Chapter 5

Digital Building Blocks
Figure 5.1 1-bit half adder

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C_{out}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$S = A \oplus B$

$C_{out} = AB$
Figure 5.2 Carry bit
Figure 5.3 1-bit full adder

\[S = A \oplus B \oplus C_{in} \]
\[C_{out} = AB + AC_{in} + BC_{in} \]
Figure 5.4 Carry propagate adder
Figure 5.5 32-bit ripple-carry adder
Figure 5.6 (a) 32-bit carry-lookahead adder (CLA), (b) 4-bit CLA block
Figure 5.7 16-bit prefix adder
Figure 5.8 Synthesized adder
Figure 5.9 Subtractor: (a) symbol, (b) implementation
Figure 5.10 Synthesized subtractor
Figure 5.11 4-bit equality comparator: (a) symbol, (b) implementation
Figure 5.12 N-bit magnitude comparator
Figure 5.13 Synthesized comparators
Figure 5.14 ALU symbol
Figure 5.15 N-bit ALU
Figure 5.16 4-bit shifters: (a) shift left, (b) logical shift right, (c) arithmetic shift right
Figure 5.17 Multiplication: (a) decimal, (b) binary
Figure 5.18 4 - 4 multiplier: (a) symbol, (b) function, (c) implementation
Figure 5.19 Synthesized multiplier
Figure 5.20 Array divider
Figure 5.21 Fixed-point notation of 6.75 with four integer bits and four fraction bits

(a) 01101100
(b) 0110.1100
(c) \(2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75\)
Figure 5.22 Fixed-point representation of ± 2.375: (a) absolute value, (b) sign and magnitude, (c) two's complement
Figure 5.23 Fixed-point two's complement conversion

0000.1010 Binary Magnitude
1111.0101 One's Complement
+ 1 Add 1
1111.0110 Two's Complement
Figure 5.24 Addition: (a) binary fixed-point, (b) decimal equivalent
Figure 5.25 Floating-point numbers
Figure 5.26 32-bit floating-point version 1
<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000111</td>
<td>110 0100 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>

Figure 5.27 Floating-point version 2
<table>
<thead>
<tr>
<th>1 bit</th>
<th>8 bits</th>
<th>23 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000110</td>
<td>110 0100 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>

Sign | **Biased Exponent** | **Fraction**

Figure 5.28 IEEE 754 floating-point notation
Figure 5.29 Floating-point addition
Figure 5.30 Counter symbol
Figure 5.31 N-bit counter
Figure 5.32 Synthesized counter
Figure 5.33 Shift register symbol
Figure 5.34 Shift register schematic
Figure 5.35 Shift register with parallel load
Figure 5.36 Synthesized shiftreg
Figure 5.37 Scannable flip-flop: (a) schematic, (b) symbol, and (c) N-bit scannable register
Figure 5.38 Generic memory array symbol
Figure 5.39 4 · 3 memory array: (a) symbol, (b) function
Figure 5.40 32 Kb array: depth = $2^{10} = 1024$ words, width = 32 bits
Figure 5.41 Bit cell
Figure 5.42 4 · 3 memory array
Figure 5.43 Three-port memory
Figure 5.44 DRAM bit cell
Figure 5.45 DRAM stored values
Figure 5.46 SRAM bit cell
Figure 5.47 32 · 32 register file with two read ports and one write port
Figure 5.48 ROM bit cells containing 0 and 1
Figure 5.49 4 · 3 ROM: dot notation
Figure 5.50 4 • 3 ROM implementation using gates
Figure 5.51 Fuse-programmable ROM bit cell
Figure 5.52 4-word x 1-bit memory array used as a lookup table
Figure 5.53 Synthesized ram
Figure 5.54 $M \cdot N \cdot P$-bit PLA
Figure 5.55 3-bit PLA: dot notation
Figure 5.56 3-bit PLA using two-level logic
Figure 5.57 General FPGA layout
Figure 5.58 Cyclone IV Logic Element (LE)
(Reproduced with permission from the Altera Cyclone IV Handbook · 2010 Altera Corporation.)
Figure 5.59 LE configuration for two functions of up to four inputs each

<table>
<thead>
<tr>
<th>(A) data 1</th>
<th>(B) data 2</th>
<th>(C) data 3</th>
<th>(D) data 4</th>
<th>(X) LUT output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(A) data 1</th>
<th>(B) data 2</th>
<th>(C) data 3</th>
<th>(D) data 4</th>
<th>(Y) LUT output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>

LE 1

LE 2
Figure 5.60 LE configuration for one function of more than four inputs
Figure 5.61 LE configuration for FSM with two bits of state
Figure 5.62 ROM implementation: (a) dot notation, (b) pseudo-nMOS circuit
Figure 5.63 3-bit PLA using pseudo-nMOS circuits
Figure 5.64 Funnel shifter
Figure 5.65 ROM circuits
Figure M 02
Figure M 03
Figure M 04
Figure M 06
UNN Figure 1