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E.1 Algebra

E.1.1 Laws of Algebraic Operations

at+tb=b+a

Commutative law:
ab =ba

at(b+c)=(a+b)+c

Associative law: a(bc) = (ab)c

Distributive law: a(b+c)=ab+ac

E.1.2 Powers and Roots

X
0 H _ 1 a 3
a’ =1 ifaz0 a’t=— a*a’ — a0y PN )
a a’
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(@) =a”

Yab =¥a¥b

a =7a 2

4 2 2 4 2
X +XYy +y =

4 4 2

x4 xy +y7)(x - xy +y°)

=4ia
E.1.3 Proportions
a ¢ a+b c+d a-b c-d a-b c-d
If 1= = 7 then the following are true; b - d b - d =
b d ) , a+b c+d
E.1.4 The Binomial Formula
The Binomial Formula for a positive integer n;
n n-1 nin-H(n-2) ,_
(X+y)" =x"+nx" nin-1 ) y2+—( ) )x”3 TR
2! 3!
Special cases of the binomial formula:
(x+y)’= X +2xy+y’
(x-y)’= x-2xy+y’
(ax - by)2 = ax’- 2abxy + bzy2
(x+y)>= XC+3x%y+3xy’ +y°
3_ .3 2 2 3
(x-y) = X -3xy+3xy -y
(ax - by) = a%- 3a2bx2y + 3ab2xy2 + b3y3
(x+y)* = x'+aCy +6xy + dxy’ +y*
x-y) = x'-axy +6xy - dxy’ +y*
(x+y)°= X +5x"y + 10’y + 10x°y> + 5xy* +y°
(x-y)°= x-5x'y+ 10x3y2 - 10x2y3 +5xy* -y’
(x+vy) = x4+ 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6
(x-y) b= x°- 6Xy + 15x4y2 - 20x3y3 + 15x2y4 - Bxy + y6
Special Products;
X-y'= (x-y)x+y)
Xyt (x-y) 6+ xy +yY)
Xy’ = (x+y) (X - xy +y?)
Xyt (x- )(X+y)(x +y)
-y = (x-y) Y Xy xy YY)
X4y’ = (xHy)x -y Xy - xy’ YY)
X -yT = (x-y)x+ )+ xy +y) (- xy +y)
(
(

X +4y =

X"+ 2xy + 2y (x> -2xy+2y)

(E-1)
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E.1.5 Zero and Infinity Operators

ax0=0

If g% > 1 then;
If a® = 1 then;

If a® < 1 then;

axoo = 00 0xo0

0°=0 0°
_ 0
0-0=00 [00)
o0 - 00
a” = ar=0
a” =1 ar=1
a* =0 a~”’ =

E.1.6 Definition of Imaginary and Complex Numbers

Roots of negative numbers have been used
since the 1750's, when the concept imaginary
was devised. Mathematicians of the 17"
century used a book by Raffaele Bombelli,
written in 1572, containing the theory of
imaginary numbers. The theory was further
advanced by the contributions of Johann
Bernoulli (1667-1748), Leonhard Euler (1707-
1783), and Carl Friedrich Gauss (1777-1783).
The representation of complex numbers in
the plane is attributed to Caspard Wessel
(1745-1818) and Jean Robert Argand (1768-
1822).

General Definition of Imaginary Numbers

A complex number is generally written as
a+ib, where @ and b are real numbers, and i,
called the imaginary unit, has the property i2
= -1. The real numbers @ and b are called the
real and imaginary parts of the complex
number a+ib, respectively.

Complex Conjugates

indeterminate

indeterminate

indeterminate

indeterminate

indeterminate

indeterminate

Figure E-1: The Gaussian Plane.

The complex numbers a+ib and a-ib are called complex conjugates of each other.

Graphing a Complex Number

A complex number a+ib can be plotted as a point (a, b) on the X-Y plane, as shown in Figure E-1. The diagram is
called the Argand diagram or the Gaussian plane. The imaginary number can thus be interpreted as the vector OP.
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Polar Form of the Complex Number

The point P in Figure E-1 can also be represented in a polar form. From the figure we see that the terminal point of

the vector OPis @ = I COS O and b =1 Sin 0. Hence, we may write
a+ib =r(cos0+isin0)
The modulus, I, and the amplitude, 6, or argument of a+ibare given by
r=+va’+b’> and  0=tan"(b/a)

Representation of Complex Numbers

The following representations are commonly used for the complex number a+ib in Figure E-1:

(a,b)=a+ib =r(cos®+isin®)=re® =(r,0)=rL0

E.1.7 Euler's Theorem of Complex Numbers

Refer to Figure E-1: cos O+isin 6=e" (E-2)
DERIVATION OF EQUATION (E-2):
Using Taylor expansion we can write each term in Equation (E-2) as follows:
2 3 4 5
=l —
20 3 4 b
0> o' o°
c0sf=1-—+—-——+
21 4 ol
° 0 o
sin0=0-——+—-—+

3 5 7

Combining those yields:
.. 0> o' @o° . 0 o o
cosO+isinf=|1-—+———+... |+1|O0——+———+
20 41 6! 3 5 7
00 .0 ot o i
=1+i0-——i—+—+——...=¢e"
2! 3 4 5
QED
Note that the trigonometric parameters are also given by the following identity:
e e . —e
co0sf=——— and SinO = -
2
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E.1.8 Arithmetic Operations Using Complex Numbers®

The vectors A and C are defined as follows;

A=a+ib=re® =rz0
C=c+id =se* =rz¢

Where; a,b,c,d kn,r =Constants.
0, ¢ = Angles in radians.

Then, the following arithmetic operations can be derived for complex numbers.

Equality of a+ib=c+id < a=c and b=d
Addition of A+C=(a+ib)+(c+id)=(a+c)+i(b+d)
Subtraction of A—-C=(a+ib)—(c+id)=(a—c)+i(b—d)

A-C=(a+ib)c+id)=(ac—bd)+i(ad +bc)

Multiplication of i : i
A.-C= (re'e Xse'¢ ): rse'®? =rs20+ ¢

A _a+ib _a+ib c—id ac+bd .bc-ad
C c+id c+id c—id c¢*+d* c?+d?
é_re‘e_rze_ﬁei(e_q,)

C se® szy s

Division of:

r
== /0—¢

S
The arithmetic operations are obtained by using conventional algebraic rules and by replacing > with -1, wherever
it occurs.

Powers of (De Moivre's Theorem)
If nis any real number, De Moivre's theorem states

A" =[r(cos® +isin®)]" =r"(cos n6 + isin no)
A" =(re” ) =r"e™ =r"/no

Roots of (De Moivre's Theorem)
If 1/n is any positive real number, De Moivre's can be written as follows

AY" =[r(cos 0 +isin0)"" = r“”(cos - -

0+2kn . . 9+2knj
—+ISIn—-—-

. / .
Al/n :(reue)l n _ r.l/nele/n _ rl/nle/n

1
Handbook of Mathematical, Scientific, and Engineering Formulas, Tables, Functions, Graphs, Transforms, 1984. Pg. 288-289.
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Where k is any integer. From this there are n roots of a complex number, each being obtained by putting k=0, 1,
2, ..., n-1 (see Example E-1).

EXAMPLE E-1:

Two complex numbers A and C are given. Use them to determine each of the above arithmetic operation, if n = 3
and...

A=3-i2~13/-33.69° and C=5-i3~+/34.,30.96°
SOLUTION:
(a) A+C=(3+5)+i(-243) =8 +i

(b) A - C =(3-5) + i(-2+(-3)) = -2 -5i
(c) =(3-i2):(5+i3) = (3:5 - (-2)-3) +i(3:3 + (-2)-5) =21 -i

A ‘/_4( 33.69° —30.96°) = \/7 Z —64.65°
c e

(e) 3~ (V13£-33.69°)° =13%% £ -101.1°
(f) For n =0 we have; Cl/3 ~ (m430.96°)1/3 = @410.320
C¥® ~ (+34.£30.96° +360°) "% =%/34./10.32° +120°

C® » (v/34.£30.96° + 2-360°)"'3 =%/34.£10.32° + 240°

(d)

For n =1 we have;

For n = 2 we have;

The three roots are depicted in Figure E-2:

Y

Figure E-2: Graphical solution to part (f).

| GUDMUNDSSON — GENERAL AVIATION AIRCRAFT DESIGN |  APPENDIX E — PRACTICAL MATH FOR THE ACDESIGNER | 6 |
©2013 Elsevier, Inc. This material may not be copied or distributed without permission from the Publisher.




E.2 Logarithms and Exponentials

E.2.1 The Natural Logarithm

Definition of
*dt
Inx=| — (E-3)
1
The logarithm denoted with In x is generally called the natural, Naiperian, or hyperbolic logarithm.
Standard Logarithmic Identities
In(ab) =Ina+Inb Ina" =rlIna (risanyreal number)
a 1 _
In==Ina-Inb In==Ina™=-Ina
b a
Logarithmic Identities for Imaginary Numbers
See E.1.6 through E.1.8 for discussion of imaginary (complex) numbers. Here A = re'’ and C=se” .
In(A-C)=InA+InC where; -n<0+y<m
A
In—=IhA-InC where; —n<6—y£n
C
InA"=nlnA where nis an integerand —T<N-0<Tw
Special Values
In1=0 Ine=1
InN0 = -0 In(-1) =mi
. T . ¢ dt
In(xi)=+—mn Ine =1,eis a real number such that; —=1
2 1t
Logarithms of Base b
Inx log, X
log, X = —=~ log,a= log, X = log, X =Inx
% X=10p log, b >~ Jog, b Je
The last three identities are derived from the first one.
E.2.2 Exponentials
Definition of
The exponential function, e, is a function such that;
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—e* =¢* (E-4)
dx
Series Expansions
e’ =exp(z) =1+ £ z - z -
= =lr—T—T wherez=a +ib
r 20 3
e=lim{L+ %)" = 2.71828 18284...
Fundamental Properties
x = Ine” x =g
In(e?) =z + 2k where k is any integer
Inz z Z+2mki Ly
e "=z e =e periodic property
Special Values
e=2.71828 18284... el =1 e* =0
—o0 * in—l
e’ =0 e =-1 e 2 —+j
g2mi _ 1 k is any integer
' ¥ = EXP(x)
.v’ == y= EXP(x)
-7 o l'; mm—y = L[]
/ y=xLN{x)
!' - = LX) %
]
-3 o 2
Figure E-3: Graphing the logarithm and exponentials.
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E.2.4 Hyperbolic Functions

Hyperbolic sine:

Hyperbolic cosine:

Hyperbolic tangent:

Hyperbolic cotangent:

Hyperbolic secant:

Hyperbolic cosecant:

E.2.5 Inverse Hyperbolic Functions

Inverse hyperbolic sine:

Inverse hyperbolic cosine:

Inverse hyperbolic tangent:

Inverse hyperbolic cotangent:

Inverse hyperbolic secant:

Inverse hyperbolic cosecant:

sinhx = =—
2e
“re Tt e 41
coshx = =—
2 2e
sinhx e —e™* e*-1
tanhx = ==
coshx e*+e e +1
5 _coshx _e'+e™ e+l
cothx = — T X aX a2x
sinhx e*—e e -1
1 2 2e*
sech x = == —
coshx e"+e e +1
1 2 2e*
SChX=——=—"+=—
sinhx e"-e e -1

sinh*x = In(x + \/x2—+1)

cosh™x = In(x+\/ X2 —1) where x>1

tanh1x=(1Jlnl+—X where |x|<1

2) 1-x

coth‘lx:(ljlnx—Jrl where |x|>1
2 x—-1

1++/1-x?

X

sech® x =In where 0<x<1

1,31+

csch® x=1In
X |¥
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E.2.6 Graphing the Hyperbolic Functions

-2.0
-4.0
-6.0 =y = coshix)
8.0 = sinhix)

-10.0

Figure E-4: Plotting sin x and cos x.

3.0
2.0 =y =tanhx]
= coth(x)
1.0
| 1 1 [
I T T T 1
-2T -7 T 2
Figure E-5: Plotting sin x and cos x.
3.0
2.0 ey =sechix)
— = 5Ch(x)
1 1
I ) 1
-7 T 2

Figure E-6: Plotting sin x and cos x.
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E.3 Functions

E.3.1 Solving Two Linear Equations in a Canonical Form

Solving two linear equations is a common practice in algebra. Figure E-7 below shows the intersection of the two
lines represented by the linear equations Ax + By = C and Dx + Ey = F. The x and y values of their intersection is
given by

BF - CE CD - AF
BD — AE BD — AE
Where the constants A, B, C, D, E, and F are known.
y
. Point of Ax+By=C
~ intersection

Dx+Ey=F

Figure E-7: Determining the point of intersection of two lines.

DERIVATION OF EQUATION (E-5):
Start by writing the expressions for the lines as shown below. Then, multiply the top equation by D and the lower

by -A;

> ADx + BDy = CD (i)
> -ADx - AEy = -AF (ii)

D x (Ax + By =C)
-Ax (Dx + Ey =F)

Then, add them together to yield: (BD - AE)y = DC - AF

When solved for y this equation gives the right part of Equation (E-5). Inserting this result into either (i) or (ii), here
using (i), and dividing through by A (to solve for x) results in;

C B (CD-AF)

" A A (BD-AE)

Which can easily be expanded and manipulated to give the left part of Equation (E-5).
QED
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E.3.2 Linear Equations in a Parametric Form

If the two linear equations are given in the form y; = Ax + B and y, = Cx + D as shown in Figure E-8, where the
constants A, B, C, and D are known, then the x and y values of intersection of the two lines can be found using the
equations;

D-B AD — BC
X=—"0 and y=——— (E-6)
A-C A-C
y
. Point of vi=Ax+B
~ intersection

y.=Cx+D

Figure E-8: Determining the point of intersection of two lines.
Also note the special formulation of a parametric line discussed in Article E.5.5, Parametric Lines.

DERIVATION OF EQUATION (E-6):

The two expressions must equal where they intersect, i.e. y,= y,, or Ax + B = Cx + D. This can be solved for x
yielding the left equation of (E-6). Consequently, by inserting the result for x, for instance, into y, and
manipulating, yields

A(D-B) . AD-B)+B(A-C)_AD-BC
(A-C) A-C A-C

y =
which is the right side of Equation (E-6).
QED

EXAMPLE E-2:
Determine where the following two lines intersect;

Y1=2x-2 and Yy, =-3x+8

SOLUTION:
Using Equations (E-6) we find the x and y coordinates of their intersection.

8- _, . QO-(23_,
2 (-3) 2 (-3)
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Alternatively, writing the two equations in the canonical form, we have:
2x-y=2 and 3x+y=8

Now, applying Equations (E-5), we get the same coordinates of the point of intersection.

_CDe-00 _, _20-06) _,
(D) - O (D@ -

y

E.3.3 Polynomial Fundamentals
Polynomials and their solutions are very practical in science and engineering. The solution of a polynomial is also

called its root. An intuitive way to think of a solution to a polynomial is to think of the x; that make P(x) = 0.

Definition of
Any equation of the form; ‘ P(X)=a, +a,Xx+a,x’ +..+a,x" =0 (E-7)

where a,, a,, a,,...,a, are constants where a, = 0, is called polynomial to a degree n. Furthermore, the form
of Equation (E-7) is called the canonical form.

The Roots of P(x) =0

The x-values that make the polynomial P(x) equal to O are called the roots of P(x). The roots of the polynomial may
be real and separate, or real and repeated, or complex conjugate and separate, and/or complex conjugate and
repeated. If x,, x,,..., x_ are the roots of P(x) = 0, then;

P(X) =(X—Xx)(X—X,)...(x—x,) =0 (E-8)

Types of Equations and Their Solutions

Polynomials are very practical in science and engineering, so studying their solutions is extremely important. The
solution is found once their roots (i.e. by finding the x;'s that make P(x) = 0) have been determined. Considering
Equation (E-7), some specific forms of P(x) are well known and can be seen in the table below. The table depicts
the form that the equations are most commonly found in, its most common name, and the third column indicates
the article in which the solution can be found.

Polynomial Name
Equation of a line
=Ax +B .
y =X Polynomial of degree one
) Equation of a parabola
y=AXT+Bx+C Quadratic equation
y= Ax3 +BxZ +Cx+D Cubic equation
y=Ax3 +Bx2 +Bx+C Symmetrical cubic equation
y=Ax4+Bx3+Cx2 +Dx+E Quartic equation
y=Ax4+Bx3 +Cx2 +Bx+ A Symmetircal quartic equation
y=Ax4+Bx3-Bx-A Antisymmetrical quartic equation
y= AP +Bx*+ O3 +Dx2 + Ex+F Quintic equation
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y=Ax> +Bx4 + Cx3 + Cx2 + Bx + A Symmetrical quintic equation
y=Ax> +Bx%+ Cx3 - Cx2 - Bx - A Antisymmetrical quintic equation
y=x"-h Binomial equation, h>0

y= A +BX"+C Trinomial equation, (n=2, 3, ...)

E.3.4 The Polynomial of Degree One

Is an equation in the canonical form; Ap+A;x=0

where the value of x can be found as follows, provided the constants A, and A; are known;

X=—— (E-9)

E.3.5 The Quadratic Equation

The quadratic equation is an equation in the canonical form; A,+A; x+A, X=0

where the value(s) of x can be found with the following formula if the constants A, A;, and A; are all known

A EAT-AAA, £10)

2A,

If the two values of x are nearly equal, then the numerical result can be determined more precisely using the
following form of the equation:

X

2A,
X= (E-11)
2
—A VAT -AAA,
This equation is commonly presented using the coefficients A, B, and C: AX+Bx+C=0
_R++R?%2_
The solution is then given as: X = BB 4AC (E-12)
2A

DERIVATION OF EQUATION (E-12):
For convenience, start with the more common definition of a quadratic equation, i.e.:

Ax? +Bx+C =0

2
The solution method starts with: X"+ K X+ K =0
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Adding supplemental terms:

Which reduces to a pure quadratic form: [

|

Which is solved as follows:

B
X+ —
2Al,2

B> B° C

X+ —Xt————+—=0

X+—

A 4N 4N A

VO

BT_BZ C
2A

and can be easily manipulated to yield the two forms of the solution.

EXAMPLE E-3:

(1) The roots of x2 - 2x - 8 =0 are:

Xl, 2

(2) The roots of x2 - 8x + 16 = O are: X, ,

(3) The roots of x> - 2x + 8 =0 are: X, ,

~(2+(2)* -40(8) _,

+3

2(1)

~(-8)£4/(-8)° ~4Q)6) _,

2(0)

~(2£(27-406) _,,

2(1)

E.3.6 COMPUTER CODE: Solving the Quadratic Equation

QED

The following Visual Basic for Applications function, intended for use with Microsoft Excel, implements the
qguadratic equation presented above. It returns a solution using both real and imaginary numbers, and even
detects and solves if the entered coefficients (A, B, C) represent the equation of a line.

Function MAT SolveQuadratic(A As Double, B As Double, C As Double, Mode As Byte) As
Variant
'This routine solves the quadratic equation Ax?+Bx+C=0 and returns the
'real and complex roots depending on the value of Mode. Solution is of
'the form: x = * real + imaginary-i, meaning there are four numbers.
'Variables: A, B, C = Constants of the gquadratice equation
! Mode = 0 to return "real number 1"
! Mode = 1 to return "imaginary number 1"
! Mode = 2 to return "real number 2"
! Mode = 3 to return "imaginary number 2"
! Mode = 10 to return a string containing the solution
'Initialize
Dim D As Double
Dim R1 As Double, R2 As Double
Dim Il As Double, I2 As Double
'Presets
D=B*B-4*A*C
[ GUDMUNDSSON — GENERAL AVIATION AIRCRAFT DESIGN |  APPENDIX E — PRACTICAL MATH FOR THE AC DESIGNER | 15 |

©2013 Elsevier, Inc. This material may not be copied or distributed without permission from the Publisher.



'Explore alternative solutions

If A = 0 Then 'We have case Bx+C=0 <=> x=-C/B
If B = 0 Then 'We have case C=0 No solution
SolutionString = "Error: A=0 in (-B*SQR[B2?-4-A-C])/ (2 -A)"
Exit Function
Else
Rl1 = -C/ B
R2 =0
SolutionString = Format$(R1) + "|" + Format$ (R2)
End If
Else 'Solve the quadratice
If D >= 0 Then 'Real solution

Rl = 0.5 * (-B + Sqr(D)) / A
R2 = 0.5 * (-B - Sqr(D)) / A

SolutionString = Format$(R1) + "|" + Format$ (R2)
Else 'Complex solution
Rl = -0.5 *B / A
R2 = R1
D = Abs (D)
I1 = 0.5 * Sqr(D) / A
I2 = -0.5 * Sqr(D) / A
SolutionString = Format$ (R1) + "," + Format$(Il) + "|" + Format$(R2) + ","
+ Format$ (I2)
End If

End If

'Present solution
Select Case Mode
Case O
MAT SolveQuadratic = RI1
Case 1
MAT SolveQuadratic = Il
Case 2
MAT SolveQuadratic = R2
Case 3
MAT SolveQuadratic = I2
Case 10
MAT SolveQuadratic = SolutionString
End Select
End Function

E.3.7 Completing the Square

Completing the square is a handy method to solve the quadratic equation. Consider a quadratic equation of the

form ax® +bx+c=0. Then, completing the square involves putting it into the following form:

ax’+bx+c=0 = a(x+d) +e=0 (E-13)
2
Where: d:i and e:c—b—
2a 4a

Note that completing the square is the most important step in deriving Equation (E-12). There are a few
advantages to solving it this way. First, the form contains the x,y coordinates of the vertex of the parabola. Second,

it is easy to solve the equation in the completed form. Third, sometimes, the original form ax’+bx+c=0isa
part of a bigger problem (nonlinear dynamical control systems come to mind), and completing the square allows a
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solution to be clearly represented because x only appears once. This is also helpful if the term “x” actually

represents a function (e.g. tanh(r)) and this can yield a considerable simplification.

(iii)

2 2
b b
Note that Equation (E-13) can be explicitly written as follows: a Xx+— | +|c——1|=0
2a 4a
1( b b?
Therefore, the vertex of the parabola is given by: (X, y) =—|——,——C
a\ 2 4a
2 bz
Consider the special case where a = 1: X2 +bx+c=0 = [X + —) +C— 7 =0
2 2 €
Note that Equation (i) can also be written as follows: a(x+d) +e=0 < (X+d) =——

And then the vertex of the curve (x,y) = (-d, e/a). Example: x?+4x+1=0 => d=4/2=2 and e=1-4%/4=-3. The vertex of

this curve is at (x,y) = (-2, -3).

EXAMPLE E-4:
Complete the square for the following quadratic polynomials:

2 2
(1) The roots of X2 - 2x-8 =0 are: — X+g +C—b?:(x—l)2—7:0
b b’
(2) The roots of x2 - 8x + 16 = 0 are: = X+§ +C—I:(X—4)2:0
b)° b?
(3) The roots of X2 - 2x + 8 =0 are: —> X+E +C—?:(X—l)2+720
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E.4 Trigonometry

E.4.1 Definition of Trigonometric Functions for a Right Triangle

For the Right triangle (where angle C = 90°) in Figure E-9, side AB is called the "hypotenuse", side AC is the

"adjacent", and side BC is the "opposite". With respect to this triangle, the trigonometric functions are defined as
follows:

Sine of A: sin A = a/c = opposite/hypotenuse
Cosine of A: cos A = b/c = adjacent/hypotenuse
Tangent of A: tan A = a/b = opposite/adjacent
Cotangent of A: cot A = b/a = adjacent/opposite
Secant of A: sec A = ¢/b = hypotenuse/adjacent
Cosecant of A: csc A = ¢/a = hypotenuse/opposite

Figure E-9: The right triangle.

E.4.2 Trigonometric Functions of an Arbitrary Angle

Let o be any angle in standard position and let P = P(x,y) be any point on the terminal side of the angle as shown in
Figure E-10. Denote the positive distance OP by r. Then;

sin @ =y/r cscO=rsy

cos 0 =x/r sec0=r/x

tan 0 = y/x cot 0 =x/y
exsecO=secO-1 covers® =1-sin6
versO=1-cos 6 hav 0 =% vers 0

Cis@=cosO+isinf=el 0

Where; 0 = Angle in radians

i=+—1
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| Quadrant

—
0

Il Quadrant IV Quadrant

Figure E-10: Plane used to define trigonometric functions of an arbitrary angle.

E.4.3 Relationships between Sides and Angles of a Plane Triangle

Law of Sines
The following results hold for any plane triangle ABC with sides a, b, c and angles A, B, C, as shown in Figure E-11.

a b ¢
sinA sinB sinC

Law of Cosines
a’ =b?+c?—2bccos A
b? =a?+c?—2accosB

c?=a’+b®>-2abcosC
Law of Tangents

1 1 1
a+b_t<';1n§(A+B) a+c_tan§(A+C) b+c_tanE(B+C)
a-b tan;(A—B) a-c tan;(A—C) b—c tan;(B—C)

Law of a Semiperimeter

. 2
sin A:R\/S(S —a)(s—h)(s—c)

Where s = %(a + b + ¢) is the semiperimeter of the triangle. Similar relations can be obained for angles B and C.

A, B, C =Anglesin radians
a,b,c =Side lengths
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Figure E-11: Plane triangle.

E.4.4 Small Angle Relations

If the angle ¢ is a small angle then the following approximations are particularly useful:

cosdp=~1
singp~¢
tand = ¢
Where; ¢ = Angle in radians
EXAMPLE E-5:

Determine the error for the above relations for a 5° angle (i.e. 0.087266 radians).
COS(SO %) ~0.996195 = A=1-0.996195=~0.39%
sin(SO%j ~0.087156 = A =0.087266—0.087156 =0.000111~ 0.13%

tan(5°&j ~0.087489 = A =0.087266—0.087489 = —0.000222 ~ —0.16%

E.4.5 Angle-Radians Conversions

180
edegrees = eradians T eradians = egrad %
T _
eraldialns = edegrees @ edegrees - O'gegrad
0
200 0, =t
egrad = eradians T grad 0.9
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E.4.6 Relations among Trigonometric Functions

Function of sin x

Function of cos x

Functions of tan x

Functions of cot x

sinx=——
COS X

COSX =——
sec X

1 sin x
tanx=——="—-—
cotX CosX
1 COS X
cotX=—=—-—
tanx sinx

Functions of csc x

X
CSCX =cot ——cot x

Functions of sec x

Other Relations

1
SeCX=—
COS X

sin? x+cos? x =1

sin X = +4/1—cos® X

cos x =sin(90° - x)
=—C05(180° - X)

tanx = ++/sec? x—1

cot x =++/csc? x—1

1
CSCX=——

SInX

secx = ++/tan® x +1

1+ tan?® x =sec? x

E.4.7 Various Arithmetic Relations for Trigonometric Functions

Reciprocal Relations

Product Relations

sin A=tan Acos A
cos A=cot Asin A
tan A=sin Asec A

cosA:i,
Sec A

SecA =

cos A’

sin x = c0s(90° - x)
=sin(180° - x)

COS X = +/1—sin? X

tanx = cot(90° - x)
=—tan(180°—x)

cot x = tan(90° - x)
=—cot(180°-x)

csCX =++/cot? x+1

1+cot? x =csc? X =—
sin? x

1

tanA=——

cot A
1

COtA=——

tan A

cot A=cos Acsc A
sec A=csc Atan A
csc A=sec Acot A
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Double-Angle Relations

Sin2A = 2sin Acos A =

2tan A
1+tan’ A

cos’ A= %(1+ cos” 2A)

cos 2A = cos® A—sin?

2tan A
tan2A = —,
1-tan“ A
Quotient Relations

sin A= tanA1 0S A

sec A
SC A= SECA, ecA=

tan A

Pythagorean Relations

sin? A+cos® A=1

E.4.8 Angle-Sum and Angle-Product Relations

Angle-Sum and Angle-Difference Relations

sin(A+B) =sin Acos B +cos Asin B
sin(A—B) =sin Acos B —cos Asin B
cos(A+B) =cos Acos B —sin Asin B
cos(A—B) =cos Acos B +sin Asin B

2
A:ZCOSZA—1=1—28in2A:w
1+tan” A
2
cot2A=C0t—Al
2cot A
_COtA A= SINA
csc A cos A
CCA ot A= %A
cot A sin A

1+tan? A=sec? A 1+cot’? A=csc? A

tan(A+ B) = tan A+tan B
1-tan Atan B

tan(A-B) :M
1+tan Atan B

B A-1

cot(A+B) =—COt cot
cot B+cot A

sin(A+B)sin(A—B) =sin® A—sin® B =cos” B—cos® A
cos(A+ B)cos(A—B) =cos® A—sin® B=cos* B—sin? A

Multiple-Angle Relations

cos3A =4cos® A—3cos A
cos4A =8cos* A—8cos? A+1
cos5A =16cos® A—20cos® A+5cos A

cos6A =32cos® A—48cos* A+18cos? A—1
cosnA = 2cos(n—1)Acos A—cos(n—2)A

sin3A = 3sin A—4sin® A

sin4A = 4sin Acos A—8sin® Acos A

sin5A = 5sin A—20sin® A+16sin® A

sin6A = 32c0s® Asin A—32cos® Asin A+ 6cos Asin A
sinnA = 2cos(n —1)Acos A—sin(n—2)A
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3tan A—tan® A

tan3A = tan4A =

Atan A—4tan® A

tan(n—-1)A+tan A

tannA =

1-3tan® A
Function-Product Relations
. . 1 1
sin AsinB = Ecos(A— B) - Ecos(A+ B)
. 1. 1.
sin Acos B = Esm(A+ B) + Esm(A— B)
Function-Sum and Function-Difference Relations
. . .1 1
sin A+sinB = ZSIHE(A+ B) cosE(A— B)

sin A—sinB zchS%(A+ B)sin%(A— B)

tan A+tanB = M
cos Acos B
tanA—tanB = M
cos Acos B

sinA+sinB _ tan%2(A+ B)
sinA—sinB tan%2(A—B)
sin A+sinB
cos A—cosB

=cot%(B - A)

Half-Angle Relations

1-6tan® A+tan* A

1-tan(n—-1)Atan A

cos Acos B :%cos(A— B) + %cos(A+ B)

cos AsinB =%sin(A+ B) —%sin(A— B)

cos A+cosB = 2COS%(A+ B)cos%(A— B)

cosA—cosB = —23in%(A+ B)sin%(A— B)

sin(A+ B)
sin Asin B
sin(B-A)
sin Asin B

cot A+cotB =

cot A—cotB =

sin A+sinB

cos A+cosB
sin A—sinB
cos A+cosB

tané_Jrfl—cosA_l—cosA_ sin A
2 Vl+cosA sinA  1+cosA
A 1+cosA 1+cosA sin A
cot—zJ_r‘/ == =
2 1-cos A sin A 1-cos A

= tan%2(A+ B)

= tan%2(A - B)

E.4.9 Power and Inverse Relations for Trigonometric Functions

Power Relations

cos’ A= %(1+ cos 2A)

sin® A= %(1—005 2A)

I GUDMUNDSSON — GENERAL AVIATION AIRCRAFT DESIGN |

APPENDIX E — PRACTICAL MATH FOR THE AC DESIGNER I 23 |

©2013 Elsevier, Inc. This material may not be copied or distributed without permission from the Publisher.



cos® A= %(3003 A+cos3A)

cos* A:é(3+4cos 2A+cos4A)

1-cos2A

tan? A=————""""
1+cos2A

cot? A=

Relations between Inverse Trigonometric Functions

1+cos2A
1-cos2A

sin® A:%(Bsin A—sin3A)

sin* A:%(3—4c052A+cos4A)

. _ T . .
sin 1x+coslx:5 sin ™ (—x) =-sin ™" x
_ _ T _ _
tan " x+cot " x == cos ' (=x) =m—cos " X
2
B} B} T B} _
sect x+csctx== tan ' (—x) = —tan' x
_ _ _ (1
cot ' (=x) =n—cot " x cot ™ x = tan 1(—
X
_ .41 _ _
csc™t x =sin 1(—) csct(—=x) =csct X
X
_ 41 _ _
sec™ X = cos 1(—) sec ' (—x) =m—sect x
X
E.4.10 Plotting the Trigonometric Functions
1.5
m— = 05X
m— = i ()

-1.5 4

Figure E-12: Plotting sin x and cos x.
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5.0

|

m— = AN ()

3.0

—r = O]

2.0 9

1.0 +

-1.0

5o I I

Figure E-13: Plotting tan x and cot x.

I\

m—r = s (]

m—r = 5[]

N

Epe .
[Re]
=

Figure E-14: Plotting csc x and sec x.
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y = A-cos(ax+0) ory = A-cos(ax-¢)

fPY .. Y. R

-27ma

1
1
1
T
1
1
1
1
1
1
1
1
1

0}

Figure E-15: General Plot of y = A cos (ax - ¢) or y = A cos (ax + 0).

E.4.11 Great Circle, Small Circle, and Lunes

Consider the sphere in Figure E-16. A circle on
a sphere having the same radius (and the
same center) as the sphere is called a great
circle. All other circles on the sphere are
called small circles.

On a sphere of a sufficiently large radius,
sufficiently small arcs of a great circle can be
assumed to resemble a straight line.

Two great circles intersect in two points A and
B that are the ends of a diameter of the
sphere. These points, which are called poles,
can be connected with a straight line that is
bisected at the center of the sphere (see
Figure E-16).

Two great circles have always a pair of
diametrically opposite points in common,
which divide the surface of the sphere into
four lunes.

Figure E-16: Poles, great circles, and lunes.

~
L
-

The arc of a great circle going from point P to Q through an angle o in Figure E-16 has an arc length of:
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PQ =Ra=Rn

aO
180°

where @° is the angle o in degrees. The area A of the lune APBQA through the angle o, is given by:

A=2R%0=R’r

E.4.12 Spherical Trigonometric Relations

Law of Sines

Spherical triangle ABC is on the surface of a
sphere is shown in Figure E-17. Sides a, b, and
¢ (which are arcs of great circles) are
measured by their angles subtended at center
O of the sphere. a, B, v are the angles
opposite sides a, b, c respectively. Then the
following results hold:

sina _sinb _sinc
sina. sinf siny

Law of Cosines for Sides

cosa=cosbcosc +sinbsinccos a
cosb =cosacosc +sinasinccosf
cosc=cosacosh+sinasinbcosy

Law of Tangents

tan¥%(a +B)  tan¥z(a +b)
tan¥(a —B)  tan¥z(a—b)
tan%2(a +y) tan%z(a+c)
tan¥(a —y) tan¥s(a—c)

aO
90°

Figure E-17: A spherical triangle.

Law of Cosines for Angles

COS o =—C0S 3 COS y + Sin3sin y cos a
COS 3 =—C0S o COS y + Sin aSin y cos b
COSy =—C0S a CoS B + sin a.Sin B cosc

Law of a Semiperimeter

o [sinssin(s—c)
COS—=,|——————
2 sinbsinc

where s = Y%(a + b + ¢) is the semi-perimeter of the
triangle. Similar relations can be obtained for angles 3
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tan'2(B+7vy) tan%z(b+c)
tan%2(B—y) tan%z(b-c)

Half-Angle and Half-Side Relations

an \/sin(s —b)sin(s —c)
2 | sinssin(s—a)

wanP - \/sin(s —a)sin(s —c)

2 sinssin(s —b)
tan — sm(_s—a_)sm(s—b)
2 sinssin(s —c)

where s = %(a + b + ¢) is the semiperimeter of the
triangle.

andy.
a cos(S —B)cos(S —
cos? _ [COS(S —B)cos(S 1)
2 sinpsiny
where S = Y(a + B + y). Similar relations can be

obtained for side b and c.

_\/ —c0s S cos(S —a)
- cos(S —B)cos(S —v)

a
2

anE | —cosScos(S—p)
2 '\ cos(S—a)cos(S—vy)

tangz\/ —c0s S cos(S — )
2 cos(S — a) cos(S —B)

Where; S=Y2(a+B +7).
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E.5 Analytic Geometry

E.5.1 Vector Properties of 2-D Lines

Consider the vector, A, in Figure E-18 extending
from the point (x,, y,) to point (x,, y,) is written as
follows:

A:(xb—xa)-i+(yb—ya)'j:{Xb_Xa}

Yo = Ya

Its length, Ly, is given by:

La= \/(Xb - Xa)2 +(Yb —VYa )2

In polar form, the vector is written as follows:

Where;
And Xar Ya
Xbr Vb
Ly = Length of the vector A.

E.5.2 Vector Properties of 3-D Lines

(Xa, Ya)

/‘\ -
\ /

Figure E-18: Linear interpolation in 2-D space.

A=L,/0

0= tanl(

= coordinates of the starting point of the vector.
= coordinates of the end point of the vector.

yb _ya
Xp —Xq

A vector, A, extending from the point (x,, Vo, Z,) to point (X, Vs, Z4) is written as follows.

A= =% ) T+ (y, —V,) i+(z,—2,) k=

Xy = X4
yb_ya
Ly —Z,

Its length, Ly, isgivenby: L, = \/(Xb - X, )2 +(yb —VYa )2 +(Zb -7, )2

Where

Xu Yo Zg = coordinates of the starting point of the vector.

Xp, ¥, Zp = coordinates of the end point of the vector.

La = Length of the vector A.

X
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E.5.3 Linear Interpolation in 2-D

If x is known, y can be determined as follows: Yy

y)=7, (

yb_ya

Xy — X4

](X - Xa) (E-13) I (Xa, Ya)

If y is known, x can be retrieved as follows:

(Xb, Yb)

Xy, — X,
Xy_—xa_|_ &

b a

j(y ~y.) | (E14) X

Figure E-19: Linear interpolation in 2-D space.

Where Xa Yo = coordinates of one point on the line.
Xp, ¥ = coordinates of the other point on the line.
X, y = coordinates of the unknown point on the line.

EXAMPLE E-6:

Two points on a line are given by (5, 1) and (1, 5). Find the value of y for x = 2.5. Using Equation (E-13) the solution

is given by:

y(2.5):1+(f—_3(2.5—5): 35

E.5.4 Linear Interpolation in 3-D

If x is known, y and z can be retrieved as follows:

yX)=y, + [u} “x)

X, — X
v (E-14)
_ Zy — 1, _
)=z, 222 o,
X, — X
X(y):Xa+( 2 aj(y_ya)
yb ya (E-15)
Zb_ a
Z\y)=17, + Y=Y,
) [yb_ya} )

If zis known, x and y can be retrieved as follows:
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W2)=x, (—j()

Zy — 1,
(E-16)
_ yb ya
O

Where x,, ¥, Z, = coordinates of one point on the line.
X, Yb, Zp = coordinates of the other point on the line.
X, ¥,z =coordinates of the unknown point on the line.

(Xa, Ya, Za)

/ \Xb' Yo, 2b)

Figure E-20: Linear interpolation in 3-D space.

EXAMPLE E-7:
Two points on a line are given by (5, 1, 4) and (1, 5, 2). Find the value of y and z for x = 2.5. Using Equation (E-16)

the solution is given by:

y(2.5)=1+ G ;j(zs 5)=3.5

2(2'5):4+G—;j(25 5)=3.25

E.5.5 Parametric Lines

Parametric lines are extremely useful in software codes as they will not cause singularities that may cause a code
to crash. For instance, when calculating the slope of a line using Equation (E-13), a singularity will occur when x, =
Xs. A parametric line circumvents this problem by never calculating the slope of the line. The line requires a
parameter t to be calculated, which can be thought of as the fraction of the distance between two points.

X(t) = x, (1 —t)+ x,t

y(t) =y, [@—t)+y,t (E-17)
2(t)=z,(1-t)+ z,t
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EXAMPLE E-8:
Two points on a line are given by the initial point (5, 1, 0) and final point (1, 5, 0). Find the value of x and y for t =0,
0.5, and 1.

SOLUTION:

Using Equation (E-17) with t = 0 we get:
x(t)=x,(1-t)+x,t=5-(1-0)+1.0=5
y(t)=y,@-t)+y,t=1-(1-0)+5-0=1

This is the initial point. Using Equation (E-18) with t = 0.5 we get:

x(t)=x,(1—t)+x,t=5-(1-0.5)+1.0.5=3
y(t)=y,[@-t)+y,t=1-(1-0.5)+5-05=3

This is the midpoint on the line. Using Equation (E-18) with t = 1 we get:

x(t)=x,(@-t)+x,t=5-1-1)+1-1=1
y(t)=y,[@-t)+y,t=1-(1-1)+5-1=5

This is the end point.

E.5.6 COMPUTER CODE: Intersection of Two Parametric Lines

The following code, written in Visual Basic for Applications and intended for use with Microsoft Excel will
determine the Y-value of the input value, Xin, on the interval [X1, X2] onto which the linear relation [Y1, Y2] is
mapped, using the parametric formulation for a 2-dimensional case.

Function ParametricInterpolation (X1l As Single, Y1 As Single, X2 As Single, Y2 As
Single, Xin As Single) As Single
'This function calculates the Y-value corresponding to the value of Xin, using
'a parametric formulation. It is assumed that X1, Y1 represent the lower extreme
'of the intervale (e.g. where t = 0) and X2, Y2 represent the higher extreme (t = 1).
'Initialize

Dim t As Single, L As Single

'Presets
L = X2 - X1
If L = 0 Then 'Flag an input error
ParametricInterpolation = -9.9E+100
Exit Function
End If
t = (Xin - X1) / L
'Process

ParametricInterpolation = Y1 * (1 - t) + Y2 * ¢
End Function
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E.5.7 Intersection of Two Parametric Lines

Determining the intersection of two parametric lines is often necessary, in particular when conditions of
optimization must be determined. Consider the parametric lines A = Py+(1-ty) + Pty and B = P5+(1-tg) + Pstg in
Figure E-21. The intersection of these two lines occurs at the point (x,, yo) the when the two parameters take the
following values:

(Vs = ¥ )X = X,)
(X3 4)(y2 l)
(v, = v )% — %)
( )

(=X MY = V) -
(% =% XY - Y,

)~
(E-18)
(Xz — 1)(y3 1)
(Xz - X1)(Y3 Y4) X3 — X4)(y2 Y1
y
B
X3, Y3
X
X0, Yo

Figure E-21: Determining the point of intersection of two lines.

DERIVATION OF EQUATION (E-18):

Point on line A is given by:

Point on line B is given by:

We need to find t, and tg such that x, =Xz =Xgand y, = yg = Yo.

Xl(l_tA)+ Xty = Xa(l_t3)+ X, g
Yo = yl(l_tA)+ Yota = y3(1_tB)+ Yals

We write
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(Xz _Xl)tA+(x3 _X4)tB =X

Which can be rewritten as:
(yz - yl)tA +(y3 - y4)tB =Y

So now we have two equations with two unknowns, and we determine t, and tg, for instance using Cramer’s rule

( 1)(y3_y4)_(y3_y1)( — )
0 =3 )Ys = ¥a) = (6 =% My, = 1)
(Xz )( ) (yz — yl)(x3 )

)—( )

(Xz - X1)(Y3 Y4 X3 — X4)(y2 Y1

f—i-

QED

E.5.8 Quadratic Curve-Fitting

Sections E.5.3 through E.5.5 are simple linear curve fitting methods. The ability to fit curves to data is a priceless
tool for the airplane designer. All sciences attempt to provide tools to determine various physical characteristics of
some natural phenomenon using pure physical formulation. This can be called the prediction approach. However,
many processes in nature are so complex and nonlinear that the only choice toward understanding is to conduct
experiments and fit curves to the data. This is the empirical approach. This section presents a powerful and simple,
albeit limited, method to fit a quadratic curve through three data points.

Consider the three points (x3, y1), (X2, ¥2), and (xs, ys) in Figure E-22. We can now fit a quadratic polynomial y = Ax? +
Bx + C through the points. The coefficient A, B, and C are obtained from:

X x 1 [y

A
Br=[xZ x, 1| 3y, (E-19)
C

X5 X 1| Y,

DERIVATION OF EQUATION (E-19):
If the function y = Ax? + Bx + C goes through each of the three points, we can write for each point:

y,=A-X’+B-x +C

Point 1:
2
= . 2 .
point 3: Y. =A-X; +B-x,+C

This can be written in a matrix format as follows:

X % 1ifA Y1
Xz2 X, 1hBr=13Y,
X5 % 1f(C) Ly,

So it follows that the coefficients A, B, and C for the polynomial can be determined from:
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Xl Xl 1 A yl A Xl Xl yl
X; % 1EBr=1y,r & {Br=[x; X Y,
X; X 1||C Y3 C X; X Y3
QED
Curve through Three Points
3
3
25 @
2
1.5
|
1
© 2
0.5 @
1 0.5 0.5 1 1.5 2 2.5 3
-05
-t
X

Figure E-22: Determination of a function y = Ax? + Bx + C that intersects the points 1, 2, and 3.

EXAMPLE E-9:
Determine the coefficient A, B, and C for a quadratic function going through the points shown in Figure E-22.

SOLUTION:
Begin by setting up the matrix:

x % 1|[A] [y, 1 -1 1|(A 1
X; X, 1KBt=4y,r = | 1 1 1{B;=<05
X2 %X, 1(|C] |V, 6.25 25 1||C|] |25
Inverting the matrix yields:
Al [x x 1 B Y, A| ]0.14286 -0.33333 0.19048 || 1 1
Br=|x> x, 1| {y,; = <Bi=| -05 0.5 0 0.5¢{=410.5
C X2 X, 1| |y, C 0.35714 0.83333 —-0.19048||2.5 2.5

This yields the following values for the constants A, B, and C:

A=0.45238 B=-0.25 C=0.29762
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The solution can now be plotted, showing each point is indeed intersected:

Curve through Three Points
3
3
25
2
1.5
. 1

1

2
0.5

1 0.5 a5 1 1.5 2 25 3

-0.5
-1

X

Figure E-23: The function y = Ax? + Bx + C has been defined such it intersects the points 1, 2, and 3.

E.5.9 Cubic Curve-Fitting

This section extends the method of the previous section to a curve fit through four data points. Consider the four
points (x4, Y1), (X2, ¥2), (X3, y3), and (xs, ya) in Figure E-24. We can now fit a quadratic polynomial y = Ax? + Bx + C
through the points. The coefficient A, B, and C are obtained from:

-1
3 2
A XX X X 10 W%
Bl [x xX x, 1
=| "2 22 2 Y2 (E-20)
C X3 X3 X3 1| |VY;
2
D X, X; X, 1) |V,
DERIVATION OF EQUATION (E-20):
Identical to that of Article E.5.7, Quadratic Curve-Fitting, using four variables rather than three.
QED
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Curve through Four Points
3
? 4
15
>—
1
2
05
-_
1 0.5 0.5 1 1.5 2 25 3
-05
-1
X

Figure E-24: Determination of a function y = Ax3 + Bx? + Cx + D that intersects the points 1, 2, 3, and 4.

E.5.10 Linear Least-Squares Curve Fitting -y = Ax + B

For a data domain of the form (x, y,), (x,, y,), ...(x, y)), ...(x_, v.), a best fit line of the same form as equation A.8.4.1,
i.e.;

‘ y(x)=Ax+B (E-21)

can be found such that the standard deviation (see A.9) between the y/'s and the y(x)'s found from the resulting
line is minimized. Then, the Coefficients A and B are given with;

‘ y(x) = Ax+B (E-22)

E.5.11 STEP-BY-STEP: Rapid Interpolation of 2D Lookup Tables

Consider the sample 2D lookup table shown in Figure E-25. It is a frequent task for the practicing engineer to
interpolate values in such tables using an argument that fall between the values in the table. For instance, consider
the task of estimating the value for A = 4.5 and B = 6.25 in the table below. The resulting value will require a
double interpolation inside the dark region. This section introduces a simple method to allow for a quick
interpolation of such values, using parametric line interpolation.

A/B 1 2 3 4 5 6 7 8 9

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9
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7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9
9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9
10 10.1 10.2 10.3 104 10.5 10.6 10.7 10.8 10.9
11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9

Figure E-25: A sample 2D lookup table.

STEP 1:
Determine the four values (h) enclosing the solution:

A/B 1 2 Cj Cj+1 CN-Z CN_1 CN

Ri hy hije
Ris1 hist Nis1je

RN-l hM-l N-1 hM-l N

Ry hwm -1 hmn

STEP 2:
Calculate the parameters s and t from:

_R c-C,
s= "R gt

STEP 3:
Calculate the interpolated value h:

= [0y 0= 5)+ oS- 1)+ [, 0= 5)+ ) (E-22)

E.5.12 COMPUTER CODE: Rapid Interpolation of 2D Lookup Tables

The following Visual Basic routine implements the 2-dimensional interpolation presented above:

Function MATH Lookup2DTable (Table () As Single, RowValue As Single, ColValue As Single)
As Single

'This routine calculates the value of the table using the RowValue and ColValue,
'assuming the following setup of the array Table()

! Table(i,j) = [0 Colvall Colval2 Colval3 ... ColValn]
! [RowVall x11 x12 x13 c x1n ]
! [RowVal2 x21 xX22 x23 Ce. x2n ]
! [RowValm =xml xm2 xm3 Ce. xXmn ]

'So the row values to be interpolated are the first column (Column 0) and col values
'in the top row (Row 0). IT IS ASSUMED THAT RowVals AND ColVals ARE SORTED FROM LOWEST
'TO HIGHEST.
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'Initialize
'Indexes
Dim i As Integer,
Dim M As Integer,
Dim Ri As Integer,
'Parameters
Dim t As Single, s
'Interrim values
Dim HA As Single,

'Presets
M =
N:

UBound (Table,
UBound (Table,

j As Integer
N As Integer

Ci As Integer

As Single

HB As Single

1) '"Number of rows
2) 'Number of cols
'Make sure the RowValue is

If RowValue < Table (1, 0)

inside the bounds of Table (i, )
Or RowValue > Table (M, 0) Then

Table2DInterpolate = -1

Exit Function
End If

'Make sure the ColValue is

inside the bounds of Table (i, Jj)

If ColValue < Table (0, 1) Or ColValue > Table (0, N) Then
Table2DInterpolate = -2
Exit Function
End If
'Look up the index for RowValue
Ri =1
For i = 1 To M
If RowValue <= Table(i, 0) Then
Exit For
End If
Ri = 1
Next i
'Look up the index for ColValue
Ci=1
For j = 1 To N
If ColValue <= Table (0, Jj) Then
Exit For
End If
Ci =73
Next j
'Perform interpolation
t = (RowValue - Table(Ri, 0)) / (Table(Ri + 1, 0) - Table(Ri, 0))
s = (ColValue - Table(0, Ci)) / (Table(0, Ci + 1) - Table(0, Ci))
HA = Table(Ri, Ci) * (1 - t) + Table(Ri + 1, Ci) * t
HB = Table(Ri, Ci + 1) * (1 - t) + Table(Ri + 1, Ci + 1) * t
Table2DInterpolate = HA * (1 - s) + HB * s

End Function

E.5.13 Constructing a Body of Revolution by Splicing Curves

Sometimes it is desirable to achieve greater accuracy in the estimation of surface area of a body of revolution than
possible using the assembly of elementary solids (e.g. paraboloid, cylinder, cone, and frustum). This can be
achieved by assembling one using splicing curves. This leads to a solid that consists of smooth segmented
mathematical curves that are joined at the ends where their tangents are guaranteed to be equal. The resulting
curve is thus consistent in space and first derivative, although it is also possible to extend the method to guarantee
their curvature is continuous as well.
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Refer to Article E.5.7, Quadratic
Curve-Fitting  for introductory
comments about fitting curves
through specific points. This tool
can be extended by fitting curves
to points that represent specific
shapes of great importance to the
airplane designer. In this section,
polynomials are used to generate
a shape that can be used to
represent a fuselage (or an
external fuel tank) as a body of
revolution. Among advantages
this offers is it allows the designer
to define a parametric fuselage
during space claim studies and
fuselage drag analysis. Among
properties that can be extracted
from the method is the wetted Figure E-26: A hypothetical tadpole surface constructed by splines.
surface area (for drag analysis)

and volume of the body.

Axis of rotation

A series of splines are
used to define a
surface of revolution.

Figure E-26 shows a hypothetical tadpole surface used to do initial drag studies of a powered sailplane. The reader
should note that even though the final surface has a nose shape that differs such the forward part is asymmetric,
the difference in volume and surface area is usually very small or even negligible.

Piecewise Splicing of Curves to Represent a Geometric Entity

Consider the geometry in Figure E-27, which represents a typical tadpole fuselage. The OML can be “constructed”
by tying together a number of splines. This must be accomplished by ensuring the continuity of selected
characteristics, such asy, y’, and/or y”. Here, the fuselage will be constructed using three splines; one representing
the nose, one representing the tailboom, and one tying those two together. These are called the nose spline,
tailboom spline and tie spline, respectively.

y Nose spline Tie spline Tailboom spline

Figure E-27: An outline of the side of a fuselage formed using 3 splines.

Since this is a body of revolution it suffices to consider only one side as shown in Figure E-28. The nose spline is
denoted by Y, the tie spline by Y,, and the tailboom spline by Y;. The dimensions Ly, L,, and L; represent the
physical location along the x-axis where they are joined and d,, d,, and d; represents the height (or width) at those
points. The splines can be modeled using any smooth and differentiable curve found to suit the shape. Typically,
polynomials and trigonometric curves are helpful.
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I I I
Ly L2 Ls

Figure E-28: Defining important parameters for the 3 splines.

Mathematically, the splines Y4, Y5, and Y3, are defined on the following intervals:

if0<x<L = y=Y,
if L <x<L, = y=Y,
if L, <x<L, = y=Y,

Their boundary conditions can be determined based on desired magnitude, slope, and curvature as shown below:

Magnitude requirement: Slope requirement: Curvature requirement:

ax=0 = Y, =0
' ax=L = VY,'=Y,’
atx=L = Y =Y,=d, oo ax=L = Y,"=Y,"
ax=L, = Y,'=Y,
ax=L, = Y,=Y,=d, ax=L, = Y,"=Y;"
atx=L, = YVY,'=0
atx=L, = Y;=d,

Let’s define 3 splines that can be spliced to form a fuselage (note that any spline formulation can be picked,
although boundary conditions will change the resulting matrix from what is shown here). Here we will define two
splines for the forward fuselage to demonstrate the impact on splines 2 and 3.

i X
Spline 1: Y, = A, - x*"? or Y, = A, -sin =
2L,
Spline 2: Y,=A X+ A, x>+ A X+ A,
Spline 3: Y, =A - X2+ Ay - X+ A,

Note that using the first of the two options given for Y; will be presented here. The 3 splines contain 8 unkowns (A,
through A;). We have to set up formulation to obtain these. To solve, let’s construct an 8 x 8 matrix to
accommodate the eight unknowns, as follows:

Where the matrices [k], [A], and [C] are defined as follows:
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1
|
1
1
1
|

11 12 13

~ X
~ X
~ X

o

21 22 23

N

31 32 33

N

w

k66 k67 k68

(5]

76 77 78

(2]

OO0 00 000

PSSP

86 87 88 |

~

Then, we will populate it with the appropriate coefficients k;, which we’ll obtain by investigating the characteristics
of the splines. Let’s write possible rules:

Atx=L,: Y1=AO'X2/3:dl

Y,=A x>+ A -x*+A -x+A, =d,

Y,'=Y,' < —%Ao X 43A - xP+2A, X+ A, =0

Y,"=Y," < éAO X+ 6A - x+2A,=0

Atx =Ly Y,=d, & A-xX*+A -x*+A -x+A =d,
Y,=d, < A -xX*+A-Xx+A =d,

Y,'=Y,' & 3A -xP+2A, X+ A, —2A -x—A, =0
Atx = Ls: Y,=d, < A -xX*+A -x+A =d,

Y,)=0 < 2A -x+A;=0

Populating the Matrix
Let’s start populating the matrix by considering our “rules”. For instance, we start with the ‘k’ matrix blank as
shown below:

0 00000 O0O[A] [C,]
00000GO0OO|A]| |C,
00000GO0O0Of|A]| |C
0000O0GO0O0Of|A]| |C,
000O0O0GO0GOO|A]| |C,
00000GO0OOf|A]| |Cs
0000O0GO0O0OfA]| |C,
000000O0O0O|A]| |C]
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First, let’s consider the requirement that Y, =d; at x = L;:

2/3

Yl(L1)= ALy =d1

Adding this to the matrix results in (note the C-matrix as well):

[y 2/3
L1

0

O O O o o o

O O O O O o o o

O O O O O o o o

O O O O O o o o

O O O O O O o o

Second, consider the requirement that Y, =d; at x = L;:

00 ofA] [d,]
00 0f|A| |C
00 0|A| |C,
00 OfA| [C,
00 OfA| |C,
00 0|A| |C,
00 O|A| |C,
0 0 0|A | |C,]

Yz(Ll):Al'Li"'Az'Lf+A3'L1+A4:d1

Adding this to the matrix yields (note the C-matrix as well):

) 2/3
L1

0

O O O o o o

0
Ly

O O O o o o

O o o o o o, o

Third, consider the requirement that Y, =Y;"at x = L;:

O O O o o o+ o

00 ofA] [d,
00 O0|A| [d
00 0[A| [C
0 0 OfA| |C,
00 0|A]| |C,
00 0|A]| |Cs
00 0|A]| |Cs
00 0|A] |C]

Y,'=Y," < 3A -x*+2A,-X+A, =§AO xR

=N —§A0~x‘“3+3A1-x2+2A2-x+A3=0

=

2

3A0-L;“3+3A1-|_§+2A2-|_1+A3=o

Adding this to the matrix yields (note the C-matrix as well):
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* 0 0 0000 0fa] [d,
0 L L L 1000fa/||d
—%le 32 2L, 1 000 OfA 0
0 0 0 0000 0|A|_|C
0 0 0 0000 O0f|A| |Ca
0 0 0 0 000 O0|A| |G
0 0 0 0 000 O0|A| |Ce
0 0 0 0000 0[A] [Cr]

Continuing in a similar fashion, we complete populating the matrices, eventually yielding:

L2/3 0 0 00 0 0 0fa7 [d,
0 L L& L 1 0 0 0f/a]|d,
—%le 3.2 2L, 1 0 0 0 OfA 0
0 0 0 00 2, 1 0fA|_|O
0 L L2 L, 1 0 0 0ofA| |4
0 0 0 00 L2 L, 1|A]| |%
0 32 2L, 1 0 -2, -1 0[A] |O
0 0 0 0 0 L2 L 1[A] [ds]

The goal is to determine the coefficients Ay through A;, which can then be used to accurately plot the fuselage. The
solution is obtained by solving:

[A]=[k]"[C]
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EXAMPLE E-10: Fuselage Curve Splicing
Determine a fuselage OML with the dimensions shown in Figure E-29:

y
Y
Y, 151t 2 s
Ys
051t
I I
6 ft 11 ft 25 ft
Figure E-29: Outside Mold Line of a desired fuselage shape.
Resulting matrix representation:

[ 3.302 0 0O 0 0 O 0 O[A,] [150]

0 216 36 6 1 O 0 O|A 1.50
-03669 108 12 1 0 O 0 O|A, 0

0 0 0 00 5 1 O)jA| | O
0 1331 121 11 1 0 0 O|A,| [1.25
0 0 0O 0 0 121 11 1| A 1.25
0 363 22 1 0 -22 -1 0| A 0

0 0 0 0 0 625 25 1A | |050]

Inverting the matrix [k] and multiplying with the [C] yields the coefficients for all three splines:

_AO_ [ 0.3029 0 0 0 0 0 0 0 |1.50]
A 0.004444 0.016 0.04 -0.04 -0.016 -0.00571 0.04 0.005714|1.50
A, -0.1244 -0.408 -1.12 0.92 0.408 0.1314 -092 -0.1314| O
A, 1.124 3.168 10.12 -6.72 -3.168 -0.96 6.72 0.96 0
A, -3.227 -6.776 —-29.04 1584 71.776 2.263 -1584 -2.263 | 1.25
A 0 0 0 0.07143 0 0.005102 0 —0.0051 | 1.25
A, 0 0 0 —-2.571 0 —0.2551 0 0.2551 0

Al L O 0 0 19.643 0 3.189 0 —2.189 | 0.50]

Yielding the following coefficients:
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PP P ar dr SR ah g

[ 0.4543 |
0.0064
—-0.1901
1.7587
—3.5869
0.0038
—-0.1913

| 2.8916 |

Now we can plot the fuselage fully defined as shown in Figure E-30:

5.000

4.000

3.000

2.000

1.000

0.000

m——Spline 1
S pline 2

Spline 3

-1.000

-2.000 -

-3.000

-4.000

-5.000 -

25

30

Figure E-30: The fuselage consisting of 3 splines.
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E.6 Calculus

E.6.1 Definitions

Consider a function f(x). If f is continuous and smooth
on an interval [a, b], we say that f is differentiable and
continuous.

y=|x|

12 4

10
If y = f(x) is differentiable at a, then f must also be
continuous at a. On the other hand, a function may be .
continuous at a point but not be differentiable there

= ]
(see Figure E-31).
.
Let f be a differentiable function, and let f'(x) be its ,
derivative.
The derivative of f'(x) (if it has one) is written f"(x) and 10 = 0 3 10
is called the second derivative of f. Similarly, the x

derivative of a second derivative, if it exists, is written

f"(x) and is called the third derivative of f. Figure E-31: An example of a continuous curve, non-

differentiable at x=0.
These repeated derivatives are called higher-order

derivatives.

E.6.2 General Rules of Differentiation

Linearity: i(cf )_ Cﬂ
X' dx

d df dg

2 (s _dar 99

dx( i g) dx i dx

Product Rule: — —g+f—
dx dx dx
Reci | Rul d(1 1 df 20
eciprocal Rule: Bl e Pl
procT™ o\ F )71 ax
o dg
Quotient Rule: d [ f ]_ dx 9 dx
—-—| = |= > g=0
dx\ g g
Chain Rule: % f( ( )) %[3_?()
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d .4 1

Derivative of an Inverse Function:

dx  df(f*)dx
Generalize Power Rule: i f9=1f"¢ d_g|n f +g£
dx dx f dx
o
. . .2 N y' _ F'X — _ﬁ
Derivative of an Implicit™ Function: X = ,y ﬁ
oy

N . . 3
Derivative of a Parametric Function™:

E.6.3 Derivatives of Simple Functions

% =0 cis a constant

M =C c is a constant

dx
d(g);” ) =nx"?! where both x" and nx"
CORTEEE
)b
15 2{4)
%(ex)z e*

2 Here the implicit function y(x) is defined as F(x,y(x))=0.

x4
dx
M:i:sgnx x#0
dx |X
! are defined
x>0
d
M (ax)= xI
dx(a) a*lna
49 _
dx(ogax) xlna

3 Here the function y(x) is defined parametrically as x = f(t) and y = g(t), where t is some parameter.
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E.6.4 Derivatives of Trigonometric Functions

d . d .

—sin X =Cos X —C0S X =—Sin X

dx dx

d ) d

—tanx=sec” x —Sec X =Sec X tan x
dx dx

d ) d

—cot X=-Csc” X — CSC X =—CSC X cot X
dx dx

E.6.5 Derivatives of Inverse Trigonometric Functions

isinflx—# —cosflx——#
dx 1-x2 dx V1-x?
d 1 1 d -1 1

—tantx= —secix=— "
dx 1+ X2 dx X x2 -1

icot’1 X=— 1

d
dx 1+ x? dx Xx? -1

E.6.6 Derivatives of Hyperbolic Functions

isinhx=coshx icoshx:sinhx

dx dx

d ) d

—tanhx=sech“x —sechx = —sechxtanh x
dx dx

d ) d

—cothx=-csch”x —cschx = —cschxcoth x
dx dx

E.6.7 Derivatives of Inverse Hyperbolic Functions

isinhflx—# icoshflx—#
dx 1+ x? dx Vx?2-1
itanh‘lx: isech*1x=— !
dx 1-x? dx XyJ1— x?
d 1 d 4 1
el — —csch™ X =——————
M d e
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E.6.8 Numerical Derivatives of Functions of the Form f(x)

Assume f(x) to be a continuous and differentiable on an interval [a, b]. Let h be a small change in x. Then, the
derivatives of this function can be calculated using the following expressions:

First Order Derivatives

o f(x+h)—f(x)

h

f(x+h)—f(x—h)

2h

. f(x+h)-2f(x)+ f(x-h)

f(x+2h)-4f(x+h)+6f(x)-4f(x—h)+ f(x—-2h)

h2

i F(x+2h)=2f(x+h)+2f(x—h)- f(x-2h)

2h®

df
Newton’s difference quotient: —
dx
df
Three point method: —=f'=
dx
Second Order Derivatives
. d*f
Three point method: - =f"=
dx
Third Order Derivatives
. . d®f
Five point method: 3 = f''=
dx
Fourth Order Derivatives
d*f
Five point method: ==

EXAMPLE E-11:

Compare the numerical and exact value for the first four derivatives of f(x) = x'-2x?atx=1.

SOLUTION:

Let h = 0.01. This way we begin by computing the following values:

f(x-2h) = £(0.98) = (0.98)"* - 2(0.98)2 = -0.99843184
f(x-h) = £(0.99) = (0.99)* - 2(0.99)? = -0.99960399

f(x) = f(1) = (1)*=2(1)2=-1

f(x+h) = f(1.01) = (1.01)* - 2(1.01)? = -0.99959599
f(x+2h) = f(1.02) = (1.02)* - 2(1.02)? = -0.99836784

Inserting these into the appropriate formulas leads to:

h4

Exact

Numerical

f'=4x®—4x=4(1)-4@1)=0

- f(1.01)- £(0.99)

2(0.01)

=0.0004

f'=12x*>-4=12(1)’-4=8

f”:

f(1.01)—-2f(1)+ f(0.99)

=8.0002

(0.02)°
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S e o (1.02)-2f (1.021(1;021 )f3 (0.99)- f(0.98) _ AR

)_ f(1.02)-4f(1.01)+6f(1)-4f(0.99)+ f(0.98) _

24.0000
(0.01)"

£ —24 £

E.6.9 Numerical Derivatives of a Point Set of the Form (x;, y;)

Often the engineer has to determine the derivative of a set of discrete points rather than a continuous
differentiable function. An example of such a differentiation is the analysis of the quality of geometry representing
an airfoil. Taylor series expansion can be used to evaluate such derivatives numerically. The Taylor series expansion
of a function f(x) is given by:

F(x)=f(x)+ ZMf (%) (E-23)

k=1

Assume {x;, yi} to be a list of coordinates on an interval [a, b]. The above expression is used to derive the first
derivative is given by:

y|: Yia ~ VYia (E-24)
Xig — Xig

The second order derivative can be found from:

n_ 4(Yi-1 -2y, + yi+l) (E-25)
(Xi+l - Xi—l)z

y

This scheme is called a finite difference scheme.

E.6.10 Curvature for a Parametric Formulation

For a plane parametric curve c(t) = (x(t), y(t)) the curvature is given by:

B Xl yII_yIXII
K= 2 2 3/2 (E_26)
(X +VY )

EXAMPLE E-12:
Determine the curvature for the function c(t) = (t, t3).
SOLUTION:

X'=1 x"=0 o e X'y'—y'x" 6t

y'=3t> y"=6t (x'2 y"?)3 ’ (1+9t“)3/2
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c(t)=(t, )

10.00
B.OO +
6.00
4.00
2.00
—
=
—
-
-3.00 1.00 2.00 3.00

-10.00 -
X(t)

Figure E-32: A parametric representation of the functiony = x.

E.6.11 Curvature for an Explicit Formulation

For a plane explicit curve y = y(x) the curvature is given by:

W (E-27)

EXAMPLE E-13:
Determine the curvature for the function y(x) = X,
SOLUTION:
y'=3x? oYt 6X
" - 3/2 3/2
y"'=6X @+y2f"*  (1+ox*)

E.6.12 Radius of Curvature

Once curvature has been determined, the radius of curvature can be determined from:

K= (E-28)

1
R
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Figure E-33: A graphic representation of radius of curvature of a function.

E.6.13 Numerical Estimation of Derivatives

Often data is not given as a smooth continuous function, but rather in a tabular format or by some other means,
such as discrete sensory data. Then it is desirable to be able to determine derivatives using such format. This is
accomplished by writing the derivatives using a discrete numerical format. The basics of the methodology to
determine the value of a function using numerical derivatives is shown below. Assuming that a table of x values
and derivatives are given, i.e. X1, Y'1, X2, Y'2, ..., Xn, Y'n. Then the value of the function can be calculated from:

Yi=VYiat y'(Xi - Xi—l)

Such an expression might be utilized to convert speed into a distance (assuming x represents time). More
sophisticates schemes to accomplish this exist, but ultimately, the accuracy of the estimation will depend on the
quality of the derivative, y’. To show this

Here, three different numerical schemes to evaluate the derivative of a function (and ultimately curvature) will be
presented, using the functiony = x> evaluated on the interval [0, 3]. The schemes include a forward and backward
stepping schemes and a Taylor series derivative. First, let’s evaluate the actual derivative at x=0.50.

y'(0.5)=3(0.5)=0.75

CASE 1: Forward stepping finite difference scheme

1 _ yi+l - yi 0-422 - 0.125

= =1.188
Ve = X T 0.75-050
CASE 2: Backward stepping finite difference scheme
Yi—Yia1_ 0.125-0.016 0436

Yoo = Ty T 050-025
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clt)=(t, ') clt)=(t, ')

100 1.00

090 090

a.80 2.80

aro a.70

0.60 9.60
o o
= oso = as0
= =

040 0.40

-
0.30 o 0.30
o
Q.20 o .20
-
0.10 e 9.10 .“Pr_,__,r,-..r"
000 - 000 +——T——mp="
-
000 010 00 G30 040 0S50 050 070 080 090 100 000 010 00 030 040 050 050 070 080 030 1.00
x(t) x(t)

Figure E-34: Graphical representation of forward and backward stepping finite difference schemes.
CASE 3: Taylor Series Representation of Derivatives

Let’s apply a Taylor series finite difference scheme using Equation (E-24) for the first derivative at x=0.50.

ViV 0.422-0016

= =0.813
Xy =X,  0.75-0.25

1
Y tavior

c(t)=(t, ')

0.80
0.70

0.50

y(t)

0.40
0.30
0.20

0.10
000 F————®

000 010 D20 d30 040 050 060 070 080 090 100

x(t)

Figure E-35: Graphical representation of Taylor series finite difference scheme.

A table displaying the exact and approximated derivatives:
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X y=x Y'=3X" | ¥Y'=6X Y'ewo Y'awo Y'ravior
0.00 0.000 0.000 0.000 0.0625
0.25 0.016 0.188 1.500 0.4373 0.0625 0.2500
0.50 0.125 0.750 3.000 1.1875 0.4375 0.8125
0.75 0.422 1.688 4.500 2.3125 1.1875 1.7500
1.00 1.000 3.000 6.000 3.8125 2.3125 3.0625
1.25 1.953 4.688 7.500 5.6875 3.8125 4.7500
1.50 3.375 6.730 9.000 7.9375 5.6875 6.8125
1.75 5.359 9.188 10.500 | 105625 | 7.9375 9.2500
2.00 8.000 12.000 12.000 | 13.5625 | 10.5625 | 12.0625
2.25 11.391 15.188 13.500 | 16.9375 | 13.5625 | 15.2500
2.50 15.625 18.750 15.000 | 20.6875 | 16.9375 | 18.8125
2.75 20.797 22.688 16.500 | 24.8125 | 20.6875 | 22.75300
3.00 27.000 27.000 18.000 24,8125

If the finite differences are very small, say Ax = 0.01, these schemes will result in the following accuracy:

0.43 0.118 0.720 2.940 0.7351 0.7057 0.7204
0.50 0.125 0.750 3.000 0.7651 0.7351 0.7501
0.51 0.133 0.730 3.060 0.7957 0.7651 0.7304

Conclusion: A Taylor series finite difference scheme is reasonably accurate and simple to implement.

30 4

25 o

20

15 A

10 4

Comparison of Numerical Differentiation Schemes

—"
s BCKWRD

FWD

—TAYLOR

05 1.0 15 20 25

30

Figure E-36: Comparing the accuracy of the three finite difference schemes. The Taylor scheme is clearly the

most accurate of the three.
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E.6.14 Numerical Estimation of Curvature

We can now compute the curvature in a spreadsheet as follows:

_ y" v Yin Vg n_ 4(Yi71 -2y, + yi+1)
K= 3/2 y= y = 2
(1"‘ y.z) Xi — Xy (Xi+1 - Xi—l)
X v=X | ¥'=3X"| Y'=6X K Y'7anor | Y 'ravior K R

0.00 0.000 0.000 0.000 0.00000

0.25 0.016 0.188 1.500 1.42424 | 0.2500 1.500 1.36961 0.730
0.50 0.125 0.730 3.000 1.53600 | 0.8125 3.000 1.40248 0.713
0.73 0.422 1.688 4,500 0.29624 | 1.7500 4,500 0.54957 1.820
1.00 1.000 3.000 6.000 0.18974 | 3.0625 6.000 0.17944 5.573
1.25 1.953 4.688 7.500 0.06812 | 4.7500 7.500 0.06557 15.250
1.50 3.375 6.750 9.000 002833 6.8125 9.000 0.02757 36.271
1.75 5.359 9.188 10.500 0.01330 | 9.2500 10.500 0.01304 76.702
2.00 &.000 12.000 12.000 0.00687 | 12.0625 12.000 0.00677 | 147.772
2.25 11.391 15.188 13.500 0.00383 | 15.2500 | 13.500 0.00378 | 2064.406
2.50 15.625 18.730 15.000 0.00227 | 18.8125 15.000 0.00224 | 445.745
2.75 20,797 22.088 16.500 0.00141 | 22.7300 | 16.500 0.00140 | 715.678
3.00 27.000 27.000 18.000 0.00091

A comparison between the exact and numerical curvatures is plotted below. It reveals the Taylor scheme is indeed
highly accurate, in spite of being applied here on a crude grid.

1.80 4

160 4

140 4

1.20 +

1.00 4

0.80 +

060 +

040 4

0.20 4

Comparison of Numerical Differentiation Schemes

Curvature - Exact Solution

Curvature - Mumerical

0.00
0.00

0.50

1.00

150

2.00

2.50

3.00

Figure E-37: Comparing the accuracy of the Taylor series finite difference schemes.
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E.6.15 Numerical Partial Derivatives

Assume f(x,y) to be a continuous and differentiable on an interval [a, b] along x and [c,d] along y. Let h be a small
change in x and k to be a small change in y. Then, the first order partial derivatives can be calculated as follows:

a _ _ f(x+h,y)-f(x=h,y)

8)(_ fx(X7y)_ on

At y)=tOoyrh)=fluy—k)

%y 2k

O uy)= L brhy)=21 ) Tx=hy)
X h

azz Ct (oy)- f(X,y+k)—2f()§,y)+ F(x,y—k)
% K

o* f f(x+hy+k)=f(x+hy—k)=f(x=h,y+k)+ f(x—h,y—k)
%) :ny(X,y)z
X0y 4hk

E.6.16 Common Integrals
fadx = ax

faf(x)dx = ajf(x)dx

f(uiviwi...)dx=fudxifvdxifwdxi...

udv =uv — | vdu

ff(ax)dx = gjf(u)du

F(u)

e

d
fF{f(x)}dx - fF(u)ﬁdu -

n+1
fu”du =——,n#*-1
n+1

fd_u_l ul = Inu ifu>0
Y L T G| ifu<o

flnx dx = xIn|x| — x
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fexdxzex
ax
fe‘“‘dxz—
a
exlna a*
fa"dxzfe’”n“dxz =—,a>0,a+1
Ina Ina
fsinxdxz—cosx
fcosxdxzsinx
ftanxdx =Insecx = —Incosx

fcotx dx = Insinx
X m
fsecx dx = In(secx + tanx) = Intan (— + —)

2 4

x
cscxdx = In(cscx — cotx) =1n tanE

sec?xdx = tanx
csc? x dx = —cotx

tan’xdx = tanx — x

cot? x dx = —cotx — x

2 xd x sin2x 1( . )

sinfxdx == — =_—(x —sinxcosx
2 4 2

2 v d _x+sin2x_1 +si
cos® x x—2 7 —2(x sinx cos x)

secxtanx dx = secx

cscxcotxdx = —cscx

—_— S/, e e e

f sinh x dx = cosh x
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f coshx dx = sinh x

J-tanhx dx = In (cosh x)

f coth x dx = In (sinh x)

f sechx dx = sin"!(tanhx) or 2tanle*
J- cschx dx = In(tanh g) or —coth™1 e*
f sech? x dx = tanhx

f csch? x dx = —coth x

f tanh? x dx = x — tanh x

f coth? x dx = x — coth x

f’hz d _sinh2x x 1 inh h

sinh® x dx = 2 z—z(sm x coshx — x)
sinh2x x 1

fcoshzxdxz 7 +E=E(sinhxcoshx+x)

fsechxtanhxdx = —sechx

f cschx cothx dx = —cschx

J‘ dx 1 x
———=—tan"'—
a

x*+a? a
dx 1 x—a 1 X
=—1In = ——coth™'—, where x% > a2
fxz—az 2a (x+a) a a
dx 1 a+x 1 X 5 5
5 2=—ln< )=—tanh' —,where x* < a
a“—x 2a a—x a a
f dx R
——— =sin"'—
/a2_x2 a

x
In (x+ xZ + az) or sinh‘la

f dx _
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1n(x+ x2% — az)

J‘ dx _

1
= —sec

J' dx 1 |x|
x IxZ_aZ a

a

——In

J‘ dx _
xyx% 4+ a? a
1 <a ++Va?z - x2>

X

1 <a+\/x2 +a2>

——In

J‘ dx _

X

ff(n)gdx = f(n—l)g — f(n—Z)g' + f(n—S)g" — ... (—1)”ffg(”)dx

EXAMPLE E-14: Integration by Parts:

Integration by parts, given by the formula: J'udv:uv—jvdu is a powerful method to solve complicated

integrals. Use this method to solve the integral J.tefiatdt

, Where i is the imaginary operator i2 =-1.

SOLUTION:
Begin by selecting which part of the integral will represent u and dv. Here this is done by placing them in
parentheses:
[te=tdt = [ (t)e ™dt)
-
u dv
u=t = du=dt
Then solve for du and v: it it piat
dv=e™dt = v=[e™dt=—=
1a

Inserting this into the original integral leads to:

o= ke )= oS5 {5 o= e

1a 1a 1a

Simplify:
te—iat 1 P te—iat 1 e—iat te—iat
———+— e dt=———+| = |[—=—=
1a 1a 1a 1a)—la 1a
Therefore:

o [ b Lo,

Ite—iatdt — (Iat lee—iat
a
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E.6.17 STEP-BY-STEP: Numerical Integration

Following are two methods commonly used to evaluate integrals numerically; the Trapezoidal Rule and Simpson’s
Rule.

Trapezoidal Rule

Consider the graph in Figure E-38, whose area between x = a and x = b we want to find. The trapezoidal rule allows
the area to be determined by adding up the area of a number of trapezoids, whose shape is governed by the
function. The following outlines a procedure to calculate the area.

y y=fx

Area under

curve /9

a — AX |a—

Figure E-38: The Trapezoidal Rule uses trapezoids to approximate the area.

STEP 1:
Decide the number of segments, n, to include in the approximation. The more segments the more accurate.

STEP 2:
_ _ b-—a
Calculate the width of the trapezoids AX =
n
STEP 3:
Tabulate the value of f(x) as shown below.
i X y; = Filc+i-Ax)
0 a Vo =Tla)
1 KHAX e = flx+Ax)
2 ®+2-Ax yo = f(x+2-Ax)
n-1 x+{n-1)-Ax Voot = Flx#(n-1)-Ax)
n b ¥ = f{b)
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Compute the area using the following expression:

I: f(x)dx ~ Ax{% HY, Y, et %} (E-29)

Simpson’s Rule

Consider the graph in Figure E-39. Simpson’s rule is an improvement over the trapezoidal rule as it uses segments
of a parabola to simulate the area. These approach the true shape of the curve more accurately. The following
outlines a procedure to calculate the area. A drawback of the method is that the number of segments, n, must be
an even number.

y y="f(x)

Area under
curve

= |

Yo Y1 Y2 VE} Ya ¥s Y&

a —| AX |a—

Figure E-39: Simpson’s Rule uses parabolas to approximate the area.

STEP 1:
Decide the number of segments, n, to include in the approximation. The value of n must be an even number.

STEP 2:

Calculate the width of the parabolic segments AX =

STEP 3:
Tabulate the value of f(x) as shown in STEP 3 for the Trapezoidal Rule.

STEP 4:
Compute the area using the following expression:

b
J f(x)ix ~ %[y0 +AY, +2Y, + 4y, +2Y, +... 4y, +V, ] (E-30)
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E.6.18 Length of a Curve

Consider the continuous function y = f(x), defined on an interval [a,b]. The length of the curve on the interval can

be calculated from:
b > b dy 2
|_=I V1+(f) dx=I 1+[d—j dx (E-31)
a a X

y y=f(x)

Curve length, L

Figure E-40: Determination of the length of a function on an interval.

E.6.19 STEP-BY-STEP: Finding Roots Using the Newton-Raphson Method

It is a common task for the engineer to determine the roots of a function numerically. There are a number of
algorithms that can be resorted to for this purpose. The most elementary of those will now be detailed, but their
derivation is omitted: For the below methods it is assumed a function y = f(x) has been defined in the interval [a, b]
and is continuous and differentiable on the interval. The method is implemented as follows:

STEP 1:
Start with an initial guess which is reasonably close to the true root. Call this value x.

STEP 2:
Calculate the next approximation to the root; call it x,, using the following expression:

RCY)
(%)

X=Xy —

STEP 3:
If f(x;) # 0 then set x, = x; and go back to STEP 1. Repeat until desired accuracy is achieved.
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EXAMPLE E-15:
Determine where the function y = 2-x2 becomes zero, such that x>0, using the Newton-Raphson scheme. Of course
we can easily show that the exact answer is V2 ~ 1.41421356... .

SOLUTION:
The derivative for the function is given by y’ = -2x.

STEP 1: Let X = 1.
f 2-%5 2-1
STEP 2: X, =Xy — (XO) =X, — Xo _ £ ~-_15
f'(x,) —2X, )
STEP 3: Let xo = 1.5.
L 2 . 2
STEP 4: x =%, 2% _15_2=05] 4 4166667
—2X, —2(1.5)
STEP 5: Let xo = 1.4166667.
2 2
STEP 6: X, = X — 275 _1 41666672 11.4166667) =1.414216
—2X%, —2(1.4166667)

After only three iterations we have already achieved accuracy to the sixth significant digit.

E.6.20 STEP-BY-STEP: Finding Roots Using the Bisection Method

The Bisection Method is perhaps the simplest algorithm to determine the roots of a function. Its limitation is that it
converges slowly, but its advantage is that it is inherently easy to understand. The method is implemented on an
interval [a, c] as follows, assuming some continuous and smooth target function f(x) defined on the interval. It is
required that the root exists on the interval.

STEP 1:
Start with an initial guess which brackets the true root. Call the left and right values of the interval a and c,
respectively.

STEP 2:
Calculate the value of f at point a. Call it f(a).

STEP 3:

a+c
Calculate the midpoint on the interval: b= T
STEP 4:

Calculate the value of f at point b. Call it f(b).

STEP 3:
Check the signs of f(a) and f(b). Now, one of two things may happen:

(1) If the signs are opposite, then the root is found on the interval [a,b].
(2) If the signs are equal, then the root is found on the interval [b, c].

Redefine the interval based on (1) or (2):
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(1) If the signs are opposite, then let c = b.
(2) If the signs are equal, then let a = b and f(a) = f(b).

STEP 4:
If |c-a|> tolerance go back to STEP 3. Repeat until desired accuracy is achieved.

E.6.21 Vector Calculus

Dot Products
Let a = (ay,ay, ..., a,) and b = (by,b,, ..., b,) be two vectors. Then the dot product is defined as:

a.b:Z“aibi =ab +ab, +..+ab, (E-32)
i=1

Del Operator
In vector calculus, the symbol V is called the del operator (the symbol is called nabla) and it works as a vector
operator by converting a scalar field into a vector.

. 0. 0
Cartesian coordinates: V=—Il+—]+— Kk (E-33)

oXx oy~ oz

0, 10, 1 0+«
Spherical coordinates: V=—F+—-——0+———0 (E-34)
o raod rsind o

Gradient
Let f be a scalar field. In Cartesian coordinate system let f = f(x,y,z) and in a spherical coordinate system f = f(r,0, ¢).
Then the gradient of f is given by:

Cartesian coordinates: Vi (X, y,z)= qi +§j+§k (E-35)
oXx oy oz
of . lof , 1 of »

Spherical coordinates: \%i (I’,e, ¢)=—r+——e+ ——0 (E-36)
o rod rsind o

The gradient of a product of functions, f and g is given by:
V(fg)= f Vg +gVvf (E-37)
The dot product of the vectors a and b is given by:

V(a-b)=(a-V)o+(b-Via+ax(Vxb)+bx(Vxa) (E-38)
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Divergence
Divergence indicates whether a vector field converges toward or diverges from a point in space. Let

V =V,i +Vyj +V,K be a vector field in a Cartesian coordinate system or V :Vrf+Vy6 +V, 0 in a spherical

coordinate system. Then the divergence of the vector field V is given by:

oV
Cartesian coordinates: dvV=V.V= V, P+—2 J+ v, k (E-39)
OX oy 0z

- EY,
N 1V, 1Y,

o o0 ) rsing oo ¢ (E-40)

Spherical coordinates: divV =

The divergence of a product of a function, f, and vector, a, is given by:
V-(fa)= f V-a+a-Vf (E-41)
The vector product of the vectors a and b is given by:
V-(axb)=b-Vxa—a-Vxb (E-42)
Curl

The curl at a point describes the infinitesimal rotation of a 3D vector field at that point. Let
V(X, Y, Z) :VXi +Vyj +Vzk be a vector field in a Cartesian coordinate system. The curl is defined as:

i j Kk
o 0 0
Cartesian coordinates: carlV=vVxV=— — — (E-43)
oX oy oz
V, V, V,
F6 o
o 10 1 0
Spherical coordinates: curl V=vVxV=— =— — (E-44)
r roo rsind o
V.V, v,
The curl of a product of a function, f, and vector, a, is given by:
Vx(fa)=(Vf )xa+ f Vxa (E-45)
The curl of a vector product of the vectors a and b is given by:
Vx(axb)=av-b-bV-a+(b-V)a—(a-V)b (E-46)
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EXAMPLE E-16:
Determine the gradient of the function f(x,y,z) = 2xy-x2yz+523 and the divergence of the vector V(x,y,z) = 2xyi-
x2yzj+52°k.

SOLUTION:
The gradient is determined from:

Vi (x, y,z):%i+%j+%k :(Zy—2xyz)i+(2y—x22)j+(—x2y+1522)<

The divergence is determined from:

V-V-= axx i+ ayy j+aa\iZ k:(Zy—2xyz)i+(2y—xzz)j+(—x2y+1522)<
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E.7 Linear Algebra

E.7.1 Cramer’s Rule

Cramer’s Rule is a theorem of linear algebra that allows a system of linear equations to be solved, provided a
unique solution exists. It is named after the Swiss mathematician Gabriel Cramer (1704-1752). Consider the
system of linear equations presented in a conventional form as follows:

A11 A12 AiN X b1
Azl A22 A?N X, bz

=9 . (E-47)

ANl ANZ ANN Xy bN

The solution method involves the calculation of the determinants of the square matrix of coefficients [A] and that
of the matrix formed using the members of the right matrix {b}. Cramer’s rule states that the unknown members of
the {x} array can be determined using the expression:

det(A,)
. :—I f :12 ,N -
X; det(A) ori=12, (E-48)

This rule can be used for complex numbers as well as real ones, however, it is computationally slow for large
matrices compared to other solution methods. In spite of that, the rule is practical for small matrices, as it allows
the solution to be presented in explicit formulas that lend themselves well for use in computer codes. Here, only
two such cases will be presented; when N=2and N =3.

X =B X B
Consider the 2x2 system: All i Alzy ! or |:A11 Alz }{ } = { 1} (E-49)
A21X+ Azzy = Bz A21 A22 y Bz

Then x and y can be found from:

B, A,

X = BZ A22 — B1A22_A1282 and y:‘

- ‘An A12 Aquz - A12A21

A, B
Ay B,
Al A,
Ao Ay

— AnBz — BlAZl
AA = APy

(E-50)

Ao Ay

AX+ Ay + A =B A A Asl|X B,
Consider the 3x3 system: AX+Ay+Az=B, or |A, A, A;Yr=15, (E-51)
Ay X+ Ay + Az =B, A Ap AgllZ B,

Then x, y, and z can be found from:
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Az
Ao
Ao

As
Aos
Ass

A
Ao

B, _ A

X y

B, A, A A, B
B, Ay Ay A, B
B: As Ay A, By

A,
Ay,
Ay

A,
Ao,
Ay

A
Aos Ao
Asa sy

This way the denominator would be calculated from:

Ar Ay Ag

Ag’

A,
Ay,
Ay

A,
Ao,
Ay

Ao
Asa

A21 A22 Azs = Au(AzzAss - AzsAsz)_ A12 (A21A33 - A23A31)+ A.’I.3(A21A32 - A22A31)

An Ay Ay

The numerators are calculated in an identical fashion.

E.7.2 COMPUTER CODE: Cramer’s Rule

The following Visual Basic routine solves a 2x2 system of equations using Cramer’s rule:

Function Cramer2x2 (All As Single,
Single, B2 As Single, Mode As Byte)
'This routine calculates the x or y of the
'Note that if Mode = 1,
'Note that if Mode = 2,
Al
'Initialize

Dim Denominator As Single

Al2 As Single,
As Single

A21 As Single, A22 As Single,

2xX2 matrix

then the x-value is returned.
then the y-value is returned.

'Presets
Denominator = All * A22 - Al2 * A21
'Calculate
If Denominator <> 0 Then
If Mode = 1 Then 'Calculate the x
Cramer2x2 = (Bl * A22 - Al2 * B2) / Denominator
ElseIf Mode = 2 Then 'Calculate the vy
Cramer2x2 = (All * B2 - Bl * A21) / Denominator
End If
Else
Cramer2x2 = 0
End If

End Function

The following Visual Basic routine solves a 3x3 system of equations using Cramer’s rule:

Function Cramer3x3 (All As Single,
As Single, A31 As Single,
Mode As Byte) As Single

'This routine calculates the
'Note that if Mode = 1, then
'Note that if Mode = 2, then
'Note that if Mode = 3, then

Al2 As Single,
A32 As Single,

A33 As Single,

x or y of the 3x3 matrix
the x-value is returned.
the y-value is returned.
the z-value is returned.

Al3 As Single, A21 As Single,

Bl As Single, B2 As Single,

[A] {x}={B} using Cramer's Rule.

A22 As Single,

(E-52)

(E-53)

Bl As

[A] {x}={B} using Cramer's Rule.

A23

B3 As Single,
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'Initialize
Dim Denominator As Single, Numerator As Single

'Presets
Denominator = All * (A22 * A33 - A23 * A32) - Al2 * (A21 * A33 - A23 * A31l) + Al3 * (A21 *
A32 - A22 * A31)

'Calculate
If Denominator <> 0 Then
If Mode = 1 Then 'Calculate the x
Numerator = Bl * (A22 * A33 - A23 * A32) - Al2 * (B2 * A33 - A23 * B3) + Al3 * (B2 *
A32 - A22 * B3)
ElseIf Mode = 2 Then 'Calculate the y
Numerator = All * (B2 * A33 - A23 * B3) - Bl * (A21 * A33 - A23 * A31) + Al3 * (A21 *
B3 - B2 * A31)
ElseIf Mode = 3 Then 'Calculate the z
Numerator = All * (A22 * B3 - B2 * A32) - Al2 * (A21 * B3 - B2 * A31) + Bl * (A21 *
A32 - A22 * A31)
End If
Cramer3x3 = Numerator / Denominator
Else
Cramer3x3 = 0
End If

End Function
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