
Using ld
The GNU linker

ld version 2
Version 2.9-mipssde-030910

Steve Chamberlain
Ian Lance Taylor
Cygnus Solutions

Cygnus Solutions
ian@cygnus.com, doc@cygnus.com

Using LD, the GNU linker
Edited by Jeffrey Osier (jeffrey@cygnus.com)

Copyright c
�

1991, 92, 93, 94, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under
the above conditions for modified versions.

Chapter 1: Overview 1

1 Overview

ld combines a number of object and archive files, relocates their data and ties up symbol references.
Usually the last step in compiling a program is to run ld.

ld accepts Linker Command Language files written in a superset of AT&T’s Link Editor Command
Language syntax, to provide explicit and total control over the linking process.

This version of ld uses the general purpose BFD libraries to operate on object files. This allows ld
to read, combine, and write object files in many different formats—for example, COFF or a.out.
Different formats may be linked together to produce any available kind of object file. See Chapter 5
[BFD], page 53, for more information.

Aside from its flexibility, the GNU linker is more helpful than other linkers in providing diagnostic
information. Many linkers abandon execution immediately upon encountering an error; whenever
possible, ld continues executing, allowing you to identify other errors (or, in some cases, to get an
output file in spite of the error).

2 Using LD, the GNU linker

Chapter 2: Invocation 3

2 Invocation
The GNU linker ld is meant to cover a broad range of situations, and to be as compatible as possible
with other linkers. As a result, you have many choices to control its behavior.

2.1 Command Line Options

The linker supports a plethora of command-line options, but in actual practice few of them are used
in any particular context. For instance, a frequent use of ld is to link standard Unix object files on a
standard, supported Unix system. On such a system, to link a file hello.o:

ld -o output /lib/crt0.o hello.o -lc

This tells ld to produce a file called output as the result of linking the file /lib/crt0.owith hello.o

and the library libc.a, which will come from the standard search directories. (See the discussion
of the ‘-l’ option below.)

Some of the command-line options to ld may be specified at any point in the command line. How-
ever, options which refer to files, such as ‘-l’ or ‘-T’, cause the file to be read at the point at which
the option appears in the command line, relative to the object files and other file options. Repeat-
ing non-file options with a different argument will either have no further effect, or override prior
occurrences (those further to the left on the command line) of that option. Options which may be
meaningfully specified more than once are noted in the descriptions below.

Non-option arguments are object files or archives which are to be linked together. They may follow,
precede, or be mixed in with command-line options, except that an object file argument may not be
placed between an option and its argument.

Usually the linker is invoked with at least one object file, but you can specify other forms of binary
input files using ‘-l’, ‘-R’, and the script command language. If no binary input files at all are
specified, the linker does not produce any output, and issues the message ‘No input files’.

If the linker can not recognize the format of an object file, it will assume that it is a linker script.
A script specified in this way augments the main linker script used for the link (either the default
linker script or the one specified by using ‘-T’). This feature permits the linker to link against a file
which appears to be an object or an archive, but actually merely defines some symbol values, or
uses INPUT or GROUP to load other objects. Note that specifying a script in this way should only be
used to augment the main linker script; if you want to use some command that logically can only
appear once, such as the SECTIONS or MEMORY command, you must replace the default linker script
using the ‘-T’ option. See Chapter 3 [Scripts], page 21.

For options whose names are a single letter, option arguments must either follow the option letter
without intervening whitespace, or be given as separate arguments immediately following the option
that requires them.

For options whose names are multiple letters, either one dash or two can precede the option name;
for example, ‘--oformat’ and ‘--oformat’ are equivalent. Arguments to multiple-letter options
must either be separated from the option name by an equals sign, or be given as separate argu-
ments immediately following the option that requires them. For example, ‘--oformat srec’ and
‘--oformat=srec’ are equivalent. Unique abbreviations of the names of multiple-letter options are
accepted.

Note - if the linker is being invoked indirectly, via a compiler driver (eg ‘gcc’) then all the linker
command line options should be prefixed by ‘-Wl,’ (or whatever is appropriate for the particular
compiler driver) like this:

4 Using LD, the GNU linker

gcc -Wl,--startgroup foo.o bar.o -Wl,--endgroup

This is important, because otherwise the compiler driver program may silently drop the linker op-
tions, resulting in a bad link.

Here is a table of the generic command line switches accepted by the GNU linker:

-akeyword This option is supported for HP/UX compatibility. The keyword argument must be
one of the strings ‘archive’, ‘shared’, or ‘default’. ‘-aarchive’ is functionally
equivalent to ‘-Bstatic’, and the other two keywords are functionally equivalent to
‘-Bdynamic’. This option may be used any number of times.

-Aarchitecture
--architecture=architecture

In the current release of ld, this option is useful only for the Intel 960 family of ar-
chitectures. In that ld configuration, the architecture argument identifies the particular
architecture in the 960 family, enabling some safeguards and modifying the archive-
library search path. See Section 4.2 [ld and the Intel 960 family], page 51, for details.

Future releases of ld may support similar functionality for other architecture families.

-b input-format
--format=input-format

ld may be configured to support more than one kind of object file. If your ld is
configured this way, you can use the ‘-b’ option to specify the binary format for input
object files that follow this option on the command line. Even when ld is configured
to support alternative object formats, you don’t usually need to specify this, as ld

should be configured to expect as a default input format the most usual format on each
machine. input-format is a text string, the name of a particular format supported by
the BFD libraries. (You can list the available binary formats with ‘objdump -i’.) See
Chapter 5 [BFD], page 53.

You may want to use this option if you are linking files with an unusual binary for-
mat. You can also use ‘-b’ to switch formats explicitly (when linking object files of
different formats), by including ‘-b input-format’ before each group of object files in
a particular format.

The default format is taken from the environment variable GNUTARGET. See Section 2.2
[Environment], page 19. You can also define the input format from a script, using the
command TARGET; see Section 3.4.3 [Format Commands], page 24.

-c MRI-commandfile
--mri-script=MRI-commandfile

For compatibility with linkers produced by MRI, ld accepts script files written in an
alternate, restricted command language, described in Appendix A [MRI Compatible
Script Files], page 61. Introduce MRI script files with the option ‘-c’; use the ‘-T’
option to run linker scripts written in the general-purpose ld scripting language. If
MRI-cmdfile does not exist, ld looks for it in the directories specified by any ‘-L’
options.

-d

-dc

-dp These three options are equivalent; multiple forms are supported for compatibility with
other linkers. They assign space to common symbols even if a relocatable output file

Chapter 2: Invocation 5

is specified (with ‘-r’). The script command FORCE_COMMON_ALLOCATION has the same
effect. See Section 3.4.4 [Miscellaneous Commands], page 25.

-e entry
--entry=entry

Use entry as the explicit symbol for beginning execution of your program, rather than
the default entry point. If there is no symbol named entry, the linker will try to parse
entry as a number, and use that as the entry address (the number will be interpreted
in base 10; you may use a leading ‘0x’ for base 16, or a leading ‘0’ for base 8). See
Section 3.4.1 [Entry Point], page 23, for a discussion of defaults and other ways of
specifying the entry point.

-E

--export-dynamic

When creating a dynamically linked executable, add all symbols to the dynamic sym-
bol table. The dynamic symbol table is the set of symbols which are visible from
dynamic objects at run time.

If you do not use this option, the dynamic symbol table will normally contain only
those symbols which are referenced by some dynamic object mentioned in the link.

If you use dlopen to load a dynamic object which needs to refer back to the symbols
defined by the program, rather than some other dynamic object, then you will probably
need to use this option when linking the program itself.

-EB Link big-endian objects. This affects the default output format.

-EL Link little-endian objects. This affects the default output format.

-f

--auxiliary name
When creating an ELF shared object, set the internal DT AUXILIARY field to the
specified name. This tells the dynamic linker that the symbol table of the shared object
should be used as an auxiliary filter on the symbol table of the shared object name.

If you later link a program against this filter object, then, when you run the program,
the dynamic linker will see the DT AUXILIARY field. If the dynamic linker resolves
any symbols from the filter object, it will first check whether there is a definition in
the shared object name. If there is one, it will be used instead of the definition in the
filter object. The shared object name need not exist. Thus the shared object name
may be used to provide an alternative implementation of certain functions, perhaps for
debugging or for machine specific performance.

This option may be specified more than once. The DT AUXILIARY entries will be
created in the order in which they appear on the command line.

-F name
--filter name

When creating an ELF shared object, set the internal DT FILTER field to the specified
name. This tells the dynamic linker that the symbol table of the shared object which is
being created should be used as a filter on the symbol table of the shared object name.

If you later link a program against this filter object, then, when you run the program,
the dynamic linker will see the DT FILTER field. The dynamic linker will resolve

6 Using LD, the GNU linker

symbols according to the symbol table of the filter object as usual, but it will actually
link to the definitions found in the shared object name. Thus the filter object can be
used to select a subset of the symbols provided by the object name.

Some older linkers used the -F option throughout a compilation toolchain for speci-
fying object-file format for both input and output object files. The GNU linker uses
other mechanisms for this purpose: the -b, --format, --oformat options, the TARGET

command in linker scripts, and the GNUTARGET environment variable. The GNU linker
will ignore the -F option when not creating an ELF shared object.

-fini name
When creating an ELF executable or shared object, call NAME when the executable
or shared object is unloaded, by setting DT FINI to the address of the function. By
default, the linker uses _fini as the function to call.

-g Ignored. Provided for compatibility with other tools.

-Gvalue
--gpsize=value

Set the maximum size of objects to be optimized using the GP register to size. This is
only meaningful for object file formats such as MIPS ECOFF which supports putting
large and small objects into different sections. This is ignored for other object file
formats.

-hname
-soname=name

When creating an ELF shared object, set the internal DT SONAME field to the
specified name. When an executable is linked with a shared object which has a
DT SONAME field, then when the executable is run the dynamic linker will attempt
to load the shared object specified by the DT SONAME field rather than the using the
file name given to the linker.

-i Perform an incremental link (same as option ‘-r’).

-init name
When creating an ELF executable or shared object, call NAME when the executable or
shared object is loaded, by setting DT INIT to the address of the function. By default,
the linker uses _init as the function to call.

-larchive
--library=archive

Add archive file archive to the list of files to link. This option may be used any number
of times. ld will search its path-list for occurrences of libarchive.a for every archive
specified.

On systems which support shared libraries, ld may also search for libraries with ex-
tensions other than .a. Specifically, on ELF and SunOS systems, ld will search a
directory for a library with an extension of .so before searching for one with an exten-
sion of .a. By convention, a .so extension indicates a shared library.

The linker will search an archive only once, at the location where it is specified on
the command line. If the archive defines a symbol which was undefined in some ob-
ject which appeared before the archive on the command line, the linker will include

Chapter 2: Invocation 7

the appropriate file(s) from the archive. However, an undefined symbol in an object
appearing later on the command line will not cause the linker to search the archive
again.

See the -(option for a way to force the linker to search archives multiple times.

You may list the same archive multiple times on the command line.

This type of archive searching is standard for Unix linkers. However, if you are using
ld on AIX, note that it is different from the behaviour of the AIX linker.

-Lsearchdir
--library-path=searchdir

Add path searchdir to the list of paths that ld will search for archive libraries and ld

control scripts. You may use this option any number of times. The directories are
searched in the order in which they are specified on the command line. Directories
specified on the command line are searched before the default directories. All -L

options apply to all -l options, regardless of the order in which the options appear.

The default set of paths searched (without being specified with ‘-L’) depends on which
emulation mode ld is using, and in some cases also on how it was configured. See
Section 2.2 [Environment], page 19.

The paths can also be specified in a link script with the SEARCH_DIR command. Direc-
tories specified this way are searched at the point in which the linker script appears in
the command line.

-memulation
Emulate the emulation linker. You can list the available emulations with the ‘--verbose’
or ‘-V’ options.

If the ‘-m’ option is not used, the emulation is taken from the LDEMULATION environment
variable, if that is defined.

Otherwise, the default emulation depends upon how the linker was configured.

-M

--print-map

Print a link map to the standard output. A link map provides information about the
link, including the following:

� Where object files and symbols are mapped into memory.
� How common symbols are allocated.
� All archive members included in the link, with a mention of the symbol which

caused the archive member to be brought in.

-n

--nmagic Turn off page alignment of sections, and mark the output as NMAGIC if possible.

-N

--omagic Set the text and data sections to be readable and writable. Also, do not page-align
the data segment. If the output format supports Unix style magic numbers, mark the
output as OMAGIC.

8 Using LD, the GNU linker

-o output
--output=output

Use output as the name for the program produced by ld; if this option is not specified,
the name ‘a.out’ is used by default. The script command OUTPUT can also specify the
output file name.

-O level If level is a numeric values greater than zero ld optimizes the output. This might take
significantly longer and therefore probably should only be enabled for the final binary.

-q

--emit-relocs

Leave relocation sections and contents in fully linked exececutables. Post link analysis
and optimization tools may need this information in order to perform correct modifi-
cations of executables. This results in larger executables.

-r

--relocateable

Generate relocatable output—i.e., generate an output file that can in turn serve as input
to ld. This is often called partial linking. As a side effect, in environments that support
standard Unix magic numbers, this option also sets the output file’s magic number to
OMAGIC. If this option is not specified, an absolute file is produced. When linking C++

programs, this option will not resolve references to constructors; to do that, use ‘-Ur’.

This option does the same thing as ‘-i’.

-R filename
--just-symbols=filename

Read symbol names and their addresses from filename, but do not relocate it or include
it in the output. This allows your output file to refer symbolically to absolute locations
of memory defined in other programs. You may use this option more than once.

For compatibility with other ELF linkers, if the -R option is followed by a directory
name, rather than a file name, it is treated as the -rpath option.

-s

--strip-all

Omit all symbol information from the output file.

-S

--strip-debug

Omit debugger symbol information (but not all symbols) from the output file.

-t

--trace Print the names of the input files as ld processes them.

-T scriptfile
--script=scriptfile

Use scriptfile as the linker script. This script replaces ld’s default linker script (rather
than adding to it), so commandfile must specify everything necessary to describe the
output file. You must use this option if you want to use a command which can only
appear once in a linker script, such as the SECTIONS or MEMORY command. See Chapter 3
[Scripts], page 21. If scriptfile does not exist in the current directory, ld looks for
it in the directories specified by any preceding ‘-L’ options. Multiple ‘-T’ options
accumulate.

Chapter 2: Invocation 9

-u symbol
--undefined=symbol

Force symbol to be entered in the output file as an undefined symbol. Doing this may,
for example, trigger linking of additional modules from standard libraries. ‘-u’ may be
repeated with different option arguments to enter additional undefined symbols. This
option is equivalent to the EXTERN linker script command.

-Ur For anything other than C++ programs, this option is equivalent to ‘-r’: it generates
relocatable output—i.e., an output file that can in turn serve as input to ld. When
linking C++ programs, ‘-Ur’ does resolve references to constructors, unlike ‘-r’. It
does not work to use ‘-Ur’ on files that were themselves linked with ‘-Ur’; once the
constructor table has been built, it cannot be added to. Use ‘-Ur’ only for the last
partial link, and ‘-r’ for the others.

-v

--version

-V Display the version number for ld. The -V option also lists the supported emulations.

-x

--discard-all

Delete all local symbols.

-X

--discard-locals

Delete all temporary local symbols. For most targets, this is all local symbols whose
names begin with ‘L’.

-y symbol
--trace-symbol=symbol

Print the name of each linked file in which symbol appears. This option may be given
any number of times. On many systems it is necessary to prepend an underscore.

This option is useful when you have an undefined symbol in your link but don’t know
where the reference is coming from.

-Y path Add path to the default library search path. This option exists for Solaris compatibility.

-z keyword
This option is ignored for Solaris compatibility.

-(archives -)

--start-group archives --end-group

The archives should be a list of archive files. They may be either explicit file names,
or ‘-l’ options.

The specified archives are searched repeatedly until no new undefined references are
created. Normally, an archive is searched only once in the order that it is specified
on the command line. If a symbol in that archive is needed to resolve an undefined
symbol referred to by an object in an archive that appears later on the command line,
the linker would not be able to resolve that reference. By grouping the archives, they
all be searched repeatedly until all possible references are resolved.

Using this option has a significant performance cost. It is best to use it only when there
are unavoidable circular references between two or more archives.

10 Using LD, the GNU linker

-assert keyword
This option is ignored for SunOS compatibility.

-Bdynamic

-dy

-call_shared

Link against dynamic libraries. This is only meaningful on platforms for which shared
libraries are supported. This option is normally the default on such platforms. The
different variants of this option are for compatibility with various systems. You may
use this option multiple times on the command line: it affects library searching for -l
options which follow it.

-Bstatic

-dn

-non_shared

-static Do not link against shared libraries. This is only meaningful on platforms for which
shared libraries are supported. The different variants of this option are for compati-
bility with various systems. You may use this option multiple times on the command
line: it affects library searching for -l options which follow it.

-Bsymbolic

When creating a shared library, bind references to global symbols to the definition
within the shared library, if any. Normally, it is possible for a program linked against
a shared library to override the definition within the shared library. This option is only
meaningful on ELF platforms which support shared libraries.

--check-sections

--no-check-sections

Asks the linker not to check section addresses after they have been assigned to see if
there any overlaps. Normally the linker will perform this check, and if it finds any
overlaps it will produce suitable error messages. The linker does know about, and
does make allowances for sections in overlays. The default behaviour can be restored
by using the command line switch ‘--check-sections’.

--cref Output a cross reference table. If a linker map file is being generated, the cross refer-
ence table is printed to the map file. Otherwise, it is printed on the standard output.

The format of the table is intentionally simple, so that it may be easily processed by a
script if necessary. The symbols are printed out, sorted by name. For each symbol, a
list of file names is given. If the symbol is defined, the first file listed is the location of
the definition. The remaining files contain references to the symbol.

--defsym symbol=expression
Create a global symbol in the output file, containing the absolute address given by ex-
pression. You may use this option as many times as necessary to define multiple sym-
bols in the command line. A limited form of arithmetic is supported for the expression
in this context: you may give a hexadecimal constant or the name of an existing sym-
bol, or use + and - to add or subtract hexadecimal constants or symbols. If you need
more elaborate expressions, consider using the linker command language from a script
(see Section 3.5 [Assignment: Symbol Definitions], page 26). Note: there should be
no white space between symbol, the equals sign (“

�
= � ”), and expression.

Chapter 2: Invocation 11

--demangle

--no-demangle

These options control whether to demangle symbol names in error messages and other
output. When the linker is told to demangle, it tries to present symbol names in a
readable fashion: it strips leading underscores if they are used by the object file format,
and converts C++ mangled symbol names into user readable names. The linker will
demangle by default unless the environment variable ‘COLLECT_NO_DEMANGLE’ is set.
These options may be used to override the default.

--dynamic-linker file
Set the name of the dynamic linker. This is only meaningful when generating dynam-
ically linked ELF executables. The default dynamic linker is normally correct; don’t
use this unless you know what you are doing.

--embedded-relocs

This option is only meaningful when linking MIPS embedded PIC code, generated by
the -membedded-pic option to the GNU compiler and assembler. It causes the linker to
create a table which may be used at runtime to relocate any data which was statically
initialized to pointer values. See the code in testsuite/ld-empic for details.

--errors-to-file file
This option is useful on deficient systems that cannot otherwise redirect stderr to a file.

--force-exe-suffix

Make sure that an output file has a .exe suffix.

If a successfully built fully linked output file does not have a .exe or .dll suffix, this
option forces the linker to copy the output file to one of the same name with a .exe

suffix. This option is useful when using unmodified Unix makefiles on a Microsoft
Windows host, since some versions of Windows won’t run an image unless it ends in
a .exe suffix.

--no-gc-sections

--gc-sections

Enable garbage collection of unused input sections. It is ignored on targets that do not
support this option. This option is not compatible with ‘-r’, nor should it be used with
dynamic linking. The default behaviour (of not performing this garbage collection)
can be restored by specifying ‘--no-gc-sections’ on the command line.

--help Print a summary of the command-line options on the standard output and exit.

-Map mapfile
Print a link map to the file mapfile. See the description of the ‘-M’ option, above.

--no-keep-memory

ld normally optimizes for speed over memory usage by caching the symbol tables
of input files in memory. This option tells ld to instead optimize for memory usage,
by rereading the symbol tables as necessary. This may be required if ld runs out of
memory space while linking a large executable.

12 Using LD, the GNU linker

--no-undefined

Normally when creating a non-symbolic shared library, undefined symbols are allowed
and left to be resolved by the runtime loader. This option disallows such undefined
symbols.

--no-warn-mismatch

Normally ld will give an error if you try to link together input files that are mismatched
for some reason, perhaps because they have been compiled for different processors
or for different endiannesses. This option tells ld that it should silently permit such
possible errors. This option should only be used with care, in cases when you have
taken some special action that ensures that the linker errors are inappropriate.

--no-whole-archive

Turn off the effect of the --whole-archive option for subsequent archive files.

--noinhibit-exec

Retain the executable output file whenever it is still usable. Normally, the linker will
not produce an output file if it encounters errors during the link process; it exits without
writing an output file when it issues any error whatsoever.

--oformat output-format
ld may be configured to support more than one kind of object file. If your ld is
configured this way, you can use the ‘--oformat’ option to specify the binary format
for the output object file. Even when ld is configured to support alternative object
formats, you don’t usually need to specify this, as ld should be configured to produce
as a default output format the most usual format on each machine. output-format is
a text string, the name of a particular format supported by the BFD libraries. (You
can list the available binary formats with ‘objdump -i’.) The script command OUTPUT_

FORMAT can also specify the output format, but this option overrides it. See Chapter 5
[BFD], page 53.

-qmagic This option is ignored for Linux compatibility.

-Qy This option is ignored for SVR4 compatibility.

--relax An option with machine dependent effects. This option is only supported on a few
targets. See Section 4.1 [ld and the H8/300], page 51. See Section 4.2 [ld and the
Intel 960 family], page 51.

On some platforms, the ‘--relax’ option performs global optimizations that become
possible when the linker resolves addressing in the program, such as relaxing address
modes and synthesizing new instructions in the output object file.

On some platforms these link time global optimizations may make symbolic debugging
of the resulting executable impossible. This is known to be the case for the Matsushita
MN10200 and MN10300 family of processors.

On platforms where this is not supported, ‘--relax’ is accepted, but ignored.

--retain-symbols-file filename
Retain only the symbols listed in the file filename, discarding all others. filename is
simply a flat file, with one symbol name per line. This option is especially useful in
environments (such as VxWorks) where a large global symbol table is accumulated
gradually, to conserve run-time memory.

Chapter 2: Invocation 13

‘--retain-symbols-file’ does not discard undefined symbols, or symbols needed for
relocations.

You may only specify ‘--retain-symbols-file’ once in the command line. It over-
rides ‘-s’ and ‘-S’.

-rpath dir Add a directory to the runtime library search path. This is used when linking an ELF
executable with shared objects. All -rpath arguments are concatenated and passed to
the runtime linker, which uses them to locate shared objects at runtime. The -rpath

option is also used when locating shared objects which are needed by shared objects
explicitly included in the link; see the description of the -rpath-link option. If -

rpath is not used when linking an ELF executable, the contents of the environment
variable LD_RUN_PATH will be used if it is defined.

The -rpath option may also be used on SunOS. By default, on SunOS, the linker will
form a runtime search patch out of all the -L options it is given. If a -rpath option
is used, the runtime search path will be formed exclusively using the -rpath options,
ignoring the -L options. This can be useful when using gcc, which adds many -L

options which may be on NFS mounted filesystems.

For compatibility with other ELF linkers, if the -R option is followed by a directory
name, rather than a file name, it is treated as the -rpath option.

-rpath-link DIR
When using ELF or SunOS, one shared library may require another. This happens
when an ld -shared link includes a shared library as one of the input files.

When the linker encounters such a dependency when doing a non-shared, non-
relocatable link, it will automatically try to locate the required shared library and
include it in the link, if it is not included explicitly. In such a case, the -rpath-link

option specifies the first set of directories to search. The -rpath-link option may
specify a sequence of directory names either by specifying a list of names separated
by colons, or by appearing multiple times.

The linker uses the following search paths to locate required shared libraries.

1. Any directories specified by -rpath-link options.

2. Any directories specified by -rpath options. The difference between -rpath and
-rpath-link is that directories specified by -rpath options are included in the
executable and used at runtime, whereas the -rpath-link option is only effective
at link time.

3. On an ELF system, if the -rpath and rpath-link options were not used, search
the contents of the environment variable LD_RUN_PATH.

4. On SunOS, if the -rpath option was not used, search any directories specified
using -L options.

5. For a native linker, the contents of the environment variable LD_LIBRARY_PATH.

6. The default directories, normally ‘/lib’ and ‘/usr/lib’.

7. For a native linker on an ELF system, if the file ‘/etc/ld.so.conf’ exists, the list
of directories found in that file.

If the required shared library is not found, the linker will issue a warning and continue
with the link.

14 Using LD, the GNU linker

-shared

-Bshareable

Create a shared library. This is currently only supported on ELF, XCOFF and SunOS
platforms. On SunOS, the linker will automatically create a shared library if the -e

option is not used and there are undefined symbols in the link.

--sort-common

This option tells ld to sort the common symbols by size when it places them in the
appropriate output sections. First come all the one byte symbols, then all the two
bytes, then all the four bytes, and then everything else. This is to prevent gaps between
symbols due to alignment constraints.

--split-by-file

Similar to --split-by-reloc but creates a new output section for each input file.

--split-by-reloc count
Trys to creates extra sections in the output file so that no single output section in the file
contains more than count relocations. This is useful when generating huge relocatable
for downloading into certain real time kernels with the COFF object file format; since
COFF cannot represent more than 65535 relocations in a single section. Note that this
will fail to work with object file formats which do not support arbitrary sections. The
linker will not split up individual input sections for redistribution, so if a single input
section contains more than count relocations one output section will contain that many
relocations.

--stats Compute and display statistics about the operation of the linker, such as execution time
and memory usage.

--traditional-format

For some targets, the output of ld is different in some ways from the output of some
existing linker. This switch requests ld to use the traditional format instead.

For example, on SunOS, ld combines duplicate entries in the symbol string table.
This can reduce the size of an output file with full debugging information by over 30
percent. Unfortunately, the SunOS dbx program can not read the resulting program
(gdb has no trouble). The ‘--traditional-format’ switch tells ld to not combine
duplicate entries.

--section-start sectionname=org
Locate a section in the output file at the absolute address given by org. You may use
this option as many times as necessary to locate multiple sections in the command
line. org must be a single hexadecimal integer; for compatibility with other linkers,
you may omit the leading ‘0x’ usually associated with hexadecimal values. Note: there
should be no white space between sectionname, the equals sign (“

�
= � ”), and org.

-Tbss org
-Tdata org
-Ttext org Use org as the starting address for—respectively—the bss, data, or the text segment

of the output file. org must be a single hexadecimal integer; for compatibility with
other linkers, you may omit the leading ‘0x’ usually associated with hexadecimal val-
ues.

Chapter 2: Invocation 15

--dll-verbose

--verbose Display the version number for ld and list the linker emulations supported. Display
which input files can and cannot be opened. Display the linker script if using a default
builtin script.

--version-script=version-scriptfile
Specify the name of a version script to the linker. This is typically used when creating
shared libraries to specify additional information about the version heirarchy for the
library being created. This option is only meaningful on ELF platforms which support
shared libraries. See Section 3.9 [VERSION], page 41.

--warn-common

Warn when a common symbol is combined with another common symbol or with
a symbol definition. Unix linkers allow this somewhat sloppy practice, but linkers on
some other operating systems do not. This option allows you to find potential problems
from combining global symbols. Unfortunately, some C libraries use this practice, so
you may get some warnings about symbols in the libraries as well as in your programs.

There are three kinds of global symbols, illustrated here by C examples:

‘int i = 1;’
A definition, which goes in the initialized data section of the output file.

‘extern int i;’
An undefined reference, which does not allocate space. There must be
either a definition or a common symbol for the variable somewhere.

‘int i;’ A common symbol. If there are only (one or more) common symbols
for a variable, it goes in the uninitialized data area of the output file.
The linker merges multiple common symbols for the same variable into a
single symbol. If they are of different sizes, it picks the largest size. The
linker turns a common symbol into a declaration, if there is a definition
of the same variable.

The ‘--warn-common’ option can produce five kinds of warnings. Each warning con-
sists of a pair of lines: the first describes the symbol just encountered, and the second
describes the previous symbol encountered with the same name. One or both of the
two symbols will be a common symbol.

1. Turning a common symbol into a reference, because there is already a definition
for the symbol.

file(section): warning: common of ‘symbol’
overridden by definition

file(section): warning: defined here

2. Turning a common symbol into a reference, because a later definition for the
symbol is encountered. This is the same as the previous case, except that the
symbols are encountered in a different order.

file(section): warning: definition of ‘symbol’
overriding common

file(section): warning: common is here

3. Merging a common symbol with a previous same-sized common symbol.

16 Using LD, the GNU linker

file(section): warning: multiple common

of ‘symbol’
file(section): warning: previous common is here

4. Merging a common symbol with a previous larger common symbol.

file(section): warning: common of ‘symbol’
overridden by larger common

file(section): warning: larger common is here

5. Merging a common symbol with a previous smaller common symbol. This is the
same as the previous case, except that the symbols are encountered in a different
order.

file(section): warning: common of ‘symbol’
overriding smaller common

file(section): warning: smaller common is here

--warn-constructors

Warn if any global constructors are used. This is only useful for a few object file
formats. For formats like COFF or ELF, the linker can not detect the use of global
constructors.

--warn-multiple-gp

Warn if multiple global pointer values are required in the output file. This is only
meaningful for certain processors, such as the Alpha. Specifically, some processors
put large-valued constants in a special section. A special register (the global pointer)
points into the middle of this section, so that constants can be loaded efficiently via a
base-register relative addressing mode. Since the offset in base-register relative mode
is fixed and relatively small (e.g., 16 bits), this limits the maximum size of the constant
pool. Thus, in large programs, it is often necessary to use multiple global pointer values
in order to be able to address all possible constants. This option causes a warning to
be issued whenever this case occurs.

--warn-once

Only warn once for each undefined symbol, rather than once per module which refers
to it.

--warn-section-align

Warn if the address of an output section is changed because of alignment. Typically,
the alignment will be set by an input section. The address will only be changed if it not
explicitly specified; that is, if the SECTIONS command does not specify a start address
for the section (see Section 3.6 [SECTIONS], page 27).

--whole-archive

For each archive mentioned on the command line after the --whole-archive option,
include every object file in the archive in the link, rather than searching the archive
for the required object files. This is normally used to turn an archive file into a shared
library, forcing every object to be included in the resulting shared library. This option
may be used more than once.

Chapter 2: Invocation 17

--wrap symbol
Use a wrapper function for symbol. Any undefined reference to symbol will be re-
solved to __wrap_symbol . Any undefined reference to __real_symbol will be re-
solved to symbol.

This can be used to provide a wrapper for a system function. The wrapper function
should be called __wrap_symbol . If it wishes to call the system function, it should call
__real_symbol .

Here is a trivial example:

void *

__wrap_malloc (int c)

{

printf ("malloc called with %ld\n", c);

return __real_malloc (c);

}

If you link other code with this file using --wrap malloc, then all calls to malloc

will call the function __wrap_malloc instead. The call to __real_malloc in __wrap_

malloc will call the real malloc function.

You may wish to provide a __real_malloc function as well, so that links without the
--wrap option will succeed. If you do this, you should not put the definition of __

real_malloc in the same file as __wrap_malloc; if you do, the assembler may resolve
the call before the linker has a chance to wrap it to malloc.

2.1.1 Options specific to i386 PE targets

The i386 PE linker supports the -shared option, which causes the output to be a dynamically linked
library (DLL) instead of a normal executable. You should name the output *.dll when you use this
option. In addition, the linker fully supports the standard *.def files, which may be specified on the
linker command line like an object file (in fact, it should precede archives it exports symbols from,
to ensure that they get linked in, just like a normal object file).

In addition to the options common to all targets, the i386 PE linker support additional command
line options that are specific to the i386 PE target. Options that take values may be separated from
their values by either a space or an equals sign.

--add-stdcall-alias

If given, symbols with a stdcall suffix (@nn) will be exported as-is and also with the
suffix stripped.

--base-file file
Use file as the name of a file in which to save the base addresses of all the relocations
needed for generating DLLs with ‘dlltool’.

--dll Create a DLL instead of a regular executable. You may also use -shared or specify a
LIBRARY in a given .def file.

--enable-stdcall-fixup

--disable-stdcall-fixup

If the link finds a symbol that it cannot resolve, it will attempt to do "fuzzy linking" by
looking for another defined symbol that differs only in the format of the symbol name

18 Using LD, the GNU linker

(cdecl vs stdcall) and will resolve that symbol by linking to the match. For example,
the undefined symbol _foo might be linked to the function _foo@12, or the undefined
symbol _bar@16 might be linked to the function _bar. When the linker does this, it
prints a warning, since it normally should have failed to link, but sometimes import
libraries generated from third-party dlls may need this feature to be usable. If you
specify --enable-stdcall-fixup, this feature is fully enabled and warnings are not
printed. If you specify --disable-stdcall-fixup, this feature is disabled and such
mismatches are considered to be errors.

--export-all-symbols

If given, all global symbols in the objects used to build a DLL will be exported by
the DLL. Note that this is the default if there otherwise wouldn’t be any exported
symbols. When symbols are explicitly exported via DEF files or implicitly exported
via function attributes, the default is to not export anything else unless this option is
given. Note that the symbols DllMain@12, DllEntryPoint@0, and impure_ptrwill not
be automatically exported.

--exclude-symbols symbol,symbol,...
Specifies a list of symbols which should not be automatically exported. The symbol
names may be delimited by commas or colons.

--file-alignment

Specify the file alignment. Sections in the file will always begin at file offsets which
are multiples of this number. This defaults to 512.

--heap reserve
--heap reserve,commit

Specify the amount of memory to reserve (and optionally commit) to be used as heap
for this program. The default is 1Mb reserved, 4K committed.

--image-base value
Use value as the base address of your program or dll. This is the lowest memory
location that will be used when your program or dll is loaded. To reduce the need
to relocate and improve performance of your dlls, each should have a unique base
address and not overlap any other dlls. The default is 0x400000 for executables, and
0x10000000 for dlls.

--kill-at If given, the stdcall suffixes (@nn) will be stripped from symbols before they are ex-
ported.

--major-image-version value
Sets the major number of the "image version". Defaults to 1.

--major-os-version value
Sets the major number of the "os version". Defaults to 4.

--major-subsystem-version value
Sets the major number of the "subsystem version". Defaults to 4.

--minor-image-version value
Sets the minor number of the "image version". Defaults to 0.

--minor-os-version value
Sets the minor number of the "os version". Defaults to 0.

Chapter 2: Invocation 19

--minor-subsystem-version value
Sets the minor number of the "subsystem version". Defaults to 0.

--output-def file
The linker will create the file file which will contain a DEF file corresponding to the
DLL the linker is generating. This DEF file (which should be called *.def) may
be used to create an import library with dlltool or may be used as a reference to
automatically or implicitly exported symbols.

--section-alignment

Sets the section alignment. Sections in memory will always begin at addresses which
are a multiple of this number. Defaults to 0x1000.

--stack reserve
--stack reserve,commit

Specify the amount of memory to reserve (and optionally commit) to be used as stack
for this program. The default is 32Mb reserved, 4K committed.

--subsystem which
--subsystem which:major
--subsystem which:major.minor

Specifies the subsystem under which your program will execute. The legal values
for which are native, windows, console, and posix. You may optionally set the
subsystem version also.

2.2 Environment Variables

You can change the behavior of ld with the environment variables GNUTARGET, LDEMULATION, and
COLLECT_NO_DEMANGLE.

GNUTARGET determines the input-file object format if you don’t use ‘-b’ (or its synonym ‘--format’).
Its value should be one of the BFD names for an input format (see Chapter 5 [BFD], page 53). If
there is no GNUTARGET in the environment, ld uses the natural format of the target. If GNUTARGET
is set to default then BFD attempts to discover the input format by examining binary input files;
this method often succeeds, but there are potential ambiguities, since there is no method of ensuring
that the magic number used to specify object-file formats is unique. However, the configuration
procedure for BFD on each system places the conventional format for that system first in the search-
list, so ambiguities are resolved in favor of convention.

LDEMULATION determines the default emulation if you don’t use the ‘-m’ option. The emulation
can affect various aspects of linker behaviour, particularly the default linker script. You can list
the available emulations with the ‘--verbose’ or ‘-V’ options. If the ‘-m’ option is not used, and
the LDEMULATION environment variable is not defined, the default emulation depends upon how the
linker was configured.

Normally, the linker will default to demangling symbols. However, if COLLECT_NO_DEMANGLE is set
in the environment, then it will default to not demangling symbols. This environment variable is
used in a similar fashion by the gcc linker wrapper program. The default may be overridden by the
‘--demangle’ and ‘--no-demangle’ options.

20 Using LD, the GNU linker

Chapter 3: Linker Scripts 21

3 Linker Scripts

Every link is controlled by a linker script. This script is written in the linker command language.

The main purpose of the linker script is to describe how the sections in the input files should be
mapped into the output file, and to control the memory layout of the output file. Most linker scripts
do nothing more than this. However, when necessary, the linker script can also direct the linker to
perform many other operations, using the commands described below.

The linker always uses a linker script. If you do not supply one yourself, the linker will use a default
script that is compiled into the linker executable. You can use the ‘--verbose’ command line option
to display the default linker script. Certain command line options, such as ‘-r’ or ‘-N’, will affect
the default linker script.

You may supply your own linker script by using the ‘-T’ command line option. When you do this,
your linker script will replace the default linker script.

You may also use linker scripts implicitly by naming them as input files to the linker, as though they
were files to be linked. See Section 3.11 [Implicit Linker Scripts], page 49.

3.1 Basic Linker Script Concepts

We need to define some basic concepts and vocabulary in order to describe the linker script language.

The linker combines input files into a single output file. The output file and each input file are in
a special data format known as an object file format. Each file is called an object file. The output
file is often called an executable, but for our purposes we will also call it an object file. Each object
file has, among other things, a list of sections. We sometimes refer to a section in an input file as an
input section; similarly, a section in the output file is an output section.

Each section in an object file has a name and a size. Most sections also have an associated block
of data, known as the section contents. A section may be marked as loadable, which mean that the
contents should be loaded into memory when the output file is run. A section with no contents may
be allocatable, which means that an area in memory should be set aside, but nothing in particular
should be loaded there (in some cases this memory must be zeroed out). A section which is neither
loadable nor allocatable typically contains some sort of debugging information.

Every loadable or allocatable output section has two addresses. The first is the VMA, or virtual
memory address. This is the address the section will have when the output file is run. The second
is the LMA, or load memory address. This is the address at which the section will be loaded. In
most cases the two addresses will be the same. An example of when they might be different is when
a data section is loaded into ROM, and then copied into RAM when the program starts up (this
technique is often used to initialize global variables in a ROM based system). In this case the ROM
address would be the LMA, and the RAM address would be the VMA.

You can see the sections in an object file by using the objdump program with the ‘-h’ option.

Every object file also has a list of symbols, known as the symbol table. A symbol may be defined
or undefined. Each symbol has a name, and each defined symbol has an address, among other
information. If you compile a C or C++ program into an object file, you will get a defined symbol
for every defined function and global or static variable. Every undefined function or global variable
which is referenced in the input file will become an undefined symbol.

You can see the symbols in an object file by using the nm program, or by using the objdump program
with the ‘-t’ option.

22 Using LD, the GNU linker

3.2 Linker Script Format

Linker scripts are text files.

You write a linker script as a series of commands. Each command is either a keyword, possibly fol-
lowed by arguments, or an assignment to a symbol. You may separate commands using semicolons.
Whitespace is generally ignored.

Strings such as file or format names can normally be entered directly. If the file name contains a
character such as a comma which would otherwise serve to separate file names, you may put the file
name in double quotes. There is no way to use a double quote character in a file name.

You may include comments in linker scripts just as in C, delimited by ‘/*’ and ‘*/’. As in C,
comments are syntactically equivalent to whitespace.

3.3 Simple Linker Script Example

Many linker scripts are fairly simple.

The simplest possible linker script has just one command: ‘SECTIONS’. You use the ‘SECTIONS’
command to describe the memory layout of the output file.

The ‘SECTIONS’ command is a powerful command. Here we will describe a simple use of it. Let’s
assume your program consists only of code, initialized data, and uninitialized data. These will be in
the ‘.text’, ‘.data’, and ‘.bss’ sections, respectively. Let’s assume further that these are the only
sections which appear in your input files.

For this example, let’s say that the code should be loaded at address 0x10000, and that the data
should start at address 0x8000000. Here is a linker script which will do that:

SECTIONS

{

. = 0x10000;

.text : { *(.text) }

. = 0x8000000;

.data : { *(.data) }

.bss : { *(.bss) }

}

You write the ‘SECTIONS’ command as the keyword ‘SECTIONS’, followed by a series of symbol
assignments and output section descriptions enclosed in curly braces.

The first line inside the ‘SECTIONS’ command of the above example sets the value of the special
symbol ‘.’, which is the location counter. If you do not specify the address of an output section
in some other way (other ways are described later), the address is set from the current value of the
location counter. The location counter is then incremented by the size of the output section. At the
start of the ‘SECTIONS’ command, the location counter has the value ‘0’.

The second line defines an output section, ‘.text’. The colon is required syntax which may be
ignored for now. Within the curly braces after the output section name, you list the names of the
input sections which should be placed into this output section. The ‘*’ is a wildcard which matches
any file name. The expression ‘*(.text)’ means all ‘.text’ input sections in all input files.

Since the location counter is ‘0x10000’ when the output section ‘.text’ is defined, the linker will
set the address of the ‘.text’ section in the output file to be ‘0x10000’.

Chapter 3: Linker Scripts 23

The remaining lines define the ‘.data’ and ‘.bss’ sections in the output file. The linker will place
the ‘.data’ output section at address ‘0x8000000’. After the linker places the ‘.data’ output section,
the value of the location counter will be ‘0x8000000’ plus the size of the ‘.data’ output section.
The effect is that the linker will place the ‘.bss’ output section immediately after the ‘.data’ output
section in memory

The linker will ensure that each output section has the required alignment, by increasing the lo-
cation counter if necessary. In this example, the specified addresses for the ‘.text’ and ‘.data’
sections will probably satisfy any alignment constraints, but the linker may have to create a small
gap between the ‘.data’ and ‘.bss’ sections.

That’s it! That’s a simple and complete linker script.

3.4 Simple Linker Script Commands

In this section we describe the simple linker script commands.

3.4.1 Setting the entry point

The first instruction to execute in a program is called the entry point. You can use the ENTRY linker
script command to set the entry point. The argument is a symbol name:

ENTRY(symbol)

There are several ways to set the entry point. The linker will set the entry point by trying each of
the following methods in order, and stopping when one of them succeeds:

� the ‘-e’ entry command-line option;
� the ENTRY(symbol) command in a linker script;
� the value of the symbol start, if defined;
� the address of the first byte of the ‘.text’ section, if present;
� The address 0.

3.4.2 Commands dealing with files

Several linker script commands deal with files.

INCLUDE filename
Include the linker script filename at this point. The file will be searched for in the
current directory, and in any directory specified with the -L option. You can nest calls
to INCLUDE up to 10 levels deep.

INPUT(file, file, ...)
INPUT(file file ...)

The INPUT command directs the linker to include the named files in the link, as though
they were named on the command line.

For example, if you always want to include ‘subr.o’ any time you do a link, but
you can’t be bothered to put it on every link command line, then you can put ‘INPUT
(subr.o)’ in your linker script.

In fact, if you like, you can list all of your input files in the linker script, and then
invoke the linker with nothing but a ‘-T’ option.

24 Using LD, the GNU linker

The linker will first try to open the file in the current directory. If it is not found, the
linker will search through the archive library search path. See the description of ‘-L’
in Section 2.1 [Command Line Options], page 3.

If you use ‘INPUT (-lfile)’, ld will transform the name to libfile.a, as with the com-
mand line argument ‘-l’.

When you use the INPUT command in an implicit linker script, the files will be included
in the link at the point at which the linker script file is included. This can affect archive
searching.

GROUP(file, file, ...)
GROUP(file file ...)

The GROUP command is like INPUT, except that the named files should all be archives,
and they are searched repeatedly until no new undefined references are created. See
the description of ‘-(’ in Section 2.1 [Command Line Options], page 3.

OUTPUT(filename)
The OUTPUT command names the output file. Using OUTPUT(filename) in the linker
script is exactly like using ‘-o filename’ on the command line (see Section 2.1 [Com-
mand Line Options], page 3). If both are used, the command line option takes prece-
dence.

You can use the OUTPUT command to define a default name for the output file other
than the usual default of ‘a.out’.

SEARCH_DIR(path)
The SEARCH_DIR command adds path to the list of paths where ld looks for archive
libraries. Using SEARCH_DIR(path) is exactly like using ‘-L path’ on the command line
(see Section 2.1 [Command Line Options], page 3). If both are used, then the linker
will search both paths. Paths specified using the command line option are searched
first.

STARTUP(filename)
The STARTUP command is just like the INPUT command, except that filename will be-
come the first input file to be linked, as though it were specified first on the command
line. This may be useful when using a system in which the entry point is always the
start of the first file.

3.4.3 Commands dealing with object file formats

A couple of linker script commands deal with object file formats.

OUTPUT_FORMAT(bfdname)
OUTPUT_FORMAT(default, big, little)

The OUTPUT_FORMAT command names the BFD format to use for the output file (see
Chapter 5 [BFD], page 53). Using OUTPUT_FORMAT(bfdname) is exactly like using
‘-oformat bfdname’ on the command line (see Section 2.1 [Command Line Options],
page 3). If both are used, the command line option takes precedence.

You can use OUTPUT_FORMATwith three arguments to use different formats based on the
‘-EB’ and ‘-EL’ command line options. This permits the linker script to set the output
format based on the desired endianness.

Chapter 3: Linker Scripts 25

If neither ‘-EB’ nor ‘-EL’ are used, then the output format will be the first argument,
default. If ‘-EB’ is used, the output format will be the second argument, big. If ‘-EL’
is used, the output format will be the third argument, little.

For example, the default linker script for the MIPS ELF target uses this command:
OUTPUT_FORMAT(elf32-bigmips, elf32-bigmips, elf32-littlemips)

This says that the default format for the output file is ‘elf32-bigmips’, but if the
user uses the ‘-EL’ command line option, the output file will be created in the
‘elf32-littlemips’ format.

TARGET(bfdname)
The TARGET command names the BFD format to use when reading input files. It affects
subsequent INPUT and GROUP commands. This command is like using ‘-b bfdname’ on
the command line (see Section 2.1 [Command Line Options], page 3). If the TARGET

command is used but OUTPUT_FORMAT is not, then the last TARGET command is also used
to set the format for the output file. See Chapter 5 [BFD], page 53.

3.4.4 Other linker script commands

There are a few other linker scripts commands.

ASSERT(exp, message)
Ensure that exp is non-zero. If it is zero, then exit the linker with an error code, and
print message.

EXTERN(symbol symbol ...)
Force symbol to be entered in the output file as an undefined symbol. Doing this may,
for example, trigger linking of additional modules from standard libraries. You may
list several symbols for each EXTERN, and you may use EXTERN multiple times. This
command has the same effect as the ‘-u’ command-line option.

FORCE_COMMON_ALLOCATION

This command has the same effect as the ‘-d’ command-line option: to make ld assign
space to common symbols even if a relocatable output file is specified (‘-r’).

NOCROSSREFS(section section ...)

This command may be used to tell ld to issue an error about any references among
certain output sections.

In certain types of programs, particularly on embedded systems when using overlays,
when one section is loaded into memory, another section will not be. Any direct refer-
ences between the two sections would be errors. For example, it would be an error if
code in one section called a function defined in the other section.

The NOCROSSREFS command takes a list of output section names. If ld detects any
cross references between the sections, it reports an error and returns a non-zero exit
status. Note that the NOCROSSREFS command uses output section names, not input
section names.

OUTPUT_ARCH(bfdarch)
Specify a particular output machine architecture. The argument is one of the names
used by the BFD library (see Chapter 5 [BFD], page 53). You can see the architecture
of an object file by using the objdump program with the ‘-f’ option.

26 Using LD, the GNU linker

3.5 Assigning Values to Symbols

You may assign a value to a symbol in a linker script. This will define the symbol as a global
symbol.

3.5.1 Simple Assignments

You may assign to a symbol using any of the C assignment operators:

symbol = expression ;

symbol += expression ;

symbol -= expression ;

symbol *= expression ;

symbol /= expression ;

symbol <<= expression ;

symbol >>= expression ;

symbol &= expression ;

symbol |= expression ;

The first case will define symbol to the value of expression. In the other cases, symbol must already
be defined, and the value will be adjusted accordingly.

The special symbol name ‘.’ indicates the location counter. You may only use this within a
SECTIONS command.

The semicolon after expression is required.

Expressions are defined below; see Section 3.10 [Expressions], page 43.

You may write symbol assignments as commands in their own right, or as statements within a
SECTIONS command, or as part of an output section description in a SECTIONS command.

The section of the symbol will be set from the section of the expression; for more information, see
Section 3.10.6 [Expression Section], page 46.

Here is an example showing the three different places that symbol assignments may be used:

floating_point = 0;

SECTIONS

{

.text :

{

*(.text)

_etext = .;

}

_bdata = (. + 3) & ˜ 4;

.data : { *(.data) }

}

In this example, the symbol ‘floating_point’ will be defined as zero. The symbol ‘_etext’ will be
defined as the address following the last ‘.text’ input section. The symbol ‘_bdata’ will be defined
as the address following the ‘.text’ output section aligned upward to a 4 byte boundary.

Chapter 3: Linker Scripts 27

3.5.2 PROVIDE

In some cases, it is desirable for a linker script to define a symbol only if it is referenced and is
not defined by any object included in the link. For example, traditional linkers defined the symbol
‘etext’. However, ANSI C requires that the user be able to use ‘etext’ as a function name without
encountering an error. The PROVIDE keyword may be used to define a symbol, such as ‘etext’, only
if it is referenced but not defined. The syntax is PROVIDE(symbol = expression).

Here is an example of using PROVIDE to define ‘etext’:

SECTIONS

{

.text :

{

*(.text)

_etext = .;

PROVIDE(etext = .);

}

}

In this example, if the program defines ‘_etext’ (with a leading underscore), the linker will give
a multiple definition error. If, on the other hand, the program defines ‘etext’ (with no leading
underscore), the linker will silently use the definition in the program. If the program references
‘etext’ but does not define it, the linker will use the definition in the linker script.

3.6 SECTIONS command

The SECTIONS command tells the linker how to map input sections into output sections, and how to
place the output sections in memory.

The format of the SECTIONS command is:

SECTIONS

{

sections-command
sections-command
...

}

Each sections-command may of be one of the following:
� an ENTRY command (see Section 3.4.1 [Entry command], page 23)
� a symbol assignment (see Section 3.5 [Assignments], page 26)
� an output section description
� an overlay description

The ENTRY command and symbol assignments are permitted inside the SECTIONS command for con-
venience in using the location counter in those commands. This can also make the linker script
easier to understand because you can use those commands at meaningful points in the layout of the
output file.

Output section descriptions and overlay descriptions are described below.

If you do not use a SECTIONS command in your linker script, the linker will place each input section
into an identically named output section in the order that the sections are first encountered in the

28 Using LD, the GNU linker

input files. If all input sections are present in the first file, for example, the order of sections in the
output file will match the order in the first input file. The first section will be at address zero.

3.6.1 Output section description

The full description of an output section looks like this:

section [address] [(type)] : [AT(lma)]
{

output-section-command
output-section-command
...

} [>region] [AT>lma region] [:phdr :phdr ...] [=fillexp]
Most output sections do not use most of the optional section attributes.

The whitespace around section is required, so that the section name is unambiguous. The colon and
the curly braces are also required. The line breaks and other white space are optional.

Each output-section-command may be one of the following:
� a symbol assignment (see Section 3.5 [Assignments], page 26)
� an input section description (see Section 3.6.4 [Input Section], page 29)
� data values to include directly (see Section 3.6.5 [Output Section Data], page 32)
� a special output section keyword (see Section 3.6.6 [Output Section Keywords], page 33)

3.6.2 Output section name

The name of the output section is section. section must meet the constraints of your output format.
In formats which only support a limited number of sections, such as a.out, the name must be one of
the names supported by the format (a.out, for example, allows only ‘.text’, ‘.data’ or ‘.bss’). If
the output format supports any number of sections, but with numbers and not names (as is the case
for Oasys), the name should be supplied as a quoted numeric string. A section name may consist
of any sequence of characters, but a name which contains any unusual characters such as commas
must be quoted.

The output section name ‘/DISCARD/’ is special; Section 3.6.7 [Output Section Discarding], page 34.

3.6.3 Output section address

The address is an expression for the VMA (the virtual memory address) of the output section. If
you do not provide address, the linker will set it based on region if present, or otherwise based on
the current value of the location counter.

If you provide address, the address of the output section will be set to precisely that. If you provide
neither address nor region, then the address of the output section will be set to the current value
of the location counter aligned to the alignment requirements of the output section. The alignment
requirement of the output section is the strictest alignment of any input section contained within the
output section.

For example,

.text . : { *(.text) }

and

Chapter 3: Linker Scripts 29

.text : { *(.text) }

are subtly different. The first will set the address of the ‘.text’ output section to the current value
of the location counter. The second will set it to the current value of the location counter aligned to
the strictest alignment of a ‘.text’ input section.

The address may be an arbitrary expression; Section 3.10 [Expressions], page 43. For example, if
you want to align the section on a 0x10 byte boundary, so that the lowest four bits of the section
address are zero, you could do something like this:

.text ALIGN(0x10) : { *(.text) }

This works because ALIGN returns the current location counter aligned upward to the specified value.

Specifying address for a section will change the value of the location counter.

3.6.4 Input section description

The most common output section command is an input section description.

The input section description is the most basic linker script operation. You use output sections to
tell the linker how to lay out your program in memory. You use input section descriptions to tell the
linker how to map the input files into your memory layout.

3.6.4.1 Input section basics

An input section description consists of a file name optionally followed by a list of section names in
parentheses.

The file name and the section name may be wildcard patterns, which we describe further below (see
Section 3.6.4.2 [Input Section Wildcards], page 30).

The most common input section description is to include all input sections with a particular name
in the output section. For example, to include all input ‘.text’ sections, you would write:

*(.text)

Here the ‘*’ is a wildcard which matches any file name. To exclude a list of files from matching the
file name wildcard, EXCLUDE FILE may be used to match all files except the ones specified in the
EXCLUDE FILE list. For example:

(*(EXCLUDE_FILE (*crtend.o *otherfile.o) .ctors))

will cause all .ctors sections from all files except ‘crtend.o’ and ‘otherfile.o’ to be included.

There are two ways to include more than one section:

*(.text .rdata)

*(.text) *(.rdata)

The difference between these is the order in which the ‘.text’ and ‘.rdata’ input sections will
appear in the output section. In the first example, they will be intermingled. In the second example,
all ‘.text’ input sections will appear first, followed by all ‘.rdata’ input sections.

You can specify a file name to include sections from a particular file. You would do this if one
or more of your files contain special data that needs to be at a particular location in memory. For
example:

data.o(.data)

If you use a file name without a list of sections, then all sections in the input file will be included in
the output section. This is not commonly done, but it may by useful on occasion. For example:

30 Using LD, the GNU linker

data.o

When you use a file name which does not contain any wild card characters, the linker will first see
if you also specified the file name on the linker command line or in an INPUT command. If you did
not, the linker will attempt to open the file as an input file, as though it appeared on the command
line. Note that this differs from an INPUT command, because the linker will not search for the file in
the archive search path.

3.6.4.2 Input section wildcard patterns

In an input section description, either the file name or the section name or both may be wildcard
patterns.

The file name of ‘*’ seen in many examples is a simple wildcard pattern for the file name.

The wildcard patterns are like those used by the Unix shell.

‘*’ matches any number of characters

‘?’ matches any single character

‘[chars]’ matches a single instance of any of the chars; the ‘-’ character may be used to specify
a range of characters, as in ‘[a-z]’ to match any lower case letter

‘\’ quotes the following character

When a file name is matched with a wildcard, the wildcard characters will not match a ‘/’ character
(used to separate directory names on Unix). A pattern consisting of a single ‘*’ character is an
exception; it will always match any file name, whether it contains a ‘/’ or not. In a section name,
the wildcard characters will match a ‘/’ character.

File name wildcard patterns only match files which are explicitly specified on the command line or
in an INPUT command. The linker does not search directories to expand wildcards.

If a file name matches more than one wildcard pattern, or if a file name appears explicitly and is also
matched by a wildcard pattern, the linker will use the first match in the linker script. For example,
this sequence of input section descriptions is probably in error, because the ‘data.o’ rule will not
be used:

.data : { *(.data) }

.data1 : { data.o(.data) }

Normally, the linker will place files and sections matched by wildcards in the order in which they
are seen during the link. You can change this by using the SORT keyword, which appears before a
wildcard pattern in parentheses (e.g., SORT(.text*)). When the SORT keyword is used, the linker
will sort the files or sections into ascending order by name before placing them in the output file.

If you ever get confused about where input sections are going, use the ‘-M’ linker option to generate
a map file. The map file shows precisely how input sections are mapped to output sections.

This example shows how wildcard patterns might be used to partition files. This linker script directs
the linker to place all ‘.text’ sections in ‘.text’ and all ‘.bss’ sections in ‘.bss’. The linker will
place the ‘.data’ section from all files beginning with an upper case character in ‘.DATA’; for all
other files, the linker will place the ‘.data’ section in ‘.data’.

Chapter 3: Linker Scripts 31

SECTIONS {

.text : { *(.text) }

.DATA : { [A-Z]*(.data) }

.data : { *(.data) }

.bss : { *(.bss) }

}

3.6.4.3 Input section for common symbols

A special notation is needed for common symbols, because in many object file formats common
symbols do not have a particular input section. The linker treats common symbols as though they
are in an input section named ‘COMMON’.

You may use file names with the ‘COMMON’ section just as with any other input sections. You can use
this to place common symbols from a particular input file in one section while common symbols
from other input files are placed in another section.

In most cases, common symbols in input files will be placed in the ‘.bss’ section in the output file.
For example:

.bss { *(.bss) *(COMMON) }

Some object file formats have more than one type of common symbol. For example, the MIPS
ELF object file format distinguishes standard common symbols and small common symbols. In this
case, the linker will use a different special section name for other types of common symbols. In the
case of MIPS ELF, the linker uses ‘COMMON’ for standard common symbols and ‘.scommon’ for small
common symbols. This permits you to map the different types of common symbols into memory at
different locations.

You will sometimes see ‘[COMMON]’ in old linker scripts. This notation is now considered obsolete.
It is equivalent to ‘*(COMMON)’.

3.6.4.4 Input section and garbage collection

When link-time garbage collection is in use (‘--gc-sections’), it is often useful to mark sections
that should not be eliminated. This is accomplished by surrounding an input section’s wildcard
entry with KEEP(), as in KEEP(*(.init)) or KEEP(SORT(*)(.ctors)).

3.6.4.5 Input section example

The following example is a complete linker script. It tells the linker to read all of the sections
from file ‘all.o’ and place them at the start of output section ‘outputa’ which starts at location
‘0x10000’. All of section ‘.input1’ from file ‘foo.o’ follows immediately, in the same output
section. All of section ‘.input2’ from ‘foo.o’ goes into output section ‘outputb’, followed by
section ‘.input1’ from ‘foo1.o’. All of the remaining ‘.input1’ and ‘.input2’ sections from any
files are written to output section ‘outputc’.

32 Using LD, the GNU linker

SECTIONS {

outputa 0x10000 :

{

all.o

foo.o (.input1)

}

outputb :

{

foo.o (.input2)

foo1.o (.input1)

}

outputc :

{

*(.input1)

*(.input2)

}

}

3.6.5 Output section data

You can include explicit bytes of data in an output section by using BYTE, SHORT, LONG, QUAD, or
SQUAD as an output section command. Each keyword is followed by an expression in parentheses
providing the value to store (see Section 3.10 [Expressions], page 43). The value of the expression
is stored at the current value of the location counter.

The BYTE, SHORT, LONG, and QUAD commands store one, two, four, and eight bytes (respectively).
After storing the bytes, the location counter is incremented by the number of bytes stored.

For example, this will store the byte 1 followed by the four byte value of the symbol ‘addr’:

BYTE(1)

LONG(addr)

When using a 64 bit host or target, QUAD and SQUAD are the same; they both store an 8 byte, or 64
bit, value. When both host and target are 32 bits, an expression is computed as 32 bits. In this case
QUAD stores a 32 bit value zero extended to 64 bits, and SQUAD stores a 32 bit value sign extended to
64 bits.

If the object file format of the output file has an explicit endianness, which is the normal case,
the value will be stored in that endianness. When the object file format does not have an explicit
endianness, as is true of, for example, S-records, the value will be stored in the endianness of the
first input object file.

Note - these commands only work inside a section description and not between them, so the follow-
ing will produce an error from the linker:

SECTIONS { .text : { *(.text) } LONG(1) .data : { *(.data) } }

whereas this will work:

SECTIONS { .text : { *(.text) ; LONG(1) } .data : { *(.data) } }

You may use the FILL command to set the fill pattern for the current section. It is followed by
an expression in parentheses. Any otherwise unspecified regions of memory within the section
(for example, gaps left due to the required alignment of input sections) are filled with the two
least significant bytes of the expression, repeated as necessary. A FILL statement covers memory

Chapter 3: Linker Scripts 33

locations after the point at which it occurs in the section definition; by including more than one FILL

statement, you can have different fill patterns in different parts of an output section.

This example shows how to fill unspecified regions of memory with the value ‘0x9090’:

FILL(0x9090)

The FILL command is similar to the ‘=fillexp’ output section attribute (see Section 3.6.8.5 [Output
Section Fill], page 36), but it only affects the part of the section following the FILL command, rather
than the entire section. If both are used, the FILL command takes precedence.

3.6.6 Output section keywords

There are a couple of keywords which can appear as output section commands.

CREATE_OBJECT_SYMBOLS

The command tells the linker to create a symbol for each input file. The name of each
symbol will be the name of the corresponding input file. The section of each symbol
will be the output section in which the CREATE_OBJECT_SYMBOLS command appears.

This is conventional for the a.out object file format. It is not normally used for any
other object file format.

CONSTRUCTORS

When linking using the a.out object file format, the linker uses an unusual set construct
to support C++ global constructors and destructors. When linking object file formats
which do not support arbitrary sections, such as ECOFF and XCOFF, the linker will
automatically recognize C++ global constructors and destructors by name. For these
object file formats, the CONSTRUCTORS command tells the linker to place constructor
information in the output section where the CONSTRUCTORS command appears. The
CONSTRUCTORS command is ignored for other object file formats.

The symbol __CTOR_LIST__ marks the start of the global constructors, and the symbol
__DTOR_LISTmarks the end. The first word in the list is the number of entries, followed
by the address of each constructor or destructor, followed by a zero word. The compiler
must arrange to actually run the code. For these object file formats GNU C++ normally
calls constructors from a subroutine __main; a call to __main is automatically inserted
into the startup code for main. GNU C++ normally runs destructors either by using
atexit, or directly from the function exit.

For object file formats such as COFF or ELF which support arbitrary section names, GNU

C++ will normally arrange to put the addresses of global constructors and destructors
into the .ctors and .dtors sections. Placing the following sequence into your linker
script will build the sort of table which the GNU C++ runtime code expects to see.

__CTOR_LIST__ = .;

LONG((__CTOR_END__ - __CTOR_LIST__) / 4 - 2)

*(.ctors)

LONG(0)

__CTOR_END__ = .;

__DTOR_LIST__ = .;

LONG((__DTOR_END__ - __DTOR_LIST__) / 4 - 2)

*(.dtors)

LONG(0)

34 Using LD, the GNU linker

__DTOR_END__ = .;

If you are using the GNU C++ support for initialization priority, which provides some
control over the order in which global constructors are run, you must sort the construc-
tors at link time to ensure that they are executed in the correct order. When using the
CONSTRUCTORS command, use ‘SORT(CONSTRUCTORS)’ instead. When using the .ctors

and .dtors sections, use ‘*(SORT(.ctors))’ and ‘*(SORT(.dtors))’ instead of just
‘*(.ctors)’ and ‘*(.dtors)’.

Normally the compiler and linker will handle these issues automatically, and you will
not need to concern yourself with them. However, you may need to consider this if
you are using C++ and writing your own linker scripts.

3.6.7 Output section discarding

The linker will not create output section which do not have any contents. This is for convenience
when referring to input sections that may or may not be present in any of the input files. For
example:

.foo { *(.foo) }

will only create a ‘.foo’ section in the output file if there is a ‘.foo’ section in at least one input file.

If you use anything other than an input section description as an output section command, such as
a symbol assignment, then the output section will always be created, even if there are no matching
input sections.

The special output section name ‘/DISCARD/’ may be used to discard input sections. Any input
sections which are assigned to an output section named ‘/DISCARD/’ are not included in the output
file.

3.6.8 Output section attributes

We showed above that the full description of an output section looked like this:

section [address] [(type)] : [AT(lma)]
{

output-section-command
output-section-command
...

} [>region] [AT>lma region] [:phdr :phdr ...] [=fillexp]

We’ve already described section, address, and output-section-command. In this section we will
describe the remaining section attributes.

3.6.8.1 Output section type

Each output section may have a type. The type is a keyword in parentheses. The following types
are defined:

NOLOAD The section should be marked as not loadable, so that it will not be loaded into memory
when the program is run.

Chapter 3: Linker Scripts 35

DSECT

COPY

INFO

OVERLAY These type names are supported for backward compatibility, and are rarely used. They
all have the same effect: the section should be marked as not allocatable, so that no
memory is allocated for the section when the program is run.

The linker normally sets the attributes of an output section based on the input sections which map
into it. You can override this by using the section type. For example, in the script sample below, the
‘ROM’ section is addressed at memory location ‘0’ and does not need to be loaded when the program
is run. The contents of the ‘ROM’ section will appear in the linker output file as usual.

SECTIONS {

ROM 0 (NOLOAD) : { ... }

...

}

3.6.8.2 Output section LMA

Every section has a virtual address (VMA) and a load address (LMA); see Section 3.1 [Basic Script
Concepts], page 21. The address expression which may appear in an output section description sets
the VMA (see Section 3.6.3 [Output Section Address], page 28).

The linker will normally set the LMA equal to the VMA. You can change that by using the AT

keyword. The expression lma that follows the AT keyword specifies the load address of the section.
Alternatively, with ‘AT>lma region’ expression, you may specify a memory region for the section’s
load address. See Section 3.7 [MEMORY], page 38.

This feature is designed to make it easy to build a ROM image. For example, the following linker
script creates three output sections: one called ‘.text’, which starts at 0x1000, one called ‘.mdata’,
which is loaded at the end of the ‘.text’ section even though its VMA is 0x2000, and one called
‘.bss’ to hold uninitialized data at address 0x3000. The symbol _data is defined with the value
0x2000, which shows that the location counter holds the VMA value, not the LMA value.

SECTIONS

{

.text 0x1000 : { *(.text) _etext = . ; }

.mdata 0x2000 :

AT (ADDR (.text) + SIZEOF (.text))

{ _data = . ; *(.data); _edata = . ; }

.bss 0x3000 :

{ _bstart = . ; *(.bss) *(COMMON) ; _bend = . ;}

}

The run-time initialization code for use with a program generated with this linker script would
include something like the following, to copy the initialized data from the ROM image to its runtime
address. Notice how this code takes advantage of the symbols defined by the linker script.

36 Using LD, the GNU linker

extern char _etext, _data, _edata, _bstart, _bend;

char *src = &_etext;

char *dst = &_data;

/* ROM has data at end of text; copy it. */

while (dst < &_edata) {

*dst++ = *src++;

}

/* Zero bss */

for (dst = &_bstart; dst< &_bend; dst++)

*dst = 0;

3.6.8.3 Output section region

You can assign a section to a previously defined region of memory by using ‘>region’. See Sec-
tion 3.7 [MEMORY], page 38.

Here is a simple example:

MEMORY { rom : ORIGIN = 0x1000, LENGTH = 0x1000 }

SECTIONS { ROM : { *(.text) } >rom }

3.6.8.4 Output section phdr

You can assign a section to a previously defined program segment by using ‘:phdr’. See Section 3.8
[PHDRS], page 39. If a section is assigned to one or more segments, then all subsequent allocated
sections will be assigned to those segments as well, unless they use an explicitly :phdr modifier.
You can use :NONE to tell the linker to not put the section in any segment at all.

Here is a simple example:

PHDRS { text PT_LOAD ; }

SECTIONS { .text : { *(.text) } :text }

3.6.8.5 Output section fill

You can set the fill pattern for an entire section by using ‘=fillexp’. fillexp is an expression (see
Section 3.10 [Expressions], page 43). Any otherwise unspecified regions of memory within the
output section (for example, gaps left due to the required alignment of input sections) will be filled
with the two least significant bytes of the value, repeated as necessary.

You can also change the fill value with a FILL command in the output section commands; see
Section 3.6.5 [Output Section Data], page 32.

Here is a simple example:

SECTIONS { .text : { *(.text) } =0x9090 }

3.6.9 Overlay description

An overlay description provides an easy way to describe sections which are to be loaded as part
of a single memory image but are to be run at the same memory address. At run time, some sort
of overlay manager will copy the overlaid sections in and out of the runtime memory address as

Chapter 3: Linker Scripts 37

required, perhaps by simply manipulating addressing bits. This approach can be useful, for example,
when a certain region of memory is faster than another.

Overlays are described using the OVERLAY command. The OVERLAY command is used within a
SECTIONS command, like an output section description. The full syntax of the OVERLAY command is
as follows:

OVERLAY [start] : [NOCROSSREFS] [AT (ldaddr)]

{

secname1
{

output-section-command
output-section-command
...

} [:phdr...] [=fill]
secname2

{

output-section-command
output-section-command
...

} [:phdr...] [=fill]
...

} [>region] [:phdr...] [=fill]

Everything is optional except OVERLAY (a keyword), and each section must have a name (secname1
and secname2 above). The section definitions within the OVERLAY construct are identical to those
within the general SECTIONS contruct (see Section 3.6 [SECTIONS], page 27), except that no ad-
dresses and no memory regions may be defined for sections within an OVERLAY.

The sections are all defined with the same starting address. The load addresses of the sections are
arranged such that they are consecutive in memory starting at the load address used for the OVERLAY

as a whole (as with normal section definitions, the load address is optional, and defaults to the start
address; the start address is also optional, and defaults to the current value of the location counter).

If the NOCROSSREFS keyword is used, and there any references among the sections, the linker will
report an error. Since the sections all run at the same address, it normally does not make sense for
one section to refer directly to another. See Section 3.4.4 [Miscellaneous Commands], page 25.

For each section within the OVERLAY, the linker automatically defines two symbols. The symbol
__load_start_secname is defined as the starting load address of the section. The symbol __load_
stop_secname is defined as the final load address of the section. Any characters within secname
which are not legal within C identifiers are removed. C (or assembler) code may use these symbols
to move the overlaid sections around as necessary.

At the end of the overlay, the value of the location counter is set to the start address of the overlay
plus the size of the largest section.

Here is an example. Remember that this would appear inside a SECTIONS construct.

OVERLAY 0x1000 : AT (0x4000)

{

.text0 { o1/*.o(.text) }

.text1 { o2/*.o(.text) }

}

38 Using LD, the GNU linker

This will define both ‘.text0’ and ‘.text1’ to start at address 0x1000. ‘.text0’ will be loaded at
address 0x4000, and ‘.text1’ will be loaded immediately after ‘.text0’. The following symbols
will be defined: __load_start_text0, __load_stop_text0, __load_start_text1, __load_stop_
text1.

C code to copy overlay .text1 into the overlay area might look like the following.

extern char __load_start_text1, __load_stop_text1;

memcpy ((char *) 0x1000, &__load_start_text1,

&__load_stop_text1 - &__load_start_text1);

Note that the OVERLAY command is just syntactic sugar, since everything it does can be done using
the more basic commands. The above example could have been written identically as follows.

.text0 0x1000 : AT (0x4000) { o1/*.o(.text) }

__load_start_text0 = LOADADDR (.text0);

__load_stop_text0 = LOADADDR (.text0) + SIZEOF (.text0);

.text1 0x1000 : AT (0x4000 + SIZEOF (.text0)) { o2/*.o(.text) }

__load_start_text1 = LOADADDR (.text1);

__load_stop_text1 = LOADADDR (.text1) + SIZEOF (.text1);

. = 0x1000 + MAX (SIZEOF (.text0), SIZEOF (.text1));

3.7 MEMORY command

The linker’s default configuration permits allocation of all available memory. You can override this
by using the MEMORY command.

The MEMORY command describes the location and size of blocks of memory in the target. You can
use it to describe which memory regions may be used by the linker, and which memory regions it
must avoid. You can then assign sections to particular memory regions. The linker will set section
addresses based on the memory regions, and will warn about regions that become too full. The
linker will not shuffle sections around to fit into the available regions.

A linker script may contain at most one use of the MEMORY command. However, you can define as
many blocks of memory within it as you wish. The syntax is:

MEMORY

{

name [(attr)] : ORIGIN = origin, LENGTH = len
...

}

The name is a name used in the linker script to refer to the region. The region name has no meaning
outside of the linker script. Region names are stored in a separate name space, and will not conflict
with symbol names, file names, or section names. Each memory region must have a distinct name.

The attr string is an optional list of attributes that specify whether to use a particular memory region
for an input section which is not explicitly mapped in the linker script. As described in Section 3.6
[SECTIONS], page 27, if you do not specify an output section for some input section, the linker
will create an output section with the same name as the input section. If you define region attributes,
the linker will use them to select the memory region for the output section that it creates.

The attr string must consist only of the following characters:

‘R’ Read-only section

‘W’ Read/write section

Chapter 3: Linker Scripts 39

‘X’ Executable section

‘A’ Allocatable section

‘I’ Initialized section

‘L’ Same as ‘I’

‘!’ Invert the sense of any of the preceding attributes

If a unmapped section matches any of the listed attributes other than ‘!’, it will be placed in the
memory region. The ‘!’ attribute reverses this test, so that an unmapped section will be placed in
the memory region only if it does not match any of the listed attributes.

The origin is an expression for the start address of the memory region. The expression must evaluate
to a constant before memory allocation is performed, which means that you may not use any section
relative symbols. The keyword ORIGIN may be abbreviated to org or o (but not, for example, ORG).

The len is an expression for the size in bytes of the memory region. As with the origin expression,
the expression must evaluate to a constant before memory allocation is performed. The keyword
LENGTH may be abbreviated to len or l.

In the following example, we specify that there are two memory regions available for allocation:
one starting at ‘0’ for 256 kilobytes, and the other starting at ‘0x40000000’ for four megabytes. The
linker will place into the ‘rom’ memory region every section which is not explicitly mapped into a
memory region, and is either read-only or executable. The linker will place other sections which are
not explicitly mapped into a memory region into the ‘ram’ memory region.

MEMORY

{

rom (rx) : ORIGIN = 0, LENGTH = 256K

ram (!rx) : org = 0x40000000, l = 4M

}

Once you define a memory region, you can direct the linker to place specific output sections into that
memory region by using the ‘>region’ output section attribute. For example, if you have a memory
region named ‘mem’, you would use ‘>mem’ in the output section definition. See Section 3.6.8.3
[Output Section Region], page 36. If no address was specified for the output section, the linker
will set the address to the next available address within the memory region. If the combined output
sections directed to a memory region are too large for the region, the linker will issue an error
message.

3.8 PHDRS Command

The ELF object file format uses program headers, also knows as segments. The program headers
describe how the program should be loaded into memory. You can print them out by using the
objdump program with the ‘-p’ option.

When you run an ELF program on a native ELF system, the system loader reads the program headers
in order to figure out how to load the program. This will only work if the program headers are set
correctly. This manual does not describe the details of how the system loader interprets program
headers; for more information, see the ELF ABI.

The linker will create reasonable program headers by default. However, in some cases, you may
need to specify the program headers more precisely. You may use the PHDRS command for this

40 Using LD, the GNU linker

purpose. When the linker sees the PHDRS command in the linker script, it will not create any program
headers other than the ones specified.

The linker only pays attention to the PHDRS command when generating an ELF output file. In other
cases, the linker will simply ignore PHDRS.

This is the syntax of the PHDRS command. The words PHDRS, FILEHDR, AT, and FLAGS are keywords.

PHDRS

{

name type [FILEHDR] [PHDRS] [AT (address)]

[FLAGS (flags)] ;

}

The name is used only for reference in the SECTIONS command of the linker script. It is not put into
the output file. Program header names are stored in a separate name space, and will not conflict with
symbol names, file names, or section names. Each program header must have a distinct name.

Certain program header types describe segments of memory which the system loader will load from
the file. In the linker script, you specify the contents of these segments by placing allocatable
output sections in the segments. You use the ‘:phdr’ output section attribute to place a section in a
particular segment. See Section 3.6.8.4 [Output Section Phdr], page 36.

It is normal to put certain sections in more than one segment. This merely implies that one segment
of memory contains another. You may repeat ‘:phdr’, using it once for each segment which should
contain the section.

If you place a section in one or more segments using ‘:phdr’, then the linker will place all subse-
quent allocatable sections which do not specify ‘:phdr’ in the same segments. This is for conve-
nience, since generally a whole set of contiguous sections will be placed in a single segment. You
can use :NONE to override the default segment and tell the linker to not put the section in any segment
at all.

You may use the FILEHDR and PHDRS keywords appear after the program header type to further
describe the contents of the segment. The FILEHDR keyword means that the segment should include
the ELF file header. The PHDRS keyword means that the segment should include the ELF program
headers themselves.

The type may be one of the following. The numbers indicate the value of the keyword.

PT_NULL (0)
Indicates an unused program header.

PT_LOAD (1)
Indicates that this program header describes a segment to be loaded from the file.

PT_DYNAMIC (2)
Indicates a segment where dynamic linking information can be found.

PT_INTERP (3)
Indicates a segment where the name of the program interpreter may be found.

PT_NOTE (4)
Indicates a segment holding note information.

PT_SHLIB (5)
A reserved program header type, defined but not specified by the ELF ABI.

Chapter 3: Linker Scripts 41

PT_PHDR (6)
Indicates a segment where the program headers may be found.

expression An expression giving the numeric type of the program header. This may be used for
types not defined above.

You can specify that a segment should be loaded at a particular address in memory by using an
AT expression. This is identical to the AT command used as an output section attribute (see Sec-
tion 3.6.8.2 [Output Section LMA], page 35). The AT command for a program header overrides the
output section attribute.

The linker will normally set the segment flags based on the sections which comprise the segment.
You may use the FLAGS keyword to explicitly specify the segment flags. The value of flags must be
an integer. It is used to set the p_flags field of the program header.

Here is an example of PHDRS. This shows a typical set of program headers used on a native ELF
system.

PHDRS

{

headers PT_PHDR PHDRS ;

interp PT_INTERP ;

text PT_LOAD FILEHDR PHDRS ;

data PT_LOAD ;

dynamic PT_DYNAMIC ;

}

SECTIONS

{

. = SIZEOF_HEADERS;

.interp : { *(.interp) } :text :interp

.text : { *(.text) } :text

.rodata : { *(.rodata) } /* defaults to :text */

...

. = . + 0x1000; /* move to a new page in memory */

.data : { *(.data) } :data

.dynamic : { *(.dynamic) } :data :dynamic

...

}

3.9 VERSION Command

The linker supports symbol versions when using ELF. Symbol versions are only useful when us-
ing shared libraries. The dynamic linker can use symbol versions to select a specific version of a
function when it runs a program that may have been linked against an earlier version of the shared
library.

You can include a version script directly in the main linker script, or you can supply the version
script as an implicit linker script. You can also use the ‘--version-script’ linker option.

The syntax of the VERSION command is simply

VERSION { version-script-commands }

42 Using LD, the GNU linker

The format of the version script commands is identical to that used by Sun’s linker in Solaris 2.5.
The version script defines a tree of version nodes. You specify the node names and interdependen-
cies in the version script. You can specify which symbols are bound to which version nodes, and
you can reduce a specified set of symbols to local scope so that they are not globally visible outside
of the shared library.

The easiest way to demonstrate the version script language is with a few examples.

VERS_1.1 {

global:

foo1;

local:

old*;

original*;

new*;

};

VERS_1.2 {

foo2;

} VERS_1.1;

VERS_2.0 {

bar1; bar2;

} VERS_1.2;

This example version script defines three version nodes. The first version node defined is ‘VERS_1.1’;
it has no other dependencies. The script binds the symbol ‘foo1’ to ‘VERS_1.1’. It reduces a number
of symbols to local scope so that they are not visible outside of the shared library.

Next, the version script defines node ‘VERS_1.2’. This node depends upon ‘VERS_1.1’. The script
binds the symbol ‘foo2’ to the version node ‘VERS_1.2’.

Finally, the version script defines node ‘VERS_2.0’. This node depends upon ‘VERS_1.2’. The scripts
binds the symbols ‘bar1’ and ‘bar2’ are bound to the version node ‘VERS_2.0’.

When the linker finds a symbol defined in a library which is not specifically bound to a version node,
it will effectively bind it to an unspecified base version of the library. You can bind all otherwise
unspecified symbols to a given version node by using ‘global: *’ somewhere in the version script.

The names of the version nodes have no specific meaning other than what they might suggest to
the person reading them. The ‘2.0’ version could just as well have appeared in between ‘1.1’ and
‘1.2’. However, this would be a confusing way to write a version script.

When you link an application against a shared library that has versioned symbols, the application
itself knows which version of each symbol it requires, and it also knows which version nodes it
needs from each shared library it is linked against. Thus at runtime, the dynamic loader can make
a quick check to make sure that the libraries you have linked against do in fact supply all of the
version nodes that the application will need to resolve all of the dynamic symbols. In this way it is
possible for the dynamic linker to know with certainty that all external symbols that it needs will be
resolvable without having to search for each symbol reference.

The symbol versioning is in effect a much more sophisticated way of doing minor version checking
that SunOS does. The fundamental problem that is being addressed here is that typically references
to external functions are bound on an as-needed basis, and are not all bound when the application
starts up. If a shared library is out of date, a required interface may be missing; when the application

Chapter 3: Linker Scripts 43

tries to use that interface, it may suddenly and unexpectedly fail. With symbol versioning, the user
will get a warning when they start their program if the libraries being used with the application are
too old.

There are several GNU extensions to Sun’s versioning approach. The first of these is the ability
to bind a symbol to a version node in the source file where the symbol is defined instead of in the
versioning script. This was done mainly to reduce the burden on the library maintainer. You can do
this by putting something like:

__asm__(".symver original_foo,foo@VERS_1.1");

in the C source file. This renames the function ‘original_foo’ to be an alias for ‘foo’ bound to the
version node ‘VERS_1.1’. The ‘local:’ directive can be used to prevent the symbol ‘original_foo’
from being exported.

The second GNU extension is to allow multiple versions of the same function to appear in a given
shared library. In this way you can make an incompatible change to an interface without increasing
the major version number of the shared library, while still allowing applications linked against the
old interface to continue to function.

To do this, you must use multiple ‘.symver’ directives in the source file. Here is an example:

__asm__(".symver original_foo,foo@");

__asm__(".symver old_foo,foo@VERS_1.1");

__asm__(".symver old_foo1,foo@VERS_1.2");

__asm__(".symver new_foo,foo@@VERS_2.0");

In this example, ‘foo@’ represents the symbol ‘foo’ bound to the unspecified base version of the
symbol. The source file that contains this example would define 4 C functions: ‘original_foo’,
‘old_foo’, ‘old_foo1’, and ‘new_foo’.

When you have multiple definitions of a given symbol, there needs to be some way to specify a
default version to which external references to this symbol will be bound. You can do this with
the ‘foo@@VERS_2.0’ type of ‘.symver’ directive. You can only declare one version of a symbol as
the default in this manner; otherwise you would effectively have multiple definitions of the same
symbol.

If you wish to bind a reference to a specific version of the symbol within the shared library, you can
use the aliases of convenience (i.e. ‘old_foo’), or you can use the ‘.symver’ directive to specifically
bind to an external version of the function in question.

3.10 Expressions in Linker Scripts

The syntax for expressions in the linker script language is identical to that of C expressions. All
expressions are evaluated as integers. All expressions are evaluated in the same size, which is 32
bits if both the host and target are 32 bits, and is otherwise 64 bits.

You can use and set symbol values in expressions.

The linker defines several special purpose builtin functions for use in expressions.

3.10.1 Constants

All constants are integers.

As in C, the linker considers an integer beginning with ‘0’ to be octal, and an integer beginning with
‘0x’ or ‘0X’ to be hexadecimal. The linker considers other integers to be decimal.

44 Using LD, the GNU linker

In addition, you can use the suffixes K and M to scale a constant by 1024 or 1024 � respectively. For
example, the following all refer to the same quantity:

_fourk_1 = 4K;

_fourk_2 = 4096;

_fourk_3 = 0x1000;

3.10.2 Symbol Names

Unless quoted, symbol names start with a letter, underscore, or period and may include letters, digits,
underscores, periods, and hyphens. Unquoted symbol names must not conflict with any keywords.
You can specify a symbol which contains odd characters or has the same name as a keyword by
surrounding the symbol name in double quotes:

"SECTION" = 9;

"with a space" = "also with a space" + 10;

Since symbols can contain many non-alphabetic characters, it is safest to delimit symbols with
spaces. For example, ‘A-B’ is one symbol, whereas ‘A - B’ is an expression involving subtraction.

3.10.3 The Location Counter

The special linker variable dot ‘.’ always contains the current output location counter. Since the
. always refers to a location in an output section, it may only appear in an expression within a
SECTIONS command. The . symbol may appear anywhere that an ordinary symbol is allowed in an
expression.

Assigning a value to . will cause the location counter to be moved. This may be used to create holes
in the output section. The location counter may never be moved backwards.

SECTIONS

{

output :

{

file1(.text)

. = . + 1000;

file2(.text)

. += 1000;

file3(.text)

} = 0x1234;

}

In the previous example, the ‘.text’ section from ‘file1’ is located at the beginning of the output
section ‘output’. It is followed by a 1000 byte gap. Then the ‘.text’ section from ‘file2’ appears,
also with a 1000 byte gap following before the ‘.text’ section from ‘file3’. The notation ‘=
0x1234’ specifies what data to write in the gaps (see Section 3.6.8.5 [Output Section Fill], page 36).

Note: . actually refers to the byte offset from the start of the current containing object. Normally
this is the SECTIONS statement, whoes start address is 0, hence . can be used as an absolute address.
If . is used inside a section description however, it refers to the byte offset from the start of that
section, not an absolute address. Thus in a script like this:

SECTIONS

{

Chapter 3: Linker Scripts 45

. = 0x100

.text: {

*(.text)

. = 0x200

}

. = 0x500

.data: {

*(.data)

. += 0x600

}

}

The ‘.text’ section will be assigned a starting address of 0x100 and a size of exactly 0x200 bytes,
even if there is not enough data in the ‘.text’ input sections to fill this area. (If there is too much
data, an error will be produced because this would be an attempt to move . backwards). The ‘.data’
section will start at 0x500 and it will have an extra 0x600 bytes worth of space after the end of the
values from the ‘.data’ input sections and before the end of the ‘.data’ output section itself.

3.10.4 Operators

The linker recognizes the standard C set of arithmetic operators, with the standard bindings and
precedence levels:

Precedence Associativity Operators

highest
1 left - ˜ !

�
2 left * / %

3 left + -

4 left >> <<

5 left == != > < <= >=

6 left &

7 left |

8 left &&

9 left ||

10 right ? :

11 right &= += -= *= /= �
lowest

�
Prefix operators.

� See Section 3.5 [Assignments], page 26.

3.10.5 Evaluation

The linker evaluates expressions lazily. It only computes the value of an expression when absolutely
necessary.

The linker needs some information, such as the value of the start address of the first section, and the
origins and lengths of memory regions, in order to do any linking at all. These values are computed
as soon as possible when the linker reads in the linker script.

46 Using LD, the GNU linker

However, other values (such as symbol values) are not known or needed until after storage alloca-
tion. Such values are evaluated later, when other information (such as the sizes of output sections)
is available for use in the symbol assignment expression.

The sizes of sections cannot be known until after allocation, so assignments dependent upon these
are not performed until after allocation.

Some expressions, such as those depending upon the location counter ‘.’, must be evaluated during
section allocation.

If the result of an expression is required, but the value is not available, then an error results. For
example, a script like the following

SECTIONS

{

.text 9+this_isnt_constant :

{ *(.text) }

}

will cause the error message ‘non constant expression for initial address’.

3.10.6 The Section of an Expression

When the linker evaluates an expression, the result is either absolute or relative to some section. A
relative expression is expressed as a fixed offset from the base of a section.

The position of the expression within the linker script determines whether it is absolute or relative.
An expression which appears within an output section definition is relative to the base of the output
section. An expression which appears elsewhere will be absolute.

A symbol set to a relative expression will be relocatable if you request relocatable output using the
‘-r’ option. That means that a further link operation may change the value of the symbol. The
symbol’s section will be the section of the relative expression.

A symbol set to an absolute expression will retain the same value through any further link operation.
The symbol will be absolute, and will not have any particular associated section.

You can use the builtin function ABSOLUTE to force an expression to be absolute when it would
otherwise be relative. For example, to create an absolute symbol set to the address of the end of the
output section ‘.data’:

SECTIONS

{

.data : { *(.data) _edata = ABSOLUTE(.); }

}

If ‘ABSOLUTE’ were not used, ‘_edata’ would be relative to the ‘.data’ section.

3.10.7 Builtin Functions

The linker script language includes a number of builtin functions for use in linker script expressions.

ABSOLUTE(exp)
Return the absolute (non-relocatable, as opposed to non-negative) value of the expres-
sion exp. Primarily useful to assign an absolute value to a symbol within a section
definition, where symbol values are normally section relative. See Section 3.10.6 [Ex-
pression Section], page 46.

Chapter 3: Linker Scripts 47

ADDR(section)
Return the absolute address (the VMA) of the named section. Your script must pre-
viously have defined the location of that section. In the following example, symbol_1
and symbol_2 are assigned identical values:

SECTIONS { ...

.output1 :

{

start_of_output_1 = ABSOLUTE(.);

...

}

.output :

{

symbol_1 = ADDR(.output1);

symbol_2 = start_of_output_1;

}

... }

ALIGN(exp)
Return the location counter (.) aligned to the next exp boundary. exp must be an
expression whose value is a power of two. This is equivalent to

(. + exp - 1) & ˜(exp - 1)

ALIGN doesn’t change the value of the location counter—it just does arithmetic on it.
Here is an example which aligns the output .data section to the next 0x2000 byte
boundary after the preceding section and sets a variable within the section to the next
0x8000 boundary after the input sections:

SECTIONS { ...

.data ALIGN(0x2000): {

*(.data)

variable = ALIGN(0x8000);

}

... }

The first use of ALIGN in this example specifies the location of a section because it is
used as the optional address attribute of a section definition (see Section 3.6.3 [Output
Section Address], page 28). The second use of ALIGN is used to defines the value of a
symbol.

The builtin function NEXT is closely related to ALIGN.

BLOCK(exp)
This is a synonym for ALIGN, for compatibility with older linker scripts. It is most
often seen when setting the address of an output section.

DEFINED(symbol)
Return 1 if symbol is in the linker global symbol table and is defined, otherwise return
0. You can use this function to provide default values for symbols. For example,
the following script fragment shows how to set a global symbol ‘begin’ to the first
location in the ‘.text’ section—but if a symbol called ‘begin’ already existed, its
value is preserved:

48 Using LD, the GNU linker

SECTIONS { ...

.text : {

begin = DEFINED(begin) ? begin : . ;

...

}

...

}

LOADADDR(section)
Return the absolute LMA of the named section. This is normally the same as ADDR,
but it may be different if the AT attribute is used in the output section definition (see
Section 3.6.8.2 [Output Section LMA], page 35).

MAX(exp1, exp2)
Returns the maximum of exp1 and exp2.

MIN(exp1, exp2)
Returns the minimum of exp1 and exp2.

NEXT(exp) Return the next unallocated address that is a multiple of exp. This function is closely
related to ALIGN(exp); unless you use the MEMORY command to define discontinuous
memory for the output file, the two functions are equivalent.

SIZEOF(section)
Return the size in bytes of the named section, if that section has been allocated. If the
section has not been allocated when this is evaluated, the linker will report an error. In
the following example, symbol_1 and symbol_2 are assigned identical values:

SECTIONS{ ...

.output {

.start = . ;

...

.end = . ;

}

symbol_1 = .end - .start ;

symbol_2 = SIZEOF(.output);

... }

SIZEOF_HEADERS

sizeof_headers

Return the size in bytes of the output file’s headers. This is information which appears
at the start of the output file. You can use this number when setting the start address of
the first section, if you choose, to facilitate paging.

When producing an ELF output file, if the linker script uses the SIZEOF_HEADERS

builtin function, the linker must compute the number of program headers before it has
determined all the section addresses and sizes. If the linker later discovers that it needs
additional program headers, it will report an error ‘not enough room for program

headers’. To avoid this error, you must avoid using the SIZEOF_HEADERS function,
or you must rework your linker script to avoid forcing the linker to use additional
program headers, or you must define the program headers yourself using the PHDRS

command (see Section 3.8 [PHDRS], page 39).

Chapter 3: Linker Scripts 49

3.11 Implicit Linker Scripts

If you specify a linker input file which the linker can not recognize as an object file or an archive
file, it will try to read the file as a linker script. If the file can not be parsed as a linker script, the
linker will report an error.

An implicit linker script will not replace the default linker script.

Typically an implicit linker script would contain only symbol assignments, or the INPUT, GROUP, or
VERSION commands.

Any input files read because of an implicit linker script will be read at the position in the command
line where the implicit linker script was read. This can affect archive searching.

50 Using LD, the GNU linker

Chapter 4: Machine Dependent Features 51

4 Machine Dependent Features

ld has additional features on some platforms; the following sections describe them. Machines where
ld has no additional functionality are not listed.

4.1 ld and the H8/300

For the H8/300, ld can perform these global optimizations when you specify the ‘--relax’
command-line option.

relaxing address modes
ld finds all jsr and jmp instructions whose targets are within eight bits, and turns them
into eight-bit program-counter relative bsr and bra instructions, respectively.

synthesizing instructions
ld finds all mov.b instructions which use the sixteen-bit absolute address form, but
refer to the top page of memory, and changes them to use the eight-bit address form.
(That is: the linker turns ‘mov.b @aa:16’ into ‘mov.b @aa:8’ whenever the address aa
is in the top page of memory).

4.2 ld and the Intel 960 family

You can use the ‘-Aarchitecture’ command line option to specify one of the two-letter names iden-
tifying members of the 960 family; the option specifies the desired output target, and warns of any
incompatible instructions in the input files. It also modifies the linker’s search strategy for archive
libraries, to support the use of libraries specific to each particular architecture, by including in the
search loop names suffixed with the string identifying the architecture.

For example, if your ld command line included ‘-ACA’ as well as ‘-ltry’, the linker would look (in
its built-in search paths, and in any paths you specify with ‘-L’) for a library with the names

try

libtry.a

tryca

libtryca.a

The first two possibilities would be considered in any event; the last two are due to the use of ‘-ACA’.

You can meaningfully use ‘-A’ more than once on a command line, since the 960 architecture family
allows combination of target architectures; each use will add another pair of name variants to search
for when ‘-l’ specifies a library.

ld supports the ‘--relax’ option for the i960 family. If you specify ‘--relax’, ld finds all balx
and calx instructions whose targets are within 24 bits, and turns them into 24-bit program-counter
relative bal and cal instructions, respectively. ld also turns cal instructions into bal instructions
when it determines that the target subroutine is a leaf routine (that is, the target subroutine does not
itself call any subroutines).

52 Using LD, the GNU linker

4.3 ld’s support for interworking between ARM and Thumb code

For the ARM, ld will generate code stubs to allow functions calls betweem ARM and Thumb code.
These stubs only work with code that has been compiled and assembled with the ‘-mthumb-interwork’
command line option. If it is necessary to link with old ARM object files or libraries, which have
not been compiled with the -mthumb-interwork option then the ‘--support-old-code’ command
line switch should be given to the linker. This will make it generate larger stub functions which
will work with non-interworking aware ARM code. Note, however, the linker does not support
generating stubs for function calls to non-interworking aware Thumb code.

The ‘--thumb-entry’ switch is a duplicate of the generic ‘--entry’ switch, in that it sets the pro-
gram’s starting address. But it also sets the bottom bit of the address, so that it can be branched to
using a BX instruction, and the program will start executing in Thumb mode straight away.

4.4 ld’s support for various TI COFF versions

The ‘--format’ switch allows selection of one of the various TI COFF versions. The latest of this
writing is 2; versions 0 and 1 are also supported. The TI COFF versions also vary in header byte-
order format; ld will read any version or byte order, but the output header format depends on the
default specified by the specific target.

Chapter 5: BFD 53

5 BFD

The linker accesses object and archive files using the BFD libraries. These libraries allow the linker
to use the same routines to operate on object files whatever the object file format. A different object
file format can be supported simply by creating a new BFD back end and adding it to the library. To
conserve runtime memory, however, the linker and associated tools are usually configured to support
only a subset of the object file formats available. You can use objdump -i (see section “objdump”
in The GNU Binary Utilities) to list all the formats available for your configuration.

As with most implementations, BFD is a compromise between several conflicting requirements.
The major factor influencing BFD design was efficiency: any time used converting between formats
is time which would not have been spent had BFD not been involved. This is partly offset by
abstraction payback; since BFD simplifies applications and back ends, more time and care may be
spent optimizing algorithms for a greater speed.

One minor artifact of the BFD solution which you should bear in mind is the potential for infor-
mation loss. There are two places where useful information can be lost using the BFD mechanism:
during conversion and during output. See Section 5.1.1 [BFD information loss], page 53.

5.1 How it works: an outline of BFD

When an object file is opened, BFD subroutines automatically determine the format of the input
object file. They then build a descriptor in memory with pointers to routines that will be used to
access elements of the object file’s data structures.

As different information from the the object files is required, BFD reads from different sections of
the file and processes them. For example, a very common operation for the linker is processing
symbol tables. Each BFD back end provides a routine for converting between the object file’s
representation of symbols and an internal canonical format. When the linker asks for the symbol
table of an object file, it calls through a memory pointer to the routine from the relevant BFD
back end which reads and converts the table into a canonical form. The linker then operates upon
the canonical form. When the link is finished and the linker writes the output file’s symbol table,
another BFD back end routine is called to take the newly created symbol table and convert it into
the chosen output format.

5.1.1 Information Loss

Information can be lost during output. The output formats supported by BFD do not provide iden-
tical facilities, and information which can be described in one form has nowhere to go in another
format. One example of this is alignment information in b.out. There is nowhere in an a.out for-
mat file to store alignment information on the contained data, so when a file is linked from b.out

and an a.out image is produced, alignment information will not propagate to the output file. (The
linker will still use the alignment information internally, so the link is performed correctly).

Another example is COFF section names. COFF files may contain an unlimited number of sections,
each one with a textual section name. If the target of the link is a format which does not have many
sections (e.g., a.out) or has sections without names (e.g., the Oasys format), the link cannot be done
simply. You can circumvent this problem by describing the desired input-to-output section mapping
with the linker command language.

54 Using LD, the GNU linker

Information can be lost during canonicalization. The BFD internal canonical form of the external
formats is not exhaustive; there are structures in input formats for which there is no direct repre-
sentation internally. This means that the BFD back ends cannot maintain all possible data richness
through the transformation between external to internal and back to external formats.

This limitation is only a problem when an application reads one format and writes another. Each
BFD back end is responsible for maintaining as much data as possible, and the internal BFD canon-
ical form has structures which are opaque to the BFD core, and exported only to the back ends.
When a file is read in one format, the canonical form is generated for BFD and the application.
At the same time, the back end saves away any information which may otherwise be lost. If the
data is then written back in the same format, the back end routine will be able to use the canonical
form provided by the BFD core as well as the information it prepared earlier. Since there is a great
deal of commonality between back ends, there is no information lost when linking or copying big
endian COFF to little endian COFF, or a.out to b.out. When a mixture of formats is linked, the
information is only lost from the files whose format differs from the destination.

5.1.2 The BFD canonical object-file format

The greatest potential for loss of information occurs when there is the least overlap between the
information provided by the source format, that stored by the canonical format, and that needed by
the destination format. A brief description of the canonical form may help you understand which
kinds of data you can count on preserving across conversions.

files Information stored on a per-file basis includes target machine architecture, particular
implementation format type, a demand pageable bit, and a write protected bit. Infor-
mation like Unix magic numbers is not stored here—only the magic numbers’ mean-
ing, so a ZMAGIC file would have both the demand pageable bit and the write protected
text bit set. The byte order of the target is stored on a per-file basis, so that big- and
little-endian object files may be used with one another.

sections Each section in the input file contains the name of the section, the section’s original
address in the object file, size and alignment information, various flags, and pointers
into other BFD data structures.

symbols Each symbol contains a pointer to the information for the object file which originally
defined it, its name, its value, and various flag bits. When a BFD back end reads in a
symbol table, it relocates all symbols to make them relative to the base of the section
where they were defined. Doing this ensures that each symbol points to its containing
section. Each symbol also has a varying amount of hidden private data for the BFD
back end. Since the symbol points to the original file, the private data format for that
symbol is accessible. ld can operate on a collection of symbols of wildly different
formats without problems.

Normal global and simple local symbols are maintained on output, so an output file
(no matter its format) will retain symbols pointing to functions and to global, static,
and common variables. Some symbol information is not worth retaining; in a.out,
type information is stored in the symbol table as long symbol names. This information
would be useless to most COFF debuggers; the linker has command line switches to
allow users to throw it away.

There is one word of type information within the symbol, so if the format supports
symbol type information within symbols (for example, COFF, IEEE, Oasys) and the

Chapter 5: BFD 55

type is simple enough to fit within one word (nearly everything but aggregates), the
information will be preserved.

relocation level
Each canonical BFD relocation record contains a pointer to the symbol to relocate to,
the offset of the data to relocate, the section the data is in, and a pointer to a relocation
type descriptor. Relocation is performed by passing messages through the relocation
type descriptor and the symbol pointer. Therefore, relocations can be performed on
output data using a relocation method that is only available in one of the input formats.
For instance, Oasys provides a byte relocation format. A relocation record requesting
this relocation type would point indirectly to a routine to perform this, so the relocation
may be performed on a byte being written to a 68k COFF file, even though 68k COFF
has no such relocation type.

line numbers
Object formats can contain, for debugging purposes, some form of mapping between
symbols, source line numbers, and addresses in the output file. These addresses have
to be relocated along with the symbol information. Each symbol with an associated
list of line number records points to the first record of the list. The head of a line
number list consists of a pointer to the symbol, which allows finding out the address of
the function whose line number is being described. The rest of the list is made up of
pairs: offsets into the section and line numbers. Any format which can simply derive
this information can pass it successfully between formats (COFF, IEEE and Oasys).

56 Using LD, the GNU linker

Chapter 6: Reporting Bugs 57

6 Reporting Bugs

Your bug reports play an essential role in making ld reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not. But in any case
the principal function of a bug report is to help the entire community by making the next version of
ld work better. Bug reports are your contribution to the maintenance of ld.

In order for a bug report to serve its purpose, you must include the information that enables us to fix
the bug.

6.1 Have you found a bug?

If you are not sure whether you have found a bug, here are some guidelines:

� If the linker gets a fatal signal, for any input whatever, that is a ld bug. Reliable linkers never
crash.

� If ld produces an error message for valid input, that is a bug.
� If ld does not produce an error message for invalid input, that may be a bug. In the general

case, the linker can not verify that object files are correct.
� If you are an experienced user of linkers, your suggestions for improvement of ld are welcome

in any case.

6.2 How to report bugs

A number of companies and individuals offer support for GNU products. If you obtained ld from a
support organization, we recommend you contact that organization first.

You can find contact information for many support companies and individuals in the file ‘etc/SERVICE’
in the GNU Emacs distribution.

Otherwise, send bug reports for ld to ‘bug-gnu-utils@gnu.org’.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you are not
sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and assume that
some details do not matter. Thus, you might assume that the name of a symbol you use in an
example does not matter. Well, probably it does not, but one cannot be sure. Perhaps the bug is
a stray memory reference which happens to fetch from the location where that name is stored in
memory; perhaps, if the name were different, the contents of that location would fool the linker into
doing the right thing despite the bug. Play it safe and give a specific, complete example. That is the
easiest thing for you to do, and the most helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the bug if it is new to us.
Therefore, always write your bug reports on the assumption that the bug has not been reported
previously.

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” Those bug reports are
useless, and we urge everyone to refuse to respond to them except to chide the sender to report bugs
properly.

To enable us to fix the bug, you should include all these things:

58 Using LD, the GNU linker

� The version of ld. ld announces it if you start it with the ‘--version’ argument.

Without this, we will not know whether there is any point in looking for the bug in the current
version of ld.

� Any patches you may have applied to the ld source, including any patches made to the BFD

library.
� The type of machine you are using, and the operating system name and version number.
� What compiler (and its version) was used to compile ld—e.g. “gcc-2.7”.
� The command arguments you gave the linker to link your example and observe the bug. To

guarantee you will not omit something important, list them all. A copy of the Makefile (or the
output from make) is sufficient.

If we were to try to guess the arguments, we would probably guess wrong and then we might
not encounter the bug.

� A complete input file, or set of input files, that will reproduce the bug. It is generally most
helpful to send the actual object files, uuencoded if necessary to get them through the mail sys-
tem. Making them available for anonymous FTP is not as good, but may be the only reasonable
choice for large object files.

If the source files were assembled using gas or compiled using gcc, then it may be OK to send
the source files rather than the object files. In this case, be sure to say exactly what version of
gas or gcc was used to produce the object files. Also say how gas or gcc were configured.

� A description of what behavior you observe that you believe is incorrect. For example, “It gets
a fatal signal.”

Of course, if the bug is that ld gets a fatal signal, then we will certainly notice it. But if the
bug is incorrect output, we might not notice unless it is glaringly wrong. You might as well not
give us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly. Suppose
something strange is going on, such as, your copy of ld is out of synch, or you have encountered
a bug in the C library on your system. (This has happened!) Your copy might crash and ours
would not. If you told us to expect a crash, then when ours fails to crash, we would know that
the bug was not happening for us. If you had not told us to expect a crash, then we would not
be able to draw any conclusion from our observations.

� If you wish to suggest changes to the ld source, send us context diffs, as generated by diff

with the ‘-u’, ‘-c’, or ‘-p’ option. Always send diffs from the old file to the new file. If you
even discuss something in the ld source, refer to it by context, not by line number.

The line numbers in our development sources will not match those in your sources. Your line
numbers would convey no useful information to us.

Here are some things that are not necessary:
� A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to the input
file will make the bug go away and which changes will not affect it.

This is often time consuming and not very useful, because the way we will find the bug is by
running a single example under the debugger with breakpoints, not by pure deduction from a
series of examples. We recommend that you save your time for something else.

Chapter 6: Reporting Bugs 59

Of course, if you can find a simpler example to report instead of the original one, that is a
convenience for us. Errors in the output will be easier to spot, running under the debugger will
take less time, and so on.

However, simplification is not vital; if you do not want to do this, report the bug anyway and
send us the entire test case you used.

� A patch for the bug.

A patch for the bug does help us if it is a good one. But do not omit the necessary information,
such as the test case, on the assumption that a patch is all we need. We might see problems
with your patch and decide to fix the problem another way, or we might not understand it at all.

Sometimes with a program as complicated as ld it is very hard to construct an example that will
make the program follow a certain path through the code. If you do not send us the example,
we will not be able to construct one, so we will not be able to verify that the bug is fixed.

And if we cannot understand what bug you are trying to fix, or why your patch should be an
improvement, we will not install it. A test case will help us to understand.

� A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even we cannot guess right about such things without first
using the debugger to find the facts.

60 Using LD, the GNU linker

Appendix A: MRI Compatible Script Files 61

Appendix A MRI Compatible Script Files

To aid users making the transition to GNU ld from the MRI linker, ld can use MRI compatible
linker scripts as an alternative to the more general-purpose linker scripting language described in
Chapter 3 [Scripts], page 21. MRI compatible linker scripts have a much simpler command set than
the scripting language otherwise used with ld. GNU ld supports the most commonly used MRI
linker commands; these commands are described here.

In general, MRI scripts aren’t of much use with the a.out object file format, since it only has three
sections and MRI scripts lack some features to make use of them.

You can specify a file containing an MRI-compatible script using the ‘-c’ command-line option.

Each command in an MRI-compatible script occupies its own line; each command line starts with
the keyword that identifies the command (though blank lines are also allowed for punctuation).
If a line of an MRI-compatible script begins with an unrecognized keyword, ld issues a warning
message, but continues processing the script.

Lines beginning with ‘*’ are comments.

You can write these commands using all upper-case letters, or all lower case; for example, ‘chip’ is
the same as ‘CHIP’. The following list shows only the upper-case form of each command.

ABSOLUTE secname
ABSOLUTE secname, secname, ... secname

Normally, ld includes in the output file all sections from all the input files. However, in
an MRI-compatible script, you can use the ABSOLUTE command to restrict the sections
that will be present in your output program. If the ABSOLUTE command is used at all
in a script, then only the sections named explicitly in ABSOLUTE commands will appear
in the linker output. You can still use other input sections (whatever you select on the
command line, or using LOAD) to resolve addresses in the output file.

ALIAS out-secname, in-secname
Use this command to place the data from input section in-secname in a section called
out-secname in the linker output file.

in-secname may be an integer.

ALIGN secname = expression
Align the section called secname to expression. The expression should be a power of
two.

BASE expression
Use the value of expression as the lowest address (other than absolute addresses) in
the output file.

CHIP expression
CHIP expression, expression

This command does nothing; it is accepted only for compatibility.

END This command does nothing whatever; it’s only accepted for compatibility.

FORMAT output-format
Similar to the OUTPUT_FORMAT command in the more general linker language, but re-
stricted to one of these output formats:

62 Using LD, the GNU linker

1. S-records, if output-format is ‘S’

2. IEEE, if output-format is ‘IEEE’

3. COFF (the ‘coff-m68k’ variant in BFD), if output-format is ‘COFF’

LIST anything...
Print (to the standard output file) a link map, as produced by the ld command-line
option ‘-M’.

The keyword LIST may be followed by anything on the same line, with no change in
its effect.

LOAD filename
LOAD filename, filename, ... filename

Include one or more object file filename in the link; this has the same effect as speci-
fying filename directly on the ld command line.

NAME output-name
output-name is the name for the program produced by ld; the MRI-compatible com-
mand NAME is equivalent to the command-line option ‘-o’ or the general script language
command OUTPUT.

ORDER secname, secname, ... secname
ORDER secname secname secname

Normally, ld orders the sections in its output file in the order in which they first appear
in the input files. In an MRI-compatible script, you can override this ordering with the
ORDER command. The sections you list with ORDER will appear first in your output file,
in the order specified.

PUBLIC name=expression
PUBLIC name,expression
PUBLIC name expression

Supply a value (expression) for external symbol name used in the linker input files.

SECT secname, expression
SECT secname=expression
SECT secname expression

You can use any of these three forms of the SECT command to specify the start address
(expression) for section secname. If you have more than one SECT statement for the
same secname, only the first sets the start address.

Index 63

Index

-
-(. 9
--add-stdcall-alias . 17
--architecture=arch . 4
--auxiliary . 5
--base-file . 17
--check-sections . 10
--cref . 10
--defsym symbol=exp . 10
--demangle . 10
--disable-stdcall-fixup 17
--discard-all . 9
--discard-locals . 9
--dll . 17
--dynamic-linkerfile . 11
--embedded-relocs . 11
--emit-relocs . 8
--enable-stdcall-fixup . 17
--entry=entry . 5
--errors-to-filefile . 11
--exclude-symbols . 18
--export-all-symbols . 18
--export-dynamic . 5
--file-alignment . 18
--filter . 5
--force-exe-suffix . 11
--format=format . 4
--format=version . 52
--gc-sections . 11
--gpsize . 6
--heap . 18
--help . 11
--image-base . 18
--just-symbols=file . 8
--kill-at . 18
--library-path=dir . 7
--library=archive . 6
--major-image-version . 18
--major-os-version . 18
--major-subsystem-version 18
--minor-image-version . 18
--minor-os-version . 18
--minor-subsystem-version 18
--mri-script=MRI-cmdfile . 4
--nmagic . 7
--no-check-sections . 10
--no-demangle . 10

--no-gc-sections . 11
--no-keep-memory . 11
--no-undefined . 11
--no-warn-mismatch . 12
--no-whole-archive . 12
--noinhibit-exec . 12
--oformat . 12
--omagic . 7
--output-def . 19
--output=output . 7
--print-map . 7
--relax . 12
--relax on i960 . 51
--relocateable . 8
--script=script . 8
--section-alignment . 19
--section-start sectionname=org 14
--sort-common . 14
--split-by-file . 14
--split-by-reloc . 14
--stack . 19
--stats . 14
--strip-all . 8
--strip-debug . 8
--subsystem . 19
--support-old-code . 52
--thumb-entry=entry . 52
--trace . 8
--trace-symbol=symbol . 9
--traditional-format . 14
--undefined=symbol . 8
--verbose . 14
--version . 9
--version-script=version-scriptfile 15
--warn-comon . 15
--warn-constructors . 16
--warn-multiple-gp . 16
--warn-once . 16
--warn-section-align . 16
--whole-archive . 16
--wrap . 16
-Aarch . 4
-akeyword . 4
-assert keyword . 9
-b format . 4
-Bdynamic . 10
-Bshareable . 13
-Bstatic . 10

64 Using LD, the GNU linker

-Bsymbolic . 10
-c MRI-cmdfile . 4
-call_shared . 10
-d . 4
-dc . 4
-dn . 10
-dp . 4
-dy . 10
-E . 5
-e entry . 5
-EB . 5
-EL . 5
-f . 5
-F . 5
-fini . 6
-g . 6
-G . 6
-hname . 6
-i . 6
-init . 6
-larchive . 6
-Ldir . 7
-M . 7
-m emulation . 7
-Map . 11
-n . 7
-N . 7
-non_shared . 10
-O level . 8
-o output . 7
-q . 8
-qmagic . 12
-Qy . 12
-r . 8
-R file . 8
-rpath . 13
-rpath-link . 13
-s . 8
-S . 8
-shared . 13
-soname=name . 6
-static . 10
-t . 8
-T script . 8
-Tbss org . 14
-Tdata org . 14
-Ttext org . 14
-u symbol . 8

-Ur . 9
-v . 9
-V . 9
-x . 9
-X . 9
-Y path . 9
-y symbol . 9
-z keyword . 9

.

. 44

/
/DISCARD/ . 34

:
:phdr . 36

=
=fillexp . 36

[
[COMMON] . 31

"
" . 44

>
>region . 36

A
ABSOLUTE (MRI) . 61
absolute and relocatable symbols . 46
absolute expressions . 46
ABSOLUTE(exp) . 46
ADDR(section) . 47
address, section . 28
ALIAS (MRI) . 61
ALIGN (MRI) . 61
align location counter . 47

Index 65

ALIGN(exp) . 47
allocating memory . 38
architecture . 25
architectures . 4
archive files, from cmd line . 6
archive search path in linker script 24
arithmetic . 43
arithmetic operators . 45
ARM interworking support . 52
ASSERT . 25
assertion in linker script . 25
assignment in scripts . 26
AT(lma) . 35
AT>lma region . 35

B
back end . 53
BASE (MRI) . 61
BFD canonical format . 54
BFD requirements . 53
big-endian objects . 5
binary input format . 4
BLOCK(exp) . 47
bug criteria . 57
bug reports . 57
bugs in ld . 57
BYTE(expression) . 32

C
C++ constructors, arranging in link 33
CHIP (MRI) . 61
COLLECT_NO_DEMANGLE . 19
combining symbols, warnings on . 15
command files . 21
command line . 3
common allocation . 4
common allocation in linker script 25
common symbol placement . 31
compatibility, MRI . 4
constants in linker scripts . 43
constructors . 9
CONSTRUCTORS . 33
constructors, arranging in link . 33
crash of linker . 57
CREATE_OBJECT_SYMBOLS . 33
cross reference table . 10

cross references . 25

current output location . 44

D
data . 32

dbx . 14

DEF files, creating . 19

default emulation . 19

default input format . 19

DEFINED(symbol) . 47

deleting local symbols . 9

demangling, default . 19

demangling, from command line . 10

discarding sections . 34

discontinuous memory . 38

DLLs, creating . 18, 19

dot . 44

dot inside sections . 44

dynamic linker, from command line 11

dynamic symbol table . 5

E
ELF program headers . 39

emulation . 7

emulation, default . 19

END (MRI) . 61

endianness . 5

entry point . 23

entry point, from command line . 5

entry point, thumb . 52

ENTRY(symbol) . 23

error on valid input . 57

example of linker script . 22

expression evaluation order . 45

expression sections . 46

expression, absolute . 46

expressions . 43

EXTERN . 25

66 Using LD, the GNU linker

F
fatal signal . 57
file name wildcard patterns . 30
FILEHDR . 40
filename symbols . 33
fill pattern, entire section . 36
FILL(expression) . 32
finalization function . 6
first input file . 24
first instruction . 23
FORCE_COMMON_ALLOCATION 25
FORMAT (MRI) . 61
functions in expressions . 46

G
garbage collection . 11, 31
generating optimized output . 8
GNU linker . 1
GNUTARGET . 19
GROUP(files) . 24
grouping input files . 24
groups of archives . 9

H
H8/300 support . 51
header size . 48
heap size . 18
help . 11
holes . 44
holes, filling . 32

I
i960 support . 51
image base . 18
implicit linker scripts . 49
INCLUDE filename . 23
including a linker script . 23
including an entire archive . 16
incremental link . 6
initialization function . 6
initialized data in ROM . 35
input file format in linker script . 25
input filename symbols . 33
input files in linker scripts . 23

input files, displaying . 8
input format . 4
input object files in linker scripts . 23
input section basics . 29
input section wildcards . 30
input sections . 29
INPUT(files) . 23
integer notation . 43
integer suffixes . 43
internal object-file format . 54
invalid input . 57

K
K and M integer suffixes . 43
KEEP . 31

L
l = . 39
L, deleting symbols beginning . 9
lazy evaluation . 45
ld bugs, reporting . 57
LDEMULATION . 19
len = . 39
LENGTH = . 39
library search path in linker script 24
link map . 7
link-time runtime library search path 13
linker crash . 57
linker script concepts . 21
linker script example . 22
linker script file commands . 23
linker script format . 22
linker script input object files . 23
linker script simple commands . 23
linker scripts . 21
LIST (MRI) . 62
little-endian objects . 5
LOAD (MRI) . 62
load address . 35
LOADADDR(section) . 48
loading, preventing . 35
local symbols, deleting . 9
location counter . 44
LONG(expression) . 32

Index 67

M
M and K integer suffixes . 43
machine architecture . 25
machine dependencies . 51
mapping input sections to output sections 29
MAX . 48
MEMORY . 38
memory region attributes . 38
memory regions . 38
memory regions and sections . 36
memory usage . 11
MIN . 48
MIPS embedded PIC code . 11
MRI compatibility . 61

N
NAME (MRI) . 62
name, section . 28
names . 44
naming the output file . 7
NEXT(exp) . 48
NMAGIC . 7
NOCROSSREFS(sections) . 25
NOLOAD . 35
not enough room for program headers 48

O
o = . 39
objdump -i . 53
object file management . 53
object files . 3
object formats available . 53
object size . 6
OMAGIC . 7
opening object files . 53
operators for arithmetic . 45
options . 3
ORDER (MRI) . 62
org = . 39
ORIGIN = . 39
output file after errors . 12
output file format in linker script . 24
output file name in linker scripot . 24
output section attributes . 34
output section data . 32

OUTPUT(filename) . 24

OUTPUT_ARCH(bfdarch) . 25

OUTPUT_FORMAT(bfdname) . 24

OVERLAY . 36

overlays . 36

P
partial link . 8

PHDRS . 39, 40

precedence in expressions . 45

prevent unnecessary loading . 35

program headers . 39

program headers and sections . 36

program headers, not enough room 48

program segments . 39

PROVIDE . 27

PUBLIC (MRI) . 62

Q
QUAD(expression) . 32

quoted symbol names . 44

R
read-only text . 7

read/write from cmd line . 7

regions of memory . 38

relative expressions . 46

relaxing addressing modes . 12

relaxing on H8/300 . 51

relaxing on i960 . 51

relocatable and absolute symbols . 46

relocatable output . 8

removing sections . 34

reporting bugs in ld . 57

requirements for BFD . 53

retain relocations in final executable 8

retaining specified symbols . 12

ROM initialized data . 35

round up location counter . 47

runtime library name . 6

runtime library search path . 13

68 Using LD, the GNU linker

S
scaled integers . 43
scommon section . 31
script files . 8
scripts . 21
search directory, from cmd line . 7
search path in linker script . 24
SEARCH_DIR(path) . 24
SECT (MRI) . 62
section address . 28
section address in expression . 47
section alignment, warnings on . 16
section data . 32
section fill pattern . 36
section load address . 35
section load address in expression 48
section name . 28
section name wildcard patterns . 30
section size . 48
section, assigning to memory region 36
section, assigning to program header 36
SECTIONS . 27
sections, discarding . 34
segment origins, cmd line . 14
segments, ELF . 39
shared libraries . 14
SHORT(expression) . 32
SIZEOF(section) . 48
SIZEOF_HEADERS . 48
small common symbols . 31
SORT . 30
SQUAD(expression) . 32
stack size . 19
standard Unix system . 3
start of execution . 23
STARTUP(filename) . 24
stderr redirect . 11
strip all symbols . 8
strip debugger symbols . 8
stripping all but some symbols . 12
suffixes for integers . 43
symbol defaults . 47
symbol definition, scripts . 26

symbol names . 44
symbol tracing . 9
symbol versions . 41
symbol-only input . 8
symbols, from command line . 10
symbols, relocatable and absolute 46
symbols, retaining selectively . 12
synthesizing linker . 12
synthesizing on H8/300 . 51

T
TARGET(bfdname) . 25
thumb entry point . 52
TI COFF versions . 52
traditional format . 14

U
unallocated address, next . 48
undefined symbol . 8
undefined symbol in linker script . 25
undefined symbols, warnings on . 16
uninitialized data placement . 31
unspecified memory . 32
usage . 11

V
variables, defining . 26
verbose . 14
version . 9
VERSION {script text} . 41
version script . 41
version script, symbol versions . 15
versions of symbols . 41

W
warnings, on combining symbols . 15
warnings, on section alignment . 16
warnings, on undefined symbols . 16
what is this? . 1
wildcard file name patterns . 30

Index 69

The body of this manual is set in
ptmr7t at 10.94398pt,

with headings in ptmb7t at 10.94398pt
and examples in pcrr7t at 8.75519pt.

ptmri7t at 10.94398pt and
ptmro7t at 10.94398pt
are used for emphasis.

70 Using LD, the GNU linker

i

Table of Contents

1 Overview . 1

2 Invocation . 3
2.1 Command Line Options . 3

2.1.1 Options specific to i386 PE targets . 17
2.2 Environment Variables . 19

3 Linker Scripts . 21
3.1 Basic Linker Script Concepts . 21
3.2 Linker Script Format . 22
3.3 Simple Linker Script Example . 22
3.4 Simple Linker Script Commands . 23

3.4.1 Setting the entry point . 23
3.4.2 Commands dealing with files . 23
3.4.3 Commands dealing with object file formats 24
3.4.4 Other linker script commands . 25

3.5 Assigning Values to Symbols . 26
3.5.1 Simple Assignments . 26
3.5.2 PROVIDE . 27

3.6 SECTIONS command . 27
3.6.1 Output section description . 28
3.6.2 Output section name . 28
3.6.3 Output section address . 28
3.6.4 Input section description . 29

3.6.4.1 Input section basics . 29
3.6.4.2 Input section wildcard patterns 30
3.6.4.3 Input section for common symbols 31
3.6.4.4 Input section and garbage collection 31
3.6.4.5 Input section example . 31

3.6.5 Output section data . 32
3.6.6 Output section keywords . 33
3.6.7 Output section discarding . 34
3.6.8 Output section attributes . 34

3.6.8.1 Output section type . 34
3.6.8.2 Output section LMA . 35
3.6.8.3 Output section region . 36
3.6.8.4 Output section phdr . 36
3.6.8.5 Output section fill . 36

3.6.9 Overlay description . 36
3.7 MEMORY command . 38
3.8 PHDRS Command . 39
3.9 VERSION Command . 41

ii Using LD, the GNU linker

3.10 Expressions in Linker Scripts . 43
3.10.1 Constants . 43
3.10.2 Symbol Names . 44
3.10.3 The Location Counter . 44
3.10.4 Operators . 45
3.10.5 Evaluation . 45
3.10.6 The Section of an Expression . 46
3.10.7 Builtin Functions . 46

3.11 Implicit Linker Scripts . 49

4 Machine Dependent Features . 51
4.1 ld and the H8/300 . 51
4.2 ld and the Intel 960 family . 51
4.3 ld’s support for interworking between ARM and Thumb code . . . 52
4.4 ld’s support for various TI COFF versions . 52

5 BFD . 53
5.1 How it works: an outline of BFD . 53

5.1.1 Information Loss . 53
5.1.2 The BFD canonical object-file format 54

6 Reporting Bugs . 57
6.1 Have you found a bug? . 57
6.2 How to report bugs . 57

Appendix A MRI Compatible Script Files 61

Index . 63

