Chapter 8

Memory Systems
Figure 8.1 The memory interface
Figure 8.2 Diverging processor and memory performance
Figure 8.3 A typical memory hierarchy
Figure 8.4 Memory hierarchy components, with typical characteristics in 2012

<table>
<thead>
<tr>
<th>Technology</th>
<th>Price / GB</th>
<th>Access Time (ns)</th>
<th>Bandwidth (GB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM</td>
<td>$10,000</td>
<td>1</td>
<td>25+</td>
</tr>
<tr>
<td>DRAM</td>
<td>$10</td>
<td>10–50</td>
<td>10</td>
</tr>
<tr>
<td>SSD</td>
<td>$1</td>
<td>100,000</td>
<td>0.5</td>
</tr>
<tr>
<td>HDD</td>
<td>$0.1</td>
<td>10,000,000</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Figure 8.5 Mapping of main memory to a direct mapped cache
Figure 8.6 Cache fields for address 0xFFFFFE4 when mapping to the cache in Figure 8.5
Figure 8.7 Direct mapped cache with 8 sets
Figure 8.8 Direct mapped cache contents
Figure 8.9 Two-way set associative cache
Figure 8.10 Two-way set associative cache contents
Figure 8.11 Eight-block fully associative cache
Figure 8.12 Direct mapped cache with two sets and a four-word block size
Figure 8.13 Cache fields for address 0x800009C when mapping to the cache of Figure 8.12
Figure 8.14 Cache contents with a block size b of four words
Figure 8.15 Two-way associative cache with LRU replacement
Figure 8.16 Memory hierarchy with two levels of cache
Figure 8.17 Miss rate versus cache size and associativity on SPEC2000 benchmark
Figure 8.18 Miss rate versus block size and cache size on SPEC92 benchmark
Figure 8.19 Hard disk
Figure 8.20 Virtual and physical pages
Figure 8.21 Physical and virtual pages
Figure 8.22 Translation from virtual address to physical address
Figure 8.23 The page table for Figure 8.21
Figure 8.24 Address translation using the page table
Figure 8.25 Address translation using a two-entry TLB
Figure 8.26 Hierarchical page tables
Figure 8.27 Address translation using a two-level page table
Figure 8.28 Support hardware for memory-mapped I/O
Figure 8.29 PIC32MX675F512H block diagram
(© 2012 Microchip Technology Inc.; reprinted with permission.)
Figure 8.30 PIC32 memory map
(© 2012 Microchip Technology Inc.; reprinted with permission.)
Figure 8.31 PIC32MX6xxFxxH pinout. Black pins are 5 V-tolerant.
(© 2012 Microchip Technology Inc.; reprinted with permission.)
Figure 8.32 PIC32 in 64-pin TQFP package
Figure 8.33 PIC32 basic operational schematic
Figure 8.34 Microchip ICD3
Figure 8.35 LEDs and switches connected to 12-bit GPIO port D
Figure 8.36 SPI connection and master waveforms
Figure 8.37 SPI connection between PIC32 and FPGA
Figure 8.38 SPI slave circuitry and timing
Figure 8.39 Clock and data timing controlled by CKE, CKP, and SAMPLE
Figure 8.40 Asynchronous serial link
Figure 8.41 Cap’n Crunch Bosun Whistle.
Photograph by Evrim Sen, reprinted with permission.
Figure 8.42 DE-9 male cable (a) pinout, (b) standard wiring, and (c) null modem wiring
Figure 8.43 PIC32 to PC serial link
Figure 8.44 Plugable USB to RS-232 DB9 Serial Adapter
(© 2012 Plugable Technologies; reprinted with permission)
Figure 8.45 ADC and DAC symbols
Figure 8.46 DAC parallel and serial interfaces to a PIC32
Figure 8.47 Pulse-width modulated (PWM) signal

Duty cycle = \frac{\text{Pulse width}}{\text{Period}}
Figure 8.48 Analog output using PWM and low-pass filter
Figure 8.49 Crystalfontz CFAH2002A-TMI 20 · 2 character LCD
(· 2012 Crystalfontz America; reprinted with permission.)
Figure 8.50 Parallel LCD interface
Figure 8.51 VGA timing: (a) horizontal, (b) vertical
Figure 8.52 VGA connector pinout

1: Red 9: 5 V (optional)
2: Green 10: GND
3: Blue 11: Reserved
4: Reserved 12: I²C data
5: GND 13: HSync
6: GND 14: Vsync
7: GND 15: I²C clock
8: GND
Figure 8.53 FPGA driving VGA cable through video DAC
Figure 8.54 VGA output
Figure 8.55 FSK and GFSK waveforms
Figure 8.56 BlueSMiRF module and USB dongle
Figure 8.57 Bluetooth PIC32 to PC link
Figure 8.58 DC motor
Figure 8.59 H-bridge
Figure 8.60 Motor control with dual H-bridge
Figure 8.61 Shaft encoder (a) disk, (b) quadrature outputs
Figure 8.62 SG90 servo motor
Figure 8.63 Servo control waveform

1.5 ms pulse width

20 ms period (50 Hz)
Figure 8.64 Servo motor control
Figure 8.65 (a) Simplified bipolar stepper motor; (b) stepper motor symbol
Figure 8.66 Bipolar motor drive
Figure 8.67 AIRPAX LB82773-M1 bipolar stepper motor
Figure 8.68 Bipolar stepper motor direct drive current: (a) slow rotation, (b) fast rotation, (c) fast rotation with chopper drive
Figure 8.69 Bipolar stepper motor direct drive with H-bridge
Figure 8.70 Gigabyte GA-H55M-S2V Motherboard
Figure 8.71 DDR3 memory module
Figure 8.72 SATA cable
Figure 8.73 NI myDAQ
Figure 8.74 FTDI USB to MPSSE cable
(© 2012 by FTDI; reprinted with permission.)
Figure 8.75 C232HM-DDHSL USB to MPSESE interface from PC to FPGA
Figure 8.76 FTDI UM232H module
(© 2012 by FTDI; reprinted with permission.)
Figure 8.77 Pentium Pro multichip module with processor (left) and 256-KB cache (right) in a pin grid array (PGA) package
(Courtesy Intel.)
Figure 8.78 Building blocks
Figure 8.79 Computer system
UNN Figure 1