Diagnostic Ultrasound Imaging: Inside Out by T. L. Szabo Prerequisites: Read Chapter 2 and Appendix A List of Problems

1. Derive and graph the minus i Fourier transforms of the following: (a) $\sin(\pi bt)$ (b) $\sin[2\pi b(t-1/(4b))]$ and (c) $\sin[2\pi b(t-d)]$

Assume you know that $\mathfrak{I}_{-i}\left[\exp(i2\pi at)\right] = \delta(f-a)$.

- 2. Find $\mathfrak{I}_{-i}\left[\exp(-at^2)\cos(2\pi f_c t)\right]$
- 3. (a) If the running mean is $rm(t) = 1/a \prod (t/a) * g(t) = \frac{1}{a} \int_{t-a/2}^{t+a/2} g(t) dt$, find its

minus –i Fourier transform.

(b) Find the transform of $g(t) = \exp(-a|t|)$ Note this is an even function, you can use limits $0 \text{ to } \infty$

(c) What is RM(f) for this function?

- 4. Find $\Im_{-i}[g(t)]$, where $g(t) = \delta(t-1) + \delta(t-1/2) + \delta(t+1/2) + \delta(t+1)$ in terms of trigonometric functions. Plot G(f).
- 5. Given the triangle function defined as $\frac{\Lambda(t/L) = 0}{|t| > L} = 1 \frac{|t| > L}{|t| < L}, \text{ use a MATLAB}$

program to find and calculate the minus i Fourier transform of $g(t) = \Lambda(t/L)\cos(2\pi f_c t)$ and its numerical DFT equivalent. Compare and plot the numerical transform to that obtained by a direct continuous (exact) transform. Explain how you selected the sampling interval Δt and number of points N. Is there a way to determine Δt directly from the time waveform in this case? Use units of $f_c = 10$ MHz and L=1.5 microseconds.

6. Use G(f) from problem 5 as a filter function block. Determine the output of the filter as R(f)=G(f)V(f) for the following two inputs of the form $v(t) = \exp(-at^2)\cos(2\pi f_c t)$: (a) a=5.0, f_c =10 MHz (b) a=50.0, f_c =10 MHz . Find the corresponding r(t) for these inputs using an numerical DFT method equivalent to an inverse minus i Fourier transform. Plot all results. Hint: don't use an fftshift command before doing an inverse fft.