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APPENDIX D: Geometry of Lifting Surfaces 

This appendix is a part of the book General Aviation 
Aircraft Design: Applied Methods and Procedures by 
Snorri Gudmundsson, published by Elsevier, Inc. The book 
is available through various bookstores and online 
retailers, such as www.elsevier.com, www.amazon.com, 
and many others. 
 

 
 
 

D.1 Introduction 
 
This appendix focuses on the geometry generally used for aircraft lifting surfaces; typically the wings, as well the 
horizontal and vertical tails, but also specialty surfaces, such as winglets and ventral fins. Such geometry can range 
from the simple constant chord lifting surface sometimes chosen for the wing and then referred to as a “Hershey 
bar” wing, to the complicated ogee wing shape featured on the Concorde supersonic transport. Modern lifting 
surfaces often feature breaks in the leading or trailing edges (called “cranks”), which breaks it into a number of 
trapezoidal sections. The competent aircraft designer should know how to treat such lifting surfaces in the 
aerodynamic analysis of aircraft. 
 
We will study the simplest to the most complex of lifting surfaces and develop formulation that allows the designer 
to evaluate important parameters that will be defined in the text, such as Mean Geometric Chord, Taper Ratio, and 
Aspect Ratio. The appendix does not consider characteristics such as a geometric or aerodynamic wing twist 
(washout). This discussion is limited to general analysis of flat, infinitely thin surfaces that resemble those that are 
commonly (and not so commonly) used to generate lift in aircraft. No treatment of internal structure or flight 
controls is considered here. This section is purely a mathematical treatment of 2-dimensional surface planforms 
geometries that are typically used for lifting. 
 
The first type of surfaces presented in the section is the trapezoidal, but these cover the bulk of planform shapes 
used for aircraft. The discussion will be followed by a treatment of cranked surfaces, which are planform shapes of 
relatively regular polygons that can be broken down into trapezoidal subsections. Finally, this section will consider 
planform shapes, whose leading and trailing edges are best described with continuous curved functions. 
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D.2 Formulation for the Simple Trapezoidal Planform 
 
During the early stages of the design process, there simply is not yet enough detail available to calculate the 
surface areas and volumes with a high degree of accuracy. Often the design consists of nothing more than some 
preliminary dimensions. For instance, we may have a reasonable idea about how long the fuselage might be, or its 
average diameter. It is often convenient to estimate the geometric properties of the airplane using some generic 
shapes that resemble the proposed form. This section will present a few such shapes and simple and handy 
formulas to estimate the areas of the surface and volume. We will start with the geometry of a few fundamental 
shapes that can be combined to form shapes that resemble that of a fuselage. 
 

D.2.1 Approximation of an Airfoil Cross-Sectional Area 

Often, the cross-sectional area (internal area) of an airfoil must be evaluated as it yields useful clues about the 
internal volume of a wing available for fuel storage. In the absence of precise airfoil data, the following 
approximation can be used to estimate the internal area of geometry resembling that of an airfoil: 
 

Total area: 
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Where:  C = Airfoil chord, in ft or m 
  k = Location of the airfoil’s maximum thickness as a fraction of C. 
  t = Airfoil thickness, in ft or m. 
 
Sometimes it is more convenient to present the thickness using the thickness-to-chord ratio, denoted by (t/c). This 
way, the thickness is expressed using the product (t/c)∙C. This way, Equation (D-1) is written as follows: 
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Figure D-1: An approximation of an airfoil using elementary geometry. 

DERVIATION OF EQUATION (D-1): 
Consider Figure D-1, which shows an airfoil of chord C approximated by a parabolic D-cell and a triangular section. 
It is assumed the two sections join at the chord station of maximum thickness, t, whose location is given by k∙C, 
where k is the location of the airfoil’s maximum thickness as a fraction of C. The cross-sectional areas of the two 
sections and the total area are given by the following expressions: 
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Therefore, the internal area of the airfoil can be approximated by adding the two as shown below: 
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QED 

 

D.2.2 Approximation of an Airfoil Perimeter 

The perimeter of the airfoil is imperative when estimating the wetted area for drag estimation. In the absence of 
more accurate data the following approximation can be used to estimate the perimeter of an airfoil (assuming the 
geometry of Figure D-1 is a reasonable approximation of the airfoil): 
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Where:  C = Airfoil chord, in ft or m 
  k = Location of the airfoil’s maximum thickness as a fraction of C 
  t = Airfoil thickness, in ft or m 
 
Again, it may be simpler to use the thickness-to-chord ratio, (t/c), rather than the exact thickness of the airfoil. If 
so, the perimeter of the airfoil is written as follows: 
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An evaluation of the above equations reveals that the term involving the inverse hyperbolic sine contributes less 
than 1.5% for a 25% thick airfoil and 0.12% for 5% thick airfoil. For this reason, it is possible to simplify Equations 
(D-3) and (D-4) as follows: 
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 (D-5) 

 
This form improves the speed of computations with small error. 
 
DERIAVATION OF EQUATION (D-3) 
The perimeter along the upper and lower surface of the airfoil can be estimated by combining the length of the 
parabolic and triangular sections: 
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Therefore, the total perimeter of the airfoil is: 
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QED 

 
DERIVATION OF EQUATION (D-4) 
The thickness, t, is given by (t/c)∙C, where (t/c) is the thickness ratio and C is the airfoil chord. Replacing t in 
Equation (D-3) with this form yields: 
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Algebraic manipulations lead to: 
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QED 
 

D.2.3 Approximation Surface Areas and Volumes of a Generic Lifting Surface (without Fuselage) 

The surface area and volume of a generic lifting surface like the one shown in the left image of Figure D-2 can be 
estimated assuming the above expressions for cross-sectional area and arc length are applicable. 
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Where:    = Taper Ratio. 
  k = Location of the airfoil’s maximum thickness as a fraction of C 
  The subscripts r and t refer to the root and tip airfoils, respectively (see Figure D-2). 
 
The wetted wing area, excluding the fuselage can be estimated from: 
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Figure D-2: An approximation of a tapered wing (left) and tapered wing and fuselage (right). 

Since the wing is usually mounted on the fuselage, it is not out of the way to present a simple correction to 
Equation (D-7). Consider the fuselage of width D and wing shown in the right image of Figure D-2. Then Equation 
(D-7) can be rewritten to exclude the portion of the wing inside the fuselage. Note that the root chord, Cr, must 

refer to the chord along the side of the fuselage and this requires the Taper Ratio  to be calculated (as Ct/Cr): 
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Where:   b = Wing span 
  D = Fuselage width 
  t/c  = Airfoil thickness ratio 

   = Taper Ratio. 
  k = Location of the airfoil’s maximum thickness as a fraction of C 
  The subscripts r and t refer to the root and tip airfoils, respectively (see Figure D-2). 
 
DERIVATION: 
The cross-sectional area at the root and tip airfoils can be estimated using Equation (D-2) as follows (denoting the 
root and tip using the subscripts r and t): 
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Then, the total volume of the wing will be the average of these two times the wingspan b. 
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DERIVATION: 
The perimeter the root and tip airfoils can be estimated using Equation (D-5) as follows: 
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Then, the total volume of the wing will be the average of these two times the wingspan b (denoting the root and 
tip using the subscripts r and t): 
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D.3 Equivalent Wing Planforms  
 
Most aircraft do not feature perfectly trapezoidal wing planform shapes but rather ones that are “cranked” or 
broken along the leading or trailing edges. This is usually the result of some specific aerodynamic or structural 
requirements. A few examples are displayed in Figure D-3. It is prudent to ask how we define important geometric 
characteristics of such wing shapes. For instance, looking at the airplane in Figure D-3, where is the MGC? What is 
its length? How about Taper Ratio or leading edge sweep? At times it is necessary to treat such geometry to enable 
comparison between these more complicated planforms and their simpler counterparts. This section presents a 
method to treat such wings. 

 

 Figure D-3: Wing planforms that are more complicated than they look at first glance. 

Consider the cranked half wing planform shape in Figure D-4, which could be the right wing of some aircraft 
(assuming we are looking from above). Many scientific documents that contain aerodynamic characteristics of 3-
dimensional wings, such as the USAF DATCOM, require the user to determine aerodynamic properties based on 
the sweep of the quarter-chord or the leading edge. However, when considering the four panels the wing of Figure 
D-4 consists of, it is prudent we ask ourselves whose quarter-chord sweep is a suitable representation for the 
entire wing? The answer is none. Instead, it is appropriate to use a weighed approach that considers the 
“contribution” of each to a representative quarter-chord sweep of an equivalent wing. This weighing is based on 
the surface area of each panel. For instance, the figure suggests the sweep of the two inboard (or left) panels will 
contribute more significantly to the equivalent quarter chord sweep than the two outboard ones. The figure shows 
a single equivalent trapezoidal surface that has been superimposed on the original wing, allowing the 
aforementioned geometric properties to be determined and compared on an equivalent basis (“apples to apples” 
comparison). We shall now develop expressions to convert the wing into a simple trapezoidal planform. 
 
The half wing in Figure D-4 consists of N-1 separate small trapezoidal sections that each can be considered as 
simple trapezoid. Note that this simplification does not extend to aerodynamic properties of the planform; airloads 
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stall characteristics, drag, and similar properties should never be calculated for the simplified shape – the 
simplified shape is purely for geometric comparison. 
 

 

Figure D-4: Presenting the equivalent wing. 

In order for the simplified trapezoidal planform to be considered geometrically equivalent to the original wing 
planform we want it to be of an equal span, planform area, and Aspect Ratio. Mathematically we write it as 
follows: 
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Where the subscripts E and O stand for “Equivalent” for “Original”, respectively. The requirement for equivalent 
Aspect Ratio follows from these two requirements since it is defined as AR = b²/S for each wing. Also note that the 
two wing planforms are placed such that their mid-chord points at the root are identical (green point in Figure D-
4). 
 

D.3.1 Geometry of the Equivalent Wing 

The dimensions of the equivalent wing can be computed from the following expressions, which are based on a 
wing break-down as shown in Figure D-4. 
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Tip chord: 




 

1

1

1

2
N

i

ii

W

WTTE Sc
S

CKC  (D-11) 
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DERIVATION: 
Consider the cranked half wing planform shape in Figure D-4. We can define the geometry of each panel as 
follows: 
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Therefore we can write the area of the original wing as follows: 
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Note that by definition the half-span area of the equivalent wing must be equal to this value. Then next thing we 
must do is to define the so-called Weighted Root and Tip chords, which is the contribution of each individual chord 
to the root and tip chord of the equivalent wing. 
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From Figure D-4 we can see that the Elemental Root Chords that comprise the weighted root chord are c1, c2, …, cN-

1. Similarly, the Elemental Tip Chords that comprise the weighted tip chord are c2, c3, …, cN. Therefore, the 
weighted root chord can be defined as follows: 
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Similarly, the weighted tip chord can be determined as follows:  
 

    










 

1

1

1

1

1

1

21
N

i

ii

O

N

i

ii

half

WT Sc
S

Sc
S

C    (iv) 

 
Let’s define a weighted wing area for the entire wing: 
 

    
 

22

WTWROWTWR
OW

CCbCC
bS










 
    (v) 

 
An explicit form of Equation (v) is: 
 

   
 

















 











1

1

1

1

1
2

N

i

ii

N

i

ii

O

OWTWRO
W ScSc

S

bCCb
S   (vi) 

 
Using these to calculate the root and tip chords of the equivalent wing will not necessarily give the true values and, 
consequently, would fails to provide matching S and AR. Therefore, we must introduce a special scaling factor, K, 
such that:  
 

    
 

O
WTWRO

WE S
CCb

KSKS 



2

   (vii) 

 
Therefore, the equivalent chords are given by:  
 

    WTTEWRRE CKCCKC  and    (viii) 

 
Note that once the requirement for the S is met, then so is the requirement for the AR. The scaling factor, K, can 
be found from:  
 

    
W

O
OWE

S

S
KSSKS      (ix) 

Where;  SO = Original wing area and 
  SW = Weighted wing area of both wing halfs (complete wing). 
 

K can also be written as:      WTWRO

O

WTWRO

O

W

O

CCb

S

CCb

S

S

S
K







2

2

  (x) 
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Therefore, we can compute the equivalent root and tip chords as follows: 
 

   



































1

1

1

1

22
N

i

ii

W

N

i

ii

OW

O
WRRE Sc

S
Sc

SS

S
CKC   (D-10) 

 

Similarly;   




 

1

1

1

2
N

i

ii

W

WTTE Sc
S

CKC     (D-11) 

 
The leading edge angle for the equivalent wing is defined as the weighted LE angle as follows:  
 

    










1

1

1

1

21
N

i

ii

O

N

i

ii

half
ELE S

S
S

S
   (D-12) 

 
The quarter chord angle for the equivalent wing can be found by applying Equation (D-9) in the form for the 
equivalent wing: 
 

     1
2

tantan 4/  E
RE

ELEEC
b

C
    (D-13) 

 

Where:      
RE

TE
E

C

C
       (D-14) 

QED 
 

EXAMPLE D-3: 
Evaluate the properties of the wing in Figure D-5. 
 
SOLUTION: 
Begin by calculating the elemental areas of the 
wing and then the wing area: 
 

ft² 25.2

ft² 5.4

ft² 75.13

ft² 10
2

35
5.2

2

4

3

2

21
11














 








 


S

S

S

cc
yS

 

 
 

 
 

Figure D-5: The wing used in Example D-3. 
 

Area of the half-span wing:
   

ft² 5.304321  SSSSShalf  

 

Area of the full-span wing:   ft² 0.612  halfO SS  

 

Wing span of full-span wing:
   

  ft 22112 Ob
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AR of the full-span wing:   
 

E

O

O

O AR
S

b
AR  934.7

0.61

22
22

 

Begin by calculating SW using Equation (D-16): 
 

 

  2

1

1

1

1

1

ft86.65125.225.45.275.13310

225.25.25.4375.13510
0.61

22

















 











N

i

ii

N

i

ii

O

O
W ScSc

S

b
S

 

 

Then calculate K from Equation (D-15): 9261.0
86.65

0.61


W

O

S

S
K  

 
Equivalent root and tip chords: 
 

 

  ft297.2125.225.45.275.13310
86.65

22

ft249.3225.25.25.4375.13510
86.65

22

1

1

1

1

1


















N

i

ii

W

TE

N

i

ii

W

RE

Sc
S

C

Sc
S

C

 

 
We can confirm that the equivalent wing has the same area and AR as the original wing. 
 

 
934.7

0.61

22

ft² 0.61
2

297.2249.3
22

2

22










 








 


E

E
E

TERE
EE

S

b
AR

CC
bS
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D.4 Generalized Wing Planform (Advanced)  
 
Some airplanes, such as the Anglo-French Concorde (Figure D-6) and the American General Dynamics F-16 
“Cranked Arrow” feature wing planform shapes that are far more challenging to analyze, using even the equivalent 
wing method. The methodology presented in this section allows the designer to evaluate the properties of such 
planforms, provided the leading and trailing edges can be described as continuous mathematical functions. 
 

 

Figure D-6: A planform resembling the Anglo-French Concorde jetliner. 

 

D.4.1 Geometric Description  

Consider the wing planform in Figure D-7. It is enclosed between the two continuous curves, f(y) and g(y), and the 
vertical lines at y = 0 and y = b/2. Then we define the following properties: 
 

Planform chord: )()()( ygyfyc   (D-19) 

 

Elemental area:  dyycdS   (D-20) 

 
We also want to define a special parameter, called an elemental weighing factor:  
 

    dyycdM  interest-of-factor
 

(D-21) 

 
This factor is to be used to estimate a number of characteristics for the wing planform, such as the MGC, and its 
location, and others, as will be shown shortly. The method uses the product of the value of the “factor-of-interest” 
and the chord (as it varies along the span) to evaluate its “weight” of contribution to the overall property being 
evaluated. In fact, it determines the “centroid” of the property of interest. To better understand what this means 
consider Figure D-7 again. Let’s say we are interested in knowing the average chord of the planform shown and 
how far from the plane of symmetry it is. In the former case the “factor-of-interest” is c(y), leading to dM = c(y)²∙dy 
and in the latter case the “factor-of-interest” is y, so dM = y∙c(y)∙dy. Then, in order to get the actual average chord 
and its y-location, we have to integrate from y = 0 to b/2 and divide by the area itself. This will become clear 
shortly. 
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Figure D-7: A general wing planform (note the inverted coordinate system). 

 

D.4.2 Elemental Weighing Factors for the General Planform  

Below is the preliminary formulation of a number of important properties of wings. The first five are used to 
determine Mean Geometric Chord, the x-values of its LE- and TE- and quarter chord location, as well as the y-
location (spanwise station): 
 

Weighted chord:       dyycdMCHORD  interest-of-factor  

     dyycyc 
 

 

   dyyc
2

  (D-22) 

 

Weighted X-location of LE:      dyycdM LEX  interest-of-factor  

     
    dyycyf 

 

    dyycyf   (D-23) 

 

Weighted X-location of TE:      dyycdM TEX  interest-of-factor  

     
    dyycyg 

 
    dyycyg   (D-24) 

 

Weighted X-location of C/4:      dyycdM CX  interest-of-factor4/  

      
 

 dyyc
yc

yf 









4
 

  
 

 dyyc
yc

yf 









4
 (D-25) 
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Weighted Y-location of chord:      dyycdMY  interest-of-factor  

        dyycy   

  dyycy   (D-26) 

 
The next two formulations are used to determine the “average” sweep angles of the LE and the quarter-chord: 
 

Weighted slope of LE sweep:      dyycdM
LE

 interest-of-factor  

     
    dyycyf  '

 
    dyycyf  '  (D-27) 

 

Weighted slope of C/4 sweep:      dyycdM
C

 interest-of-factor
4/

 

  
 

 dyyc
yc

yf
dy

d



















4
 (D-28) 

 
Finally, the area of the planform is given by: 
 

Planform area:  
2/

0

b

half dyycS  (D-29) 

 

Symmetric surface area: halfSS  2  (D-30) 

 

D.4.3 Properties of the General Planform 

Using the concept of elemental weighing factors we can now develop formulation for the general wing planform 
shown in Figure D-7.  
 
Mean Geometric Chord (MGC):  
 

     
2/

0

2
2/

0

2
2/

0

211 bb

half

b

CHORD

half

dyyc
S

dyyc
S

dM
S

MGC  (D-31) 

 
X-location of LE of the MGC:  
 

          

2/

0

2/

0

2/

0

211 bb

half

b

LEX

half

LEMGC dyycyf
S

dyycyf
S

dM
S

x  (D-32) 

 
X-location of TE of the MGC:  
 

          

2/

0

2/

0

2/

0

211 bb

half

b

TEX

half

TEMGC dyycyg
S

dyycyg
S

dM
S

x  (D-33) 
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X-location of C/4 of the MGC:  
 

  
 

   
 

  
















 

2/

0

2/

0

2/

0
4/4/

4

2

4

11 bb

half

b

CX

half

CMGC dyyc
yc

yf
S

dyyc
yc

yf
S

dM
S

x

 

(D-34) 

 
Y-location of MGC: 
 

       
2/

0

2/

0

2/

0

211 bb

half

b

Y

half

MGC dyycy
S

dyycy
S

dM
S

y

 

(D-35) 

 
Slope of LE at MGC:  
 

           

2/

0

2/

0

2/

0

'
2

'
11 bb

half

b

LE
half

LEMGC dyycyf
S

dyycyf
S

dM
S

 

(D-36) 

 
Slope of C/4 at MGC:  
 

  
 

  















 

2/

0

2/

0
4/4/

4

11 b

half

b

C
half

CMGC dyyc
yc

yf
dy

d

S
dM

S
 

(D-37) 

 
EXAMPLE D-4: Planform Geometry 
Determine the geometric properties for the simple trapezoidal wing planform shape below using the method 
developed so far. Compare the MGC to that using the “standard” formulation of Section D.1. 
 

 

Figure D-8: The wing used in Example D-4. 

SOLUTION: 
The geometry is conveniently selected to allow us to compare the methodology to the already existing 
formulation, as clearly, its result must match for this the simplest case. 
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“Standard” Solution:      ft² 5.7512
2

1
halfS  

 

     
 
 

ft222.2
1123

1135





cy  

 

     ft5556.1
5

222.2
2 MGC  

 

 

Figure D-9: Graphical representation of the solution. 

Now, determine the properties using the method of this section: 
 

Planform area:     ft² 5.7
10

2
5

2

5

0

25

0

2/

0


















 

y
ydy

y
dyycS

b

half

 
 

Symmetric surface area:   ft² 155.72 S  
 
Mean Geometric Chord (MGC):  
 

 

ft 1.556
755

2
4

15

2

255

4
4

15

2

5
2

15

22

5

0
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0
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22/

0

2

































yy

ydy
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dy
y

dyyc
S
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b

 

 

X-location of LE:       ft 1.556
5

2
15

22 5

0

22/

0









  dy
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S
x

b

LEMGC
 

 

X-location of TE:       

2/

0

0
2 b

TEMGC dyycyg
S

x  
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X-location of C/4:  
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Y-location of MGC:  
 

  ft 222.2
1515

2
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3
2
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b
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As a “Sanity check” consider that if the above value is correct, then MGC can also be calculated from c(y), i.e. 
c(2.222)=2-2.222/5=1.556 ft!  
 

Slope of LE at MGC:       
















 

5

0

2/

0 5
2

5

1

15

2
'

2
dy

y
dyycyf

S

b

LEMGC

  







  31.112.0

10
2

75

2
5

0

2y
yLEMGC

 
 
EXAMPLE D-4: Planform Geometry 

A small airplane has a 20 ft wing span (b) and 
a planform enclosed between a leading edge 
described by the function f and trailing edge 
g, given by the following functions: 
 

 

  






 









 


b

y
yg

b

y
yf

2
sin

5

4
cos

 

   
Determine the planform area and MGC of this 
wing. 

 

 
Figure D-10: The wing used in Example D-4. 

SOLUTION: 
We begin by defining the planform chord along the span of the wing: 
 



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This allows us to determine the planform area (note the factor of 2 two account for both wing halfs): 
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Mean Geometric Chord (MGC). Note that the closed form solution is omitted due to complexity and only the 
numerical result is presented:  
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Other characteristics of this wing can be determined in a similar fashion. 
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D.5 Derivation of Some Standard Formulas 
 
The methodology of Section D.4 is ideal 
to derive formulation for some 
“standard” planform shapes. In this 
section we will derive some well known 
standard expressions used with the 
simple trapezoidal planform in Section 
D.1, assuming the dimensions in Figure 
D-11. 

 

Figure D-11: A general trapezoidal wing planform. 

D.5.1 Parametric Chord Function 

Parametric Representation of c(y) for a simple tapered wing planform: 
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Checks to confirm that the boundary conditions are satisfied: 
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D.5.2 Spanwise Location of the MGC 

The spanwise location of the Mean Geometric Chord for the trapezoidal planform is determined using the familiar 
expression: 
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Inserting the margins yields: 
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D.5.3 Derivation of MGC 

The Mean Aerodynamic Chord (MGC) is computed from: 
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LIST OF VARIABLES 

 
Symbol Description Units (UK and SI) 
AR Aspect Ratio  
ARE Aspect Ratio of an equivalent wing  
ARO Aspect Ratio of a baseline wing used in equivalent wing analysis  
b Wing span ft or m 
bE Wing span of an equivalent wing ft or m 
bO Wing span of a baseline wing used in equivalent wing analysis ft or m 
c(y) An arbitrary function describing the chord of the planform ft or m 
Cavg Average chord ft or m 
ci Chord index for equivalent wing analysis ft or m 
Cr Chord at root ft or m 
CRE Chord at root of an equivalent wing ft or m 
Ct Chord at tip ft or m 
CTE Chord at tip of an equivalent wing ft or m 
CWR Weighted chord at root ft or m 
CWT Weighted chord at tip ft or m 
dM Elemental weighing factor Various units 
dMFOI Elemental weighing Factor-of-Interest (context dependent) Various units 
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dS Infinitesimal area ft² or m² 
f(y) An arbitrary function describing the geometry of the LE ft or m 
g(y) An arbitrary function describing the geometry of the TE ft or m 
K Scaling factor for equivalent wing analysis  
LE Leading Edge  
MAC Mean Aerodynamic Chord ft or m 
MGC Mean Geometric Chord ft or m 
N Total number of individual chords in equivalent wing analysis  
S Wing area ft² or m² 
SE Wing area of an equivalent wing ft² or m² 
SE Wing area of an equivalent wing ft² or m² 
Shalf Area of a one-half of a wing (either left or right half) ft² or m² 
Si Area index for equivalent wing analysis ft² or m² 
SO Wing area of a baseline wing used in equivalent wing analysis ft² or m² 
SW Weighted wing area ft² or m² 
TE Trailing Edge  
XMGC, xMGC Chordwise distance from root chord to the LE of MGC ft or m 
xMGC-C/4 X-location of the quarter chord of the MGC ft or m 
xMGC-LE X-location of the LE of the MGC ft or m 
xMGC-TE X-location of the TE of the MGC ft or m 
yi Indexed span of elemental area Si ft or m 
YMGC, yMGC Spanwise distance from root chord to the LE of MGC ft or m 
   

W Dihedral Degrees or radians 

C/4 Quarter chord sweep angle Degrees or radians 

C/4 E Quarter chord sweep angle for an equivalent wing Degrees or radians 

i Quarter chord sweep angle index for equivalent wing analysis Degrees or radians 

LE Leading Edge sweep angle Degrees or radians 

LE E Leading Edge sweep angle for an equivalent wing Degrees or radians 

MGC-C/4 Quarter chord sweep angle at the MGC Degrees or radians 

MGC-LE LE sweep angle at the MGC Degrees or radians 

ZL-R Zero-Lift angle at root Degrees or radians 

ZL-T Zero-Lift angle at tip Degrees or radians 

 Taper ratio  

 E Taper ratio for an equivalent wing  

O Taper ratio for an equivalent wing  

 
 


