Ω be any set and T = {Ω, ∅}. Then B(Ω) = T .
d) Let Ω be any set and T be the discrete topology on Ω. Then we have

that B(Ω) = T = P(Ω).
e) Let (Ω, T ) be a topological space. Then all functions in C(Ω) are Borel

measurable.

To characterize the bounded linear functionals on C(Ω), we need the concept
of a regular Borel measure. We recommend that the reader review the discussion
of the total variation of a complex measure presented in Section 9.3 starting
on page 321.

DEFINITION 13.11 Regular Borel Measure

Let Ω be a locally compact Hausdorff space. A complex Borel measure μ is
said to be a regular Borel measure if for each B ∈ B(Ω) and ε > 0, there is a
compact set K and an open set O such that K ⊂ B ⊂ O and |μ|(O \K) < ε.

The collection of all regular Borel measures on Ω is denoted by M(Ω); the
real-valued and nonnegative regular Borel measures are denoted, respectively,
by Mr(Ω) and M+(Ω).

Remark: Definition 13.11 requires that a regular Borel measure be finite val-
ued. Other definitions of regular Borel measure exist and some permit certain
extended real-valued measures, such as Lebesgue measure, to be regular.

EXAMPLE 13.16 Illustrates Definition 13.11

a) Lebesgue measure on [0, 1] is a regular Borel measure. In fact, Lebesgue mea-
sure on any Borel set of finite Lebesgue measure is a regular Borel measure.

b) The Lebesgue-Stieltjes measure corresponding to a distribution function on R
is a regular Borel measure, as the reader is asked to establish in Exercise 13.68.
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c) Let Ω be a locally compact Hausdorff space. For x ∈ Ω, the Dirac measure
concentrated at x, restricted to the Borel sets of Ω, is a regular Borel measure.
See Exercise 13.71.

Suppose that Ω is a locally compact Hausdorff space. The spaces M(Ω)
andMr(Ω) are, respectively, complex and real linear spaces, where the operations
of addition and scalar multiplication are defined by

(μ+ ν)(B) = μ(B) + ν(B) and (αμ)(B) = αμ(B).

Referring to Exercise 9.48 on page 329, we see that the linear spaces M(Ω)
andMr(Ω) are also normed spaces, where the norm is given by the total variation,
that is, ‖μ‖ = |μ|(Ω). Moreover, as the reader is asked to prove in Exercise 13.66,
M(Ω) and Mr(Ω) are Banach spaces with respect to the norm ‖ ‖.

If F is a closed subset of Ω, then any ν ∈M(F ) can be extended to a regular
Borel measure ν′ on Ω by defining

ν′(B) = ν(B ∩ F ), B ∈ B(Ω).

It is convenient to view ν as a measure on Ω by identifying it with ν′. In this
way we can identify M(F ) with the linear subspace

{μ ∈M(Ω) : μ(B) = 0 for all B ∈ B(Ω) with B ⊂ F c}.

Nonnegative Linear Functionals

From here on in this section, unless explicitly stated otherwise, we assume
that Ω is a compact Hausdorff space. If μ ∈M(Ω), then μ induces a linear
functional on the space C(Ω) via

�μ(f) =

∫
Ω

f dμ, f ∈ C(Ω).

That �μ is a bounded linear functional follows from

|�μ(f)| ≤ ‖f‖Ω|μ|(Ω) = ‖f‖Ω‖μ‖,
where we have applied Exercise 9.53(b) on page 330.

In this section, we will show that any linear functional on C(Ω) that satisfies
a certain nonnegativity condition must be of the form �μ for some μ ∈M+(Ω).
In the next section, we will extend this result to all bounded linear functionals
on C(Ω) if Ω is a compact Hausdorff space and to C0(Ω) if Ω is a locally compact
Hausdorff space.

DEFINITION 13.12 Nonnegative Linear Functional

A linear functional � on C(Ω) is said to be nonnegative if �(f) ≥ 0 when-
ever f ≥ 0.

As the reader is asked to show in Exercise 13.75, the linear functional �μ
on C(Ω) induced by a regular Borel measure μ is nonnegative if and only if μ is
nonnegative.
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The next theorem, whose proof is left to the reader in Exercises 13.76–13.81,
presents some basic properties of nonnegative linear functionals.

THEOREM 13.13

Let Ω be a compact Hausdorff space.
a) If � is a nonnegative linear functional on C(Ω), then � ∈ C(Ω)∗ and, moreover,

‖�‖∗ = �(1).
b) If � ∈ C(Ω)∗ and �(C(Ω,R)) ⊂ R, then there exist nonnegative linear func-

tionals �+ and �− such that ‖�‖∗ = �+(1) + �−(1) and � = �+ − �−.

We have noted that a nonnegative regular Borel measure on Ω induces a non-
negative linear functional on C(Ω). Our next theorem shows that all nonnegative
linear functionals on C(Ω) are of that type. There are two main ideas in the
proof of this result. One is the use of Urysohn’s lemma to obtain suitable ap-
proximations to characteristic functions of closed sets. The other is to mimic the
construction of Lebesgue measure from Lebesgue outer measure.

With regard to the latter, recall that the collection M of Lebesgue measurable
sets is defined by using the Carathéodory criterion and Lebesgue outer measure:
E ∈ M if and only if

λ∗(W ) = λ∗(W ∩ E) + λ∗(W ∩ Ec)

for all W ⊂ R. Theorem 3.11 on page 103 shows that M is a σ-algebra. A
careful look at the proof reveals that it uses only the properties of Lebesgue
outer measure given in (a), (b), (c), and (e) of Proposition 3.1 on page 92. In
other words, we have already proved the following proposition.

PROPOSITION 13.5

Let Ω be a set and ν∗ an extended real-valued function on P(Ω) that satisfies
the following conditions:
a) ν∗(A) ≥ 0 for each A ⊂ Ω.
b) ν∗(∅) = 0.
c) A ⊂ B ⇒ ν∗(A) ≤ ν∗(B).
d) {An}n ⊂ P(Ω) ⇒ ν∗ (

⋃
nAn) ≤

∑
n ν

∗(An).
Then the collection of subsets E of Ω that satisfy

ν∗(W ) = ν∗(W ∩ E) + ν∗(W ∩ Ec)

for all W ⊂ Ω is a σ-algebra whose members are called ν∗-measurable sets.†

We now state and prove the main result of this section, known as the Riesz-
Markov theorem.

† Proposition 6.2 on page 183 shows that the outer measure ν∗ induced by an appropriate
set function on a semialgebra of subsets of a set Ω satisfies (a)–(d) of Proposition 13.5. Thus,
the concept of ν∗-measurability given here is the same as that in Definition 6.3 on page 184.
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THEOREM 13.14 Riesz-Markov Theorem

Let Ω be a compact Hausdorff space and let � be a nonnegative linear functional
on C(Ω). Then there exists a unique μ ∈M+(Ω) such that

�(f) =

∫
Ω

f dμ, f ∈ C(Ω).

PROOF We start by assigning a nonnegative number μ(O) to each open set O. If O = ∅,
let μ(O) = 0; otherwise, let

μ(O) = sup{ �(f) : 0 ≤ f ≤ 1 and supp f ⊂ O }.

We note that μ(O) ≤ μ(Ω) = �(1) for all O. Next, for each A ⊂ Ω, we define

μ∗(A) = inf{μ(O) : O open and O ⊃ A }.

Observe that μ∗(O) = μ(O) whenever O is open.
We will show that μ∗ satisfies the hypotheses of Proposition 13.5. Condi-

tions (a)–(c) follow easily from the definition of μ∗. To verify condition (d), we
first show that if {On}∞n=1 is a sequence of open subsets of Ω, then

μ

( ∞⋃
n=1

On

)
≤

∞∑
n=1

μ(On). (13.22)

Let f be a continuous function that satisfies 0 ≤ f ≤ 1 and supp f ⊂
⋃∞

n=1On.
Applying Theorem 11.10 on page 412 with K = supp f , we obtain continuous
functions f1, f2, . . . , fm that satisfy

• 0 ≤ fj ≤ 1, for each j,

•
∑m

j=1 fj(x) = 1 for x ∈ supp f ,

•
∑m

j=1 fj ≤ 1, and

• for each j, there is an mj such that supp fj ⊂ Omj .

By replacing fj by
∑

mk=mj
fk if necessary, we can assume that the mjs are

distinct. It is clear that f =
∑m

j=1 ffj and, so, �(f) =
∑m

j=1 �(ffj). Because
supp ffj ⊂ Omj , it follows that

�(f) ≤
∞∑

n=1

μ(On). (13.23)

Taking the supremum on the left-hand side of (13.23), we obtain (13.22). It is
now easy to check that μ∗ satisfies condition (d) of Proposition 13.5, as we ask
the reader to verify in Exercise 13.82.
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We complete the proof of the theorem by showing successively that

• all open sets are μ∗-measurable,

• μ = μ∗
|B(Ω) is a regular Borel measure, and

• �(f) =
∫
Ω
f dμ for all f ∈ C(Ω).

To show that an arbitrary open set O is μ∗-measurable, it suffices to prove
that

μ∗(A) ≥ μ∗(A ∩O) + μ∗(A ∩Oc) (13.24)

for all A ⊂ Ω. Let U be an open set containing A, f a continuous function
that satisfies 0 ≤ f ≤ 1 and supp f ⊂ U ∩O, and V = U ∩ (supp f)c. If g is a
continuous function that satisfies 0 ≤ g ≤ 1 and supp g ⊂ V , then

supp(f + g) ⊂ supp f ∪ supp g ⊂ U.

It follows that
μ(U) ≥ �(f) + �(g). (13.25)

From (13.25) we deduce that

μ(U) ≥ �(f) + μ(V ) ≥ �(f) + μ∗(A ∩Oc)

and, therefore, that

μ(U) ≥ μ(U ∩O) + μ∗(A ∩Oc) ≥ μ∗(A ∩O) + μ∗(A ∩Oc).

As the open set U containing A was chosen arbitrarily, (13.24) holds.
Having shown that all open sets are μ∗-measurable, we can invoke Proposi-

tion 13.5 on page 486 and Proposition 6.5 on page 186 to conclude that all Borel
sets are μ∗-measurable and that μ = μ∗

|B(Ω) is a Borel measure. To show that μ is
regular, we first observe that, by the definition of μ∗,

μ(B) = inf{μ(O) : O open and O ⊃ B }, B ∈ B(Ω). (13.26)

Because μ(Ω) = �(1) <∞, we have for each B ∈ B(Ω) that

μ(B) = μ(Ω) − μ(Bc) = μ(Ω) − inf{μ(W ) : W open, W ⊃ Bc }
= sup{μ(W c) : W open, W ⊃ Bc }
= sup{μ(F ) : F closed, F ⊂ B }.

(13.27)

It follows at once from (13.26) and (13.27) that μ is regular.
Finally, we must show that

�(f) =

∫
Ω

f dμ, f ∈ C(Ω). (13.28)

Every function in C(Ω) is a linear combination of functions with values in the
interval [0, 1). Therefore, by the linearity of �, it suffices to establish (13.28) in
case 0 ≤ f < 1.
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Let n ∈ N . For each integer k, 0 ≤ k ≤ n, the sets Fk = f−1([k/n,∞)) and
Uk = f−1(((k − 1)/n,∞)) are closed and open, respectively. Moreover, we have

Fk+1 ⊂ Uk+1 ⊂ Fk ⊂ Uk and Ω =

n−1⋃
k=0

(Fk \ Fk+1).

If Fk = ∅, we set gk = 0. Otherwise, we first invoke the regularity of μ to choose
an open set Vk such that Fk ⊂ Vk ⊂ Uk and

∑n−1
k=0 μ(Vk \ Fk) < 1 and then apply

Proposition 10.14 on page 387 and Urysohn’s lemma on page 388 to obtain a
continuous function gk such that 0 ≤ gk ≤ 1, gk(Fk) = {1}, and supp gk ⊂ Vk.

Let h = (1/n)
∑n−1

j=0 gj . We claim f ≤ h. For each x ∈ Ω, choose the unique k

such that x ∈ f−1([k/n, (k + 1)/n)) = Fk \ Fk+1. If 0 ≤ j ≤ k, then gj(x) = 1
since Fk ⊂ Fj ; if j > k + 1, then gj(x) = 0 since x ∈ F c

k+1 ⊂ U c
k+2 ⊂ U c

j ⊂ V c
j .

It follows that
h(x) = (k + 1)/n+ gk+1(x)/n ≥ f(x),

as required. Using the fact that f ≤ h and the nonnegativity of �, we obtain

�(f) ≤ �(h) = (1/n)

n−1∑
j=0

�(gj) ≤ (1/n)

n−1∑
j=0

μ(Vj)

= (1/n)

n−1∑
j=0

(
μ(Vj \ Fj) + μ(Fj)

)
≤ 1/n+ (1/n)

n−1∑
j=0

μ(Fj).

(13.29)

For j = 0, 1, . . . , n− 1, we can write Fj =
⋃n−1

k=j (Fk \ Fk+1) and, therefore,

μ(Fj) =

n−1∑
k=j

μ(Fk \ Fk+1).

Applying (13.29), we get

�(f) ≤ 1/n+ (1/n)

n−1∑
j=0

n−1∑
k=j

μ(Fk \ Fk+1)

= 1/n+ (1/n)

n−1∑
k=0

(k + 1)μ(Fk \ Fk+1)

= 1/n+ μ(Ω)/n+

n−1∑
k=0

(k/n)μ(Fk \ Fk+1)

= 1/n+ �(1)/n+

∫
Ω

n−1∑
k=0

(k/n)χ(Fk\Fk+1) dμ

≤ (1 + �(1))/n+

∫
Ω

f dμ.

Because n was chosen arbitrarily, it follows that

�(f) ≤
∫

Ω

f dμ. (13.30)
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We can replace f by (1 − f)/2 in (13.30) to get

�(1) − �(f) ≤ μ(Ω) −
∫

Ω

f dμ = �(1) −
∫

Ω

f dμ.

Thus (13.28) holds.
It remains only to prove the uniqueness of μ, which we leave to the reader

as Exercise 13.83.

Exercises for Section 13.5

13.66 Let Ω be a locally compact Hausdorff space. Show that (M(Ω), ‖ ‖) and (Mr(Ω), ‖ ‖)
are Banach spaces, where ‖μ‖ = |μ|(Ω).

13.67 Let Ω be a locally compact Hausdorff space. Show that if μ ∈ M(Ω), then |μ| ∈ M(Ω).

★13.68 In this exercise, you are asked, among other things, to verify the statement of Exam-
ple 13.16(b).
a) Prove that if a locally compact metric space Ω is the countable union of compact

subsets, then every complex Borel measure on Ω is regular.
b) Show that the Lebesgue-Stieltjes measure associated with a distribution function

on R is a regular Borel measure.

13.69 Suppose Ω is locally compact and μ ∈ M+(Ω). Prove that C0(Ω) is dense in Lp(μ)
for 1 ≤ p < ∞.

13.70 Let μ ∈ M([0, 1]) satisfy ∫
[0,1]

xn dμ(x) = 0

for n = 0, 1, 2, . . . . Show that μ = 0, that is, μ vanishes identically.

13.71 Suppose that Ω is a locally compact Hausdorff space. Let x ∈ Ω and δx be defined
on B(Ω) by

δx(B) =
{

1, if x ∈ B;
0, if x /∈ B.

a) Show that δx is a regular Borel measure.
b) Determine

∫
Ω
f dδx when f ∈ C(Ω).

13.72 Let δx be as in Exercise 13.71.
a) Show that ‖δx − δy‖ = 1 when x �= y.
b) Deduce that M(Ω) is not separable if Ω is uncountable.

★13.73 Show how to identify M(Ω) and �1(Ω) when Ω is countable.

13.74 Let Ω be a locally compact Hausdorff space, μ ∈ M(Ω), and B ∈ B(Ω). Prove that
there are sets F and G such that G is a countable intersection of open sets, F is a
countable union of closed sets, F ⊂ B ⊂ G, and |μ|(G \ F ) = 0.

13.75 Let Ω be a compact Hausdorff space and μ ∈ M(Ω). Show that �μ(f) =
∫
Ω
f dμ defines

a nonnegative linear functional on C(Ω) if and only if μ ∈ M+(Ω).

Exercises 13.76–13.81 provide the proof of Theorem 13.13 on page 486.

13.76 Show that if � is a nonnegative linear functional on C(Ω), then � ∈ C(Ω)∗ and, moreover,
‖�‖∗ = �(1).
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13.77 Suppose that � satisfies the hypotheses of part (b) of Theorem 13.13 on page 486. For
each nonnegative continuous function f on Ω, let

�+(f) = sup{ �(g) : 0 ≤ g ≤ f, g continuous }.

a) Show that if f1 and f2 are nonnegative and continuous, then

�+(f1 + f2) = �+(f1) + �+(f2).

b) Show that 0 ≤ f ≤ g implies �+(f) ≤ �+(g).
c) Show that �+(αf) = α�+(f) whenever f ≥ 0 and α is a nonnegative real number.

13.78 Extend the function �+ defined in Exercise 13.77 to all of C(Ω,R) by the formula

�+(f) = �+(‖f‖ + f) − �+(‖f‖),

where ‖f‖ = ‖f‖Ω.
a) Prove that this new definition of �+(f) agrees with the old one when f is nonnega-

tive.
b) Show that this extended �+ is linear on the space C(Ω,R).

13.79 Extend the function �+ defined in Exercise 13.78 to all of C(Ω) by the formula

�+(f) = �+(�f) + i�+(�f).

a) Prove that this new definition of �+(f) agrees with the old one when f is real valued.
b) Show that this extended function is linear and nonnegative.

13.80 Suppose that � satisfies the hypotheses of part (b) of Theorem 13.13 on page 486.
Let �− = �+ − �, where �+ is defined as in Exercise 13.79. Show that �− is nonnegative.

13.81 Suppose that � satisfies the hypotheses of part (b) of Theorem 13.13 on page 486.
Let �+ and �− be defined as in Exercise 13.80. Show that ‖�‖∗ = �+(1) + �−(1). Hint:
If 0 ≤ g ≤ 1, then ‖2g − 1‖ ≤ 1 and, so, ‖�‖∗ ≥ 2�(g) − 1.

13.82 Show that the set function μ∗ defined in the proof of Theorem 13.14 on page 487
satisfies condition (d) of Proposition 13.5 on page 486.

13.83 Prove the uniqueness part of Theorem 13.14 on page 487.

13.6 THE DUAL SPACES OF C(Ω) AND C0(Ω)

In this section, we extend the Riesz-Markov theorem (page 487) to arbitrary
bounded linear functionals on C(Ω). We will also characterize the bounded
linear functionals on C0(Ω) when Ω is a locally compact Hausdorff space. These
results show that we are justified in writing C(Ω)∗ = M(Ω) and C0(Ω)∗ = M(Ω)
in the compact and locally compact cases, respectively.

LEMMA 13.1

Suppose that Ω is a compact Hausdorff space and μ ∈M(Ω). Further suppose
that φ is a complex-valued Borel measurable function such that |φ| ≤ 1 |μ|-ae.
Then there is a sequence {fn}∞n=1 of continuous functions such that ‖fn‖Ω ≤ 1
for each n and

∫
Ω
|fn − φ| d|μ| → 0 as n→ ∞.
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PROOF By applying Exercise 13.60 on page 483, we can choose a sequence {φn}∞n=1

of Borel measurable simple functions such that |φn| ≤ 1 |μ|-ae for all n ∈ N
and limn→∞ φn = φ |μ|-ae. Applying the dominated convergence theorem, we
get that

lim
n→∞

∫
Ω

|φn − φ| d|μ| = 0. (13.31)

Let n ∈ N . We can write φn =
∑m

k=1 αkχEk
, where |αk| ≤ 1 for each k and

the Eks are pairwise disjoint Borel sets whose union is Ω. Using the regu-
larity of μ, we can find compact sets Fk ⊂ Ek such that |μ|(Ek \ Fk) < 1/nm
for k = 1, 2, . . . , m.

For each k, we can write αk = |αk|eiθk , where θk ∈ [0, 2π). If x ∈ Fk, de-
fine u0(x) = |αk| and v0(x) = θk. Since the Fks are pairwise disjoint and closed,
the functions u0 and v0 are well-defined and continuous on

⋃m
k=1 Fk and, fur-

thermore, |u0| ≤ 1.
By Tietze’s extension theorem (page 389), we can extend u0 and v0 to contin-

uous real-valued functions u and v on all of Ω such that |u| ≤ 1. Let fn = ueiv.
Then fn = φn on

⋃m
k=1 Fk and ‖fn‖Ω ≤ 1. Moreover,

∫
Ω

|φn − fn| d|μ| =

m∑
k=1

∫
Ek

|αk − fn| d|μ|

≤
m∑

k=1

∫
Ek\Fk

(|αk| + |fn|) d|μ|

≤
m∑

k=1

2|μ|(Ek \ Fk) ≤
m∑

k=1

2/mn = 2/n.

(13.32)

It follows from (13.31) and (13.32) that limn→∞
∫
Ω
|fn − φ| d|μ| = 0.

THEOREM 13.15 Riesz Representation Theorem

Let Ω be a compact Hausdorff space. Then � ∈ C(Ω)∗ if and only if there exists
a μ ∈M(Ω) such that

�(f) =

∫
Ω

f dμ, f ∈ C(Ω). (13.33)

Furthermore, the measure μ is unique and satisfies

‖�‖∗ = |μ|(Ω). (13.34)

PROOF In the penultimate paragraph before Definition 13.12 (see page 485), we showed
that each μ ∈M(Ω) induces a bounded linear functional on C(Ω) via the rela-
tion (13.33).
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Conversely, suppose that � ∈ C(Ω)∗. Define

�re(f) =
1

2
(�(f) + �(f)) and �im(f) =

1

2i
(�(f) − �(f)).

Then �re and �im satisfy � = �re + i�im and the hypotheses of Theorem 13.13(b)
on page 486. Therefore, by the Riesz-Markov theorem, there are measures
μ1, μ2, μ3, μ4 ∈M+(Ω) such that

�re(f) =

∫
Ω

f dμ1 −
∫

Ω

f dμ2 and �im(f) =

∫
Ω

f dμ3 −
∫

Ω

f dμ4

for all f ∈ C(Ω). Thus, the measure μ = μ1 − μ2 + i(μ3 − μ4) belongs to M(Ω)
and satisfies (13.33).

To verify (13.34), we note first that

‖�‖∗ = sup

{ ∣∣∣∣
∫

Ω

f dμ

∣∣∣∣ : ‖f‖Ω ≤ 1

}
≤ sup{ ‖f‖Ω|μ|(Ω) : ‖f‖Ω ≤ 1 } = |μ|(Ω).

To prove the reverse inequality, we first apply Exercise 9.53 on page 330 to
obtain a Borel measurable complex-valued function φ such that |φ| = 1 |μ|-ae
and

∫
Ω
v dμ =

∫
Ω
vφ d|μ| for all v ∈ L1(|μ|). Now applying Lemma 13.1 to φ,

we choose a sequence {fn}∞n=1 of continuous functions such that ‖fn‖Ω ≤ 1
and

∫
Ω
|fn − φ| d|μ| → 0. We have

∣∣∣∣
∫

Ω

fn dμ− |μ|(Ω)

∣∣∣∣ =

∣∣∣∣
∫

Ω

φ(fn − φ) d|μ|
∣∣∣∣ ≤

∫
Ω

|fn − φ| d|μ|.

It follows that |μ|(Ω) ≤ ‖�‖∗ and, hence, (13.34) holds. The proof of uniqueness
is left to the reader as Exercise 13.84.

The Case Ω Locally Compact

Next we extend Theorem 13.15 to locally compact, noncompact Hausdorff spaces.
In this case, we work with C0(Ω) rather than C(Ω) because ‖ ‖Ω is no longer a
norm on C(Ω).

THEOREM 13.16 Riesz Representation Theorem

Let Ω be a locally compact, noncompact Hausdorff space. Then � ∈ C0(Ω)∗ if
and only if there exists a μ ∈M(Ω) such that

�(f) =

∫
Ω

f dμ, f ∈ C0(Ω). (13.35)

Furthermore, the measure μ is unique and satisfies ‖�‖∗ = |μ|(Ω).
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PROOF Let � ∈ C0(Ω)∗. We prove the existence of the measure μ that satisfies (13.35),
but leave the proofs of the remainder of the assertions to the reader as Exer-
cise 13.86.

Let Ω∗ = Ω ∪ {ω} be the one-point compactification of Ω, as described in The-
orem 11.12 on page 414. Define the function L on C(Ω∗) by L(g) = �(g|Ω − g(ω)).
Clearly L is linear. That it is also bounded, follows from

|L(g)| = |�(g|Ω − g(ω))| ≤ ‖�‖∗‖g|Ω − g(ω)‖Ω ≤ 2‖�‖∗‖g‖Ω∗ .

Hence, by Theorem 13.15, there is a measure μ∗ ∈M(Ω∗) such that

L(g) =

∫
Ω∗
g dμ∗, g ∈ C(Ω∗).

Letting μ = μ∗
|B(Ω), we obtain

L(g) =

∫
Ω

g dμ+ g(ω)μ∗({ω}), g ∈ C(Ω∗). (13.36)

Now let f ∈ C0(Ω). By defining f∗(x) = f(x) for x ∈ Ω and f∗(ω) = 0, we
can extend f to a function f∗ ∈ C(Ω∗) with the same norm; indeed, C0(Ω) is
the collection of restrictions to Ω of functions in C(Ω∗) that vanish at ω. We
have by (13.36) that �(f) = L(f∗) =

∫
Ω
f dμ. The regularity of μ follows from

Exercise 13.85.

Two simple but instructive illustrations of Theorem 13.16 are provided in
Example 13.17. In the next chapter, we will see more elaborate applications of
the results of this section.

EXAMPLE 13.17 Illustrates Theorem 13.16

a) When it is given the discrete topology, the set of positive integers N be-
comes a locally compact space. C0(N ) is simply the collection of all se-
quences {an}∞n=1 of complex numbers such that limn→∞ an = 0. Applying
Exercise 13.73 on page 490, we can identify M(N ) with �1(N ) and, conse-
quently, we can write C0(N )∗ = �1(N ). It follows from Theorem 13.16 that
each bounded linear functional � on C0(N ) is of the form �(a) =

∑∞
n=1 anbn

for some b ∈ �1(N ) and, furthermore, that ‖�‖∗ =
∑∞

n=1 |bn|.
b) Let Ω be a locally compact Hausdorff space and let x0 ∈ Ω. Define the

function � on C0(Ω) by �(f) = f(x0). Clearly, � ∈ C0(Ω)∗ and ‖�‖∗ ≤ 1.
Since f(x0) =

∫
Ω
f dδx0 , it follows from the uniqueness part of Theorem 13.16

that μ = δx0 . Moreover, ‖�‖∗ = |δx0 |(Ω) = δx0(Ω) = 1.

Exercises for Section 13.6

13.84 Verify the uniqueness assertion in Theorem 13.15 on page 492.

13.85 Let Ω be a locally compact, noncompact Hausdorff space and Ω∗ = Ω ∪ {∞} its one
point compactification.
a) Show that B(Ω) ⊂ B(Ω∗).
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b) Show that μ ∈ M(Ω) if and only if there exists μ∗ ∈ M(Ω∗) such that μ∗(B) = μ(B)
for all B ∈ B(Ω).

13.86 Verify the assertions in Theorem 13.16 (page 493) that we did not prove.

13.87 Refer to Exercises 11.33 and 11.34 on page 410. Let Ω be a compact Hausdorff space,
g a lower-semicontinuous function on Ω, and μ ∈ M+(Ω). Prove that

∫
Ω

g dμ = sup

{∫
Ω

f dμ : f ∈ C(Ω) and f ≤ g

}
.

13.88 Let Ω and Λ be compact Hausdorff spaces, μ ∈ M(Ω), and G: Ω → Λ be continuous.
a) Show that there is a ν ∈ M(Λ) such that

∫
Λ
f dν =

∫
Ω
f ◦Gdμ for all f ∈ C(Λ).

b) Verify that ν = μ ◦G−1, the measure induced by μ and G.

13.89 Define the linear functional � on C([0, 1] × [0, 1]) by �(f) =
∫ 1

0
f(x, x) dx. Describe

explicitly the measure μ that satisfies �(f) =
∫
[0,1]×[0,1]

f dμ. Hint: Refer to Exer-

cise 13.88.

13.90 In Exercise 6.64 on page 221, we defined the convolution product of two nonnegative
σ-finite Borel measures on R. An alternative definition that holds for any two (complex)
Borel measures on R is given as follows. For μ, ν ∈ M(R), define the convolution
product of μ and ν to be the unique measure μ ∗ ν ∈ M(R) that satisfies∫

R
f dμ ∗ ν =

∫
R

∫
R
f(x + y) dμ(x) dν(y), f ∈ C0(R).

Show that for μ, ν ∈ M+(R), this definition agrees with the one presented in Exer-
cise 6.64(d) on page 221.

13.91 Refer to Exercise 13.90. For μ ∈ M(R), find μ ∗ δ0.
13.92 Let Ω be a locally compact Hausdorff space and ν ∈ M+(Ω). Denote by AC(ν) the

collection of measures in M(Ω) that are absolutely continuous with respect to ν. Prove
that AC(ν) is a closed subspace of M(Ω).

13.93 Refer to Exercise 13.92. Show that L1(ν) is isometrically isomorphic to AC(ν) via the
correspondence f → νf , where νf (B) =

∫
B
f dν.
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