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Tablel T300-914 9FRP unidirectional composite stiffn_ess matrix and density
1438 62 62 0 0 O
62 133 65 0 0 O
62 65 133 0 0 O
C=C'= GPa, p=1560 kg/m’
0 0 0 34 0 O
0 0 0 0 57 0
| 0 0 0 0 0 57]
Table 2 Typical fiber and matrix properties (www.matweb.com)
T300 carbon fiber S-glass fiber 914 epoxy resin
Tensile modulus, GPa 231 86.9 3.90
Poisson ratio 0.20 0.20 0.41
specific density 1.76 2.49 1.29
Table 3  Typical CFRP engineering elastic properties
E, ,GPa | E;,GPa | G,;,GPa | G,,,GPa Vir
T300-914 CFRP 140.0 10.05 5.70 3.40 0.313



http://www.matweb.com/

PROBLEM 1: FROM STIFFNESS TENSOR TO STIFFNESS MATRIX

Given the stiffness tensor ¢, do the following:
(a) verify the symmetry properties of the stiffness tensor ¢

(b) find the stiffness matrix C

Numerical example: T300-914 CFRP unidirectional composite material with ¢ given as

cl:,:,1,1) = c(:,:,1,2) = cli,:,1,3) =
1.0e+11 = 1.0e+09 = 1.0e+08 =
1.4380 4] 4] aQ 5.7000 0 0 Q 5.7000
Q 0.0620 4] 5.7000 a 0 0 a 0
o 0 0.0620 ] I} I} 5.7000 aQ 0
cl:,:1,2,2) = cl:,:1,2,3) =
cl:,:,2,1)y =
1.0e+10 *= 1.0e+08 =
1.0e+08 =
0.6200 0 0 0 aQ o}
aQ 5.7000 aQ a 1.3300 o I} a 3.4000
5.7000 0 0 0 o 0.6500 o 3.4000 o
aQ 0 aQ
cli,:,3,1) = cli,:,3,2) = cl:,:,3,3) =
1.0e+08 = 1.0e+08 = 1.0e+10 *
0 0 5.7000 0 4] 4] 0.6200 0 Q
1] 1] 1] 4] 4] 3.4000 4] 0.6500 4]
5.7000 0 0 li] 3.4000 a 0 0 1.3300
The units of ¢ are Pa.
Solution:
(a) verify the symmetry properties of the stiffness tensor:
Recall Eq. (2.21) which spells out the symmetry properties of the stiffness tensor as:
Ciikt = Cjikt = Cijik = Craij = Cjitk i,j,k1=1,2,3 (2.21)

There are four symmetry properties to be verified. This is done as follow:
(al) The relation c;;, = c;;, is verified because all the 2x 2 matrices given above are symmetric

(a2) The condition c;;, = c;, is verified because, for k=1, [=2,

5.7000 O

Ciin2

0

=10 5.7000

0

0
9

0| and c;y =10°|5.7000

0 0

5.7000 O
0 0= Ciit
0 0

Similarly, for k=1, 1=3, Ciit3 = Cija1 and for k=2,1=3, Ciin3 = Cijzn




(a3) The condition c;;; = cy;; is verified as follows. Say, k=1, [ =2; then, on the one hand, we

pick up Ciita directly as

0 57000 0

9
Cjp =10°|5.7000 0 0
0 0 0

On the other hand, we identify the elements ¢, as c;5;; =0, ¢;ppy =107 x5.7000, C1013 =0

Cip1 =107 x5.7000, €150 =0 €155 =0, €131 =0, €133, =0, €153 =0. Hence, ¢yy;; is given by

0 57000 0

9
C1p =10°| 57000 0 0
0 0 0

Similarly, for k=1, 1=3, C13i = Ciji3 and for k=2,1=3, Co3ij = Cijo3

(a4) The condition c;, =c;, is satisfied because, according to (a2), ¢;;, =c;, and then,
according to (al) ¢ = ¢z hence, ¢ = cyy
This concludes part (a).



(b) Find the stiffness matrix C. To get the elements of C, use the correspondence formulae
given in Eq. (2.35), i.e.,
e > Cn G PGy Gy > G Gy > Gy Gy 2G5 G 2> G

Comn > Cop Cogs P Coy Coppy > Coy Copgy P o5 Cpp = Gy
i3s3 > Cas Camz > Cay Cazm 2> Cas Caznp = Cyg

Cozo3 > Cu Co3 P> Cys Cog1p = Cyg

sym. ¢z > Css Ca1p > Csg

C1o12 = Cos

These correspondence formulae use the relation between tensor notation indices and_Voigt
matrix notation indices given by Table 2.1, i.e., 11=1, 22=2, 33=3, 12=21=6, 13=31=5, 23=32=4

After constructing the upper triangle and the diagonal of C, populate the lower triangle using the

symmetry property, i.e., Cl.]. =C].Z., 1=2,3, j=i-1,..,3. Theresultis

c =
1.0e+11 *
1.4380 0.0620 0.0620 0 0 0
0.0620 0.1330 0.0650 0 0 0
0.0620 0.0650 0.1330 0 0 0
4] 4] 4] 0.0340 4] 4]
0 0 0 0 0.0570 0
0 0 0 0 0 0.0570 Pa

This concludes the solution to Problem 1.



PROBLEM 2: FROM STIFFNESS MATRIX TO STIFFNESS TENSOR

Given the stiffness matrix C, find the stiffness tensor c.
Numerical example: T300-914 CFRP unidirectional composite material, Table 1.

Solution
Recall Eq. (2.36) giving the stiffness matrix as

Chh G Gy Gy Gy Gy
Cu Gy Cy Gy Gy Gy
|G 2 Ca G G G (stiffness matrix) (1)
Cu Cp Cpy Cy Cp5 Cy
Coi Co Gy Gy G5 Cog
1Coi Coo Cos Cos Cos Cog
Use the correspondence formulae given in Eq. (2.35), i.e.,
ci1 2> Ci G 2 Cn Gz 2> G Gy 2 Gy g >G5 Gy > G
Coomn > Cop Cogs P Cog Coppy > Coy Copgy P o5 Coppp > Cyg
C3333 > Cas Cazz > Cay Cazp 2> Cas Cz10 = Cig (2.35)
Cop3 > Cay Oz > Cys Cogpp > Cyg
sym. 31 > Css Caa1p > Cse
€121 > Ceg |

These correspondence formulae use the relation between tensor notation indices and Voigt
matrix notation indices given by Table 2.1, i.e., 11=1, 22=2, 33=3, 12=21=6, 13=31=5, 23=32=4

For example, the stiffness tensor element c,,,, is the same as the stiffness matrix element C,,
because 23=4 and 12=6. This concept can than be extended to the 3x3 submatrices of the
stiffness tensor ¢ =c;;, . For example, c;;; submatrix of the tensor ¢ =c;;, can be written as

Cll C6l C51
¢in=|Ca Cu Cy

C51 C4l C31
where the last stiffness matrix elements Cpq have the second index always 1 because 11=1,
whereas the first index follows the sequence 11=1, 12=6, 13=5, 21=6, 22=2, 23=4, 31=5, 32=4,
33=3. This rule is extended to the other eight submatrices of the stiffness tensor ¢ = Ciig -
One can take advantage of the symmetry properties Eq. (2.21), i.e., Ciige = Cija 10 reduce the
amount of work.



Upon calculation, one gets, in Pa units,
cli,:,1,1) = cl:i,:,1,2) cli,:,1,3) =
1.0e+11 * 1.0e+09 1.0e+09 *
1.4380 0 ) ] 5.7000 0 ] Q 5.7000
0 D.0620 0 5.7000 a 0 ] ] 0
0 0 0.0620 0 4] o 5.7000 [a] o
c 2,2 cli,:,2,3
CI: , '2'1] = |: Frrsr :l |: Frrer J
1.0e+10 1.0e409 *
1.0e+09 *
0.6200 ] o 0 0 o
° =-7000 © 0 1.3300 o o 0 3.4000
5.7000 0 0 ) )
0 0 0.6500 ] 3.4000 ]
0 0 0
cli,:,3,1) = cl:,:,3,2) cl:,:,3,3) =
1.0e+09 * 1.0e409 1.0e+10 *
] ] 5.7000 o 0 ) 0.6200 o a
0 0 o o 0 3.4000 0 0.6500 0
5.7000 ] ] o 3.4000 a ] 0 1.3300

This concludes the solution to Problem 2.




PROBLEM 3: ISOTROPIC COMPLIANCE AND STIFFNESS MATRICES
Given the engineering material properties of an isotropic material such as aluminum and steel, do
the following:

(a) find the compliance matrix S

(b) find the stiffness matrix C

(c) verify that the compliance matrix and stiffness matrix are in inverse relationship, i.e.,

Cc=5"
Numerical values:

Aluminum Steel

(7075-T6) (AISI 4340 normalized)
Elastic modulus, E 71.7 GPa 205 GPa
Poisson ratio, v 0.33 0.29

http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA7075T6
http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=M434AE

Solution:
(a) to find the compliance matrix S, recall Eq. (2.48), i.e.,

'1/E -v/[E -v/JE 0 0 0
-v/[E 1JE -v/E 0 0 0
-v/[E -v/[E 1/E 0 0 0

0 0 0 1G 0 0

0 0 0 0 1/G 0
0 0 o 0 0 1G]
The shear modulus G is calculated in terms of elastic modulus E and Poisson ratio v as

Sisotropic _

(2.48)

G=E/2(1+v). Upon calculation, one gets, in Pa~! units,

5 aluminum =

1.0e-10 *

0.1385 —-0.0460 —-0.0460 0 0 0
—-0.0460 0.1385 —-0.0460 0 0 0
—-0.0460 —-0.0460 0.1385 a a a

0 0 0 0.3710 0 ]

0 0 0 0 0.3710 0

0 0 0 0 0 0.3710 _
Pa~


http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA7075T6
http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=M434AE

5 =ateel =

1.0e-10 *
0.0488 -0.0141 -0.0141 0 0 0
-0.0141 0.0488 -0.0141 0 0 0
-0.0141  -0.0141 0.0488 0 0 0
0 0 0 0.1259 0 0
0 0 0 0 0.1259 0
0 0 0 0 0 0.1259
(b) to find the stiffness matrix C, recall Eq. (2.47), i.e.,
A+2u A A 0 0 O
A A+2u A 0 0 O
Cisotropic _ A A A+ 2/” 0 0 O
0 0 0 u 0 0
0 0 0 0 u O
0 0 0 0 0 uj
The Lame constants A, u are calculated with Eq. (2.45), i.e.,
)
+Vv — 24V
(Lame constants)
1
u=G= E
2(1+v)
Upon calculation, one gets, in Pa units,
C aluminum =
1.0e411 *
1.0623 0.5232 0.5232 0 0 0
0.5232 1.0623 0.5232 0 0 0
0.5232 0.5232 1.0623 0 0 0
0 0 0 0.2695 0 0
0 0 0 0 0.2695 0
0 0 0 0 0 0.2695

Pa~!

Pa

(2.47)

(2.45)



C =teel =

1.0e+11 *

2.6864 1.0873 1.0873 0 0 0

1.0873 2.6864 1.0873 0 0 0

1.05873 1.05873 2.6864 0 0 0
0 0 0 0.75946 0 0
0 0 0 0 0.7946 0
0 0 0 0 0 0.7946

Pa

(c) to verify that the compliance matrix and stiffness matrix are in inverse relationship, i.e.,

C=S", one performs the multiplication of the two matrices and verify that the result is the
identity matrix, i.e., CS=1I. Upon calculation, one gets

verify C*5=I for aluminum =

1.0000 —-0.0000 —-0.0000 0 0 0
—-0.0000 1.0000 —-0.0000 0 0 0
—-0.0000 —-0.0000 1.0000 0 0 0

0 0 0 1.0000 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 1.0000

verify C*5=1 for steel =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

This concludes the solution to Problem 3.



PROBLEM 4:
ENGINEERING PROPERTIES EXTRACTED FROM STIFFNESS MATRIX

Consider a unidirectional composite material given by its stiffness matrix C. Do the following:
(@) recall the transversely isotropic relations that must exist between certain elements of the
stiffness matrix C and verify that they are satisfied numerically.
(b) calculate the compliance matrix S
(c) recall the transversely isotropic relations that must exist between certain elements of the
compliance matrix S and verify that they are satisfied numerically

(d) extract the engineering constants E; ,E;, G,V 1,V

(e) calculate G,, from the appropriate element of the stiffness matrix C and verify that it is
compatible with the engineering constants deduced at item (d) above.

Numerical example: T300/914 CFRP, Table 1
Solution

(@) The transversely isotropic relations that must exist between certain elements of the stiffness
matrix are: C,, =Cay, Cjp =Cy3, Cpy =(Cpy —Ca3)/2, Co5 =Cyy.
The first, second, and fourth properties are verified by inspection since C,, =C,; =13.3 GPa,

C,=C;3=62GPa, C;;=C, =57 GPa. The third property is verified in the MATLAB
program and yields
calculated C44=(C(2,2)-Ci(2,3))/2 and original C(4,4) =

1.0e+09 *

3.4000 3.4000
Pa

(b) The compliance matrix S is calculated by the inversion of the stiffness matrix C, i.e.,
S=C". Upon calculation, one gets

5 =
1.0e-09 *

0.0071 -0.0022 -0.0022 0 0 0
-0.0022 0.05855 -0.0476 0 0 0
-0.0022 -0.0476 0.05855 0 0 0

0 0 0 0.25941 0 0
0 0 0 0 0.1754 0
0 0 0 0 0 0.1754

Pa!

(c) The transversely isotropic relations that must exist between certain elements of the

compliance matrix are: Sy, =S435, S;5 =513, Syy =2(55) =553) Co5 =Cs .

The first, second, and fourth properties are verified by inspection since
-1 -1 -1 .

S,y =543 =-0.0995 GPa™", S, =5,,=-0.0022 GPa™", S,; =S5, =0.1754 GPa™". The third

property is verified in the MATLAB program and yields

10



calculated 544=2*(5(2,2)-5(2,3)) and original 5(4,4) =
1.0e-09 *
0.2941 0.2941 Pa_l

Note: the numerical verifications listed above are done in short MATLAB format. The interested

reader can verify that the same is true in the long MATLAB format by uncommenting the
instruction ‘format long’ in the MATLAB code.

(d) the engineering constants E; ,E,G,,v,;,v,, are calculated from the compliance matrix S

as follows:
E = 1/5(1,1) , Ep = 1/5(2,2) , Gip = 1/5(5,5) o Vir==S(,2)E;, G = 1/5(5,5)
Upon calculation, one gets
EL, ET, GLT =
1.0e+11 *

1.3992 0.1005 0.0570
Pa

nul.T, nu23i =
0.3131 0.4782

(€) Gy, =C(4,4) as well as G,; = E;/2(1+v,,) . The two values agree:
G23, G23_nul3, difference (G23-G23_nuli) =

1.0e+09 *
3.4000 3.4000 —-0.0000
Pa

This concludes the solution to Problem 4.
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PROBLEM 5:
CFRP PROPERTIES ESTIMATED FROM FIBER AND MATRIX PROPERTIES

Recall the formulae for estimating the elastic properties E;,E;,v;,G,,Gy; Of @ composite
using the fiber and matrix properties and the volume fraction ». In addition, develop a formula
for estimating the composite density p.

Numerical example: calculate these properties for a 60% fiber volume fraction T300-914
CFRP composite with the fiber and matrix properties given in Table 2.

Solution:
Recall Egs. (2.80), (2.91), (2.100), (2.109), (2.111), (2.112), i.e.,
E = Efvf +E, v, (longitudinal modulus) (2.80)
-1
E; = (E;lv I E;}vm) (transverse modulus) (2.91)
Vip ViU +V, 0, (in-plane Poisson ratio) (2.100)

-1
T = G}lvf + G;}vm) (in-plane shear modulus) (2.109)

Gur =
1+v,+(1-v/)G, /G
f from) f .
G =G (CAM in-plane shear modulus) (2.111)
m[lvf +(1+vf)Gm/Gf

vf T30y

" N30, +vme/Gf
. 3-4v, +G, /G,
» 4(1-v,)

The composite density can be calculated from the constituent densities as

P=pP0s+P,0, (composite density)

G,; =G
(transverse shear modulus) (2.112)

For numerical calculations with given vy, recall the volume fraction balance equation Eg.

(2.72), i.e.,
Vp 40, +0, = 1 (volume fraction balance equation) (2.72)

Assume zero voids, v, =0; hence, the matrix volume fraction v, can be calculated from the
fiber volume fraction v as

v,, =1-v, (matrix volume fraction)

12



Numerical results:

T300 carbon fiber 814 epoxy CFRP results
volume fractiom: v, vm =

4.7687

0.e000 0.4000
Modulus, GPa: Ef, Em, EL, ET =
231.0000 3.9000 140.1&00 9.50892
Shear modulus, GPa: Gf, Gm, GLT, GLT CaM, G23, =
896.2500 1.3830 3.3845 S5.2500
Poisson ratio: nu f, nu m, nu LT =
0.2000 0.4100 0.2840
density, kg/m™3: rho f, rho m, rho =
1760 12390 1572

This concludes the solution to Problem 5.

13



PROBLEM 6:
GFRP PROPERTIES ESTIMATED FROM FIBER AND MATRIX PROPERTIES

Recall the formulae for estimating the elastic properties E;,E;,v;,G,,Gy; Of @ composite
using the fiber and matrix properties and the volume fraction ». In addition, develop a formula

for estimating the composite density p.

Numerical example: calculate these properties for a 60% fiber volume fraction S-glass-914-
epoxy GFRP composite with the fiber and matrix properties given in Table 2.

Solution:
Recall Egs. (2.80), (2.91), (2.100), (2.109), (2.111), (2.112), i.e.,
E = Efvf +E, v, (longitudinal modulus) (2.80)
-1
E. = (E}lv % E;}vm) (transverse modulus) (2.91)
Vir VUV, 0, (in-plane Poisson ratio) (2.100)
-1
G.p = (G}lv £+ G,;lvm) (in-plane shear modulus) (2.109)
1+v,+(1-v,)G, /G
G“M G ! foom S CAM in-plane shear modulus 2.111

Uf 1130,
" 530, + 05 Gm/Gf
. 3-4v, +Gm/Gf
2 4(1-v,)
The composite density can be calculated from the constituent densities as
P=P0s+ Py0,, (composite density)

Gy =G

(transverse shear modulus) (2.112)

For numerical calculations with given vy, recall Eqg. (2.72) given the volume fraction balance

equation, i.e.,
Vf 0, +0, = 1 (volume fraction balance equation) (2.72)

Assume zero voids; hence, the matrix volume fraction v, can be calculated from the fiber
volume fraction v as

v, =1- vy (matrix volume fraction)

14



Numerical results:

E-gla== 914 epoxy GFRP resultcs
volume fractionm: wf, vm =

0.6000 0.4000
Modulu=, GPa: Ef, Em, EL, ET =
86.9000 3.9000 53.7000 89,1350
Shear modulus, GPa: G, Gm, GLT, GLT CaM, GZ3, =
36.2083 1.3830 3.2701 4.,8446 4.4538
Poiszon ratio: nmu f, nmu m, nu LT =
0.2000 0.4100 0.2840
den=sity, kg/m"3: rho £, rho m, rho =
2450 1290 2010

This concludes the solution to Problem 6.
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PROBLEM 7:
VOLUME FRACTION ESTIMATION FROM COMPOSITE PROPERTIES

Estimate volume fraction vy from the composite properties knowing the fiber and matrix

properties:

(a) estimate v f from density
(b) calculate the compliance matrix S and the engineering elastic properties
(c) estimate v, from elastic properties as follows

1. from E,, E;

2. from G,,, GioM
3. from G,,

4. from v, ;

(d) discuss your results
Numerical example: T300-914 CFRP, Table 1.

Solution:
Assume zero voids; hence, the matrix volume fraction v, can be calculated from the fiber

volume fraction v, as

v,, =1-v, (matrix volume fraction)

(a) the composite density is given by
P=pgUs+ P, 0, =PV + p,(1=v0)=(pr = )0, + p,,
Upon solution,
vl = P~ P
Pr = P

Numerical value:
vE density =
0.5745

(b) The compliance matrix S is the inverse of the stiffness matrix C, i.e., S= ct.
Numerical value:

16



compliance matrix 5, 1/Pa =

1.0e-09 *

0.0071 -0.0022 -0.0022 0 0 0
-0.0022 0.0855 -0.0476 0 0 0
-0.0022 -0.0476 0.0835 4] 4] 4]

0 0 0 0.25941 0 0
0 0 0 0 0.1754 0
0 0 0 0 0 0.1754

The engineering elastic properties E,,E;,v,;,G,;,G,; are related to the elements of the
compliance matrix S as given by Eq. (2.67), i.e.,

1 1%
Sy =— S.. =—-_23
E, 2 E
1% 1
510 =53 = _# Sy = e (2.67)
L 23
1 1
Sy =533 =— 555 :S66 ==
Er Grr

Hence, the engineering elastic properties can be calculated from the compliance matrix as

E, = 1/511 , Er = 1/522 , Gy = 1/544 , G = 1/555 , Vir =—SpkE;
Numerical value:

nul.T =
Modwli, GPa: EL, ET, GLT, G223 = 0.3131

1389.9172 10.0520 o.7000 3.4000 GPa

(c1) To estimate the volume fraction from E, , apply to E, the same argument that was applied
to p,i.e,

UJIEL _ EL B im
f m
Numerical value:
vE EL =
0.5989

To estimate the volume fraction from E;, recall Eq. (2.91), i.e.,

-1

E. = (Ej:lv IS E,;lvm) (transverse modulus) (2.91)

or
-1 -1 -1
Ef' =E;'v; +E, 0,
To solve, write
-1 -1 -1 1 -1 -1

Er =E;v,+E, (1-v,)=(E; —E, )o,+E,

Upon solution,

17



Ef—E;
Numerical value:
vE ET =

0.6225

(c2) To estimate the volume fraction from G, ., recall Eq. (2.109), i.e.

Gip = (G0 +G;110m)_1

or
Gir =Gv,+Glv,
To solve, write

1 -1 -1 -1 -1
Gr= Gf vf+Gm (l—vf):(Gf -G, )vf+Gm
Upon solution,
-1 -1
ofir - AT
G, -G,
Numerical value:
vE GLT =
0.7684

To estimate the volume fraction from G2™ calculated with the CAM expression, recall Eq.

(2.111), i.e.,
1+v,+ G
1- v+ 1+v m/G

which can be rearranged as
GEaM 1+vf+(1—vf)Gm/Gf
G 1—vf+(1+vf)Gm/Gf

m

Addition and subtraction of numerator-denominator yields
Gt +G, _ 1+G,/G;

L _
GiM -G, v,(1-G,/Gy)

Upon solution,
o _Gr+Gu G +G,

0 =
f
G,G, GG,

Numerical value:
vi GLT CBM =
0.6273

18



(c3) To estimate the volume fraction from G,,, recall Eq. (2.112), i.e.,

Vs + 1130, 3-4v,+G, /G,
G, =G, , My = (2.112)
7723vm+vme/Gf 4(1-v,))
Division by G, , substitution of v, = 1—vf , and expansion one gets
G G
G—231723(1—vf)+G—2f30f =0, +1p5(1-0;)
Upon solution,
-1
Gy _ 1-Gy /G,
v = 1+
123(G3 /G, —1)
Numerical value:
vE G23 =
0.4682
(c4) To estimate the volume fraction from v, ., recall Eq. (2.110), i.e.,
Vir VUV, 0, (2.100)

Hence,

,UVLT _ VLT _Vm
foy
Vf Vm

Numerical value:
T.Tf_n'.lLT =
0.4613

(d) Discussion:
It is apparent that not all the volume fraction estimations give the same numerical results. The
following comments can be made:

(i) The volume fraction estimates from elastic constants E;, and E; are close to 0.6, which
also close to the estimate from density rho.

(if) The volume fraction estimate from G, are around 0.77 which is far away from (i)

(ili)However, the volume fraction estimate from Gf{}M is 0.63 which is closer to (i) than the
estimate from G, . It seems that CAM formula Eq. (2.111) is a better than the simpler
Eq. (2.109) in estimating the in-plane shear modulus G, ;

(iv) The volume fraction estimates from G,; and from v, ;. are around 0.46, which is much

smaller that (i). It seems that the estimation of G,, and v, with Egs. (2.100), (2.112),

respectively, is somehow imprecise. These aspects may need to be verified by
experiments.
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(v) In view of (i) and (iii), the most probable volume fraction value would be 0.6. A mean

volume fraction v;”ea” can be calculated as well as its standard deviation vj}d and

relative standard deviation vjfd% = (v}"ea“ / vj}d )><100%

Numerical value:
vf mean = vE =std = vE =std¥ =
 0.6058 0.0243 4. 0088
The relative standard deviation of 4% is rather small, hence the estimate of 0.6 volume fraction
seems to be quite credible.

This concludes the solution to Problem 7.
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PROBLEM 8: PLOT ESTIMATED ENGINEERING PROPERTIES
Plot the estimated engineering elastic properties E, ,E;,v;;,G;;,G,, and density p vs. volume
fiber fraction v, for CFRP and GFRP composites. Discuss your results.

Numerical example: fiber and matrix properties from Table 2; fiber volume fraction up to
80%.

Solution:
Recall Egs. (2.80), (2.91), (2.100), (2.109), (2.111), (2.112), i.e.,
E = Efvf +E, v, (longitudinal modulus) (2.80)
-1
E; = (E}lv I Er‘nlvm) (transverse modulus) (2.91)
Vir =VpUp+V, 0, (in-plane Poisson ratio) (2.100)
-1
G.p = (G}lv o+ G;}vm) (in-plane shear modulus) (2.109)
1+v,+(1-v,)G, /G
G“M -G ! fom J CAM in-plane shear modulus 2.111
LT m[l—vf+(1+vf)Gm/Gf ( P ) (@11

Vg 1130,
" 530, + 05 Gm/Gf
. 3-4v, +Gm/Gf
23 41-v,)
The composite density can be calculated from the constituent densities as
P=P0s+Py0,, (composite density)

Gy =G

(transverse shear modulus) (2.112)

For numerical calculations with given vy recall Eqg. (2.72) given the volume fraction balance

equation, i.e.,
Vf 0, +0, = 1 (volume fraction balance equation) (2.72)

Assume zero voids; hence, the matrix volume fraction v, can be calculated from the fiber
volume fraction v as

v, =1- vy (matrix volume fraction)
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Numerical results for CFRP composite:
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Numerical results for GFRP composite:
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Discussion of results

a) Longitudinal modulus EL and the density rho increase linearly with volume fraction

b) In-plane Poisson ratio nuL T decreases linearly with volume fraction

c) Transverse modulus ET increases monotonically with volume fraction in an accelerating
manner. It reaches about half maximum at around 60% volume fraction

d) Shear modulus GLT is estimated better by the CAM model (We base this assertion on the
fact that it seems to get values closer to GLT when the CAM model is used.)

e) Shear moduli GLT and G23 increase monotonically with volume fraction in an
accelerating manner. They reach about half maximum at around 60% volume fraction

This concludes the solution to Problem 8
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PROBLEM 9: APPROXIMATE PROPERTY ESTIMATORS
For CFRP and GFRP composites, plot vs. volume fiber fraction vy the approximation formulae

given in Section 2.3.4.6 for estimating the engineering elastic properties in comparison with the
formulae given in preceding sections. Discuss your results.

Numerical example: fiber and matrix properties from Table 2; fiber volume fraction up to
80%.

Solution:
Recall the approximation formulae of Egs. (2.114), (2.115), (2.116), (2.117), in comparison with
the corresponding formulae from preceding sections, i.e.,

E] = Efvf (approx. longitudinal modulus) (2.114)
E = Efvf +E, v,  (longitudinal modulus) (2.80)
Ef =E, /v,  (approx. transverse modulus) (2.115)
E,= (E;lv IS Elv )_1 (transverse modulus) (2.91)
Gi; =G, /v,  (approx. in-plane shear modulus) (2.116)
Gyr = (G;lvf +G,lv,, )_1 (in-plane shear modulus) (2.109)
GeMe =G Loy (approx. CAM in-plane shear modulus) (2.117)
f
Gf?M =G, !Trz; 18;2;;2:?2;] (CAM in-plane shear modulus) (2.111)

For numerical calculations with given vy, recall Eg. (2.72) given the volume fraction balance

equation, i.e.,
Vp 40, +0, = 1 (volume fraction balance equation) (2.72)

Assume zero voids; hence, the matrix volume fraction v, can be calculated from the fiber
volume fraction v, as

v,, =1-v, (matrix volume fraction)
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Numerical results:
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Discussion:

The differences between the full formulae and the approximate formulae is very small.
These differences are larger for GFRP than for CFRP composites

For longitudinal modulus E, , the difference is noticed in the zero fiber volume fraction
range

For transverse and shear moduli E;,G, -, the differences are noticed in the large volume
fraction range

At a practical value of 60% fiber volume fraction, v f =(0.6, the differences are almost

imperceptible

This concludes the solution to Problem 9.
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PROBLEM 10: ESTIMATE 3D AND 2D COMPLIANCE AND STIFFNESS MATRICES

(a) Estimate the 3D compliance and stiffness matrices from the engineering properties.
(b) Estimate the 2D compliance and stiffness matrices from the engineering properties
(c) Discuss your results
Numerical example: engineering properties of T300-914 CFRP unidirectional composite of
Table 3.

Solution:

(a) Recall Eqg. (2.65) that gives the 3D compliance matrix S in terms of engineering constants,
e,

1/E,  -viy/E, -vi:/E, 0 0 0
—vir/E.  YE.  —vy/E. 0 0 0
g - ~vir/Ey —vays[Er E; 0 0 0 (2.65)
0 0 0 1/G,, 0 0
0 0 0 0 1G,; 0
0 0 0 0 0 1/G;r|

Invert the 3D compliance matrix S to get the 3D stiffness matrix C according to Eqg. (2.69), i.e.,
c=5" (2.69)

(b) Recall Eq. (2.121) that gives the 2D compliance matrix in terms of engineering constants,
ie.,

YVE, — -vii/E 0
S =|-v,./E, VE 0 (2.121)
0 0 1/G,;

Invert the 2D compliance matrix S%P to get the 2D stiffness matrix Q according to Eq. (2.69),
ie.,

Q=(s*)" (2.69)

Numerical results:

(@)
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1.0e-03 *
0.0071 -0.0022 -0.0022 0 0 0
-0.0022 0.0995 -0.0476 0 0 0
~0.0022  -0.0476 0.0995 0 0 0
0 0 0 0.2941 0 0
0 0 0 0 0.1754 0
0 0 0 0 0 0.1754 pg!
C =
1.0e+11
1.4388 0.0613 0.0613 0 0 0
0.0612 0.1323 0.0642 0 0 0
0.0613 0.0643 0.1323 0 0 0
0 0 0 0.0340 0 0
0 0 0 0 0.0570 0
0 0 0 0 0 0.0570 py
(b)
5 2D =
1.0e-09
0.0071 -0.0022 0
-0.0022 0.0995 0
0 0 0.1754 pa-1
Q:
1.0e+11
1.4039 0.0317 0
0.0317 0.1012 0
0 0 0.0570 pg,

(c) Discussion

IﬂsmmmuantMZDcmnmmmemmﬂxSmisaammmeMHESDcmnmmmemmﬁxS

since the elements of S$?° can be identified among the elements of S, both symbolically and
numerically. However, the 2D stiffness matrix Q is not a submatrix of the 3D stiffness matrix

C and the values of respective elements are clearly different.

This concludes the solution to Problem 10.
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PROBLEM 11: ROTATE 2D COMPLIANCE AND STIFFNESS MATRICES

(@) Calculate the rotated 2D compliance matrix for a range of & values.

(b) Calculate the rotated 2D stiffness matrix for a range of € values.

(c) Calculate the rotated 3D stiffness matrix directly using the T matrix and compare the
results with that the result is same with that of item (b)

(d) Discuss your results

Numerical example: T300-914 CFRP unidirectional composite and & =0°,30°,45°,60°,90°
Solution:

(@) the rotated 2D compliance matrix is given by Eq. (2.155), i.e.,
S=T'S'T (2.155)
where T is the rotation matrix given by Eq. (2.131) i.e.,
cos” 6 sin’ @ 2sinfcosd
T= sin® @ cos> @ —2sinfcosf (2.131)

—sinfcosd sinfcosf cos’O—sin’l

and T' is its transpose of T. The matrix S’ is the 2D compliance matrix in material axes given
by Eqg. (2.121), i.e.,

1/ E, _VLT/ E, 0

S'=|-v,;/E, 1E 0 (2.121)
0 0 ]/GLT
Numerical results in Pa™':
S’ in material axes:
50 =
1.0e-09 *
0.0071 -0.0022 0
-0.0022 0.0995 0
0 0 0.1754

S in rotated axes at various angles of rotation:

S5(0 deg) =

1.0e-09 *
0.0071 -0.0022 0
-0.0022 0.09395 0
0 0 0.1754

5(30 deg) =

1.0e-09 *
0.0423 -0.0143 -0.053%9
-0.0143 0.0885 -0.0261
-0.0539 -0.0261 0.1272
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5(45 deg) =

1.0e-09 =
0.0694  -0.0183
-0.0183 0.0694
-0.0462 -0.0462
5(60 deg) =
1.0e-08 =
0.0885 -0.0143
-0.0143 0.0423
-0.0261 -0.0539
5(90 deg) =
1.0e-09 *
0.0995  -0.0022
-0.0022 0.0071
0 0

-0.0462
-0.04962
0.1111

-0.0261
-0.0539
0.1272

0
0
0.1754

(b) to get the 2D stiffness matrix Q, invert the 2D compliance matrix S according to Eq.

(2.124), i.e.,

Numerical results in Pa:

Q(0 deg) =
1.0e+11 *
1.4099 0.0317
0.0317 0.1012

0 0

0
0
0.0570

Q-=s

Q in rotated axes at various angles of rotation:

Q130 deg) =
1.0e+10 *
8.5403 2.6039
2.6039 1.99&8
4.1535 1.5130
Q45 deg) =
1.0e+10 *
4.5062 3.3662
3.3662 4.5062
3.2718 3.2718
Q60 deg) =
1.0e+10 *
1.5%9&8 2.6039
2.603%9 8.5403
1.5130 4.153%5

4.1539
1.5130
2.8571

3.2718
3.2718
3.6154

1.5130
4.1338
2.8371
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Q90 deqg) =

1.0e+11 *

0.1012 0.0317 0

0.0317 1.4059 0
0 0 0.0570

(c) Use Eq. (2.146) to calculate the rotated stiffness matrix as

Q=T'Q'T" (2.146)
where Q'is the material axes stiffness and T is the rotation matrix. Then calculate the relative
difference between the stiffness matrix values calculate here and in (b).

Numerical results, in Pa;
Q{30 deg) via Eq. (2.146) =

1.0e+10 *
8.5403 2.6038 4.1539
2.6039 1.99&8 1.5130
4.1538 1.5130 2.8571
diff Q{30 deg) = (inv(5) - Q wvia Eqg. (2.146))/maxQ0 =
1.0e-15 *
0 -0.1082 -0.0541
0.1353 0.0271 0.1082
0 -0.0676 0.0271

Q(45 deg) via Eg. (2.146) =

1.0e+10 *
4.5062 3.3062 3.2718
3.3662 4.5062 3.2718
3.271%8 3.271%8 3.6194
diff Q{45 deg) = (inv(5) - Q via Eqg. (2.146))/maxQ0 =
1.0e-15 *
0.7035 0.7305 0.6433
0.7035 0.7035 0.6493
0.6493 0.6493 0.6493

Q{60 deg) wia Eg. (2.148) =

1.0e+10 *
1.9%68 2.60389 1.5130
2.6039 8.5403 4.153%9
1.5130 4.153%8 2.8571
diff Q{60 deg) = (inv(5) - Q via Eg. (2.146))/maxQd =
1.0e-15 *
0O 0O 0.0406
-0.2164 -0.4329 -0.2706
-0.0947 -0.1623 -0.0541
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0(90 deg) via Egq. (2.146) =

1.0e+11 *

0.1012 0.0317 0

0.0317 1.409%9 0

0 0 0.0570

diff Q{90 deg) = (inv(5) - Q via Eg. (2.146))/maxQ0 =

1.0e-15 *

0 0 0

0.0034 0.21649 0

0 0 0

(d) Discussion of results
e The compliance matrix for d=0° is identical to the original compliance matrix in
material axes as expected
e The compliance matrix at & =90° correspond to the compliance matrix at & =0° having
the 1 and 2 axes interchanged; same for the stiffness matrix
o At 0=45°, the (1,3) and (2,3) elements are identical since the corresponding sine and
cosine terms are equal.

e the (1,3) and (2,3) elements at & =60° are mirror image of those at 8 = 30° as expected
Similar observations can be made about the stiffness matrix.

o the relative difference between the stiffness matrix values calculated at item (b) vs. item
(c) is or order 1.0e-15, which is the machine precision. Hence, we conclude that both
routes give same answer, but route (b) is faster because route (c) requires the an
additional matrix inversion operation.

This concludes the solution to Problem 11.
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PROBLEM 12: PLOT ELEMENTS OF THE ROTATED 2D STIFFNESS MATRIX
Plot the variation with 6 of Q(1,1), Q(2,2), Q(3,3), Q(1,3), Q(2,3). Discuss your results
Numerical example: T300-914 CFRP unidirectional composite: 8 =0°,...,90°

Solution:
The rotated 2D compliance matrix is given by Eq. (2.155), i.e.,

S=T'S'T (2.155)
where T and T are the rotation matrix Eq. (2.131) and its transpose, respectively, i.e.,
cos® 6 sin” @ 2sinfcosd
T= sin® @ cos> @ —2sinfcosf (2.131)
—sinfcosd sinfcosh cos’O—sin’ O
whereas S’ is the 2D compliance matrix in original axes given by Eq. (2.65), i.e.,
1/EL _VLT/EL 0
S'=|-v;/E, 1E 0 (2.121)
0 0 1/ Gr

The 2D stiffness matrix Q, is the inverse of the 2D compliance matrix Saccording to Eq. (2.69),
i.e.,

Q=5" (2.69)
These calculations are done and stored for a range of €. Then, the elements Q(1,1), Q(2,2),
Q(3,3), Q(1,3), Q(1,3) are retrieved and plotted.

Numerical results:

CFRP T300-914

CFRP T300-914

CFRP T300-914

150 40 50
Qi1 Q13
Q22 35 a0 Q23
(4] (4]
o o
30
O 100 @ .
— o =30
o o
~ (‘D.. 25 ﬂ
=] ) Ie]
= o5 20 =20
= = @
~ 50 o -
bl 15 bl
=] Ie]
10
10
1] 5 1]
0 20 40 60 80 0 20 40 50 80 0 20 40 80 80
0° a° a°
Discussion:

e The elements Q(1,1) and Q(2,2) vary inversely, one is maximum at 6=0°, the other at
6=90°. This corresponds to E, and E; switching roles.

e The shear element Q(3,3) is minimum at #=0° and 90°, but maximum at 45°. This
corresponds to Q(3, 3) =G at 6=0° and 90°, but taking a much larger value at 45° due
to diagonal fiber position.

e The shear-axial coupling elements, Q(1,3), Q(2,3) are maximum at £=30° and 60°,

respectively.
This concludes the solution to Problem 12.
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PROBLEM 13: ROTATE 3D COMPLIANCE AND STIFFNESS MATRICES

(@) Calculate the rotated 3D compliance matrix for a range of & values.

(b) Use the rotated 3D compliance matrix to calculate the rotated 3D stiffness matrix

(c) Calculate the rotated 3D stiffness matrix directly using the T matrix and compare the
results with that the result is same with that of item (b)

(d) Discuss your results

Numerical example: T300-914 CFRP unidirectional composite and & =0°,30°,45°,60°,90°

Solution:
(@) the rotated 3D compliance matrix is given by Eq. (2.203), i.e.,
S=T'S'T (2.203)
where T is the 3D rotation matrix given by Eq. (2.179) i.e.,
| cos> 0 sin® @ 0 O 0 2sinfcosé |
sin? 6 cos’d 0 0 0 —2sinfcosé
T= 0 0 10 0 0 (2.179)
0 0 0 cos@® -—sind 0
0 0 0 sind cos@ 0
| —sinfcos@ sinflcosd 0 O 0 cos® @ —sin? 0 |

and T' is its transpose of T. The matrix S’ is the 3D compliance matrix in material axes given
by Eq. (2.165), i.e.,

]/EL _VIT/EL ‘”tT/EL 0 0 0 |
—vir/E.  1YE.  —vy/E. 0 0 0
g - ~vir/E, —Va/Er E; 0 0 0 (2.165)
0 0 0 ]./G23 0 0
0 0 0 0 1/G,y 0
| 0 0 0 0 0 ]/GLT_
Numerical results in Pa™":
S’ in material axes:
50 =
1.0e-09 *

0.0071 -0.0022 -0.0022 0 0 0
-0.0022 0.0995  -0.0476 0 0 0
-0.0022 -0.0476 0.0885 0 0 0

0 0 0 0.2941 0 0
0 0 0 0 0.1754 0
0 0 0 0 0 0.1754
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S in rotated axes at various angles of rotation:

S5(0 deg) =
1.0e-089 *

0.0071

-0.0022

-0.0022

1]

0

4]

5(30 deg) =
1.0e-09 =
0.0423
-0.0143
-0.0136
0
0
-0.0533

5 (45 deg) =
1.0e-09 *
0.0694
-0.0183
-0.0249
o
0
-0.0462

5(60 deg) =
1.0e-08 =
0.0885
-0.0143
-0.0362
0
0
-0.0261

5(90 deg) =
1.0e-09 =
0.0995
-0.0022
-0.0478
0
0
0

-0.0022
0.0835
-0.0478
0

0

0

-0.0143
0.0885
-0.0362

-0.028l

-0.0183
0.06594
-0.0249

-0.0462

-0.0143
0.0423
-0.0138

-0.0539

-0.0022
0.0071
-0.0022
0

0

0

-0.0022
-0.047&
0.08935

-0.0138
-0.0382
0.0835

0.0332

-0.0249
-0.0249
0.0935

0.0453

-0.0382
-0.0136
0.0835

0.03352

-0.0476
-0.0022
0.05955
0

0.2644
-0.0514

0.2348
-0.0593

0.2051
-0.0514

0
0
0
0.1754
0
0
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(b) to get the 3D stiffness matrix C, invert the 3D compliance matrix S according to Eq. (2.69),

ie.,

Numerical results in Pa:
C=inwv (5) (0 deg) =

1.0e+11 *

1.4388
0.0615
0.06159
0
0
0

0.0619
0.1325
0.0649
0
0
0

C=inv (5) (30 deg) =

1.0e+10 *

8.8358
2.9064
0.6e2a7
0
0
4.1477

2.59064
2.3066
0.6417
0
0
1.3067

C=inv (5) (45 deg) =

1.0e+10 *

4.8088
3.6688
0.6342
0
0
J3.2646

3.6688
4.8088
0.6342
0
0
J3.2646

C=inv (3) (60 deg) =

1.0e+10 *

2.3086
2.9064
0.6417
0
0
1.5087

2.9084
8.8358
0.62&7
0
0
4.1477

0.0619
0.0645
0.13259

0.62a7
. 6417
1.3252

=]

-0.0130

0.6342
0.6342
1.32352

-0.0150

0.6417
0.6287
1.3282

-0.0130

Q=s"

0.3975
0.0556

0.4550
0.1150

0
Q
0
0.5125
0.09%&6
Q

37

0

0

0

0
0.0570

0 0

0 4

0 1
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0 1

Q 4

0 -0
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Q 2
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2646
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.6196
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L1477
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C=inwv (5) (90 deg) =

1.0e+11 *

0.132%9 0.06189 0.0649 0 0 0

0.0615 1.4388 0.0615 0 0 0

0.0645 0.0615 0.1325 4] 4] 4]
0 0 0 0.05370 0 0
0 0 0 0 0.0340 0
0 0 0 0 0 0.0570

(c) Use Eq. (2.193) to calculate the rotated stiffness matrix as
c=T'C'T" (2.193)

where C'is the material axes stiffness and T is the rotation matrix. Then calculate the relative
difference between the stiffness matrix values calculate here and in (b).

Numerical results, in Pa;
{30 deg) wvia Eg. (2.1983) =

1.0e+10 *

8.8358 2.9064 0.6267 0 0 4.1477
2.9064 2.3066 0.6417 o] o] 1.5067
0.6267 0.6417 1.3252 0 0 -0.0130

0 0 0 0.3975 0.0996 0

0 0 0 0.0996 0.5125 0
4.1477 1.5067 -0.0130 o] o] 2.8572

diff C({30 deg) = (inv(3) - C wvia Eqg. (2.193))/maxC0 =
1.0e-15 *

0 -0.1326 0.0066 0 0 0
0.1326 0.0530 0 0 0 0.1061
0.0331 0.0265 0.0133 0 0 0.0257

0 0 0 0.0099 -0.0017 0

0 0 0 -0.0017 0 0

0 -0.0530 -0.0047 0 0 0

C(45 deg) via Eg. (2.193) =

1.0e+10 *

4.8088 3.6688 0.6342 0 0 3.2646

3.6688 4.8088 0.6342 0 0 J3.2646

0.6342 0.6342 1.3282 0 0 -0.0150
0 0 0 0.4550 0.1150 0
0 0 0 0.1150 0.4550 0

J3.2646 J3.2646 -0.0150 0 0 J3.6l3%60
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diff C(45 deg) = (inv(S) - C via Egq.
1.0e-15 =
0.6363 0.6363 0.0795 0
0.6894 0.5833 0.0729 0
0.0663 0.0663 0.0133 0
0 0 0 0.0133
0 0 0 -0.0017
0.6363 0.5833 0.0530 0
C(60 deg) via Eg. (2.183) =
1.0e+10 *
2.3086 2.5084 0.6417 ]
2.9064 8.8358 0.6267 0
0.6417 0.6267 1.3292 0
0 0 0 0.5125
] ] ] 0.0996
1.5067 4.1477 -0.0130 0
diff C(60 deg) = (inv(S) - C via Eg.
1.0e-15 =
0.0530 0.0530 0.0133 0
-0.1856 -0.5303 0.0133 0
0.0265 0.0398 0.0133 0
0 0 0 0
0 0 0 -0.0017
-0.0663 -0.1591 0.0083 0
C(90 deg) via Eg. (2.1893) =
1.0e+1l *
0.1329 0.0619 0.0649 0
0.0619 1.4388 0.0619 0
0.0649 0.0619 0.1329 0
0 0 0 0.0570
0 0 0 0
0 0 0 0
diff C(90 deg) = (inv(S) - C via Eg.
1.0e-15 =
0 0 0 0
0 0.2121 0.0133 0
-0.0066 0.0086 ] ]
0 0 0 0
0 0 0 0
0 0 0 0
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0.0133

0
0
0
0.093%6
0.3875
0

(2.193)) /maxCo

-0.0025
0.00559

L T e R e I

0.0340
0

{2.193)) /maxC0

[ T e T e Y e Y e o |

0.5568
0.4772
0.0557

0.4772
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0.0133
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(d) Discussion of results
e The compliance matrix for d=0° is identical to the original compliance matrix in
material axes as expected
e The compliance matrix at & =90° correspond to the compliance matrix at & =0° having
the 1 and 2 axes interchanged; same for the stiffness matrix
e At 9=45°, the (1,6) and (2,6) elements are identical since the corresponding sine and
cosine terms are equal.
e the (1,6) and (2,6) elements at & =60° are mirror image of those at 8 = 30° as expected
e the (4,4) and (5,5) elements at 8 =60° are mirror image of those at & = 30° as expected
Similar observations can be made about the stiffness matrix.

o the relative difference between the stiffness matrix values calculated at item (b) vs. item
(c) is or order 1.0e-15, which is the machine precision. Hence, we conclude that both

routes give same answer, but route (b) is faster because route (c) requires the an
additional matrix inversion operation.

This concludes the solution to Problem 13.
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PROBLEM 14: PLOT ELEMENTS OF THE ROTATED 3D STIFFNESS MATRIX

Plot the variation with 6 of C(1,1), C(2,2), C(4,4), C(5,5), C(6,6), C(1,6), C(2,6). Discuss your
results
Numerical example: T300-914 CFRP unidirectional composite; 6 =0°,...,90°

Solution:
The rotated 3D compliance matrix is given by Eq. (2.203), i.e.,

S=T'S'T (2.203)
where T is the 3D rotation matrix given by Eq. (2.179) i.e.,

cos> 6 sin® @ 0 O 0 2sinfcos@
sin® @ cos’ 0 0 0 —2sinfcosf
T-| 0 o 1 0 0 0 (2.179)
0 0 0 cos@ —siné 0
0 0 0 sind cos@ 0
| —sinfcos® sinfcosd 0 0 0 cos® @ —sin? 0 |

and T' is its transpose of T. The matrix S’ is the 3D compliance matrix in material axes given
by Eq. (2.165), i.e.,

1/E,  -vi;JE, -vi;JE, 0O 0 0 |
_VLT/EL 1/ET _V23/ET 0 0 0
g— _VLT/EL _V23/ET 1/ET 0 0 0 (2.165)
0 0 0 1/G,, 0 0
0 0 0 0 1G,; 0
0 0 0 0 0 1/G,; |

The 3D stiffness maErix C is the inverse of the 3D compliance matrix S according to Eg. (2.69),
ie.,

-1
Q=S (2.69)
Numerical results:
CFRP T300-914 CFRP T300-914 CFRP T300-914
150 40 50
ooz g

@ [0 0 «© 40
[V - [V
O 100 «a a
- (=] -

& > o 30
o o
= — 20 o =

= o c55 g2
- 50 o~ Ca6 =
(5] = 10 E (&)

=+ 10

S o
Co6
0 o0 o0
0 20 40 60 a0 0 20 40 60 80 1} 20 40 60 80
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Discussion:

e The elements C(1,1) and C(2,2) vary inversely, one is maximum at 6=0°, the other at
6=90°. This corresponds to E; and E; switching roles.

e The transverse shear elements C(4,4) and C(5,5) vary inversely, one is maximum at 6=0°,
the other at £=90°. This corresponds to G,; and G, switching roles.

e The in-plane shear element C(6,6) is minimum at #=0° and 90°, but maximum at 45°.
This corresponds to C(6,6) =G at ¢=0° and 90°, but taking a much larger value at 45°
due to diagonal fiber position.

e The shear-axial coupling elements, C(1,6), C(2,6) are maximum at 6=30° and 60°,
respectively.

This concludes the solution to Problem 14.
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