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APPENDIX E: Practical Mathematics for the 
Aircraft Designer 

This appendix is a part of the book General Aviation 
Aircraft Design: Applied Methods and Procedures by 
Snorri Gudmundsson, published by Elsevier, Inc. The book 
is available through various bookstores and online 
retailers, such as www.elsevier.com, www.amazon.com, 
and many others. 
 

 
 
 

E.1 Algebra 
 

E.1.1 Laws of Algebraic Operations 

Commutative law: 
a + b = b + a 
ab = ba 

Associative law: 
a + (b + c) = (a + b) + c 
a(bc) = (ab)c 

Distributive law: a(b + c) = ab + ac 

 

E.1.2 Powers and Roots 

0if10  aa
 

a
a

x

x

 
1

 

)( yxyx aaa   
a

a
a

x

y

x y ( )

 



GUDMUNDSSON – GENERAL AVIATION AIRCRAFT DESIGN APPENDIX E – PRACTICAL MATH FOR THE AC DESIGNER 2 

©2013 Elsevier, Inc.  This material may not be copied or distributed without permission from the Publisher. 

xxx baab )(
 

xyyx aa )(
 x

xx

b

a

b

a










 
x

x

x

b

a

b

a


 

xx aa 

1

 
xxx baab   

xyx y
aa   

y xy

x

aa   

 

E.1.3 Proportions 
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E.1.4 The Binomial Formula 

The Binomial Formula for a positive integer n; 
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Special cases of the binomial formula: 
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Special Products; 
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E.1.5 Zero and Infinity Operators 

a×0 = 0 a× =  0×  indeterminate 

00 
a  


0

a
 0

0
  indeterminate 


a  

a

 0  


   indeterminate 

10 a  00 a

 00
  indeterminate 

a =   - a =  0
  indeterminate 

a - a = 0  -    indeterminate 

If a² > 1 then; a  0a  

If a² = 1 then; 1a  1a  

If a² < 1 then; 0a  a  

 

E.1.6 Definition of Imaginary and Complex Numbers 

Roots of negative numbers have been used 
since the 1750's, when the concept imaginary 
was devised. Mathematicians of the 17

th
 

century used a book by Raffaele Bombelli, 
written in 1572, containing the theory of 
imaginary numbers. The theory was further 
advanced by the contributions of Johann 
Bernoulli (1667-1748), Leonhard Euler (1707-
1783), and Carl Friedrich Gauss (1777-1783). 
The representation of complex numbers in 
the plane is attributed to Caspard Wessel 
(1745-1818) and Jean Robert Argand (1768-
1822). 
 
General Definition of Imaginary Numbers 
A complex number is generally written as 

a+ib, where a and b are real numbers, and i, 

called the imaginary unit, has the property i² 
= -1. The real numbers a and b are called the 
real and imaginary parts of the complex 

number a+ib, respectively. 

 

Figure E-1: The Gaussian Plane. 

 
Complex Conjugates 

The complex numbers a+ib and a-ib are called complex conjugates of each other. 

 
Graphing a Complex Number 

A complex number a+ib can be plotted as a point (a, b) on the x-y plane, as shown in Figure E-1. The diagram is 

called the Argand diagram or the Gaussian plane. The imaginary number can thus be interpreted as the vector OP. 
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Polar Form of the Complex Number 
The point P in Figure E-1 can also be represented in a polar form. From the figure we see that the terminal point of 

the vector OP is a = r cos  and b = r sin . Hence, we may write 

 

  sincos iriba  

 

The modulus, r, and the amplitude,  or argument of a+ib are given by 

 

22 bar   and  ab1tan  

 
Representation of Complex Numbers 

The following representations are commonly used for the complex number a+ib in Figure E-1: 

 

   
        rrreiribaba i ,sincos,

 
 

E.1.7 Euler's Theorem of Complex Numbers 

 

Refer to Figure E-1:  iei sincos  (E-2) 

 
DERIVATION OF EQUATION (E-2): 
Using Taylor expansion we can write each term in Equation (E-2) as follows: 
 

...
!5!4!3!2

1
5432













e
 

...
!6!4!2

1cos
642











 

...
!7!5!3

sin
753











 

 
Combining those yields: 
 
























































ieii

ii

...
!5!4!3!2

1

...
!7!5!3

...
!6!4!2

1sincos

5432

753642

 
QED 

 
Note that the trigonometric parameters are also given by the following identity: 
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E.1.8 Arithmetic Operations Using Complex Numbers
1
 

The vectors A and C are defined as follows; 
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Where;   a, b, c, d, k, n, r = Constants. 

     = Angles in radians. 
 
Then, the following arithmetic operations can be derived for complex numbers. 
 
Equality of   dbcaidciba  and  
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The arithmetic operations are obtained by using conventional algebraic rules and by replacing i² with -1, wherever 
it occurs. 
 
Powers of (De Moivre's Theorem) 
If n is any real number, De Moivre's theorem states 
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Roots of (De Moivre's Theorem) 
If 1/n is any positive real number, De Moivre's can be written as follows 
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1
 Handbook of Mathematical, Scientific, and Engineering Formulas, Tables, Functions, Graphs, Transforms, 1984. Pg. 288-289. 
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Where k is any integer. From this there are n roots of a complex number, each being obtained by putting k = 0, 1, 
2, ..., n-1 (see Example E-1).  
 
EXAMPLE E-1: 
Two complex numbers A and C are given. Use them to determine each of the above arithmetic operation, if n = 3 
and... 
 

 69.331323 iA   and   96.303435 iC  

 
SOLUTION: 
 
(a) A + C = (3+5) + i(-2+3) = 8 + i 
 
(b) A - C = (3-5) + i(-2+(-3)) = -2 -5i 
(c) A·C = (3-i2)·(5+i3) = (3·5 - (-2)·3) + i(3·3 + (-2)·5) = 21 - i 

(d)  65.64
34

13
)96.3069.33(

34

13

C

A
 

(e)  1.10113)69.3313( 2/333
A  

(f) For n = 0 we have;  32.1034)96.3034( 33/131/
C  

 For n = 1 we have; 
 12032.1034)36096.3034( 33/131/

C
 

 For n = 2 we have; 
 24032.1034)360296.3034( 33/131/

C
 

 
 The three roots are depicted in Figure E-2: 

 
 

Figure E-2: Graphical solution to part (f). 
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E.2 Logarithms and Exponentials 
 

E.2.1 The Natural Logarithm 

Definition of 
 
 


x

t

dt
x

1

ln  (E-3) 

 
The logarithm denoted with ln x is generally called the natural, Naiperian, or hyperbolic logarithm. 
 
Standard Logarithmic Identities 

baab lnln)ln(   ara r lnln      (r is any real number) 

ba
b

a
lnlnln   aa

a
lnln

1
ln 1  

 

 
Logarithmic Identities for Imaginary Numbers 

See E.1.6 through E.1.8 for discussion of imaginary (complex) numbers. Here A  rei  and C  sei . 
 

ln( ) ln lnA C A C    where;     

CA
C

A
lnlnln 

 

where;     

AA lnln nn   where n is an integer and   n  

 
Special Values 
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Logarithms of Base b 
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The last three identities are derived from the first one. 
 

E.2.2 Exponentials 

Definition of 
The exponential function, ex, is a function such that; 
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xx ee

dx

d
  (E-4) 

 
Series Expansions 
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1)exp(
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ze z
  where z = a + ib 

...18284  71828.2)11(lim 
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Fundamental Properties 

x ex ln  x e x ln
 

ln( )e z k iz   2   where k is any integer 

e zzln   
kizz ee  2

   periodic property 

 
Special Values 

e  2 71828 18284. ...   e0 1  e    

e  0  e i   1  ie

i






2  

e ki2 1   k is any integer  

 

E.2.3 Graphing the Logarithms and Exponentials 

 

Figure E-3: Graphing the logarithm and exponentials. 
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E.2.4 Hyperbolic Functions 

Hyperbolic sine:    x
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Hyperbolic cotangent:   
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Hyperbolic secant:   
1

22

cosh

1
sech 

2 





 x

x

xx e

e

eex
x

 
 

Hyperbolic cosecant:   
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E.2.5 Inverse Hyperbolic Functions 

Inverse hyperbolic sine:    1lnsinh 21  xxx
  

Inverse hyperbolic cosine:     1    xwhere1lncosh 21  xxx
  

Inverse hyperbolic tangent:  1x    where
1

1
ln

2

1
tanh 1 














x

x
x

 

Inverse hyperbolic cotangent:  1x    where
1

1
ln

2

1
coth 1 














x

x
x

 

 

Inverse hyperbolic secant:   1x0    where
11

ln sech
2

1- 












 


x

x
x

 

 

Inverse hyperbolic cosecant:  
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E.2.6 Graphing the Hyperbolic Functions 

 

Figure E-4: Plotting sin x and cos x. 

  

 Figure E-5: Plotting sin x and cos x. 

 

 Figure E-6: Plotting sin x and cos x. 
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E.3 Functions 
 

E.3.1 Solving Two Linear Equations in a Canonical Form 

Solving two linear equations is a common practice in algebra. Figure E-7 below shows the intersection of the two 
lines represented by the linear equations Ax + By = C and Dx + Ey = F. The x and y values of their intersection is 
given by  
 
 

AEBD

AFCD
yand

AEBD

CEBF
x









  (E-5) 

 
Where the constants A, B, C, D, E, and F are known. 
 

 

Figure E-7: Determining the point of intersection of two lines. 

DERIVATION OF EQUATION (E-5): 
Start by writing the expressions for the lines as shown below. Then, multiply the top equation by D and the lower 
by -A; 
 
    D × (Ax + By = C)  => ADx + BDy = CD    (i) 
    -A× (Dx + Ey = F)  => -ADx - AEy = -AF    (ii) 
 
Then, add them together to yield: (BD - AE)y = DC - AF  
 
When solved for y this equation gives the right part of Equation (E-5). Inserting this result into either (i) or (ii), here 
using (i), and dividing through by A (to solve for x) results in; 
 

 
 AEBD

AFCD

A

B

A

C
x




  

 
Which can easily be expanded and manipulated to give the left part of Equation (E-5).  

QED 
 

Ax + By = C 

Dx + Ey = F 

Point of 
intersection 

y 

x 

y 

x 
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E.3.2 Linear Equations in a Parametric Form 

If the two linear equations are given in the form y1 = Ax + B and y2 = Cx + D as shown in Figure E-8, where the 
constants A, B, C, and D are known, then the x and y values of intersection of the two lines can be found using the 
equations; 
 
 

CA

BCAD
yand

CA

BD
x









   (E-6) 

 

 

Figure E-8: Determining the point of intersection of two lines. 

Also note the special formulation of a parametric line discussed in Article E.5.5, Parametric Lines. 
 
DERIVATION OF EQUATION (E-6): 
The two expressions must equal where they intersect, i.e. y1= y2, or Ax + B = Cx + D. This can be solved for x 
yielding the left equation of (E-6). Consequently, by inserting the result for x, for instance, into y1 and 
manipulating, yields 
 

   
CA

BCAD

CA

CABBDA
B

CA

BD
Ay
















)()(

)(

)(
 

 
which is the right side of Equation (E-6). 

QED 
 
EXAMPLE E-2: 

Determine where the following two lines intersect; 
 

y1 = 2x - 2 and  y2 = -3x + 8 

 
SOLUTION: 

Using Equations (E-6) we find the x and y coordinates of their intersection. 
 

2
)3(2

)2(8





x  and 2

)3(2

)3)(2()8)(2(





y  

y1 = Ax + B 

y2 = Cx + D 

Point of 
intersection 

y 

x 

y 

x 
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Alternatively, writing the two equations in the canonical form, we have: 
 

2x - y = 2 and 3x + y = 8 
 
Now, applying Equations (E-5), we get the same coordinates of the point of intersection. 
 

2
)1)(2()3)(1(

)1)(2()8)(1(





x  and 2

)1)(2()3)(1(

)8)(2()3)(2(





y  

 

E.3.3 Polynomial Fundamentals 

Polynomials and their solutions are very practical in science and engineering. The solution of a polynomial is also 
called its root. An intuitive way to think of a solution to a polynomial is to think of the xi that make P(x) = 0. 
 
Definition of 

Any equation of the form;  0...)( 2

210  n

n xaxaxaaxP  (E-7) 

 

where a a a an0 1 2, , , ... ,   are constants where a0 0 ,  is called polynomial to a degree n. Furthermore, the form 

of Equation (E-7) is called the canonical form. 
 
The Roots of P(x) = 0 
The x-values that make the polynomial P(x) equal to 0 are called the roots of P(x). The roots of the polynomial may 
be real and separate, or real and repeated, or complex conjugate and separate, and/or complex conjugate and 
repeated. If x1, x2,..., xn are the roots of P(x) = 0, then; 

 

 0))...()(()( 21  nxxxxxxxP  (E-8) 

 
Types of Equations and Their Solutions 
Polynomials are very practical in science and engineering, so studying their solutions is extremely important. The 
solution is found once their roots (i.e. by finding the xi's that make P(x) = 0) have been determined. Considering 

Equation (E-7), some specific forms of P(x) are well known and can be seen in the table below. The table depicts 
the form that the equations are most commonly found in, its most common name, and the third column indicates 
the article in which the solution can be found. 
 

Polynomial Name 

     y = Ax +B 
Equation of a line  
Polynomial of degree one 

     y = Ax2 + Bx + C 
Equation of a parabola 
Quadratic equation 

     y = Ax3 + Bx2 + Cx + D Cubic equation 

     y = Ax3 + Bx2 + Bx + C Symmetrical cubic equation 

     y = Ax4 + Bx3 + Cx2 + Dx + E Quartic equation 

     y = Ax4 + Bx3 + Cx2 + Bx + A Symmetircal quartic equation 

     y = Ax4 + Bx3 - Bx - A Antisymmetrical quartic equation 

     y = Ax5 + Bx4 + Cx3 + Dx2 + Ex + F Quintic equation 
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     y = Ax5 + Bx4 + Cx3 + Cx2 + Bx + A Symmetrical quintic equation 

     y = Ax5 + Bx4 + Cx3 - Cx2 - Bx - A Antisymmetrical quintic equation 

     y = xn - h Binomial equation, h>0 

     y = Ax
2
 + Bx

n
 + C Trinomial equation, (n = 2, 3, ...) 

 

E.3.4 The Polynomial of Degree One 

Is an equation in the canonical form;  A0 + A1 x = 0 
 
where the value of x can be found as follows, provided the constants A0 and A1 are known; 
 

 
1

0

A

A
x   (E-9) 

 

E.3.5 The Quadratic Equation 

The quadratic equation is an equation in the canonical form; A0 + A1 x + A2 x
2
 = 0 

 
where the value(s) of x can be found with the following formula if the constants A0, A1, and A2 are all known 
 

 

2

20

2

11

2

4

A

AAAA
x


  (E-10) 

 
If the two values of x are nearly equal, then the numerical result can be determined more precisely using the 
following form of the equation: 
 

 
20

2

11

2

4

2

AAAA

A
x


  (E-11) 

 
This equation is commonly presented using the coefficients A, B, and C:  A x

2
+ B x + C = 0 

 

The solution is then given as: 
A

ACBB
x

2

42 
  (E-12) 

 
DERIVATION OF EQUATION (E-12): 
For convenience, start with the more common definition of a quadratic equation, i.e.: 
 

02  CBxAx  

 

The solution method starts with:  02 
A

C
x

A

B
x  
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Adding supplemental terms:  0
44 2

2

2

2
2 

A

C

A

B

A

B
x

A

B
x  

 

Which reduces to a pure quadratic form: 0
42 2

22











A

C

A

B

A

B
x  

 

Which is solved as follows: 
A

C

A

B

A

B
x

A

C

A

B

A

B
x 










2

2

2,12

2

2,1 4242
 

 
and can be easily manipulated to yield the two forms of the solution.  

QED 
 
EXAMPLE E-3: 

(1) The roots of x2 - 2x - 8 = 0 are: 31
)1(2

)8)(1(4)2()2( 2

2,1 


x  

(2) The roots of x2 - 8x + 16 = 0 are: 4
)1(2

)16)(1(4)8()8( 2

2,1 


x   

(3) The roots of x2 - 2x + 8 = 0 are: ix 71
)1(2

)8)(1(4)2()2( 2

2,1 


  

 
 

E.3.6 COMPUTER CODE: Solving the Quadratic Equation 

The following Visual Basic for Applications function, intended for use with Microsoft Excel, implements the 
quadratic equation presented above. It returns a solution using both real and imaginary numbers, and even 
detects and solves if the entered coefficients (A, B, C) represent the equation of a line. 
 
Function MAT_SolveQuadratic(A As Double, B As Double, C As Double, Mode As Byte) As 

Variant 

'This routine solves the quadratic equation Ax²+Bx+C=0 and returns the 

'real and complex roots depending on the value of Mode. Solution is of 

'the form:  x = ± real ± imaginary·i, meaning there are four numbers. 

' 

'Variables:     A, B, C = Constants of the quadratice equation 

'               Mode    = 0 to return "real number 1" 

'               Mode    = 1 to return "imaginary number 1" 

'               Mode    = 2 to return "real number 2" 

'               Mode    = 3 to return "imaginary number 2" 

'               Mode    = 10 to return a string containing the solution 

' 

'Initialize 

    Dim D As Double 

    Dim R1 As Double, R2 As Double 

    Dim I1 As Double, I2 As Double 

 

'Presets 

    D = B * B - 4 * A * C 

 

 



GUDMUNDSSON – GENERAL AVIATION AIRCRAFT DESIGN APPENDIX E – PRACTICAL MATH FOR THE AC DESIGNER 16 

©2013 Elsevier, Inc.  This material may not be copied or distributed without permission from the Publisher. 

'Explore alternative solutions 

    If A = 0 Then       'We have case Bx+C=0    <=> x=-C/B 

        If B = 0 Then   'We have case C=0       No solution 

            SolutionString = "Error: A=0 in (-B±SQR[B²-4·A·C])/(2·A)" 

            Exit Function 

        Else 

            R1 = -C / B 

            R2 = 0 

            SolutionString = Format$(R1) + "|" + Format$(R2) 

        End If 

    Else                'Solve the quadratice 

        If D >= 0 Then      'Real solution 

            R1 = 0.5 * (-B + Sqr(D)) / A 

            R2 = 0.5 * (-B - Sqr(D)) / A 

            SolutionString = Format$(R1) + "|" + Format$(R2) 

        Else            'Complex solution 

            R1 = -0.5 * B / A 

            R2 = R1 

            D = Abs(D) 

            I1 = 0.5 * Sqr(D) / A 

            I2 = -0.5 * Sqr(D) / A 

            SolutionString = Format$(R1) + "," + Format$(I1) + "|" + Format$(R2) + "," 

+ Format$(I2) 

        End If 

    End If 

 

'Present solution 

    Select Case Mode 

    Case 0 

        MAT_SolveQuadratic = R1 

    Case 1 

        MAT_SolveQuadratic = I1 

    Case 2 

        MAT_SolveQuadratic = R2 

    Case 3 

        MAT_SolveQuadratic = I2 

    Case 10 

        MAT_SolveQuadratic = SolutionString 

    End Select 

End Function 

 

E.3.7 Completing the Square 

Completing the square is a handy method to solve the quadratic equation. Consider a quadratic equation of the 

form 02  cbxax . Then, completing the square involves putting it into the following form: 

 

   00
22  edxacbxax  (E-13) 

 

Where:     
a

b
ce

a

b
d

4
and

2

2

  

 
Note that completing the square is the most important step in deriving Equation (E-12). There are a few 
advantages to solving it this way. First, the form contains the x,y coordinates of the vertex of the parabola. Second, 

it is easy to solve the equation in the completed form. Third, sometimes, the original form 02  cbxax  is a 

part of a bigger problem (nonlinear dynamical control systems come to mind), and completing the square allows a 
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solution to be clearly represented because x only appears once. This is also helpful if the term “x” actually 
represents a function (e.g. tanh(r)) and this can yield a considerable simplification. 
 

Note that Equation (E-13) can be explicitly written as follows:  0
42

22




















a

b
c

a

b
xa  

 

Therefore, the vertex of the parabola is given by:     







 c

a

bb

a
yx

4
,

2

1
,

2

 

 

Consider the special case where a = 1: 0
42

0
22

2 









b
c

b
xcbxx   (iii) 

 

Note that Equation (i) can also be written as follows:     
a

e
dxedxa 

22
0  

 
And then the vertex of the curve (x,y) = (-d, e/a). Example: x²+4x+1=0 => d=4/2=2 and e=1-4²/4=-3. The vertex of 
this curve is at (x,y) = (-2, -3). 
 
EXAMPLE E-4: 
Complete the square for the following quadratic polynomials: 
 

 (1) The roots of x2 - 2x - 8 = 0 are:   071
42

2
22









 x

b
c

b
x  

(2) The roots of x2 - 8x + 16 = 0 are:   04
42

2
22









 x

b
c

b
x   

(3) The roots of x2 - 2x + 8 = 0 are:   071
42

2
22









 x

b
c

b
x  
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E.4 Trigonometry 
 

E.4.1 Definition of Trigonometric Functions for a Right Triangle 

For the Right triangle (where angle C = 90°) in Figure E-9, side AB is called the "hypotenuse", side AC is the 
"adjacent", and side BC is the "opposite". With respect to this triangle, the trigonometric functions are defined as 
follows: 
 
 Sine of A:  sin A = a/c = opposite/hypotenuse 
 Cosine of A:  cos A = b/c = adjacent/hypotenuse 
 Tangent of A:  tan A = a/b = opposite/adjacent 
 Cotangent of A:  cot A = b/a = adjacent/opposite 
 Secant of A:  sec A = c/b = hypotenuse/adjacent 
 Cosecant of A:  csc A = c/a = hypotenuse/opposite 
 

 

Figure E-9: The right triangle. 

E.4.2 Trigonometric Functions of an Arbitrary Angle 

Let  be any angle in standard position and let P = P(x,y) be any point on the terminal side of the angle as shown in 
Figure E-10. Denote the positive distance OP by r. Then; 
 

   sin  = y/r   csc  = r/y 

   cos  = x/r   sec  = r/x 

   tan  = y/x   cot  = x/y 

   exsec  = sec  - 1  covers = 1 - sin  

   vers  = 1 - cos    hav  = ½ vers  

   cis  = cos  + i sin  = ei

 

Where;   = Angle in radians 

  1i  
 
 
 

A 

B 

b 

a 

c 

C 
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Figure E-10: Plane used to define trigonometric functions of an arbitrary angle. 

 

E.4.3 Relationships between Sides and Angles of a Plane Triangle 

Law of Sines 
The following results hold for any plane triangle ABC with sides a, b, c and angles A, B, C, as shown in Figure E-11. 
 

C

c

B

b

A

a

sinsinsin
  

 
Law of Cosines 

Cabbac

Baccab

Abccba

cos2

cos2

cos2

222

222

222







 

Law of Tangents 

)(
2

1
tan

)(
2

1
tan

,

)(
2

1
tan

)(
2

1
tan

,

)(
2

1
tan

)(
2

1
tan

CB

CB

cb

cb

CA

CA

ca

ca

BA

BA

ba

ba



























 

 
Law of a Semiperimeter 

))()((
2

sin csbsass
bc

A   

 
Where s = ½(a + b + c) is the semiperimeter of the triangle. Similar relations can be obained for angles B and C. 
 

A, B, C  = Angles in radians 
a, b, c  = Side lengths 

y 

x 

r 

P 

O 



y 

x 

IV Quadrant III Quadrant 

I Quadrant 
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Figure E-11: Plane triangle. 

E.4.4 Small Angle Relations 

If the angle  is a small angle then the following approximations are particularly useful: 
 







tan

sin

1cos

 

 

Where;   = Angle in radians 
 
EXAMPLE E-5: 
Determine the error for the above relations for a 5° angle (i.e. 0.087266 radians). 
 

%16.0000222.0087489.0087266.0087489.0
180

5tan

%13.0000111.0087156.0087266.0087156.0
180

5sin

%39.0996195.01996195.0
180

5cos








 









 









 


 

 
 

E.4.5 Angle-Radians Conversions 










200

180

180

radiansgrad

degreesradians

radiansdegrees

 

9.0

9.0

200

degrees

grad

graddegrees

gradradians









 

A 

B 

b 

a 

c 

C 
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E.4.6 Relations among Trigonometric Functions 

Function of sin x   

x
x

cos

1
sin 

 
xx 2cos1sin   )180sin(

)90cos(sin

x

xx





 
 
Function of cos x 

x
x

sec

1
cos 

 )180cos(

)90sin(cos

x

xx





 
xx 2sin1cos   

 
Functions of tan x 

x

x

x
x

cos

sin

cot

1
tan 

 
1sectan 2  xx  )180tan(

)90cot(tan

x

xx





 
 
Functions of cot x 

x

x

x
x

sin

cos

tan

1
cot 

 
1csccot 2  xx  )180cot(

)90tan(cot

x

xx





 
 
Functions of csc x 

x
x

x cot
2

cotcsc 
 x

x
sin

1
csc 

 
1cotcsc 2  xx  

 
Functions of sec x 

x
x

cos

1
sec 

 
1tansec 2  xx  

 

 
Other Relations  

1cossin 22  xx  xx 22 sectan1   
x

xx
2

22

sin

1
csccot1 

 
 

E.4.7 Various Arithmetic Relations for Trigonometric Functions 

Reciprocal Relations 

A
A

A
A

A
A

A
A

A
A

A
A

tan

1
cot,

cos

1
sec,

sin

1
csc

cot

1
tan,

sec

1
cos,

csc

1
sin





 

 
Product Relations 

AAA

AAA

AAA

secsintan

sincotcos

costansin







 

AAA

AAA

AAA

cotseccsc

tancscsec

csccoscot






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Double-Angle Relations 

   
A

A
AAA

2tan1

tan2
cossin22sin


  

   )2cos1(
2

1
cos 22 AA   

   
A

A
AAAAA

2

2
2222

tan1

tan1
sin211cos2sincos2cos




  

   
A

A
A

A

A
A

cot2

1cot
2cot,

tan1

tan2
2tan

2

2





  

 
Quotient Relations 

   

A

A
A

A

A
A

A

A
A

A

A
A

A

A
A

A

A
A

sin

cos
cot,

cot

csc
sec,

tan

sec
csc

cos

sin
tan,

csc

cot
cos,

sec

tan
sin





 

 
Pythagorean Relations 

1cossin 22  AA  AA 22 sectan1   AA 22 csccot1   

 

E.4.8 Angle-Sum and Angle-Product Relations 

Angle-Sum and Angle-Difference Relations 

BABABA

BABABA

BABABA

BABABA

sinsincoscos)cos(

sinsincoscos)cos(

sincoscossin)sin(

sincoscossin)sin(








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BA

BA

BA
BA

BA
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cotcot

1cotcot
)cot(

tantan1
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)tan(

tantan1

tantan
)tan(
















 

 

ABBABABA

ABBABABA

2222

2222

sincossincos)cos()cos(

coscossinsin)sin()sin(




 

 
Multiple-Angle Relations 
 

AnAAnnA

AAAA

AAAA
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)2cos(cos)1cos(2cos

1cos18cos48cos326cos

cos5cos20cos165cos

1cos8cos84cos

cos3cos43cos
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24

3











 

AnAAnnA

AAAAAAA

AAAA

AAAAA

AAA

)2sin(cos)1cos(2sin

sincos6sincos32sincos326sin

sin16sin20sin55sin

cossin8cossin44sin

sin4sin33sin

35

53

3

3










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A

AA
A

2

3

tan31

tantan3
3tan




  

AA

AA
A

42

3

tantan61

tan4tan4
4tan




  

AAn

AAn
nA

tan)1tan(1

tan)1tan(
tan




  

 
 
Function-Product Relations 
 

)sin(
2

1
)sin(

2

1
cossin

)cos(
2

1
)cos(

2

1
sinsin

BABABA

BABABA





 

)sin(
2

1
)sin(

2

1
sincos

)cos(
2

1
)cos(

2

1
coscos

BABABA

BABABA





 

 
Function-Sum and Function-Difference Relations 
 

)(
2

1
sin)(

2

1
cos2sinsin

)(
2

1
cos)(

2

1
sin2sinsin

BABABA

BABABA





 
 

)(
2

1
sin)(

2

1
sin2coscos

)(
2

1
cos)(

2

1
cos2coscos

BABABA

BABABA





 

BA

BA
BA

BA

BA
BA

coscos

)sin(
tantan

coscos

)sin(
tantan







 
 

BA

AB
BA

BA

BA
BA

sinsin

)sin(
cotcot

sinsin

)sin(
cotcot







 

)(½cot
coscos

sinsin

)(½tan

)(½tan

sinsin

sinsin

AB
BA

BA

BA

BA

BA

BA















 

)(½tan
coscos

sinsin

)(½tan
coscos

sinsin

BA
BA

BA

BA
BA

BA











 

 
 Half-Angle Relations 
 

2

cos1

2
cos

2

cos1

2
sin

AA

AA







 

A

A

A

A

A

AA

A

A

A

A

A

AA

cos1

sin

sin

cos1

cos1

cos1

2
cot

cos1

sin

sin

cos1

cos1

cos1

2
tan























 

 
     

E.4.9 Power and Inverse Relations for Trigonometric Functions 

Power Relations 
 

)2cos1(
2

1
cos 2 AA   )2cos1(

2

1
sin 2 AA   
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)3coscos3(
4

1
cos3 AAA   )3sinsin3(

4

1
sin 3 AAA   

)4cos2cos43(
8

1
cos 4 AAA   )4cos2cos43(

8

1
sin 4 AAA   

A

A
A

2cos1

2cos1
tan2






 

A

A
A

2cos1

2cos1
cot 2






 
 
Relations between Inverse Trigonometric Functions  
 


































x
xxx

xxxx

xxxx

xxxx

1
tancotcot)(cot

tan)(tan
2

cscsec

cos)(cos
2

cottan

sin)(sin
2

cossin

1111

1111

1111

1111

 

xx
x

x

xx
x

x

1111

1111

sec)(sec
1

cossec

csc)(csc
1

sincsc

























 

 

E.4.10 Plotting the Trigonometric Functions 

 

Figure E-12: Plotting sin x and cos x. 
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Figure E-13: Plotting tan x and cot x. 

 

Figure E-14: Plotting csc x and sec x. 
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Figure E-15: General Plot of y = A cos (ax - ) or y = A cos (ax + ). 

 

E.4.11 Great Circle, Small Circle, and Lunes 

Consider the sphere in Figure E-16. A circle on 
a sphere having the same radius (and the 
same center) as the sphere is called a great 
circle. All other circles on the sphere are 
called small circles.  
 
On a sphere of a sufficiently large radius, 
sufficiently small arcs of a great circle can be 
assumed to resemble a straight line.  
 
Two great circles intersect in two points A and 
B that are the ends of a diameter of the 
sphere. These points, which are called poles, 
can be connected with a straight line that is 
bisected at the center of the sphere (see 
Figure E-16).  
 
Two great circles have always a pair of 
diametrically opposite points in common, 
which divide the surface of the sphere into 
four lunes.  
 

 

Figure E-16: Poles, great circles, and lunes. 

The arc of a great circle going from point P to Q through an angle  in Figure E-16 has an arc length of: 
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




180

a
RRPQ  

 

where a  is the angle  in degrees. The area A of the lune APBQA through the angle, is given by: 

 






90
2 22 a

RRA  

 

E.4.12 Spherical Trigonometric Relations 

Law of Sines 
Spherical triangle ABC is on the surface of a 
sphere is shown in Figure E-17. Sides a, b, and 
c (which are arcs of great circles) are 
measured by their angles subtended at center 

O of the sphere. , ,  are the angles 
opposite sides a, b, c respectively. Then the 
following results hold: 
  







 sin

sin

sin

sin

sin

sin cba
 

 

Figure E-17: A spherical triangle. 

 
Law of Cosines for Sides 
 







cossinsincoscoscos

cossinsincoscoscos

cossinsincoscoscos

babac

cacab

cbcba

 

 

Law of Cosines for Angles 
 

c

b

a

cossinsincoscoscos

cossinsincoscoscos

cossinsincoscoscos







 

 
Law of Tangents 
 

)(½tan

)(½tan

)(½tan

)(½tan

)(½tan

)(½tan

)(½tan

)(½tan

ca

ca

ba

ba



















 

Law of a Semiperimeter 
 

cb

css

sinsin

)sin(sin

2
cos





 

 
where s = ½(a + b + c) is the semi-perimeter of the 

triangle. Similar relations can be obtained for angles  
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)(½tan

)(½tan

)(½tan

)(½tan

cb

cb









 

and . 
 






sinsin

)cos()cos(

2
cos

SSa
 

 

where S =  ½( +  + ). Similar relations can be 
obtained for side b and c. 
 

 
Half-Angle and Half-Side Relations 
 

)sin(sin

)sin()sin(

2
tan

)sin(sin

)sin()sin(

2
tan

)sin(sin

)sin()sin(

2
tan

css

bsas

bss

csas
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csbs






















 
  
where s = ½(a + b + c) is the semiperimeter of the 
triangle. 

)cos()cos(

)cos(cos

2
tan

)cos()cos(

)cos(cos

2
tan

)cos()cos(

)cos(cos

2
tan
















SS

SSc

SS

SSb

SS

SSa

 
 

Where; S = ½( + + ). 
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E.5 Analytic Geometry 
 

E.5.1 Vector Properties of 2-D Lines 

Consider the vector, A, in Figure E-18 extending 
from the point (xa, ya) to point (xb, yb) is written as 
follows: 
 

   













ab

ab

abab
yy

xx
yyxx jiA

 
 
Its length, LA, is given by: 
 

   22

abab yyxxL A
 

 
In polar form, the vector is written as follows: 

 

x 

y 

(xa, ya) 

(xb, yb) 

A 

LA 

 

Figure E-18: Linear interpolation in 2-D space. 

 

 ALA  

 

Where;     













 

ab

ab

xx

yy1tan  

 
And  xa, ya   = coordinates of the starting point of the vector. 
  xb, yb   = coordinates of the end point of the vector. 
  LA   = Length of the vector A. 
 

E.5.2 Vector Properties of 3-D Lines 

A vector, A, extending from the point (xa, ya, za) to point (xb, yb, za) is written as follows. 
 

     
























ab

ab

ab

ababab

zz

yy

xx

zzyyxx kjiA  

 

Its length, LA, is given by:      222

ababab zzyyxxL A
 

 
Where  xa, ya, za  = coordinates of the starting point of the vector. 
  xb, yb, zb  = coordinates of the end point of the vector. 
  LA   = Length of the vector A. 
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E.5.3 Linear Interpolation in 2-D 

If x is known, y can be determined as follows: 
 

           a

ab

ab

a xx
xx

yy
yxy 














        (E-13)  

 
If y is known, x can be retrieved as follows: 
 

           a

ab

ab

a yy
yy

xx
xyx 














      (E-14) x

y

(xa, ya)

(x, y)

(xb, yb)

 

Figure E-19: Linear interpolation in 2-D space. 

Where  xa, ya  = coordinates of one point on the line. 
  xb, yb  = coordinates of the other point on the line. 
  x, y  = coordinates of the unknown point on the line. 
 
EXAMPLE E-6: 
Two points on a line are given by (5, 1) and (1, 5). Find the value of y for x = 2.5. Using Equation (E-13) the solution 
is given by: 
 

    5.355.2
51

15
15.2 












y  

 
 

E.5.4 Linear Interpolation in 3-D 

If x is known, y and z can be retrieved as follows: 
 

 

   

   a

ab

ab

a

a

ab

ab

a

xx
xx

zz
zxz

xx
xx

yy
yxy

































 (E-14) 

 
If y is known, x and z can be retrieved as follows: 
 

 

   

   a

ab

ab

a

a

ab

ab

a

yy
yy

zz
zyz

yy
yy

xx
xyx

































 (E-15) 

 
If z is known, x and y can be retrieved as follows: 
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   

   a

ab

ab

a

a

ab

ab

a

zz
zz

yy
yzy

zz
zz

xx
xzx

































 (E-16) 

 
Where xa, ya, za  = coordinates of one point on the line. 
 xb, yb, zb  = coordinates of the other point on the line. 
 x, y, z = coordinates of the unknown point on the line. 
 

x

y

z

(xa, ya, za)

(x, y, z)

(xb, yb, zb)

 

Figure E-20: Linear interpolation in 3-D space. 

EXAMPLE E-7: 
Two points on a line are given by (5, 1, 4) and (1, 5, 2). Find the value of y and z for x = 2.5. Using Equation (E-16) 
the solution is given by: 
 

   

    25.355.2
51

42
45.2

5.355.2
51

15
15.2





























z

y

 

 
 

E.5.5 Parametric Lines 

Parametric lines are extremely useful in software codes as they will not cause singularities that may cause a code 
to crash. For instance, when calculating the slope of a line using Equation (E-13), a singularity will occur when xb = 
xa. A parametric line circumvents this problem by never calculating the slope of the line. The line requires a 
parameter t to be calculated, which can be thought of as the fraction of the distance between two points. 
 

 

   

   

    tztztz

tytyty

txtxtx

ba

ba

ba







1

1

1

 (E-17) 
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EXAMPLE E-8: 
Two points on a line are given by the initial point (5, 1, 0) and final point (1, 5, 0). Find the value of x and y for t = 0, 
0.5, and 1. 
 
SOLUTION: 
Using Equation (E-17) with t = 0 we get: 
 

     

      1050111

5010151





tytyty

txtxtx

ba

ba
 

 
This is the initial point. Using Equation (E-18) with t = 0.5 we get: 
 

     

      35.055.0111

35.015.0151





tytyty

txtxtx

ba

ba
 

 
This is the midpoint on the line. Using Equation (E-18) with t = 1 we get: 
 

     

      5151111

1111151





tytyty

txtxtx

ba

ba
 

 
This is the end point. 
 
 

E.5.6 COMPUTER CODE: Intersection of Two Parametric Lines 

The following code, written in Visual Basic for Applications and intended for use with Microsoft Excel will 
determine the Y-value of the input value, Xin, on the interval [X1, X2] onto which the linear relation [Y1, Y2] is 
mapped, using the parametric formulation for a 2-dimensional case. 
 
Function ParametricInterpolation(X1 As Single, Y1 As Single, X2 As Single, Y2 As 

Single, Xin As Single) As Single 

'This function calculates the Y-value corresponding to the value of Xin, using 

'a parametric formulation. It is assumed that X1, Y1 represent the lower extreme 

'of the intervale (e.g. where t = 0) and X2, Y2 represent the higher extreme (t = 1). 

' 

'Initialize 

    Dim t As Single, L As Single 

 

'Presets 

    L = X2 - X1 

    If L = 0 Then   'Flag an input error 

        ParametricInterpolation = -9.9E+100 

        Exit Function 

    End If 

    t = (Xin – X1) / L 

 

'Process 

    ParametricInterpolation = Y1 * (1 - t) + Y2 * t 

End Function 
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E.5.7 Intersection of Two Parametric Lines 

Determining the intersection of two parametric lines is often necessary, in particular when conditions of 
optimization must be determined. Consider the parametric lines A = P1∙(1-tA) + P2∙tA and B = P3∙(1-tB) + P4∙tB in 
Figure E-21. The intersection of these two lines occurs at the point (x0, y0) the when the two parameters take the 
following values: 
 

 

     
     

     
     12434312

13121312

12434312

43134313

yyxxyyxx

xxyyyyxx
t

yyxxyyxx

xxyyyyxx
t

B

A











 (E-18) 

 

 

Figure E-21: Determining the point of intersection of two lines. 

 
DERIVATION OF EQUATION (E-18): 

Point on line A is given by:   
 

  AA

AA

tytyy

txtxx

21

21

1

1




 

 

Point on line B is given by:   
 

  BB

BB

tytyy

txtxx

43

43

1

1




 

 
We need to find tA and tB such that  xA = xB = x0 and yA = yB = y0. 
 

We write    
   

    BBAA

BBAA

tytytytyy

txtxtxtxx

43210

43210

11

11




 

 

B 

A 

x4, y4 

x3, y3 
 

x1, y1 
 

x2, y2 
 

x0, y0 
 

x 

y 



GUDMUNDSSON – GENERAL AVIATION AIRCRAFT DESIGN APPENDIX E – PRACTICAL MATH FOR THE AC DESIGNER 34 

©2013 Elsevier, Inc.  This material may not be copied or distributed without permission from the Publisher. 

Which can be rewritten as:  
   

    134312

134312

yytyytyy

xxtxxtxx

BA

BA




 

 
So now we have two equations with two unknowns, and we determine  tA and tB, for instance using Cramer’s rule 
or by solving directly: 

     
     

     
     12434312

13121312

12434312

43134313

yyxxyyxx

xxyyyyxx
t

yyxxyyxx

xxyyyyxx
t

B

A











 

QED 
 

E.5.8 Quadratic Curve-Fitting 

Sections E.5.3 through E.5.5 are simple linear curve fitting methods. The ability to fit curves to data is a priceless 
tool for the airplane designer. All sciences attempt to provide tools to determine various physical characteristics of 
some natural phenomenon using pure physical formulation. This can be called the prediction approach. However, 
many processes in nature are so complex and nonlinear that the only choice toward understanding is to conduct 
experiments and fit curves to the data. This is the empirical approach. This section presents a powerful and simple, 
albeit limited, method to fit a quadratic curve through three data points. 
 
Consider the three points (x1, y1), (x2, y2), and (x3, y3) in Figure E-22. We can now fit a quadratic polynomial y = Ax² + 
Bx + C through the points. The coefficient A, B, and C are obtained from: 
 

 



















































3

2

1

1

3

2

3

2

2

2

1

2

1

1

1

1

y

y

y

xx

xx

xx

C

B

A

 (E-19) 

 
DERIVATION OF EQUATION (E-19): 
If the function y = Ax² + Bx + C goes through each of the three points, we can write for each point: 
 

Point 1:    
CxBxAy  1

2

11  

Point 2:    
CxBxAy  2

2

22  

Point 3:    
CxBxAy  3

2

33  
 
This can be written in a matrix format as follows: 
 


















































3

2

1

3

2

3

2

2

2

1

2

1

1

1

1

y

y

y

C

B

A

xx

xx

xx

 
 
So it follows that the coefficients A, B, and C for the polynomial can be determined from: 
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QED 
 

 

Figure E-22: Determination of a function y = Ax² + Bx + C that intersects the points 1, 2, and 3. 

EXAMPLE E-9: 
Determine the coefficient A, B, and C for a quadratic function going through the points shown in Figure E-22. 
 
SOLUTION: 
Begin by setting up the matrix: 
 







































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
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


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1
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1

1

1

3

2

1

3

2

3

2

2

2

1

2

1

C

B

A

y

y

y

C

B

A
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Inverting the matrix yields: 
 






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

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
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




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
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




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


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


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


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
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

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
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





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



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
















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5.0

1
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5.0

1

19048.083333.035714.0

05.05.0
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1
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1
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1
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1
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y
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y
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xx

xx

C

B

A

 

 
This yields the following values for the constants A, B, and C: 
 

A = 0.45238  B = -0.25  C = 0.29762 
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The solution can now be plotted, showing each point is indeed intersected: 
 

 

Figure E-23: The function y = Ax² + Bx + C has been defined such it intersects the points 1, 2, and 3. 

 
 

E.5.9 Cubic Curve-Fitting 

This section extends the method of the previous section to a curve fit through four data points. Consider the four 
points (x1, y1), (x2, y2), (x3, y3), and (x4, y4) in Figure E-24. We can now fit a quadratic polynomial y = Ax² + Bx + C 
through the points. The coefficient A, B, and C are obtained from: 
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
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
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
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 (E-20) 

 
DERIVATION OF EQUATION (E-20): 
Identical to that of Article E.5.7, Quadratic Curve-Fitting, using four variables rather than three. 

QED 
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Figure E-24: Determination of a function y = Ax3 + Bx² + Cx + D that intersects the points 1, 2, 3, and 4. 

 

E.5.10 Linear Least-Squares Curve Fitting - y = Ax + B 

For a data domain of the form (x1, y1), (x2, y2), ...(xi, yi), ...(xn, yn), a best fit line of the same form as equation A.8.4.1, 

i.e.; 
 

 BAxxy )(  (E-21) 

 
can be found such that the standard deviation (see A.9) between the yi's and the y(xi)'s found from the resulting 

line is minimized. Then, the Coefficients A and B are given with; 
 
 

 BAxxy )(  (E-22) 

 

E.5.11 STEP-BY-STEP: Rapid Interpolation of 2D Lookup Tables 

Consider the sample 2D lookup table shown in Figure E-25. It is a frequent task for the practicing engineer to 
interpolate values in such tables using an argument that fall between the values in the table. For instance, consider 
the task of estimating the value for A = 4.5 and B = 6.25 in the table below. The resulting value will require a 
double interpolation inside the dark region. This section introduces a simple method to allow for a quick 
interpolation of such values, using parametric line interpolation. 
 

A/B 1 2 3 4 5 6 7 8 9 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 

6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 
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7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 

8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 

9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 

10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 

11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 

Figure E-25: A sample 2D lookup table. 

STEP 1: 
Determine the four values (h) enclosing the solution: 
 

A/B 1 2 … Cj Cj+1 … CN-2 CN-1 CN 

1 h11 h12        

2 h21 h22        

…          

Ri    hij hi j+1     

Ri+1    hi+1 j hi+1 j+1     

…          

RN-1        hM-1 N-1 hM-1 N 

RN        hM N-1 hM N 

 
STEP 2: 
Calculate the parameters s and t from: 
 

   jj

j

ii

i

CC

CC
tand

RR

RR
s











 11  
 
STEP 3: 
Calculate the interpolated value h: 
 

 
            tshshtshshh jijijiij 1111 111  

  (E-22) 
 

E.5.12 COMPUTER CODE: Rapid Interpolation of 2D Lookup Tables 

The following Visual Basic routine implements the 2-dimensional interpolation presented above: 
 
Function MATH_Lookup2DTable(Table() As Single, RowValue As Single, ColValue As Single) 

As Single 

'This routine calculates the value of the table using the RowValue and ColValue, 

'assuming the following setup of the array Table() 

' 

'      Table(i,j) = [0        ColVal1  ColVal2  ColVal3 ...   ColValn] 

'                   [RowVal1  x11      x12      x13     ...   x1n    ] 

'                   [RowVal2  x21      x22      x23     ...   x2n    ] 

'                   .... 

'                   [RowValm  xm1      xm2      xm3     ...   xmn    ] 

' 

'So the row values to be interpolated are the first column (Column 0) and col values 

'in the top row (Row 0). IT IS ASSUMED THAT RowVals AND ColVals ARE SORTED FROM LOWEST 

'TO HIGHEST. 

' 
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'Initialize 

    'Indexes 

    Dim i As Integer, j As Integer 

    Dim M As Integer, N As Integer 

    Dim Ri As Integer, Ci As Integer 

    'Parameters 

    Dim t As Single, s As Single 

    'Interrim values 

    Dim HA As Single, HB As Single 

 

'Presets 

    M = UBound(Table, 1)    'Number of rows 

    N = UBound(Table, 2)    'Number of cols 

'Make sure the RowValue is inside the bounds of Table(i,j) 

    If RowValue < Table(1, 0) Or RowValue > Table(M, 0) Then 

        Table2DInterpolate = -1 

        Exit Function 

    End If 

 

'Make sure the ColValue is inside the bounds of Table(i,j) 

    If ColValue < Table(0, 1) Or ColValue > Table(0, N) Then 

        Table2DInterpolate = -2 

        Exit Function 

    End If 

 

'Look up the index for RowValue 

    Ri = 1 

    For i = 1 To M 

        If RowValue <= Table(i, 0) Then 

            Exit For 

        End If 

        Ri = i 

    Next i 

 

'Look up the index for ColValue 

    Ci = 1 

    For j = 1 To N 

        If ColValue <= Table(0, j) Then 

            Exit For 

        End If 

        Ci = j 

    Next j 

 

'Perform interpolation 

    t = (RowValue - Table(Ri, 0)) / (Table(Ri + 1, 0) - Table(Ri, 0)) 

    s = (ColValue - Table(0, Ci)) / (Table(0, Ci + 1) - Table(0, Ci)) 

    HA = Table(Ri, Ci) * (1 - t) + Table(Ri + 1, Ci) * t 

    HB = Table(Ri, Ci + 1) * (1 - t) + Table(Ri + 1, Ci + 1) * t 

    Table2DInterpolate = HA * (1 - s) + HB * s 

End Function 

 

E.5.13 Constructing a Body of Revolution by Splicing Curves 

Sometimes it is desirable to achieve greater accuracy in the estimation of surface area of a body of revolution than 
possible using the assembly of elementary solids (e.g. paraboloid, cylinder, cone, and frustum). This can be 
achieved by assembling one using splicing curves. This leads to a solid that consists of smooth segmented 
mathematical curves that are joined at the ends where their tangents are guaranteed to be equal. The resulting 
curve is thus consistent in space and first derivative, although it is also possible to extend the method to guarantee 
their curvature is continuous as well. 
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Refer to Article E.5.7, Quadratic 
Curve-Fitting for introductory 
comments about fitting curves 
through specific points. This tool 
can be extended by fitting curves 
to points that represent specific 
shapes of great importance to the 
airplane designer. In this section, 
polynomials are used to generate 
a shape that can be used to 
represent a fuselage (or an 
external fuel tank) as a body of 
revolution. Among advantages 
this offers is it allows the designer 
to define a parametric fuselage 
during space claim studies and 
fuselage drag analysis. Among 
properties that can be extracted 
from the method is the wetted 
surface area (for drag analysis) 
and volume of the body. 

 
 

Figure E-26: A hypothetical tadpole surface constructed by splines. 

 
Figure E-26 shows a hypothetical tadpole surface used to do initial drag studies of a powered sailplane. The reader 
should note that even though the final surface has a nose shape that differs such the forward part is asymmetric, 
the difference in volume and surface area is usually very small or even negligible. 
 
Piecewise Splicing of Curves to Represent a Geometric Entity 
Consider the geometry in Figure E-27, which represents a typical tadpole fuselage. The OML can be “constructed” 
by tying together a number of splines. This must be accomplished by ensuring the continuity of selected 
characteristics, such as y, y’, and/or y’’. Here, the fuselage will be constructed using three splines; one representing 
the nose, one representing the tailboom, and one tying those two together. These are called the nose spline, 
tailboom spline and tie spline, respectively. 
 

 

Figure E-27: An outline of the side of a fuselage formed using 3 splines. 

Since this is a body of revolution it suffices to consider only one side as shown in Figure E-28. The nose spline is 
denoted by Y1, the tie spline by Y2, and the tailboom spline by Y3. The dimensions L1, L2, and L3 represent the 
physical location along the x-axis where they are joined and d1, d2, and d3 represents the height (or width) at those 
points. The splines can be modeled using any smooth and differentiable curve found to suit the shape. Typically, 
polynomials and trigonometric curves are helpful. 
 

A series of splines are 
used to define a 
surface of revolution. 

Axis of rotation 
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Figure E-28: Defining important parameters for the 3 splines. 

Mathematically, the splines Y1, Y2, and Y3, are defined on the following intervals: 
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x if

x0 if

YyLL
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YyL
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Their boundary conditions can be determined based on desired magnitude, slope, and curvature as shown below: 
 

Magnitude requirement: Slope requirement: Curvature requirement: 
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Let’s define 3 splines that can be spliced to form a fuselage (note that any spline formulation can be picked, 
although boundary conditions will change the resulting matrix from what is shown here). Here we will define two 
splines for the forward fuselage to demonstrate the impact on splines 2 and 3.  
 

Spline 1:   3/2

01 xAY    or  






 


1

01
2

sin
L

x
AY  

 

Spline 2:   
43

2

2

3

12 AxAxAxAY   

 

Spline 3:   
76

2

53 AxAxAY   

 
Note that using the first of the two options given for Y1 will be presented here. The 3 splines contain 8 unkowns (A0 
through A7). We have to set up formulation to obtain these. To solve, let’s construct an 8 x 8 matrix to 
accommodate the eight unknowns, as follows: 
 

    CAk   

 
Where the matrices [k], [A], and [C] are defined as follows: 
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Then, we will populate it with the appropriate coefficients k ij, which we’ll obtain by investigating the characteristics 
of the splines. Let’s write possible rules: 
 

At x = L1:  
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AxAxAxAYY

dAxAxAxAY

dxAY

 

At x = L2: 

0223'' 6532

2

132

276

2

523

243

2

2

3

122







AxAAxAxAYY

dAxAxAdY

dAxAxAxAdY

 

At x = L3: 

020' 653

376

2

533





AxAY

dAxAxAdY
 

 
Populating the Matrix 
Let’s start populating the matrix by considering our “rules”. For instance, we start with the ‘k’ matrix blank as 
shown below: 
 



































































































7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

C

C

C

C

C

C

C

C

A

A

A

A

A

A

A

A
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First, let’s consider the requirement that Y1 = d1 at x = L1:   1

3/2

1011 dLALY   

 
Adding this to the matrix results in (note the C-matrix as well): 
 



































































































7

6

5

4

3

2

1

1

7

6

5

4

3

2

1

0
3/2

1

00000000

00000000

00000000

00000000

00000000

00000000

00000000

0000000

C

C

C

C

C

C

C

d

A

A

A

A

A

A

A

AL

 

 
Second, consider the requirement that Y2 = d1 at x = L1: 
 

  1413

2

12

3

1112 dALALALALY   

 
Adding this to the matrix yields (note the C-matrix as well): 
 



































































































7

6

5

4

3

2

1

1

7

6

5

4

3

2

1

0

1

2

1

3

1

3/2

1

00000000

00000000

00000000

00000000

00000000

00000000

00010

0000000

C

C

C

C

C

C

d

d

A

A

A

A

A

A

A

A

LLL

L

 

 
Third, consider the requirement that Y2‘ = Y1‘ at x = L1: 
 

023
3

2

023
3

2

3

2
23''

312

2

11

3/1

10

32

2

1

3/1

0

3/1

032

2

112













ALALALA

AxAxAxA

xAAxAxAYY

 

 
Adding this to the matrix yields (note the C-matrix as well): 
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

































































































 

7

6

5

4

3

1

1

7

6

5

4

3

2

1

0

1

2

1

3/1

1

1

2

1

3

1

3/2

1

0

00000000

00000000

00000000

00000000

00000000

0000123
3

2

00010

0000000

C

C

C

C

C

d

d

A

A

A

A

A

A

A

A

LLL

LLL

L

 

 
Continuing in a similar fashion, we complete populating the matrices, eventually yielding: 
 





































































































 

3

2

2

1

1

7

6

5

4

3

2

1

0

3

2

3

22

2

2

2

2

2

2

2

2

3

2

3

1

2

1

3/1

1

1

2

1

3

1

3/2

1

0

0

0

100000

01201230

100000

00010

01200000

0000123
3

2

00010

0000000

d

d

d

d

d

A

A

A

A

A

A

A

A

LL

LLL

LL

LLL

L

LLL

LLL

L

 

 
The goal is to determine the coefficients A0 through A7, which can then be used to accurately plot the fuselage. The 
solution is obtained by solving: 
 

     CkA
1

  
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EXAMPLE E-10: Fuselage Curve Splicing 
Determine a fuselage OML with the dimensions shown in Figure E-29: 
 

 

Figure E-29: Outside Mold Line of a desired fuselage shape. 

Resulting matrix representation: 







































































































50.0

0

25.1

25.1

0

0

50.1

50.1

12562500000

012201223630

11112100000

00011112113310

015000000

00001121083669.0

00016362160

0000000302.3

7

6

5

4

3

2

1

0

A

A

A

A

A

A

A

A

 

 
Inverting the matrix [k] and multiplying with the [C] yields the coefficients for all three splines: 
 

















































































































50.0

0

25.1

25.1

0

0

50.1

50.1

189.20189.30643.19000

2551.002551.00571.2000

0051.00005102.0007143.0000

263.284.15263.2776.784.1504.29776.6227.3

96.072.696.0168.372.612.10168.3124.1

1314.092.01314.0408.092.012.1408.01244.0

005714.004.000571.0016.004.004.0016.0004444.0

00000003029.0

7

6

5

4

3

2

1

0

A

A

A

A

A

A

A

A

 
Yielding the following coefficients: 
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







































































8916.2

1913.0

0038.0

5869.3

7587.1

1901.0

0064.0

4543.0

7

6

5

4

3

2

1

0

A

A

A

A

A

A

A

A

 

 
Now we can plot the fuselage fully defined as shown in Figure E-30: 
 

 

Figure E-30: The fuselage consisting of 3 splines. 
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E.6 Calculus 
 

E.6.1 Definitions  

Consider a function ƒ(x). If ƒ is continuous and smooth 
on an interval [a, b], we say that ƒ is differentiable and 
continuous.  
 
If y = ƒ(x) is differentiable at a, then ƒ must also be 
continuous at a. On the other hand, a function may be 
continuous at a point but not be differentiable there 
(see Figure E-31). 
 
Let ƒ be a differentiable function, and let ƒ′(x) be its 
derivative. 
 
The derivative of ƒ′(x) (if it has one) is written ƒ′′(x) and 
is called the second derivative of ƒ. Similarly, the 
derivative of a second derivative, if it exists, is written 
ƒ′′′(x) and is called the third derivative of ƒ. 
 
These repeated derivatives are called higher-order 
derivatives. 
 

 

Figure E-31: An example of a continuous curve, non-
differentiable at x=0. 

 

E.6.2 General Rules of Differentiation 

Linearity: 
 

 
dx

dg

dx

df
gf

dx

d

dx

df
ccf

dx

d





 

 

Product Rule:  
dx

dg
fg

dx

df
fg

dx

d
  

Reciprocal Rule: 0
11

2









f

dx

df

ffdx

d
 

Quotient Rule:  0
2













g

g

dx

dg
fg

dx

df

g

f

dx

d
 

Chain Rule:    









dx

dg

dg

df
xgf

dx

d
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Derivative of an Inverse Function:   dxfdf
f

dx

d
1

1 1


   

Generalize Power Rule: 









dx

df

f

g
f

dx

dg
ff

dx

d gg ln  

Derivative of an Implicit
2
 Function: 

y

F
x

F

F

F
y

y

x
x









'

'
'  

Derivative of a Parametric Function
3
: 

  
  xff

xfg
y x 1

1

'

'
'







  

E.6.3 Derivatives of Simple Functions 

constant a is 0 c
dx

dc
  1

dx

dx
 

 
constant a is cc

dx

cxd
  

0sgn  xx
x

x

dx

xd

 
 

 
defined are  and both  where 11 n-nn

n

nxxnx
dx

xd   

 
2

21 11

x
xx

dx

d

xdx

d








   

   
1

11


 







n

nn

n x

n
nxx

dx

d

xdx

d
 

  0
2

1
2
1

2
12

1













x
x

xx
dx

d
x

dx

d

 

  xx ee
dx

d


 

  aaa
dx

d xx ln

 

 
x

x
dx

d 1
ln 

 

 
ax

x
dx

d
a

ln

1
log 

 
 

                                                                 
 
 
2
 Here the implicit function y(x) is defined as F(x,y(x))=0. 

3
 Here the function y(x) is defined parametrically as x = f(t) and y = g(t), where t is some parameter. 
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E.6.4 Derivatives of Trigonometric Functions 

 

xx
dx

d
cossin   xx

dx

d
sincos   

xx
dx

d 2sectan   xxx
dx

d
tansecsec   

xx
dx

d 2csccot   xxx
dx

d
cotcsccsc   

 

E.6.5 Derivatives of Inverse Trigonometric Functions 

 

2

1

1

1
sin

x
x

dx

d




 
2

1

1

1
cos

x
x

dx

d




 

2

1

1

1
tan

x
x

dx

d




 
1

1
sec

2

1




xx
x

dx

d
 

2

1

1

1
cot

x
x

dx

d




 
1

1
csc

2

1




xx
x

dx

d
 

 

E.6.6 Derivatives of Hyperbolic Functions 

 

xx
dx

d
coshsinh   xx

dx

d
sinhcosh   

xhx
dx

d 2sectanh   xhxhx
dx

d
tanhsecsec   

xhx
dx

d 2csccoth   xhxhx
dx

d
cothcsccsc   

 

E.6.7 Derivatives of Inverse Hyperbolic Functions 

 

2

1

1

1
sinh

x
x

dx

d




 
1

1
cosh

2

1




x
x

dx

d
 

2

1

1

1
tanh

x
x

dx

d




 
2

1

1

1
sec

xx
xh

dx

d




 

21

1
coth

x
x

dx

d


  2

1

1

1
csc

xx
xh

dx

d



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E.6.8 Numerical Derivatives of Functions of the Form f(x) 

Assume f(x) to be a continuous and differentiable on an interval [a, b]. Let h be a small change in x. Then, the 
derivatives of this function can be calculated using the following expressions: 
 
First Order Derivatives 

Newton’s difference quotient: 
   

h

xfhxf
f

dx

df 
 '  

 

Three point method:  
   

h

hxfhxf
f

dx

df

2
'




 
 
Second Order Derivatives 

Three point method:  
     

22

2 2
''

h

hxfxfhxf
f

dx

fd 


 
 
Third Order Derivatives 

Five point method:  
       
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Fourth Order Derivatives 
 

Five point method: 
           

4

4

4

4 24642
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EXAMPLE E-11: 
Compare the numerical and exact value for the first four derivatives of f(x) = x

4 
- 2x² at x = 1. 

 
SOLUTION: 
Let h = 0.01. This way we begin by computing the following values: 
 
 f(x-2h) = f(0.98) = (0.98)

4 
– 2(0.98)² = -0.99843184 

 f(x-h) = f(0.99) = (0.99)
4 

– 2(0.99)² = -0.99960399 
 f(x) = f(1) = (1)

4 
– 2(1)² = -1 

 f(x+h) = f(1.01) = (1.01)
4 

– 2(1.01)² = -0.99959599 
 f(x+2h) = f(1.02) = (1.02)

4 
– 2(1.02)² = -0.99836784 

 
Inserting these into the appropriate formulas leads to: 
 

Exact Numerical 
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E.6.9 Numerical Derivatives of a Point Set of the Form (xi, yi) 

Often the engineer has to determine the derivative of a set of discrete points rather than a continuous 
differentiable function. An example of such a differentiation is the analysis of the quality of geometry representing 
an airfoil. Taylor series expansion can be used to evaluate such derivatives numerically. The Taylor series expansion 
of a function f(x) is given by: 
 

    
    0

1

0
0

!
xf

k

xx
xfxf k

k

k







  (E-23) 

 
Assume {xi, yi} to be a list of coordinates on an interval [a, b]. The above expression is used to derive the first 
derivative is given by: 
 

 
11

11'









ii

ii

xx

yy
y  (E-24) 

 
The second order derivative can be found from: 
 

 
 
 211

11 24
''










ii

iii

xx

yyy
y  (E-25) 

 
This scheme is called a finite difference scheme. 

 

E.6.10 Curvature for a Parametric Formulation  

For a plane parametric curve c(t) = (x(t), y(t)) the curvature is given by: 
 

 
  2/322 ''

"'"'

yx

xyyx




  (E-26) 

 
EXAMPLE E-12: 
Determine the curvature for the function c(t) = (t, t

3
). 

 
SOLUTION: 
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Figure E-32: A parametric representation of the function y = x
3
. 

 
 

E.6.11 Curvature for an Explicit Formulation  

For a plane explicit curve y = y(x) the curvature is given by: 
 

 
  2/32'1

"

y

y


  (E-27) 

 
EXAMPLE E-13: 
Determine the curvature for the function y(x) = x

3
. 

 
SOLUTION: 

    2/342/32
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E.6.12 Radius of Curvature  

Once curvature has been determined, the radius of curvature can be determined from: 
 

 
R

1
  (E-28) 
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Figure E-33: A graphic representation of radius of curvature of a function. 

 

E.6.13 Numerical Estimation of Derivatives 

Often data is not given as a smooth continuous function, but rather in a tabular format or by some other means, 
such as discrete sensory data. Then it is desirable to be able to determine derivatives using such format. This is 
accomplished by writing the derivatives using a discrete numerical format. The basics of the methodology to 
determine the value of a function using numerical derivatives is shown below. Assuming that a table of x values 
and derivatives are given, i.e. x1, y’1, x2, y’2, …, xn, y’n. Then the value of the function can be calculated from: 
 

      11 '   iiii xxyyy  

 
Such an expression might be utilized to convert speed into a distance (assuming x represents time). More 
sophisticates schemes to accomplish this exist, but ultimately, the accuracy of the estimation will depend on the 
quality of the derivative, y’. To show this 
 
Here, three different numerical schemes to evaluate the derivative of a function (and ultimately curvature) will be 
presented, using the function y = x

3
 evaluated on the interval [0, 3]. The schemes include a forward and backward 

stepping schemes and a Taylor series derivative. First, let’s evaluate the actual derivative at x=0.50. 

    75.05.035.0'
2
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CASE 1: Forward stepping finite difference scheme 
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CASE 2: Backward stepping finite difference scheme 
 

0.436
25.050.0

016.0125.0
'

1

1 














ii

ii
BWD

xx

yy
y

 



GUDMUNDSSON – GENERAL AVIATION AIRCRAFT DESIGN APPENDIX E – PRACTICAL MATH FOR THE AC DESIGNER 54 

©2013 Elsevier, Inc.  This material may not be copied or distributed without permission from the Publisher. 

 

Figure E-34: Graphical representation of forward and backward stepping finite difference schemes. 

CASE 3: Taylor Series Representation of Derivatives  
 
Let’s apply a Taylor series finite difference scheme using Equation (E-24) for the first derivative at x=0.50. 
 

0.813
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11
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Figure E-35: Graphical representation of Taylor series finite difference scheme. 

A table displaying the exact and approximated derivatives: 
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If the finite differences are very small, say x = 0.01, these schemes will result in the following accuracy: 
 

 
 
Conclusion: A Taylor series finite difference scheme is reasonably accurate and simple to implement. 
 

 

Figure E-36: Comparing the accuracy of the three finite difference schemes. The Taylor scheme is clearly the 
most accurate of the three. 
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E.6.14 Numerical Estimation of Curvature 

We can now compute the curvature in a spreadsheet as follows: 
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A comparison between the exact and numerical curvatures is plotted below. It reveals the Taylor scheme is indeed 
highly accurate, in spite of being applied here on a crude grid. 
 

 

Figure E-37: Comparing the accuracy of the Taylor series finite difference schemes. 
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E.6.15 Numerical Partial Derivatives 

Assume f(x,y) to be a continuous and differentiable on an interval [a, b] along x and [c,d] along y. Let h be a small 
change in x and k to be a small change in y. Then, the first order partial derivatives can be calculated as follows: 
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E.6.16 Common Integrals 
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EXAMPLE E-14: Integration by Parts: 

Integration by parts, given by the formula:   vduuvudv  is a powerful method to solve complicated 

integrals. Use this method to solve the integral 
 dtte iat

, where i is the imaginary operator 12 i . 

 
SOLUTION: 
Begin by selecting which part of the integral will represent u and dv. Here this is done by placing them in 
parentheses: 
 

  
 


dv

iat

u

iat dtetdtte  

 

Then solve for du and v:   
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Inserting this into the original integral leads to: 
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Simplify: 
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E.6.17 STEP-BY-STEP: Numerical Integration 

Following are two methods commonly used to evaluate integrals numerically; the Trapezoidal Rule and Simpson’s 
Rule. 
 
Trapezoidal Rule 
Consider the graph in Figure E-38, whose area between x = a and x = b we want to find. The trapezoidal rule allows 
the area to be determined by adding up the area of a number of trapezoids, whose shape is governed by the 
function. The following outlines a procedure to calculate the area.   
 

 

Figure E-38: The Trapezoidal Rule uses trapezoids to approximate the area. 

STEP 1: 
Decide the number of segments, n, to include in the approximation. The more segments the more accurate. 
 
STEP 2: 

Calculate the width of the trapezoids 
n

ab
x


  

STEP 3: 
Tabulate the value of f(x) as shown below. 
 

 
 
STEP 4: 
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Compute the area using the following expression: 
 
 

  







 2

...
2

21
0 n

b

a

y
yy

y
xdxxf  (E-29) 

 
Simpson’s Rule 
Consider the graph in Figure E-39. Simpson’s rule is an improvement over the trapezoidal rule as it uses segments 
of a parabola to simulate the area. These approach the true shape of the curve more accurately. The following 
outlines a procedure to calculate the area. A drawback of the method is that the number of segments, n, must be 
an even number.   
 

 

Figure E-39: Simpson’s Rule uses parabolas to approximate the area. 

STEP 1: 
Decide the number of segments, n, to include in the approximation. The value of n must be an even number. 
 
STEP 2: 

Calculate the width of the parabolic segments 
n

ab
x


  

STEP 3: 
Tabulate the value of f(x) as shown in STEP 3 for the Trapezoidal Rule. 
 
STEP 4: 
Compute the area using the following expression: 
 
 

   nn
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yyyyyyy
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 (E-30) 
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E.6.18 Length of a Curve 

Consider the continuous function y = f(x), defined on an interval [a,b]. The length of the curve on the interval can 
be calculated from: 
 

    
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b
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2

2
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Figure E-40: Determination of the length of a function on an interval. 

 

E.6.19 STEP-BY-STEP: Finding Roots Using the Newton-Raphson Method 

It is a common task for the engineer to determine the roots of a function numerically. There are a number of 
algorithms that can be resorted to for this purpose. The most elementary of those will now be detailed, but their 
derivation is omitted: For the below methods it is assumed a function y = f(x) has been defined in the interval [a, b] 
and is continuous and differentiable on the interval. The method is implemented as follows:  
 
STEP 1: 
Start with an initial guess which is reasonably close to the true root. Call this value x0. 
 
STEP 2: 
Calculate the next approximation to the root; call it x1, using the following expression: 
 

 
 0

0

01
' xf

xf
xx   

 
STEP 3: 
If f(x1) ≠ 0 then set x0 = x1 and go back to STEP 1. Repeat until desired accuracy is achieved. 
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EXAMPLE E-15: 
Determine where the function y = 2-x² becomes zero, such that x>0, using the Newton-Raphson scheme. Of course 

we can easily show that the exact answer is 2  1.41421356… . 
 
SOLUTION: 
The derivative for the function is given by y’ = -2x. 
 
STEP 1:   Let x0 = 1. 

STEP 2:   
 
 
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STEP 3:   Let x0 = 1.5. 

STEP 4:   
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STEP 5:   Let x0 = 1.4166667. 

STEP 6:   
 
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After only three iterations we have already achieved accuracy to the sixth significant digit. 
 
 

E.6.20 STEP-BY-STEP: Finding Roots Using the Bisection Method 

The Bisection Method is perhaps the simplest algorithm to determine the roots of a function. Its limitation is that it 
converges slowly, but its advantage is that it is inherently easy to understand. The method is implemented on an 
interval [a, c] as follows, assuming some continuous and smooth target function f(x) defined on the interval. It is 
required that the root exists on the interval. 
 
STEP 1: 
Start with an initial guess which brackets the true root. Call the left and right values of the interval a and c, 
respectively. 
 
STEP 2: 
Calculate the value of f at point a. Call it f(a). 
 
STEP 3: 

Calculate the midpoint on the interval:  
2

ca
b


  

 
STEP 4: 
Calculate the value of f at point b. Call it f(b). 
 
STEP 3: 
Check the signs of f(a) and f(b). Now, one of two things may happen: 
 

(1) If the signs are opposite, then the root is found on the interval [a,b]. 
(2) If the signs are equal, then the root is found on the interval [b, c]. 

 
Redefine the interval based on (1) or (2): 
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(1) If the signs are opposite, then let c = b. 
(2) If the signs are equal, then let a = b and f(a) = f(b). 

 
STEP 4: 
If |c-a|> tolerance go back to STEP 3. Repeat until desired accuracy is achieved. 
 

E.6.21 Vector Calculus 

Dot Products 
Let a = (a1,a2, …, an) and b = (b1,b2, …, bn) be two vectors. Then the dot product is defined as: 
 

 nn
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ii babababa  
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...2211

1

ba  (E-32) 

 
Del Operator 

In vector calculus, the symbol  is called the del operator (the symbol is called nabla) and it works as a vector 
operator by converting a scalar field into a vector. 
 

Cartesian coordinates: kji
zyx 












  (E-33) 

 

Spherical coordinates: 















 ˆ

sin

1ˆ1
ˆ

rr
r

r
 (E-34) 

 
Gradient 

Let f be a scalar field. In Cartesian coordinate system let f = f(x,y,z) and in a spherical coordinate system f = f(r,, ). 
Then the gradient of f is given by: 
 

Cartesian coordinates:   kji
z

f

y

f

x

f
zyxf














 ,,  (E-35) 

 

Spherical coordinates:   















 ˆ

sin

1ˆ1
ˆ,,

f

r

f

r
r

r

f
rf  (E-36) 

 
The gradient of a product of functions, f and g is given by: 
 

   fggffg   (E-37) 

 
The dot product of the vectors a and b is given by: 
 

          abbaabbaba   (E-38) 
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Divergence 
Divergence indicates whether a vector field converges toward or diverges from a point in space. Let 

kjiV zyx VVV   be a vector field in a Cartesian coordinate system or  ˆˆˆ
zyr VVrVV  in a spherical 

coordinate system. Then the divergence of the vector field V is given by: 
 

Cartesian coordinates: kjiVV
z

V

y

V

x

V zyx














 div  (E-39) 

 

Spherical coordinates: 

















 ˆ
sin

1ˆ1
ˆ div

V

r

V

r
r

r

VrV  (E-40) 

 
The divergence of a product of a function, f, and vector, a, is given by: 
 

   fff  aaa  (E-41) 

 
The vector product of the vectors a and b is given by: 
 

   baabba   (E-42) 

 
Curl 
The curl at a point describes the infinitesimal rotation of a 3D vector field at that point. Let 

  kjiV zyx VVVzyx ,,  be a vector field in a Cartesian coordinate system. The curl is defined as: 

 

Cartesian coordinates: 

zyx VVV

zyx
curl














kji

VV  (E-43) 

 

Spherical coordinates: 


















VVV
rrr

r

curl

r

sin

11

ˆˆˆ

VV  (E-44) 

 
The curl of a product of a function, f, and vector, a, is given by: 
 

     aaa  fff  (E-45) 

 
The curl of a vector product of the vectors a and b is given by: 
 

      baababbaba   (E-46) 
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EXAMPLE E-16: 
Determine the gradient of the function f(x,y,z) = 2xy-x²yz+5z

3
 and the divergence of the vector V(x,y,z) = 2xyi-

x²yzj+5z
3
k. 

 
SOLUTION: 
The gradient is determined from: 
 

       kjikji
222 15222,, zyxzxyxyzy

z

f

y

f

x

f
zyxf 














  

 
The divergence is determined from: 
 

     kjikjiV 222 15222 zyxzxyxyzy
z

V

y

V

x

V zyx 













  
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E.7 Linear Algebra 
 

E.7.1 Cramer’s Rule 

Cramer’s Rule is a theorem of linear algebra that allows a system of linear equations to be solved, provided a 
unique solution exists. It is named after the Swiss mathematician Gabriel Cramer (1704–1752). Consider the 
system of linear equations presented in a conventional form as follows: 
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b

b
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



2

1

2

1

21

22221

11211

 (E-47) 

 
The solution method involves the calculation of the determinants of the square matrix of coefficients [A] and that 
of the matrix formed using the members of the right matrix {b}. Cramer’s rule states that the unknown members of 
the {x} array can be determined using the expression: 
 

 
 
 

Nix i
i ,,2,1for 

det

det


A

A
 (E-48) 

 
This rule can be used for complex numbers as well as real ones, however, it is computationally slow for large 
matrices compared to other solution methods. In spite of that, the rule is practical for small matrices, as it allows 
the solution to be presented in explicit formulas that lend themselves well for use in computer codes. Here, only 
two such cases will be presented; when N = 2 and N  = 3. 
 

Consider the 2x2 system: 





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
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B
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x
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ByAxA
 (E-49) 

 
Then x and y can be found from: 
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  (E-50) 

 

Consider the 3x3 system: 
























































3

2

1

333231

232221

131211

3333231

2232221

1131211

or

B

B

B

z

y

x

AAA

AAA

AAA

BzAyAxA

BzAyAxA

BzAyAxA

 (E-51) 

 
Then x, y, and z can be found from: 
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333231
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y
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x   (E-52) 

 
This way the denominator would be calculated from: 
 

      312232211331233321123223332211

333231

232221

131211

AAAAAAAAAAAAAAA

AAA

AAA

AAA

  (E-53) 

 
The numerators are calculated in an identical fashion. 
 

E.7.2 COMPUTER CODE: Cramer’s Rule 

The following Visual Basic routine solves a 2x2 system of equations using Cramer’s rule: 
 
Function Cramer2x2(A11 As Single, A12 As Single, A21 As Single, A22 As Single, B1 As 

Single, B2 As Single, Mode As Byte) As Single 

'This routine calculates the x or y of the 2x2 matrix [A]{x}={B} using Cramer's Rule. 

'Note that if Mode = 1, then the x-value is returned. 

'Note that if Mode = 2, then the y-value is returned. 

' 

'Initialize 

    Dim Denominator As Single 

 

'Presets 

    Denominator = A11 * A22 - A12 * A21 

 

'Calculate 

    If Denominator <> 0 Then 

        If Mode = 1 Then        'Calculate the x 

            Cramer2x2 = (B1 * A22 - A12 * B2) / Denominator 

        ElseIf Mode = 2 Then    'Calculate the y 

            Cramer2x2 = (A11 * B2 - B1 * A21) / Denominator 

        End If 

    Else 

        Cramer2x2 = 0 

    End If 

End Function 

 
The following Visual Basic routine solves a 3x3 system of equations using Cramer’s rule: 
 
Function Cramer3x3(A11 As Single, A12 As Single, A13 As Single, A21 As Single, A22 As Single, A23 

As Single, A31 As Single, A32 As Single, A33 As Single, B1 As Single, B2 As Single, B3 As Single, 

Mode As Byte) As Single 

'This routine calculates the x or y of the 3x3 matrix [A]{x}={B} using Cramer's Rule. 

'Note that if Mode = 1, then the x-value is returned. 

'Note that if Mode = 2, then the y-value is returned. 

'Note that if Mode = 3, then the z-value is returned. 

' 
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'Initialize 

    Dim Denominator As Single, Numerator As Single 

 

'Presets 

    Denominator = A11 * (A22 * A33 - A23 * A32) - A12 * (A21 * A33 - A23 * A31) + A13 * (A21 * 

A32 - A22 * A31) 

 

'Calculate 

    If Denominator <> 0 Then 

        If Mode = 1 Then        'Calculate the x 

            Numerator = B1 * (A22 * A33 - A23 * A32) - A12 * (B2 * A33 - A23 * B3) + A13 * (B2 * 

A32 - A22 * B3) 

        ElseIf Mode = 2 Then    'Calculate the y 

            Numerator = A11 * (B2 * A33 - A23 * B3) - B1 * (A21 * A33 - A23 * A31) + A13 * (A21 * 

B3 - B2 * A31) 

        ElseIf Mode = 3 Then    'Calculate the z 

            Numerator = A11 * (A22 * B3 - B2 * A32) - A12 * (A21 * B3 - B2 * A31) + B1 * (A21 * 

A32 - A22 * A31) 

        End If 

        Cramer3x3 = Numerator / Denominator 

    Else 

        Cramer3x3 = 0 

    End If 

End Function 

 
 


