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EXAMPLE 2.43

Syntax error in C (reprise)

EXAMPLE 2.44

The problem with panic
mode

Programming Language Syntax

1.3.5 Syntax Errors

The main text illustrated the problem of syntax error recovery with a simple ex-
ample in C:

A=B:C+D;

The compiler will detect a syntax error immediately after the B, but it cannot give
up at that point: it needs to keep looking for errors in the remainder of the pro-
gram. To permit this, we must modify the input program, the state of the parser,
or both, in a way that allows parsing to continue, hopefully without announcing
a significant number of spurious cascading errors and without missing a signif-
icant number of real errors. The techniques discussed below allow the compiler
to search for further syntax errors. In Chapter 4 we will consider additional tech-
niques that allow it to search for additional static semantic errors as well.

Panic Mode

Perhaps the simplest form of syntax error recovery is a technique known as panic
mode. It defines a small set of “safe symbols” that delimit clean points in the input.
When an error occurs, a panic mode recovery algorithm deletes input tokens until
it finds a safe symbol, then backs the parser out to a context in which that symbol
might appear. In the earlier example, a recursive descent parser with panic mode
recovery might delete input tokens until it finds the semicolon, return from all
subroutines called from within stmt, and restart the body of stmt itself.

Unfortunately, panic mode tends to be a bit drastic. By limiting itself to a static
set of “safe” symbols at which to resume parsing, it admits the possibility of delet-
ing a significant amount of input while looking for such a symbol. Worse, if some
of the deleted tokens are “starter” symbols that begin large-scale constructs in the
language (e.g., begin, procedure, while), we shall almost surely see spurious
cascading errors when we reach the end of the construct.

Consider the following fragment of code in an Algol-family language:
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EXAMPLE 2.45

Phrase-level recovery in
recursive descent

IF a b THEN x;
ELSE y;
END;

When it discovers the error at b in the first line, a panic-mode recovery algorithm
is likely to skip forward to the semicolon, thereby missing the THEN. When the
parser finds the ELSE on line 2 it will produce a spurious error message. When it
finds the END on line 3 it will think it has reached the end of the enclosing struc-
ture (e.g., the whole subroutine), and will probably generate additional cascading
errors on subsequent lines. Panic mode tends to work acceptably only in rela-
tively “unstructured” languages, such as Basic and (early) Fortran, which don’t
have many “starter” symbols.

Phrase-Level Recovery

We can improve the quality of recovery by employing different sets of “safe” sym-
bols in different contexts. Parsers that incorporate this improvement are said to
implement phrase-level recovery. When it discovers an error in an expression, for
example, a phrase-level recovery algorithm can delete input tokens until it reaches
something that is likely to follow an expression. This more local recovery is better
than always backing out to the end of the current statement, because it gives us
the opportunity to examine the parts of the statement that follow the erroneous
expression.

Niklaus Wirth, the inventor of Pascal, published an elegant implementation of
phrase-level recovery for recursive descent parsers in 1976 [Wir76, Sec. 5.9]. The
simplest version of his algorithm depends on the FIRST and FOLLOW sets defined
at the end of Section 2.3.1. If the parsing routine for nonterminal foo discovers
an error at the beginning of its code, it deletes incoming tokens until it finds a
member of FIRST(foo), in which case it proceeds, or a member of FOLLOW(foo0),
in which case it returns:

procedure foo()
if not (input_token € FIRST(foo) or EPS(foo))
report_error() —— print message for the user
repeat
delete_token()
until input_token € (FIRST(foo) U FOLLOW (foo) U {$$})
case input_token of
ol —— valid starting tokens

otherwise return —— error or foo — €

Note that the report_error routine does not terminate the parse; it simply prints
a message and returns. To complete the algorithm, the match routine must be
altered so that it, too, will return after announcing an error, effectively inserting
the expected token when something else appears:
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procedure match(expected)
if input_token = expected
consume_input_token()
else
report_error()

Finally, to simplify the code, the common prefix of the various nonterminal sub-
routines can be moved into an error-checking subroutine:

procedure check_for_error(symbol)
if not (input_token € FIRST(symbol) or EPS(symbol))
report_error()
repeat
delete_token()
until input_token € (FIRST(symbol) U FOLLOW/(symbol) U {$$})

Context-Specific Look-Ahead

Though simple, the recovery algorithm just described has an unfortunate ten-
dency, when foo — e, to predict one or more epsilon productions when it should
really announce an error right away. This weakness is known as the immediate
error detection problem. It stems from the fact that FOLLOW(foo) is context-
independent: it contains all tokens that may follow foo somewhere in some
valid program, but not necessarily in the current context in the current pro-
gram. This is basically the same observation that underlies the distinction be-
tween SLR and LALR parsers (“The Characteristic Finite-State Machine and LR
Parsing Variants,” Section 2.3.4).

As an example, consider the following incorrect code in our calculator lan-
guage:

Y ;= (A * X X*¥X) + (B * X*X) + (C * X) +D

To a human being, it is pretty clear that the programmer forgot a * in the x* term
of a polynomial. The recovery algorithm isn’t so smart. In a recursive descent
parser it will see an identifier (X) coming up on the input when it is inside the
following routines:

program
stmt_list
stmt
expr
term
factor
expr
term
factor_tail
factor_tail
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EXAMPLE 247

Reducing cascading errors
with context-specific
look-ahead

EXAMPLE 248

Recursive descent with full
phrase-level recovery

Since an id can follow a factor_tail in some programs (e.g., A := B C := D),
the innermost parsing routine will predict factor_tail — ¢, and simply return. At
that point both the outer factor_tail and the inner term will be at the end of their
code, and they, too, will return. Next, the inner expr will call term_tail, which will
also predict an epsilon production, since an id can follow a term_tail in certain
programs. This will leave the inner expr at the end of its code, allowing it to
return. Only then will we discover an error, when factor calls match, expecting to
see a right parenthesis. Afterward there will be a host of cascading errors, as the
input is transformed into

(A * X)
=X

= X*X
=X

Q W X <
|

To avoid inappropriate epsilon predictions, Wirth introduced the notion of
context-specific FOLLOW sets, passed into each nonterminal subroutine as an ex-
plicit parameter. In our example, we would pass id as part of the FOLLOW set for
the initial, outer expr, which is called as part of the production stmt — id :=
expr, but not into the second, inner expr, which is called as part of the production
factor — ( expr ). The nested calls to term and factor_tail will end up being
called with a FOLLOW set whose only member is a right parenthesis. When the
inner call to factor_tail discovers that id is not in FIRST(factor_tail), it will delete
tokens up to the right parenthesis before returning. The net result is a single error
message, and a transformation of the input into

Y := (A * X¥X) + (B x X*¥X) + (C * X) +D

That’s still not the “right” interpretation, but it’s a lot better than it was.

The final version of Wirth’s phrase-level recovery employs one additional heu-
ristic: to avoid cascading errors it refrains from deleting members of a statically
defined set of “starter” symbols (e.g., begin, procedure, (, etc.). These are the
symbols that tend to require matching tokens later in the program. If we see a
starter symbol while deleting input, we give up on the attempt to delete the rest
of the erroneous construct. We simply return, even though we know that the
starter symbol will not be acceptable to the calling routine. With context-specific
FOLLOW sets and starter symbols, phrase-level recovery looks like this:

procedure check_for_error(symbol, follow_set)
if not (input_token € FIRST(symbol) or (EPS(symbol) and input_token & follow_set))
report_error()
repeat
delete_token()
until input_token € FIRST(symbol) U follow_set U starter_set U {$$}
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procedure expr(follow_set)
check_for_error(expr, follow_set)
case input_token of
ol valid starting tokens

otherwise return

Exception-Based Recovery in Recursive Descent

An attractive alternative to Wirth’s technique relies on the exception-handling
mechanisms available in many modern languages (we will discuss these mecha-
nisms in detail in Section 9.4). Rather than implement recovery for every nonter-
minal in the language (a somewhat tedious task), the exception-based approach
identifies a small set of contexts to which we back out in the event of an error. In
many languages, we could obtain simple, but probably serviceable error recovery
by backing out to the nearest statement or declaration. In the limit, if we choose a
single place to “back out to,” we have an implementation of panic-mode recovery.

The basic idea is to attach an exception handler (a special syntactic construct)
to the blocks of code in which we want to implement recovery:

procedure statementy)
try
. —— code to parse a statement
except when syntax_error
loop
if next_token € FIRST(staterment)
statement() ——try again
return
elsif next_token € FOLLOW (statement)
return
else get_next_token()

Code for declaration would be similar. For better-quality repair, we might add
handlers around the bodies of expression, aggregate, or other complex con-
structs. To guarantee that we can always recover from an error, we must ensure
that all parts of the grammar lie inside at least one handler.

When we detect an error (possibly nested many procedure calls deep), we raise
a syntax error exception (“raise” is a built-in command in languages with excep-
tions). The language implementation then unwinds the stack to the most recent
context in which we have an exception handler, which it executes in place of the
remainder of the block to which the handler is attached. For phrase-level (or
panic mode) recovery, the handler can delete input tokens until it sees one with
which it can recommence parsing.

As noted in Section 2.3.1, the ANTLR parser generator takes a CFG as input
and builds a human-readable recursive descent parser. Compiler writers have
the option of generating Java, C#, or C++, all of which have exception-handling
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mechanisms. When an ANTLR-generated parser encounters a syntax error, it
throws a MismatchedTokenException or NoViableAltException. By default
ANTLR includes a handler for these exceptions in every nonterminal subroutine.
The handler prints an error message, deletes tokens until it finds something in the
FOLLOW set of the nonterminal, and then returns. The compiler writer can define
alternative handlers if desired on a production-by-production basis.

Error Productions

As a general rule, it is desirable for an error recovery technique to be as language-
independent as possible. Even in a recursive descent parser, which is handwritten
for a particular language, it is nice to be able to encapsulate error recovery in
the check_for_error and match subroutines. Sometimes, however, one can obtain
much better repairs by being highly language specific.

exampLe 2.50 Most languages have a few unintuitive rules that programmers tend to violate
Error production for in predictable ways. In Pascal, for example, semicolons are used to separate state-
5 else” ments, but many programmers think of them as terminating statements instead.

Most of the time the difference is unimportant, since a statement is allowed to be
empty. In the following, for example,

begin
x := (b + sqrt(bxb -4*axc)) / (2*a);
writeln(x);

end;

the compiler parses the begin... end block as a sequence of three statements, the
third of which is empty. In the following, however,

if d <> 0 then
a := n/d;
else
a :=n;
end;

the compiler must complain, since the then part of an if...then...else con-
struct must consist of a single statement in Pascal. A Pascal semicolon is never al-
lowed immediately before an else, but programmers put them there all the time.
Rather than try to tune a general recovery or repair algorithm to deal correctly
with this problem, most Pascal compiler writers modify the grammar: they in-
clude an extra production that allows the semicolon, but causes the semantic an-
alyzer to print a warning message, telling the user that the semicolon shouldn’t be
there. Similar error productions are used in C compilers to cope with “anachro-
nisms” that have crept into the language as it evolved. Syntax that was valid only
in early versions of C is still accepted by the parser, but evokes a warning mes-
sage.
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Error Recovery in Table-Driven LL Parsers

Given the similarity to recursive descent parsing, it is straightforward to imple-
ment phrase-level recovery in a table-driven top-down parser. Whenever we en-
counter an error entry in the parse table, we simply delete input tokens until we
find a member of a statically defined set of starter symbols (including $$), or a
member of the FIRST or FOLLOW set of the nonterminal at the top of the parse
stack.! If we find a member of the FIRST set, we continue the main loop of the
driver. If we find a member of the FOLLOW set or the starter set, we pop the non-
terminal off the parse stack first. If we encounter an error in match, rather than
in the parse table, we simply pop the token off the parse stack.

But we can do better than this! Since we have the entire parse stack easily
accessible (it was hidden in the control flow and procedure calling sequence of
recursive descent), we can enumerate all possible combinations of insertions and
deletions that would allow us to continue parsing. Given appropriate metrics, we
can then evaluate the alternatives to pick the one that is in some sense “best.”

Because perfect error recovery (actually error repair) would require that we
read the programmer’s mind, any practical technique to evaluate alternative “cor-
rections” must rely on heuristics. For the sake of simplicity, most compilers limit
themselves to heuristics that (1) require no semantic information, (2) do not re-
quire that we “back up” the parser or the input stream (i.e., to some state prior
to the one in which the error was detected), and (3) do not change the spelling
of tokens or the boundaries between them. A particularly elegant algorithm
that conforms to these limits was published by Fischer, Milton, and Quiring in
1980 [FMQ80]. As originally described, the algorithm was limited to languages
in which programs could always be corrected by inserting appropriate tokens into
the input stream, without ever requiring deletions. It is relatively easy, however, to
extend the algorithm to encompass deletions and substitutions. We consider the
insert-only algorithm first; the version with deletions employs it as a subroutine.
We do not consider substitutions here.?

The FMQ error-repair algorithm requires the compiler writer to assign an in-
sertion cost C(t) and a deletion cost D(t) to every token t. (Since we cannot
change where the input ends, we have C($$) = D($$) = c0.) In any given er-
ror situation, the algorithm chooses the least cost combination of insertions and

I This description uses global FOLLOW sets. If we want to use context-specific look-aheads instead,
we can peek farther down in the stack. A token is an acceptable context-specific look-ahead if it is
in the FIRST set of the second symbol A from the top in the stack or, if it would cause us to predict
A — ¢, the FIRST set of the third symbol B from the top or, if it would cause us to predict B—
€, the FIRST set of the fourth symbol from the top, and so on.

2 A substitution can always be effected as a deletion/insertion pair, but we might want ideally to
give it special consideration. For example, we probably want to be cautious about deleting a left
square bracket or inserting a left parenthesis, since both of these symbols must be matched by
something later in the input, at which point we are likely to see cascading errors. But substituting
a left parenthesis for a left square bracket is in some sense more plausible, especially given the
differences in array subscript syntax in different programming languages.
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EXAMPLE 2.5 I

Insertion-only repair in
FMQ

exampLe .52
FMQ with deletions

deletions that allows the parser to consume one more token of real input. The
state of the parser is never changed; only the input is modified (rather than pop a
stack symbol, the repair algorithm pushes its yield onto the input stream).

As in phrase-level recovery in a recursive descent parser, the FMQ algorithm
needs to address the immediate error detection problem. There are several ways
we could do this. One would be to use a “full LL” parser, which keeps track of local
FOLLOW sets. Another would be to inspect the stack when predicting an epsilon
production, to see if what lies underneath will allow us to accept the incoming to-
ken. The first option significantly increases the size and complexity of the parser.
The second option leads to a nonlinear-time parsing algorithm. Fortunately, there
is a third option. We can save all changes to the stack (and calls to the semantic
analyzer’s action routines) in a temporary buffer until the match routine accepts
another real token of input. If we discover an error before we accept a real token,
we undo the stack changes and throw away the buffered calls to action routines.
Then we can pretend we recognized the error when a full LL parser would have.

We now consider the task of repairing with only insertions. We begin by
extending the notion of insertion costs to strings in the obvious way: if w =
a1ay. .. a,, we have C(w) = Z?zl C(ai). Using the cost function C, we then build
a pair of tables S and E. The S table is one-dimensional, and is indexed by gram-
mar symbol. For any symbol X, S(X) is a least-cost string of terminals derivable
from X. That is,

S(X)=w <= X =" wandVxsuchthat X =" x, C(w) < C(x)

Clearly S(a) = a V tokens a.

The E table is two-dimensional, and is indexed by symbol/token pairs. For
any symbol X and token a, E(X, a) is the lowest-cost prefix of a in X; that is,
the lowest cost token string w such that X =* wax. If X cannot yield a string
containing a, then E(X, a) is defined to be a special symbol ?? whose insertion
cost is co. If X = a, or if X =" ax, then E(X, a) = ¢, where C(¢) = 0.

To find a least-cost insertion that will repair a given error, we execute the func-
tion find_insertion, shown in Figure C-2.31. The function begins by considering
the least-cost insertion that will allow it to derive the input token from the sym-
bol at the top of the stack (there may be none). It then considers the possibility
of “deleting” that top-of-stack symbol (by inserting its least-cost yield into the
input stream) and deriving the input token from the second symbol on the stack.
It continues in this fashion, considering ways to derive the input token from ever
deeper symbols on the stack, until the cost of inserting the yields of the symbols
above exceeds the cost of the cheapest repair found so far. If it reaches the bottom
of the stack without finding a finite-cost repair, then the error cannot be repaired
by insertions alone.

To produce better-quality repairs, and to handle languages that cannot be re-
paired with insertions only, we need to consider deletions. As we did with the
insert cost vector C, we extend the deletion cost vector D to strings of tokens in
the obvious way. We then embed calls to find.insertion in a second loop, shown
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function find_insertion(a : token) : string
——assume that the parse stack consists of symbols X,,,... X5, Xi,
——with X, at top-of-stack
ins ;=77
prefix := €
foriinn..1
if Clprefix) > Clins)
——no better insertion is possible
return ins
if Clprefix . E(X;, a)) < Clins)
—— better insertion found
ins := prefix . E(X;, a)
prefix := prefix . S(X;)
return ins

Figure 231 Outline of a function to find a least-cost insertion that will allow the parser to
accept the input token a. The dot character (.) is used here for string concatenation.

function find_repair() : (string, int)
——assume that the parse stack consists of symbols X,,,... X5, Xi,
——with X, at top-of-stack,
——and that the input stream consists of tokens aj, ay, as, ...

i:=0 ——number of tokens we're considering deleting
best.ins := 77

best_del := 0

loop

cur-ins := find-insertion(a;;;)
if Clcur_ins) + D(a;...a;) < C(best.ins) + D(aj... apest.del)
—— better repair found
best_ins := cur.ins
best_del ;=i
i+:=1
if D(aj...a;) > Clbest.ins) + D(aj. .. apest.del)
——no better repair is possible
return (best.ins, best_del)

Figure 232 Outline of a function to find a least-cost combination of insertions and deletions
that will allow the parser to accept one more token of input.

in Figure C-2.32. This loop repeatedly considers deleting more and more tokens,
each time calling find_insertion on the remaining input, until the cost of deleting
additional tokens exceeds the cost of the cheapest repair found so far. The search
can never fail; it is always possible to find a combination of insertions and dele-
tions that will allow the end-of-file token to be accepted. Since the algorithm may
need to consider (and then reject) the option of deleting an arbitrary number of
tokens, the scanner must be prepared to peek an arbitrary distance ahead in the
input stream and then back up again.
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The FMQ algorithm has several desirable properties. It is simple and efficient
(given that the grammar is bounded in size, we can prove that the time to choose
a repair is bounded by a constant). It can repair an arbitrary input string. Its
decisions are locally optimal, in the sense that no cheaper repair can allow the
parser to make forward progress. It is table-driven and therefore fully automatic.
Finally, it can be tuned to prefer “likely” repairs by modifying the insertion and
deletion costs of tokens. Some obvious heuristics include:

Deletion should usually be more expensive than insertion.

Common operators (e.g., multiplication) should have lower cost than uncom-
mon operators (e.g., modulo division) in the same place in the grammar.
Starter symbols (e.g., begin, if, () should have higher cost than their corre-
sponding final symbols (end, £i, )).

“Noise” symbols (comma, semicolon, do) should have very low cost.

Error Recovery in Bottom-Up Parsers

Locally least-cost repair is possible in bottom-up parsers, but it isn’t as easy as it
is in top-down parsers. The advantage of a top-down parser is that the content of
the parse stack unambiguously identifies the context of an error, and specifies the
constructs expected in the future. The stack of a bottom-up parser, by contrast,
describes a set of possible contexts, and says nothing explicit about the future.

In practice, most bottom-up parsers tend to rely on panic-mode or phrase-
level recovery. The intuition is that when an error occurs, the top few states on
the parse stack represent the shifted prefix of an erroneous construct. Recovery
consists of popping these states off the stack, deleting the remainder of the con-
struct from the incoming token stream, and then restarting the parser, possibly
after shifting a fictitious nonterminal to represent the erroneous construct.

Unix’s yacc/bison provides a typical example of bottom-up phrase-level re-
covery. In addition to the usual tokens of the language, yacc/bison allows the
compiler writer to include a special token, error, anywhere in the right-hand
sides of grammar productions. When the parser built from the grammar detects
a syntax error, it

I. Calls the function yyerror, which the compiler writer must provide. Nor-
mally, yyerror simply prints a message (e.g., “parse error”), which yacc/bison
passes as an argument

2. Pops states off the parse stack until it finds a state in which it can shift the
error token (if there is no such state, the parser terminates)

3. Inserts and then shifts the error token

4. Deletes tokens from the input stream until it finds a valid look-ahead for the
new (post error) context

5. Temporarily disables reporting of further errors
6. Resumes parsing
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Panic mode in yacc/bison

EXAMPLE 254

Panic mode with statement
terminators

EXAMPLE 255

Phrase-level recovery in
yacc/bison
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If there are any semantic action routines associated with the production con-
taining the error token, these are executed in the normal fashion. They can do
such things as print additional error messages, modify the symbol table, patch up
semantic processing, prompt the user for additional input in an interactive tool
(yacc/bison can be used to build things other than batch-mode compilers), or
disable code generation. The rationale for disabling further syntax errors is to
make sure that we have really found an acceptable context in which to resume
parsing before risking cascading errors. Yacc/bison automatically reenables the
reporting of errors after successfully shifting three real tokens of input. A se-
mantic action routine can reenable error messages sooner if desired by calling the
built-in routine yyerrorok.

For our example calculator language, we can imagine building a yacc/bison
parser using the bottom-up grammar of Figure 2.25. For panic-mode recovery,
we might want to back out to the nearest statement:

stmt —> error
{printf("parsing resumed at end of current statement\n");}

The semantic routine written in curly braces would be executed when the parser
recognizes stmt — error.’ Parsing would resume at the next token that can
follow a statement—in our calculator language, at the next id, read, write, or
$$.

A weakness of the calculator language, from the point of view of error recovery,
is that the current, erroneous statement may well contain additional ids. If we
resume parsing at one of these, we are likely to see another error right away. We
could avoid the error by disabling error messages until several real tokens have
been shifted. In a language in which every statement ends with a semicolon, we
could have more safely written

stmt — error ;
{printf('parsing resumed at end of current statement\n");}

In both of these examples we have placed the error symbol at the beginning of
a right-hand side, but there is no rule that says it must be so. We might decide, for
example, that we will abandon the current statement whenever we see an error,
unless the error happens inside a parenthesized expression, in which case we will
attempt to resume parsing after the closing parenthesis. We could then add the
following production:

factor — ( error )
{printf("parsing resumed at end of parenthesized expression\n');}

3 The syntax shown here is not the same as that accepted by yacc/bison, but is used for the sake
of consistency with earlier material.
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In the CESM of Figure 2.26, it would then be possible in State 8 to shift error,
delete some tokens, shift ), recognize factor, and continue parsing the surround-
ing expression. Of course, if the erroneous expression contains nested parenthe-
ses, the parser may not skip all of it, and a cascading error may still occur.

Because yacc/bison creates LALR parsers, it automatically employs context-
specific look-ahead, and does not usually suffer from the immediate error detec-
tion problem. (A full LR parser would do slightly better.) In an SLR parser, a good
error recovery algorithm needs to employ the same trick we used in the top-down
case. Specifically, we buffer all stack changes and calls to semantic action routines
until the shift routine accepts a real token of input. If we discover an error before
we accept a real token, we undo the stack changes and throw away the buffered
calls to semantic routines. Then we can pretend we recognized the error when a
full LR parser would have.

\/CHECK YOUR UNDERSTANDING

45. Why is syntax error recovery important?

46. What are cascading errors?

41. What is panic mode? What is its principal weakness?

48. What is the advantage of phrase-level recovery over panic mode?

49. What is the immediate error detection problem, and how can it be addressed?
50. Describe two situations in which context-specific FOLLOW sets may be useful.

51. Outline Wirth’s mechanism for error recovery in recursive descent parsers.
Compare this mechanism to exception-based recovery.

5). What are error productionst Why might a parser that incorporates a high-
quality, general-purpose error recovery algorithm still benefit from using such
productions?

53. Outline the FMQ algorithm. In what sense is the algorithm optimal?

54. Why is error recovery more difficult in bottom-up parsers than it is in top-
down parsers?

55. Describe the error recovery mechanism employed by yacc/bison.
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Theoretical Foundations

As noted in the main text, scanners and parsers are based on the finite automata
and pushdown automata that form the bottom two levels of the Chomsky lan-
guage hierarchy. At each level of the hierarchy, machines can be either determin-
istic or nondeterministic. A deterministic automaton always performs the same
operation in a given situation. A nondeterministic automaton can perform any
of a set of operations. A nondeterministic machine is said to accept a string if
there exists a choice of operation in each situation that will eventually lead to the
machine saying “yes.” As it turns out, nondeterministic and deterministic finite
automata are equally powerful: every DFA is, by definition, a degenerate NFA,
and the construction in Example 2.14 demonstrates that for any NFA we can cre-
ate a DFA that accepts the same language. The same is not true of push-down
automata: there are context-free languages that are accepted by an NPDA but not
by any DPDA. Fortunately, DPDAs suffice in practice to accept the syntax of real
programming languages. Practical scanners and parsers are always deterministic.

24.] Finite Automata

Precisely defined, a deterministic finite automaton (DFA) M consists of (1) a fi-
nite set Q of states, (2) a finite alphabet ¥ of input symbols, (3) a distinguished
initial state q; € Q, (4) a set of distinguished final states F C Q, and (5) a transi-
tion function § : Q x ¥ — Q that chooses a new state for M based on the current
state and the current input symbol. M begins in state q;. One by one it consumes
its input symbols, using ¢ to move from state to state. When the final symbol
has been consumed, M is interpreted as saying “yes” if it is in a state in F; other-
wise it is interpreted as saying “no.” We can extend ¢ in the obvious way to take
strings, rather than symbols, as inputs, allowing us to say that M accepts string x if
d(q1,x) € F. We can then define L(M), the language accepted by M, to be the set

c-13
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EXAMPLE 2.56

Formal DFA for
d¥(.d|d.)d*

Start

Figure 2.33  Minimal DFA for the language consisting of all strings of decimal digits containing
a single decimal point. Adapted from Figure 2.10 in the main text. The symbol d here is short
for*0,1,2,3,4,56,7,8, 9"

{x ] 6(q1,x) € F}. In a nondeterministic finite automaton (NFA), the transition
function, ¢, is multivalued: the automaton can move to any of a set of possible
states from a given state on a given input. In addition, it may move from one state
to another “spontaneously”; such transitions are said to take input symbol e.

We can illustrate these definitions with an example. Consider the circles-and-
arrows automaton of Figure C-2.33 (adapted from Figure 2.10 in the main text).
This is the minimal DFA accepting strings of decimal digits containing a single
decimal point. ¥ = {0,1,2,3,4,5,6,7,8,9, .} is the machine’s input alpha-
bet. Q = {q1,92,93,94} is the set of states; g is the initial state; F = {q4} (a
singleton in this case) is the set of final states. The transition function can be rep-
resented by a set of triples 6 = {(q1,0,92), ---> (1,9, 92), (q1, -,93), (42,0, q2),
RS (an quz)a (qzv . aq4)v (q3v 0, q4)a cee (q3v 9, q4)7 (q4a 0,‘]4), cee (q‘la 97‘]4)}- In
each triple (q;, a, g;), 6(qi, a) = g;.

Given the constructions of Examples 2.12 and 2.14, we know that there exists
an NFA that accepts the language generated by any given regular expression, and
a DFA equivalent to any given NFA. To show that regular expressions and finite
automata are of equivalent expressive power, all that remains is to demonstrate
that there exists a regular expression that generates the language accepted by any
given DFA. We illustrate the required construction below for our decimal strings
example (Figure C-2.33). More formal and general treatment of all the regular
language constructions can be found in standard automata theory texts [HMUO7,
Sip13].

From a DFA to a Regular Expression

To construct a regular expression equivalent to a given DFA, we employ a dynamic
programming algorithm that builds solutions to successively more complicated
subproblems from a table of solutions to simpler subproblems. We begin with a
set of simple regular expressions that describe the transition function, §. For all
states 7, we define
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Reconstructing a regular
expression for the decimal
string DFA
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where {a | a, | ... | a, } ={a]|d(qia)=q}is the set of characters labeling
the “self-loop” from state g; back to itself. If there is no such self-loop, r?j = e
Similarly, for i # j, we define

where {a | a, | ... | a, } ={a]|d(q,a)= g} is the set of characters labeling
the arc from g; to g;. If there is no such arc, 1’2 is the empty regular expression.

(Note the difference here: we can stay in state g; by not accepting any input, so €
is always one of the alternatives in rJ, but not in rj} when i # j.)

Given these r° expressions, the dynamic programming algorithm inductively
calculates expressions rf} with larger superscripts. In each, k names the highest-
numbered state through which control may pass on the way from g; to g;. We
assume that states are numbered starting with g;, so when k = 0 we must transi-
tion directly from g; to g;, with no intervening states.

In our small example DFA, 1), = 1), = ¢, andr), =1}, =0 | 1| 2| 3| 4
| 56| 7]8]| 9] e which we will abbreviate d | e. Similarly, r); = 19, = .,
and r), = r}, = d. Expressions r{,, 19, 135, 13, 15, 13}, 15, and rJ; are all empty.

For k > 0, the rf-;- expressions will generally generate multicharacter strings. At
each step of the dynamic programming algorithm, we let
g A A
That is, to get from g; to g; without going through any states numbered higher
than k, we can either go from g; to g; without going through any state numbered
higher than k — 1 (which we already know how to do), or else we can go from g; to
qr (without going through any state numbered higher than k— 1), travel out from
qr and back again an arbitrary number of times (never visiting a state numbered
higher than k — 1 in between), and finally go from g; to g; (again without visiting
a state numbered higher than k — 1). If any of the constituent regular expressions
is empty, we omit its term of the outermost alternation. At the end, our overall
answer is r{. | iy | ... | r{;, where n = |Q] is the total number of states and
F=1{45,45,---,q5} is the set of final states.

Because r(l’1 = ¢ and there are no transitions from States 2, 3, or 4 to State 1,
nothing changes in the first inductive step in our example; that is, Vi [}, = r].
The second step is a bit more interesting. Since we are now allowed to go through
State 2, we have 3, =13, 1,*r5, =(d | €) | (d | €) (d | €)*(d | €) = d*.
Because 1}, 35, 135, and 7, are empty, however, 1, 135, and r3, remain the same
as r{;, 15, and r1,. In a similar vein, we have

h =d|d(d]|e)*(d|e) =dt
d(d|e)t. =dt.
d]e)(d]e)t. = d*.

2
T4

2
124
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EXAMPLE 2.58

A regular language with a
large minimal DFA

exampLe 2.59
Exponential DFA blow-up

Missing transitions and empty expressions from the previous step leave 12, = r1,

- 2 1 : 2 2 2 2 2 2 2 :
= . and rj, = r3, = d. Expressions 13, 135, 15> I'sy> 41> 42> ad 735 remain empty.
In the third inductive step, we have
3
s = . | . € .
my=dt. | etd=d".| . d
1y = d|e*d = d

All other expressions remain unchanged from the previous step.
Finally, we have

(d" | . d)|(d*. | . d)(d]e)*(d]e)
= (d*.|.d)|(d*.|.d)ad*

= (dt.|.d)d*

= dt.d*|.d"

4
T4

Since F has a single member (g4), this expression is our final answer.

Space Requirements

In Section 2.2.1 we noted without proof that the conversion from an NFA to a
DFA may lead to exponential blow-up in the number of states. Certainly this
did not happen in our decimal string example: the NFA of Figure 2.8 has 14
states, while the equivalent DFA of Figure 2.9 has only 7, and the minimal DFA of
Figures 2.10 and C-2.33 has only 4.

Consider, however, the subset of (a | b | ¢ )* in which some letter appears at
least three times. The minimal DFA for this language has 28 states. As shown in
Figure C-2.34, 27 of these are states in which we have seen 7, j, and k as, bs, and
cs, respectively. The 28th (and only final) state is reached once we have seen at
least three of some specific character.

By contrast, there exists an NFA for this language with only eight states, as
shown in Figure C-2.35. It requires that we “guess,” at the outset, whether we will
see three as, three bs, or three cs. It mirrors the structure of the natural regu-
lar expression (a | b | c)*a(a|b|c)*a(a|b|c)*al(alb]|c)*|
(a]b]c)*b(a|b]c)*b(alb|lc)*b(alb|lc)*|(a]b]c)*
c(a|blc)*c(a|b|c)*c(a]|b]|c)*.

Of course, the eight-state NFA does not emerge directly from the construc-
tion of Figure 2.7; that construction produces a 52-state machine with a certain
amount of redundancy, and with many extraneous states and epsilon produc-
tions. But consider the similar subsetof (0 | 1 | 2|3 |4 |5]|6|7|8]9)*
in which some digit appears at least ten times. The minimal DFA for this language
has 10,000,000,001 states: a non-final state for each combination of zeros through
nines with less than ten of each, and a single final state reached once any digit has
appeared at least ten times. One possible regular expression for this language is
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020 120 >»(220
i r\/\J 2b
110

010
Start b - /v\

Figure 2.34 DFA for the language consisting of all strings in (a | b | ¢ )* in which some letter appears at least three
times. State name ijk indicates that i as, j bs, and k cs have been seen so far. Within the cubic portion of the figure, most
edge labels are elided: a transitions move to the right, b transitions go back into the page, and ¢ transitions move down.

((o]t]...]9)* 0 (0|1]...]9)* 0 (O]1]...]9)* 0 (O|1]...]9)* 0
oft]...]9)* 0 (0]1]...]9)* 0 (O]1]...]9)* 0 (O]1]...]9)* 0
oft]...]9)* 0 (O|1]...]9)* 0 (O]1]...]9)*)

| CCojt]...]9)* 1 (o]1]|...]9)* 1 (O|1]...]9)* 1 (O]1]...]9)* 1
oft].c.]9)* 1 (O]1].ca|9)* 1 (O]1].ea]|9)* 21 (O]1].]9)* 1
1]e0]9)f 1 (01| ]9)* 1 (O]1]...|9)*)
| ...
| CCoft]...]9)* 9 (Of1]...]9)* 9 (O|1]...]9)* 9 (O]1]...]9)* 9
(o]1].ec]9)* 9 (Of1].e]9)* 9 (Of2].eu]9)* 9 (O]1].a]9)* 9

(o]1]...]9)* 9 (0]1]...]9)* 9 (O]1]...]9)%)
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Figure 1.35 NFA corresponding to the DFA of Figure C-2.34.

Our construction would yield a very large NFA for this expression, but clearly
many orders of magnitude smaller than ten billion states!

24.2 Push-Down Automata

A deterministic push-down automaton (DPDA) N consists of (1) Q, (2) %, (3)
q1, and (4) F, as in a DFA, plus (6) a finite alphabet I" of stack symbols, (7) a
distinguished initial stack symbol Z; € T', and (5’) a transition function ¢ : Q X
I'x{ZU{e}} — QxI'*, where I'* is the set of strings of zero or more symbols from
I'. N begins in state q;, with symbol Z; in an otherwise empty stack. It repeatedly
examines the current state q and top-of-stack symbol Z. If §(q.e, Z) is defined,
N moves to state r and replaces Z with « in the stack, where (r, ) = d(q,¢,2).
In this case N does not consume its input symbol. If 6(q,¢,Z) is undefined, N
examines and consumes the current input symbol a. It then moves to state s and
replaces Z with 3, where (s, 5) = d(q, a,Z). N is interpreted as accepting a string
of input symbols if and only if it consumes the symbols and ends in a state in F.

As with finite automata, a nondeterministic push-down automaton (NPDA) is
distinguished by a multivalued transition function: an NPDA can choose any of
a set of new states and stack symbol replacements when faced with a given state,
input, and top-of-stack symbol. If §(q,¢, Z) is nonempty, N can also choose a new
state and stack symbol replacement without inspecting or consuming its current
input symbol. While we have seen that nondeterministic and deterministic finite
automata are equally powerful, this correspondence does not carry over to push-
down automata: there are context-free languages that are accepted by an NPDA
but not by any DPDA.

The proof that CFGs and NPDAs are equivalent in expressive power is more
complex than the corresponding proof for regular expressions and finite au-
tomata. The proof is also of limited practical importance for compiler construc-
tion; we do not present it here. While it is possible to create an NPDA for any
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0"1" is not a regular
language
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CFL, simulating that NPDA may in some cases require exponential time to rec-
ognize strings in the language. (The O(n?) algorithms mentioned in Section 2.3
do not take the form of PDAs.) Practical programming languages can all be ex-
pressed with LL or LR grammars, which can be parsed with a (deterministic) PDA
in linear time.

An LL(1) PDA is very simple. Because it makes decisions solely on the basis
of the current input token and top-of-stack symbol, its state diagram is trivial.
All but one of the transitions is a self-loop from the initial state to itself. A final
transition moves from the initial state to a second, final state when it sees $$ on
the input and the stack. As we noted in Section 2.3.4, the state diagram for an
SLR(1) or LALR(1) parser is substantially more interesting: it’s the characteris-
tic finite-state machine (CFSM). Full LR(1) parsers have similar machines, but
usually with many more states, due to the need for path-specific look-ahead.

A little study reveals that if we define every state to be accepting, then the
CFSM, without its stack, is a DFA that recognizes the grammar’s viable prefixes.
These are all the strings of grammar symbols that can begin a sentential form in
the canonical (right-most) derivation of some string in the language, and that do
not extend beyond the end of the handle. The algorithms to construct LL(1) and
SLR(1) PDAs from suitable grammars were given in Sections 2.3.3 and 2.3.4.

14.3 Grammar and Language Classes

As we noted in Section 2.1.2, a scanner is incapable of recognizing arbitrarily
nested constructs. The key to the proofis to realize that we cannot count an arbi-
trary number of left-bracketing symbols with a finite number of states. Consider,
for example, the problem of accepting the language 0" 1". Suppose there is a DFA
M that accepts this language. Suppose further that M has m states. Now suppose
we feed M a string of m + 1 zeros. By the pigeonhole principle (you can’t distribute
m objects among p < m pigeonholes without putting at least two objects in some
pigeonhole), M must enter some state g; twice while scanning this string. With-
out loss of generality, let us assume it does so after seeing j zeros and again after
seeing k zeros, for j # k. Since we know that M accepts the string 01/ and the
string 0%1%, and since it is in precisely the same state after reading 0/ and 0¥, we
can deduce that M must also accept the strings 0/ 1¥ and 0¥ 1/. Since these strings
are not in the language, we have a contradiction: M cannot exist.

Within the family of context-free languages, one can prove similar theorems
about the constructs that can and cannot be recognized using various parsing
algorithms. Though almost all real parsers get by with a single token of look-
ahead, it is possible in principle to use more than one, thereby expanding the set
of grammars that can be parsed in linear time. In the top-down case we can rede-
fine FIRST and FOLLOW sets to contain pairs of tokens in a more or less straight-
forward fashion. If we do this, however, we encounter a more serious version of
the immediate error detection problem described in Section C-2.3.5. There we
saw that the use of context-independent FOLLOW sets could cause us to overlook
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EXAMPLE 2.6'

Separation of grammar
classes

EXAMPLE 2.62

Separation of language
classes

a syntax error until after we had needlessly predicted one or more epsilon pro-
ductions. Context-specific FOLLOW sets solved the problem, but did not change
the set of valid programs that could be parsed with one token of look-ahead. If
we define LL(k) to be the set of all grammars that can be parsed predictively us-
ing the top-of-stack symbol and k tokens of look-ahead, then it turns out that for
k > 1 we must adopt a context-specific notion of FOLLOW sets in order to parse
correctly. The algorithm of Section 2.3.3, which is based on context-independent
FOLLOW sets, is actually known as SLL (simple LL), rather than true LL. For
k =1, the LL(1) and SLL(1) algorithms can parse the same set of grammars. For
k > 1, LL is strictly more powerful. Among the bottom-up parsers, the relation-
ships among SLR(k), LALR(k), and LR(k) are somewhat more complicated, but
extra look-ahead always helps.

Containment relationships among the classes of grammars accepted by popu-
lar linear-time algorithms appear in Figure C-2.36. The LR class (no suffix) con-
tains every grammar G for which there exists a k such that G € LR(k); LL, SLL,
SLR, and LALR are similarly defined. Grammars can be found in every region of
the figure. Examples appear in Figure C-2.37. Proofs that they lie in the regions
claimed are deferred to Exercise C-2.35.

For any context-free grammar G and parsing algorithm P, we say that Gis a P
grammar (e.g., an LL(1) grammar) if it can be parsed using that algorithm. By ex-
tension, for any context-free language L, we say that L is a P language if there exists
a P grammar for L (this may not be the grammar we were given). Containment
relationships among the classes of languages accepted by the popular parsing al-
gorithms appear in Figure C-2.38. Again, languages can be found in every region.
Examples appear in Figure C-2.39; proofs are deferred to Exercise C-2.36.

Note that every context-free language that can be parsed deterministically has
an SLR(1) grammar. Moreover, any language that can be parsed deterministically
and in which no valid string can be extended to create another valid string (this
is called the prefix property) has an LR(0) grammar. If we restrict our attention to
languages with an explicit $$ marker at end-of-file, then they all have the prefix
property, and therefore LR(0) grammars.

The relationships among language classes are not as rich as the relationships
among grammar classes. Most real programming languages can be parsed by any
of the popular parsing algorithms, though the grammars are not always pretty,
and special-purpose “hacks” may sometimes be required when a language is al-
most, but not quite, in a given class. The principal advantage of the more pow-
erful parsing algorithms (e.g., full LR) is that they can parse a wider variety of
grammars for a given language. In practice this flexibility makes it easier for the
compiler writer to find a grammar that is intuitive and readable, and that facili-
tates the creation of semantic action routines.
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—

Figure 236 Containment relationships among popular grammar classes. In addition to the
containments shown, SLL(k) is just inside LL(k), for k > 2, but has the same relationship to
everything else, and SLR(k) is just inside LALR(k), for k > 1, but has the same relationship to
everything else.

LL(2) but not SLL: SLL(k) and SLR(k) but not LR(k — 1):
S—>aAa|bAba S*>Aak71b|Bakflc
A — b|e A — €

B — ¢
SLL(k) but not LL(k — 1):
S — aF T p|af LALR(1) but not SLR:
S— bADb|Ac|ab

LR(0) but not LL: A —s a
S — Ab
A— Aala LR(1) but not LALR:

S— aCalbCb|aDb|bDa

SLL(1) but not LALR:

S— Aa|Bb|cC C — ¢

C— Ab|Ba D — ¢

A — D

B - D Unambiguous but not LR:
D — ¢ S— aSale

Figure 13T Examples of grammars in various regions of Figure C-2.36.



c-22

Chapter 2 Programming Language Syntax

Inherently Nondeterministic
ambiguous context-free

LL=SLL
SLR(1) = LR

= deterministic
h context-free

LL(2) = SLL(2)

)

LL(1) = SLL(1) LR(0)

= deterministic context-free
with prefix property

Figure 1.38 Containment relationships among popular language classes.

Nondeterministic language:
{a"v"c:n>1}U {a”bznd in> 1}

Inherently ambiguous language:
{aibjck ri=jorj=k;i,jk>1}

Language with LL(k) grammar but no LL(k—1) grammar:
{a"(b | c|ba)":n>1}

Language with LR(0) grammar but no LL grammar:
{a"v":n>1}u{a"c":n>1}

Figure 139 Examples of languages in various regions of Figure C-2.38.

\/CHECK YOUR UNDERSTANDING

56. What formal machine captures the behavior of a scanner? A parser?
51. State three ways in which a real scanner differs from the formal machine.

58. What are the formal components of a DFA?



59.

60.

6l.
62.
63.

64.
05.
66.
61.
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Outline the algorithm used to construct a regular expression equivalent to a
given DFA.

What is the inherent “big-O” complexity of parsing with a simulated NPDA?
Why is this worse than the O(n*) time mentioned in Section 2.3?

How many states are there in an LL(1) PDA? An SLR(1) PDA? Explain.
What are the viable prefixes of a CFG?

Summarize the proof that a DFA cannot recognize arbitrarily nested con-
structs.

Explain the difference between LL and SLL parsing.
Is every LL(1) grammar also LR(1)? Is it LALR(1)?
Does every LR language have an SLR(1) grammar?

Why are the containment relationships among grammar classes more com-
plex than those among language classes?
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Exercises

Give an example of an erroneous program fragment in which consideration
of semantic information (e.g., types) might help one make a good choice
between two plausible “corrections” of the input.

Give an example of an erroneous program fragment in which the “best”
correction would require one to “back up” the parser (i.e., to undo recent
predictions/matches or shifts/reductions).

Extend your solution to exercise 2.21 to implement Wirth’s syntax error
recovery mechanism

() with global FOLLOW sets, as in Example C-2.45.

(b) with local FOLLOW sets, as in Example C-2.47.

() with avoidance of “starter symbol” deletion, as in Example C-2.48.
Extend your solution to exercise 2.21 to implement exception-based syntax
error recovery, as in Example C-2.49.

Prove that the grammars in Figure C-2.37 lie in the regions claimed.

(Difficult) Prove that the languages in Figure C-2.39 lie in the regions
claimed.

Prove that regular expressions and left-linear grammars are equally power-
ful. A left-linear grammar is a context-free grammar in which every right-
hand side contains at most one nonterminal, and then only at the left-most
end.
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Explorations

Experiment with syntax errors in your favorite compiler. Feed the compiler
deliberate errors and comment on the quality of the recovery or repair. How
often does it do the “right thing”? How often does it generate cascading
errors? Speculate as to what sort of recovery or repair algorithm it might be
using.

Spelling mistakes (typos in keywords and identifiers) are a common source
of syntax and static semantic errors. Identifying such errors—and guessing
what the user meant to type—could result in significantly better error re-
covery. Discuss how you might go about incorporating spelling correction
into some existing error recovery system. (Hint: You might want to consult
Morgan’s early paper on this subject [Mor70].)
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Implementing Scope

For both static and dynamic scoping, a language implementation must keep track
of the name-to-object bindings in effect at each point in the program. The prin-
cipal difference is time: with static scope the compiler uses a symbol table to track
bindings at compile time; with dynamic scoping the interpreter or run-time sys-
tem uses an association list or central reference table to track bindings at run time.

3.4.] Symbol Tables

In a language with static scoping, the compiler uses an insert operation to place
a name-to-object binding into the symbol table for each newly encountered dec-
laration. When it encounters the use of a name that should already have been
declared, the compiler uses a lookup operation to search for an existing binding.
It is tempting to try to accommodate the visibility rules of static scoping by per-
forming a remove operation to delete a name from the symbol table at the end
of its scope. Unfortunately, several factors make this straightforward approach
impractical:

The ability of inner declarations to hide outer ones in most languages with
nested scopes means that the symbol table has to be able to contain an arbitrary
number of mappings for a given name. The lookup operation must return the
innermost mapping, and outer mappings must become visible again at end of
scope.

Records (structures) and classes have some of the properties of scopes, but
do not share their nicely nested structure. When it sees a record declaration,
the semantic analyzer must remember the names of the record’s fields (recur-
sively, if records are nested). At the end of the declaration, the field names
must become invisible. Later, however, whenever a variable of the record type
appears in the program text (as in my_rec.field_name), the record fields must
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suddenly become visible again for the part of the reference after the dot. In
object-oriented languages, member (field and method) names must become
visible throughout the methods of the class, even if (as in C++) the code for
the methods can appear outside the class declaration.

As noted in Section 3.3.3, names are sometimes used before they are declared.
Algol and C, for example, permit forward references to labels. Pascal permits
forward references in pointer declarations. Most object-oriented languages
permit forward references to class members. Modula-3 permits forward ref-
erences of all kinds.

Asnoted in Section 3.3.3, C, C++, and Ada distinguish between the declaration
of an object and its definition. Pascal has a similar mechanism for mutually re-
cursive subroutines. When it sees a declaration, the compiler must remember
any nonvisible details so that it can check the eventual definition for consis-
tency. This operation is similar to remembering the field names of records and
classes.

While it may be desirable to forget names at the end of their scope, and even
to reclaim the space they occupy in the symbol table, information about them
may need to be saved for use by a symbolic debugger (Section 16.3.2). A debug-
ger allows the user to manipulate a running program: starting it, stopping it,
and reading and writing its data. In order to parse high-level commands, the
debugger must have access to the compiler’s symbol table, which the compiler
typically saves in a hidden portion of the final machine-language program.

To accommodate these concerns, most compilers never delete anything from
the symbol table. Instead, they manage visibility using enter_scope and leave_
scope operations. Implementations vary from compiler to compiler; the ap-
proach described here is due to LeBlanc and Cook [CL83].

Each scope, as it is encountered, is assigned a serial number. The outermost
scope (the one that contains the predefined identifiers) is given number 0. The
scope containing programmer-declared global names is given number 1. Addi-
tional scopes are given successive numbers as they are encountered. All serial
numbers are distinct; they do not represent the level of lexical nesting, except in
as much as nested subroutines naturally end up with numbers higher than those
of surrounding scopes.

All names, regardless of scope, are entered into a single large hash table, keyed
by name. Each entry in the table then contains the symbol name, its category
(variable, constant, type, procedure, field name, parameter, etc.), scope number,
type (a pointer to another symbol table entry), and additional, category-specific
fields.

In addition to the hash table, the symbol table has a scope stack that indicates,
in order, the scopes that compose the current referencing environment. As the
semantic analyzer scans the program, it pushes and pops this stack whenever it
enters or leaves a scope, respectively. Entries in the scope stack contain the scope
number, an indication of whether the scope is closed, and in some cases further
information.
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EXAMPLE 3.46

Symbol table for a sample
program

procedure lookup(name)
pervasive := best := null
apply hash function to name to find appropriate chain
foreach entry e on chain
if e.name = name ——not something else with same hash value
if e.scope =0
pervasive := e
else
foreach scope s on scope stack, top first
if s.scope = e.scope
best:=e —— closer instance
exit inner loop
elsif best # null and then s.scope = best.scope

exit inner loop ——won't find better
if s.closed
exit inner loop ——can't see farther

if best £ null
while best is an import or export entry
best := best.real_entry
return best
elsif pervasive # null
return pervasive
else
return null ——name not found

Figure 3.1T LeBlanc-Cook symbol table lookup operation.

To look up a name in the table, we scan down the appropriate hash chain look-
ing for entries that match the name we are trying to find. For each matching
entry, we scan down the scope stack to see if the scope of that entry is visible. We
look no deeper in the stack than the top-most closed scope. Imports and exports
are made visible outside their normal scope by creating additional entries in the
table; these extra entries contain pointers to the real entries. We don’t have to
examine the scope stack at all for entries with scope number 0: they are pervasive.
Pseudocode for the lookup algorithm appears in Figure C-3.17.

The lower right portion of Figure C-3.18 contains the skeleton of a C++ pro-
gram. The remainder of the figure shows the configuration of the symbol table
for the referencing environment of the grey arrow shown in function F2. At this
point in the code, the scope stack contains four entries, representing, respectively,
the (anonymous) type of structure S, function F2, namespace (module) M2, and
the global scope. The scope for the anonymous type indicates the specific variable
(i.e., S) to which names (fields) in this scope belong. The outermost, pervasive
scope is not explicitly represented.

All of the entries for a given name appear on the same hash chain, since the
table is keyed on name. In this example, we assume that hash collisions have
placed M2 on the same chain as the Js, and the anonymous structure type (which
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Figure 3.18 LeBlanc-Cook symbol table for an example program in a language like C++. The scope stack represents the
referencing environment at the grey arrow shown in function F2. For the sake of clarity, the many pointers from type fields to
the symbol table entries for void, int, and char are shown as parenthesized (1)s, (2)s, and (3)s, rather than as arrows.

char Fi(int A,
char B) { // scope 5
char J;

}

void F2(char A) { // scope 6

S.X = A;
*
}
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will have some arbitrary internal name) on the same chain as the As. Variable S
has an extra entry, to make it directly visible inside M2, as requested by the using
statement. When we are inside F2, a lookup operation on J will find F2’s J; the J
in M2 will be hidden by virtue of F2 being above M2 on the scope stack. The entry
for the anonymous struct type indicates the scope number to be pushed onto
the scope stack while resolving references to fields within objects of that type.
The entry for each function contains the head pointer of a list that links together
the subroutine’s parameters, for use in analyzing calls (additional links of these
chains are not shown). During code generation, many symbol table entries would
contain additional fields, for such information as size and run-time address.

The second column of the scope stack is intended to indicate closed scopes.
While C++ doesn’t have any of these, we can imagine how they would work. For
example, if M2 were closed, then names in the global scope, which appears below
M2 in the scope stack, would not be visible at the indicated point in the code.
Anything imported into M2 would be visible, because it would have an extra entry
(like that of S) within M2’s own scope.! If our language had exports (again, C++
does not), we would create extra entries in the outer scope, analogous to the ones
we create in inner scopes for imports.

Classes, which we did not use in Figure C-3.18, would be handled much like
a combination of namespaces and structures. Field and method names of the
class would be visible to the class’s methods, much as objects in a namespace are
visible to all the namespace’s code. Moreover, the entry for the class—like that
of a structure type—would indicate the scope to be pushed onto the scope stack
when the compiler has parsed a dot (.) or arrow (->) token and expects the next
token to name a field or method of the class.

It is tempting to suggest extending a LeBlanc-Cook style symbol table to han-
dle the visibility specifications common in object-oriented languages (e.g., the
public, private, protected keywords of C++, to which we will return in Sec-
tion 10.2.2), but this is probably a mistake. For one thing, such an extension
would likely be quite messy. It is easy to make all the names in a scope visible, by
pushing that scope onto the scope stack. It is also relatively easy to make a small
number of names visible, by creating extra entries in other scopes, as we did for
imports and exports. An intermediate option does not immediately present it-
self. More significantly, when the programmer attempts to use a field or method
inappropriately, we probably want to generate an error message along the lines of
“method m is private in class foo” instead of just “method name foo not found.”
This observation suggests employing a traditional lookup mechanism for class
members, followed by a separate check for visibility in the current context. We
consider this possibility in Exercise C-3.26.

I Recall that the using statement in C++ isn’t an import in the usual sense: it just gives a simpler
(unqualified) name to an already-visible object.
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Referencing environment A-list

(newest declarations are at this end of the list)

| | [ |pararn 1 |otherinfo|

Referencing environment A-list

| | J |local var | other inf0|

I, J :integer | | J | local var ] | other info |

procedure P (I : integer)

| | Q | global proc | other info |

» . | ‘ | Q | global proc | other info |
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| | [ | global var |other info|
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(predefined names)

Q

y
(predefined names)

Figure 3.19 Dynamic scoping with an association list. The left side of the figure shows the referencing environment at the
point in the code indicated by the adjacent grey arrow: after the main program calls Q and it in turn calls P. When searching
for I, one will find the parameter at the beginning of the A-list. The right side of the figure shows the environment at the other
grey arrow: after P returns to Q. When searching for |, one will find the global definition.

exampLe 3.47
A-list lookup in Lisp

3.4.] Association Lists and Central Reference Tables

Pictorial representations of the two principal implementations of dynamic scop-
ing appear in Figures C-3.19 and C-3.20. Association lists (A-Iists) are simple and
elegant, but can be very inefficient. Central reference tables resemble a simpli-
fied LeBlanc-Cook symbol table, without the separate scope stack; they require
more work at scope entry and exit than do association lists, but they make lookup
operations fast.

A-lists are widely used for dictionary abstractions in Lisp; they are supported
by a rich set of built-in functions in most Lisp dialects. It is therefore natural for a
simple Lisp interpreter to use an A-list to keep track of name-value bindings, and
even to make this list explicitly visible to the running program. Since bindings are
created when entering a scope, and destroyed when leaving or returning from a
scope, the A-list functions as a stack. When execution enters a scope at run time,
the interpreter pushes bindings for names declared in that scope onto the top of
the A-list. When execution finally leaves a scope, these bindings are removed. To
look up the meaning of a name in an expression, the interpreter searches from
the top of the list until it finds an appropriate binding (or reaches the end of the
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Central reference table

(each table entry points to the newest declaration of the given name)
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Figure 3.20 Dynamic scoping with a central reference table. The upper half of the figure shows the referencing environment
at the point in the code indicated by the upper grey arrow: after the main program calls Q and it in turn calls P. When searching
for I, one will find the parameter at the beginning of the chain in the | slot of the table. The lower half of the figure shows the
environment at the lower grey arrow: after P returns to Q. When searching for |, one will find the global definition.

list, in which case an error has occurred). Each entry in the list contains whatever
information is needed to perform semantic checks (e.g., type checking, which we
will consider in Section 7.2) and to find variables and other objects that occupy
memory locations. In the left half of Figure C-3.19, the first (top) entry on the
A-list represents the most recently encountered declaration: the | in procedure
P. The second entry represents the J in procedure Q. Below these are the global
symbols, Q, P, J, and I, and (not shown explicitly) any predefined names pro-
vided by the Lisp interpreter.

The problem with using an association list to represent a program’s referencing
environment is that it can take a long time to find a particular entry in the list,
particularly if it represents an object declared in a scope encountered early in the
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program’s execution, and now buried deep in the list. A central reference table is
designed for faster access. It has one slot for every distinct name in the program.
The table slot in turn contains a list (stack) of declarations encountered at run
time, with the most recent occurrence at the beginning of the list. Looking up
a name is now easy: the current meaning is found at the beginning of the list in
the appropriate slot in the table. In the upper part of Figure C-3.20, the first entry
on the | list is the | in procedure P; the second is the global I. If the program is
compiled and the set of names is known at compile time, then each name can have
a statically assigned slot in the table, which the compiled code can refer to directly.
If the program is not compiled, or the set of names is not statically known, then a
hash function will need to be used at run time to find the appropriate slot.

When control enters a new scope at run time, entries must be pushed onto the
beginning of every list in the central reference table whose name is (re)declared
in that scope. When control leaves a scope for the final time, these entries must
be popped. The work involved is somewhat more expensive than pushing and
popping an A-list, but not dramatically more so, and lookup operations are now
much faster. In contrast to the symbol table of a compiler for a language with
static scoping, central reference table entries for a given scope do not need to be
saved when the scope completes execution; the space can be reclaimed.

Within the Lisp community, implementation of dynamic scoping via an asso-
ciation list is sometimes called deep binding, because the lookup operation may
need to look arbitrarily deep in the list. Implementation via a central reference
table is sometimes called shallow binding, because it finds the current association
at the head of a given reference chain. Unfortunately, the terms “deep and shallow
binding” are also more widely used for a completely different purpose, discussed
in Section 3.6. To avoid potential confusion, some authors use “deep and shallow
access” [Seb15] or “deep and shallow search” [Fin96] for the implementations of
dynamic scoping.

Closures with Dynamic Scoping

(This subsection is best read after Section 3.6.1.)

If an association list is used to represent the referencing environment of a pro-
gram with dynamic scoping, the referencing environment in a closure can be rep-
resented by a top-of-stack (beginning of A-list) pointer (Figure C-3.21). When a
subroutine is called through a closure, the main pointer to the referencing envi-
ronment A-list is temporarily replaced by the pointer from the closure, making
any bindings created since the closure was created (P’s | and J in the figure) tem-
porarily invisible. New bindings created within the subroutine (or in any sub-
routine it calls) are pushed using the temporary pointer. Because the A-list is
represented by pointers (rather than an array), the effect is to have two lists—one
representing the caller’s referencing environment and the other the temporary
referencing environment resulting from use of the closure—that share their older
entries. When Q returns to P in our example, the original head of the A-list will
be restored, making P’s | and J visible again.
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Central Stack Referencing environment A-list

procedure P(procedure C)

declare |, J Ig
call C

procedure F
declare | o J

procedure Q Ly / !
declare J p
call F C==Qe Q

FTToTTToes 1 BREES
—— main program } Main program !

call P(Q)

Figure 3.2l Capturing the A-list in a closure. Each frame in the stack has a pointer to the
current beginning of the A-list, which the run-time system uses to look up names. When the
main program passes Q to P with deep binding, it bundles its A-list pointerin Q's closure (dashed
arrow). When P calls C (which is Q), it restores the bundled pointer. When Q elaborates its
declaration of J (and F elaborates its declaration of 1), the A-list is temporarily bifurcated.

With a central reference table implementation of dynamic scoping, the cre-
ation of a closure is more complicated. In the general case, it may be necessary
to copy the entire main array of the central table and the first entry on each of
its lists. Space and time overhead may be reduced if the compiler or interpreter
is able to determine that only some of the program’s names will be used by the
subroutine in the closure (or by things that the subroutine may call). In this case,
the environment can be saved by copying the first entries of the lists for only the
names that will be used. When the subroutine is called through the closure, these
entries can then be pushed onto the beginnings of the appropriate lists in the cen-
tral reference table. Additional code must be executed to remove them again after
the subroutine returns.

JCHECK YOUR UNDERSTANDING
43. List the basic operations provided by a symbol table.

44. Outline the implementation of a LeBlanc-Cook style symbol table.

45. Why don’t compilers generally remove names from the symbol table at the
ends of their scopes?
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46. Describe the association list (A-list) and central reference table data structures
used to implement dynamic scoping. Summarize the tradeoffs between them.

41. Explain how to implement deep binding by capturing the referencing envi-
ronment A-list in a closure. Why are closures harder to build with a central
reference table?
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Separate Compilation

Probably the most straightforward mechanisms for separate compilation can be
found in module-based languages such as Modula-2, Modula-3, and Ada, which
allow a module to be divided into a declaration part (or header) and an imple-
mentation part (or body). As we noted in Section 3.3.4, the header contains all
and only the information needed by users of the module (or needed by the com-
piler in order to compile such a user); the body contains the rest.

As a matter of software engineering practice, a design team will typically de-
fine module interfaces early in the lifetime of a project, and codify these inter-
faces in the form of module headers. Individual team members or subteams will
then work to implement the module bodies. While doing so, they can compile
their code successfully using the headers for the other modules. Using prelimi-
nary copies of the bodies, they may also be able to undertake a certain amount of
testing.

In a simple implementation, only the body of a module needs to be compiled
into runnable code: the compiler can read the header of module M when com-
piling the body of M, and also when compiling the body of any module that uses
M. In a more sophisticated implementation, the compiler can avoid the over-
head of repeatedly scanning, parsing, and analyzing M’s header by translating it
into a symbol table, which is then accessed directly when compiling the bodies
of M and its users. Most Ada implementations compile their module headers.
Implementations of Modula-2 and 3 vary: some work one way, some the other.

As a practical matter, many languages allow the header of a module to be sub-
divided into a “public” part, which specifies the interface to the rest of the pro-
gram, and a “private” part, which is not visible outside the module, but is needed
by the compiler, for example to determine the storage requirements of opaque
types. Ideally, one would include in the header of a module only that information
that the programmer needs to know to use the abstraction(s) that the module
provides. Restricted exports, and the public and private portions of headers, are
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compromises introduced to allow the compiler to generate code in the face of
separate compilation.

At some point prior to execution, modules that have been separately com-
piled must be “glued together” to form a single program. This job is the task
of the linker. At the very least, the linker must resolve cross-module references
(loads, stores, jumps) and relocate any instructions whose encoding depends on
the location of certain modules in the final program. Typically it also checks to
make sure that users and implementors of a given interface agree on the version
of the header file used to define that interface. In some environments, the linker
may perform additional tasks as well, including certain kinds of interprocedural
(whole-program) code improvement. We will return to the subject of linking in
Chapters 15 and 16.

3.8.] Separate Compilation in C

The initial version of C was designed at Bell Laboratories around 1970. It has
evolved considerably over the years, but not, for the most part, in the area of sep-
arate compilation. Here the language remains comparatively primitive. In partic-
ular, there is in general no way for the compiler or the linker to detect inconsis-
tencies among declarations or uses of a name in different files. The C89 standards
committee introduced a new explanation of separate compilation based on the
notion of linkage, but this served mainly to clarify semantics, not to change them.
The current rules can be summarized as follows (certain details and special cases
are omitted):

If the declaration of a global object (variable or function) contains the word
static, then the object has internal linkage, and is identified with (linked to)
any other internally linked declaration of the same name in the same file.

If the declaration of a function does not contain the keyword static, then
it has external linkage, and is identified with any other (nonstatic) declaration
of the same function in any file of the program. (A function declaration may
consist of just the header.)

If the declaration of a variable contains the keyword extern, then the variable
has the same linkage as any visible, internally or externally linked declaration
of the same name appearing earlier in the file. If there is no earlier declaration,
then the variable has external linkage, and is identified with any other declara-
tion of the same external variable in any file of the program. In other words,
files in the same program that contain matching external variable declarations
actually share the same variable. A global variable also has external linkage if
its declaration says neither static nor extern.

If an object is declared with both internal and external linkage, the behavior of
the program is undefined.

An object (variable or function) that is externally linked must have a defini-
tion in exactly one file of a program. A variable is defined when it is given an
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initial value, or is declared at the global level without the extern keyword. A
function is defined when its body (code) is given.

Many C implementations prior to C89 relaxed the final rule to permit zero or
one definitions of an external variable; some permitted more than one. In these
implementations, the linker unified multiple definitions, and created an implicit
definition for any variable (or set of linked variables) for which the program con-
tained only declarations.

The “linkage” rules of C89 provide a way to associate names in one file with
names in another file. The rules are most easily understood in terms of their
implementation. Most language-independent linkers are designed to deal with
symbols: character-string names for locations in a machine-language program.
The linker’s job is to assign every symbol a location in the final program, and
to embed the address of the symbol in every machine-language instruction that
makes a reference to it. To do this job, the linker needs to know which symbols can
be used to resolve unbound references in other files, and which are local to a given
file. C89 rules suffice to provide this information. For the programmer, however,
there is no formal notion of interface, and no mechanism to make a name visible
in some, but not all files. Moreover, nothing ensures that the declarations of an
external object found in different files will be compatible: it is entirely possible,
for example, to declare an external variable as a multifield record in one file and
as a floating-point number in another. The compiler is not required to catch such
errors, and the resulting bugs can be very difficult to find.

Header Files

Fortunately, C programmers have developed conventions on the use of external
declarations that tend to minimize errors in practice. These conventions rely on
the file inclusion facility of a macro preprocessor. The programmer creates files in
pairs that correspond roughly to the interface and the implementation of a mod-
ule. The name of an interface file ends with .h; the name of the corresponding
implementation file ends with .c. Every object defined in the .c file is declared
in the .h file. At the beginning of the . ¢ file, the programmer inserts a directive
that is treated as a special form of comment by the compiler, but that causes the
preprocessor to include a verbatim copy of the corresponding .h file. This in-
clusion operation has the effect of placing “forward” declarations of all the mod-
ule’s objects at the beginning of its implementation file. Any inconsistencies with
definitions later in the file will result in error messages from the compiler. The
programmer also instructs the preprocessor at the top of each . ¢ file to include a
copy of the .h files for all of the modules on which the . ¢ file depends. As long as
the preprocessor includes identical copies of a given .h file in all the . c files that
use its module, no inconsistent declarations will occur. Unfortunately, it is easy
to forget to recompile one or more . ¢ files when a .h file is changed, and this can
lead to very subtle bugs. Tools like Unix’s make utility help minimize such errors
by keeping track of the dependences among modules.
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3.8.1 Separate Compilation in C c-39

Namespaces

Even with the convention of header files, C89 still suffers from the lack of scoping
beyond the level of an individual file. In particular, all global names must be
distinct, across all files of a program, and all libraries to which it links. Some
coding standards encourage programmers to embed a module’s name in the name
of each of its external objects (e.g., scanner_nextSym), but this practice can be
awkward, and is far from universal.

To address this limitation, C++ introduced a namespace mechanism that gen-
eralizes the scoping already provided for classes and functions, breaks the tie be-
tween module and compilation unit, and strengthens the interface conventions
of .h files. Any collection of names can be declared inside a namespace:

namespace foo {
class foo_type_1; // declaration

Actual definitions of the objects within foo can then appear in any file:

class foo::foo_type_1 { ... // full definition
Definitions of objects declared in different namespaces can appear in the same file
if desired.

A C++ programmer can access the objects in a namespace using fully qualified
names, or by importing (using) them explicitly:

foo::foo_type_1 my_first_obj;
or
using foo::foo_type_1;
J;.;c.)_type_l my_first_obj;
or
using namespace foo; // import everything from foo
f’<.)c’>_type_1 my_first_obj;
There is no notion of export; all objects with external linkage in a namespace are
visible elsewhere if imported or accessed with their qualified name. Note that

linkage remains the foundation for separate compilation: .h files are merely a
convention.
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EXAMPLE 3.52

Packages in Java

EXAMPLE 353

Using names from another
package

3.8.2 Packages and Automatic Header Inference

The separate compilation facilities of Java and C# eliminate .h files. Java intro-
duces a formal notion of module, called a package. Every compilation unit, which
may be a file or (in some implementations) a record in a database, belongs to ex-
actly one package, but a package may consist of many compilation units, each of
which begins with an indication of the package to which it belongs:

package foo;
public class foo_type_1 { ...

Unless explicitly declared as public, a class in Java is visible in all and only those
compilation units that belong to the same package.

As in C++, a compilation unit that needs to use classes from another package
can access them using fully qualified names, or via name-at-a-time or package-
at-a-time import:

foo.foo_type_1 my_first_obj;
or
import foo.foo_type_1;
éé;_type_l my_first_obj;
or

import foo.*; // import everything from foo
foo_type_1 my_first_obj;

When asked to import names from package M, the Java compiler will search
for M in a standard (but implementation-dependent) set of places, and will re-
compile it if appropriate (i.e., if only source code is found, or if the target code
is out of date). The compiler will then automatically extract the information that
would have been needed in a C++ .h file or an Ada or Modula-3 header. If the
compilation of M requires other packages, the compiler will search for them as
well, recursively.

C# follows Java’s lead in extracting header information automatically from
complete class definitions. Its module-level syntax, however, is based on the
namespaces of C++, which allow a single file to contain fragments of multiple
namespaces. There is also no notion of standard search path in C#: to build a
complete program, the programmer must provide the compiler with a complete
list of all the files required.

To mimic the software engineering practice of early header file construction,
a Java or C# design team can create skeleton versions of (the public classes of)
its packages or namespaces, which can then be used, concurrently and indepen-
dently, by the programmers responsible for the full versions.
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3.8.3 Module Hierarchies

In Modula and Ada, the programmer can create a hierarchy of modules within a
single compilation unit by means of lexical nesting (module C, for example, may
be declared inside of module B, which in turn is declared inside of module A).
In a similar vein, the Ada 95, Java, or C# programmer can create a hierarchy of
separately compiled modules by means of multipart names:

package A.B is ... -- Ada 95
package A.B; ... // Java
namespace A.B { ... // C#

In these examples package A.B is said to be a child of package A. In Ada 95 and
C# the child behaves as though it had been nested inside of the parent, so that
all the names in the parent are automatically visible. In Java, by contrast, mul-
tipart names work by convention only: there is no special relationship between
packages A and A.B. If A.B needs to refer to names in A, then A must make them
public, and A.B must import them. Child packages in Ada 95 are reminiscent
of derived classes in C++, except that they support a module-as-manager style
of abstraction, rather than a module-as-type style. We will consider the Ada 95
facilities further in Section 10.2.4.

\/CHECK YOUR UNDERSTANDING

48. What purpose(s) does separate compilation serve?
49. What does it mean for an external variable to be linked in C?
50. Summarize the C conventions for use of .h and . c files.

51. Describe the difference between a compilation unit and a C++ or C# name-
space.

5. Explain why Ada and similar languages separate the header of a module from
its body. Explain how Java and C# get by without.

DESIGN & IMPLEMENTATION

3.12 Separate compilation

The evolution of separate compilation mechanisms from early C and Fortran,
through C++, Modula-3, Ada, and finally Java and C#, reflects a move from an
implementation-centric viewpoint to a more programmer-centric viewpoint.
Interestingly, the ability to have zero definitions of an externally linked variable
in certain early implementations of C is inherited from Fortran: the assem-
bly language mnemonic corresponding to a declaration without a definition is
.common (for a mechanism known as common blocks in Fortran).
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Exercises

Assuming a LeBlanc-Cook style symbol table, explain how the compiler
finds the symbol table information (e.g., the type) of a complicated ref-
erence such as my_firm->revenues[1999].

Show the contents of a LeBlanc-Cook style symbol table that captures the
referencing environment of

() function F1 in Figure 3.4.

(b) procedure set_seed in Figure 3.7.

Consider the visibility of class members (fields and methods) in an object-
oriented language, as discussed near the end of Section C-3.4.1. Describe
a mechanism that could be used to check visibility after first locating the

member in a more traditional symbol table. (You may want to look ahead
to Section 10.2.2.)

Show a trace of the contents of the referencing environment A-list during
execution of the program in

() Figure 3.9. Assume that a positive value is read at line 8.

(b) Exercise 3.14.

Repeat the previous exercise for a central reference table.

Consider the following tiny program in C:

void hello() {
printf ("Hello, world\n");
¥

int main() {
hello();
}
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3.10 Exercises c-43

(a) Split the program into two separately compiled files, tiny.c and
hello.c. Be sure to create a header file hello.h and include it cor-
rectly in tiny.c.

(b) Reconsider the program as C++ code. Put the hello function in a
separate namespace, and include an appropriate using declaration in
tiny.c.

() Rewrite the program in Java, with main and hello in separate pack-
ages.

Consider the following file from some larger C program:

int a;
extern int b;
static int c;

void foo() {
int a;
static int b;
extern int c;
extern int d;

static int b;
extern int c;

For each variable declaration, indicate whether the variable has external
linkage, internal (file-level) linkage, or no linkage (i.e., is local).

Modula-2 provides no way to divide the header of a module into a public
part and a private part: everything in the header is visible to the users of
the module. Is this a major shortcoming? Are there disadvantages to the
public/private division (e.g., as in Ada)? (For hints, see Section 10.2.)
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Explorations

Using your favorite compiler, generate assembly language for some simple
programs with debugger support enabled (on a Unix system, this will prob-
ably require the -g and -S command-line switches). Look through the
result for debugger information. Can you decipher any of it? You may want
to look ahead to Section 16.3.2, and to consult a manual for your system’s
object file format (on a modern Unix system, look for documentation on
DWARE).

Learn about the reflection mechanisms of Java, C#, Prolog, Perl, PHP, Tcl,
Python, or Ruby, all of which allow a program to inspect and reason
about its own symbol table at run time. How complete are these mecha-
nisms? (For example, can a program inspect symbols that aren’t currently
in scope?) What is reflection good for? What uses should be considered
good or bad programming practice? For more ideas, see Section 16.3.1.

Learn about the typeglob mechanism of Perl, which allows a program to
modify its own symbol table at run time. What are typeglobs good for?
(See Sidebar 14.11 for some initial pointers.)

Create a C program in which a variable is exported from one file and im-
ported by another, but the declarations in the files disagree with respect to
type. You should be able to arrange for the program to compile and link
successfully, but behave incorrectly. Try the same thing in Ada or C++.
What happens?

Investigate the use of module hierarchies in the standard libraries of C++,
Java, and C#. How is each organized? How fine grain is the division into
separate headers or packages? Can you suggest an explanation for any major
differences you find?
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Stack trace for bottom-up
parse, with action routines

Semantic Analysis

Space Management for Attributes

A compiler that does not build an explicit parse tree requires some other mech-
anism to allocate, deallocate, and refer to storage space for attributes. In the two
subsections below we consider attribute space management for bottom-up and
top-down parsers, respectively. For bottom-up parsers the principal challenge
is where to put the inherited attributes of symbols that have not yet been seen,
and thus have no record in the parse stack. For top-down parsers this challenge
does not arise, but we must go to a bit more effort to retain space for symbols
that have already been parsed, and we must choose whether to manage this space
automatically or to give some of the burden to the writer of action routines.

45.] Bottom-Up Evaluation

Figure C-4.17 shows a trace of the parse and attribute stack for (1 + 3) * 2,
using the attribute grammar of Figure 4.1. For the sake of clarity, we show a
single, combined stack for the parser and attribute evaluator, and we omit the
CFSM state numbers.

It is easy to evaluate the attributes of symbols in this grammar, because the
grammar is S-attributed. In an automatically generated parser, such as those pro-
duced by yacc/bison, the attribute rules associated with the productions of the
grammar in Figure 4.1 would constitute action routines, to be executed when
their productions are recognized. For yacc/bison, they would be written in C,
with “pseudostructs” to name the attribute records of the symbols in each pro-
duction. Attributes of the left-hand side symbol would be accessed as fields of
the pseudostruct $$. Attributes of right-hand side symbols would be accessed as
fields of the pseudostructs $1, $2, etc. To get from line 9 to line 10, for example,
in the trace of Figure C-4.17, we would use an action routine version of the first
rule of the grammar in Figure 4.1: $$.val = $1.val + $3.val.

When a bottom-up action routine is executed, the attribute records for sym-
bols on the right-hand side of the production can be found in the top few entries

c-45
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EXAMPLE 420

Finding inherited attributes
in “buried” records

1. (

2. (1

3. (F

4. (T

5. (k

6. (Er+

7. (E; +3
8. ( E1 + F3
9. ( E1 + T3
10. (E4
11. (E4)
12. F4
13. T4
14. T4 *
15, Ty %2
16. T4 * Fz
17. Tg
18. Es

Figure 41T Parse/attribute stack trace for (1 + 3) * 2, using the grammar of Figure 4.1.
Subscripts represent val attributes; they are not meant to distinguish among instances of a
symbol.

of the attribute stack. The attribute record for the symbol on the left-hand side
of the production (i.e., $$) will not yet lie in the stack: it is the task of the action
routine to initialize this record. After the action routine completes, the parser
pops the right-hand side records off the attribute stack and replaces them with
$3$. In yacc/bison, if no action routine is specified for a given production, the
default action is to “copy” $1 into $$. Since $$ will occupy the same location,
once pushed, that $1 occupied before being popped, this “copy” can be effected
without doing any work.

Inherited Attributes

Unfortunately, it is not always easy to write an S-attributed grammar. A simple
example in which inherited attributes are desirable arises in C or Fortran-style
variable declarations, in which a type name precedes the list of variable names:

dec — type id_list
id list — id
id_list — id_list , id

Let us assume that fype has a synthesized attribute tp that contains a pointer to
the symbol table entry for the type in question. Ideally, we should like to pass this
attribute into id_list as an inherited attribute, so that we may enter each newly
declared identifier into the symbol table, complete with type indication, as it is
encountered. When we recognize the production id_list — id, we know that
the top record on the attribute stack will be the one for id. But we know more
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than this: the next record down must be the one for type. To find the type of the
new entry to be placed in the symbol table, we may safely inspect this “buried”
record. Though it does not belong to a symbol of the current production, we can
count on its presence because there is no other way to reach the id_list — id
production.

Now what about the id in id_list — id_list , id? This time the top three
records on the attribute stack will be for the right-hand symbols id, ,, and id_list.
Immediately below them, however, we can still count on finding the entry for
type, waiting for the id_list to be completed so that dec can be recognized. Using
nonpositive indices for pseudostructs below the current production, we can write
action routines as follows:

dec — type id_list

idliss — id { declare_id ($1.name, $0.tp) }

id_list — id_list , id { declare_id ($3.name, $0.tp) }

Records deeper in the attribute stack could be accessed as $-1, $-2, and so on.
While id_list appears in two places in this grammar fragment, both occurrences
are guaranteed to lie above a type record in the attribute stack, the first because it
lies next to type in a right-hand side, and the second by induction, because it is
the beginning of the yield of the first.

Unfortunately, there are grammars in which a symbol that needs inherited at-
tributes occurs in productions in which the underlying symbols are not the same.
We can still handle inherited attributes in such cases, but only by modifying the
underlying context-free grammar. An example can be found in languages like
Perl, in which the meaning of an expression (and of the identifiers and opera-
tors within it) depends on the context in which that expression appears. Some
Perl contexts expect arrays. Others expect numbers, strings, or Booleans. To cor-
rectly analyze an expression, we must pass the expectations of the context into
the expression subtree as inherited attributes. Here is a grammar fragment that
captures the problem:

stmt — id := expr
— 1if expr then stmt

expr — ...

Within the production for expr, the parser doesn’t know whether the sur-
rounding context is an assignment or the condition of an if statement. If it is
a condition, then the expected type of the expression is Boolean. If it is an assign-
ment, then the expected type is that of the identifier on the assignment’s left-hand

side. This identifier can be found two records below the current production in the
attribute stack.

Semantic Hooks

To allow these cases to be treated uniformly, we can add semantic hook, or
“marker” symbols to the grammar. Semantic hooks generate ¢, and thus do not
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EXAMPLE 423

Semantic hooks that break
an LR CFG

alter the language defined by the grammar; their only purpose is to hold inherited
attributes:

stmt — id := A expr
— if B expr then stmt
A — ef $$.tp = $-1tp }
B — €e{ $$.tp := Boolean }
expr — ...{ if $0.tp = Boolean then ...}

Since the epsilon production for a semantic hook can provide an action rou-
tine, it is tempting to think of semantic hooks as a general technique to insert
action routines in the middle of bottom-up productions. Unfortunately this is
not the case: semantic hooks can be used only in places where the parser can be
sure that it is in a given production. Placing a semantic hook anywhere else will
break the “LR-ness” of the grammar, causing the parser generator to reject the
modified grammar. Consider the following example:

stmt — lval := expr
— id args
Ival — id quals

quals — quals . id

1

2

3

4

5. — quals ( expr_list )
6 — €

7. args — ( expr.list )

8

— €

An [-value in this grammar is a “qualified” identifier: an identifier followed by
optional array subscript and record field qualifiers.! We have assumed that the
language follows the notation of Fortran and Ada, in which parentheses delimit
both procedure call arguments and array subscripts. In the case of procedure
calls, it would be natural to want an action routine to pass the symbol-table index
of the subroutine into the argument list as an inherited attribute, so that it can be
used to check the number and types of arguments:

stmt — id A args
A — €e{ $$.proc_index := lookup ($0.name) }

If we try this, however, we will run into trouble, because the procedure call

I In general, an l-value in a programming language is anything to which a value can be assigned
(i.e., anything that can appear on the left-hand side of an assignment). From a low-level point of
view, this is basically an address. An r-value is anything that can appear on the right-hand side
of an assignment. From a low-level point of view, this is a value that can be stored at an address.
We will discuss 1-values and r-values further in Section 6.1.2.
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foo(1, 2, 3);
and the array element assignment
foo(1l, 2, 3) := 4;

begin with the same sequence of tokens. Until it sees the token after the closing
parenthesis, the parser cannot tell whether it is working on production 1 or pro-
duction 2. The presence of A in production 2 will therefore lead to a shift-reduce
conflict; after seeing an id, the parser will not know whether to recognize A or

shift (.

Left Corners

In general, the right-hand side of a production in a context-free grammar is said
to consist of the left corner and the trailing part. In the left corner we cannot
be sure which production we are parsing; in the trailing part the production is
uniquely determined. In an LL(1) grammar, the left corner is always empty. In
an LR(1) grammar, it can consist of up to the entire right-hand side. Semantic
hooks can safely be inserted in the trailing part of a production, but not in the left
corner. Yacc/bison recognizes this fact explicitly by allowing action routines to
be embedded in right-hand sides. It automatically converts the production

S — a { your code here } 8
to

S — aAB
A — €{ your code here }

for some new, distinct symbol A. If the action routine is not in the trailing part,
the resulting grammar will not be LALR(1), and yacc/bison will produce an
error message.

In our procedure call and array subscript example, we cannot place a semantic
hook before the args of production 2 because this location is in the left corner.
If we wish to look up a procedure name in the symbol table before we parse the
arguments, we will need to combine the productions for statements that can be-
gin with an identifier, in a manner reminiscent of the left factoring discussed in
Section 2.3.2:

stmt — id A quals assign_opt
A — ¢e{ $$.id_index := lookup ($0.name) }
quals — quals . id
— quals ( expr_list )
— €
assign_opt — = expr

— €
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EXAMPLE 4.26

Operation of an LL
attribute stack

This change eliminates the shift-reduce conflict, but at the expense of combining
the entire grammar subtrees for procedure call arguments and array subscripts.
To use the modified grammar we shall have to write action routines for quals that
work for both kinds of constructs, and this can be a major nuisance. Users of
LR-family parser generators often find that there is a tension between the desire
for grammar clarity and parsability on the one hand and the need for semantic
hooks to set inherited attributes on the other.

4.5.2 Top-Down Evaluation

Top-down parsers, as discussed in Chapter 2, come in two principal varieties:
recursive descent and table driven. Attribute management in recursive descent
parsers is almost trivial: inherited attributes of symbol foo take the form of pa-
rameters passed into the parsing routine named foo; synthesized attributes are the
return parameters. These synthesized attributes can then be passed as inherited
attributes to symbols later in the current production, or returned as synthesized
attributes of the current left-hand side.

Attribute space management for automatically generated top-down parsers is
somewhat more complex. Because they allow action routines at arbitrary loca-
tions in a right-hand side, top-down parsers avoid the need to modify the gram-
mar in order to insert semantic hooks. (Of course, because they must have empty
left corners, top-down grammars can be harder to write in the first place.) Be-
cause the parse stack describes the future, instead of the past, we cannot employ
an attribute stack that simply mirrors the parse stack. Our two principal options
are to equip the parser with a (more complicated) algorithm for automatic space
management, or to require action routines to manage space explicitly.

Automatic Management

Automatic management of attribute space for top-down parsing is more compli-
cated than it is for bottom-up parsing. It is also more space intensive. We can still
use an attribute stack, but it has to contain all of the symbols in all of the produc-
tions between the root of the (hypothetical) parse tree and the current point in
the parse. All of the right-hand side symbols of a given production are adjacent
in the stack; the left-hand side is buried in the right-hand side of a deeper (closer
to the root) production.

Figure C-4.18 contains an LL(1) grammar for constant expressions, with action
routines. Figure C-4.19 uses this grammar to trace the operation of a top-down
attribute stack on the sample input (1 + 3) * 2. The left-hand column shows
the parse stack. The right-hand column shows the attribute stack. Three global
pointers index into the attribute stack. One (shown as an “arrow-boxed” L in
the trace) identifies the record in the attribute stack that holds the attributes of
the left-hand side symbol of the current production. The second (shown as an
arrow-boxed R in the trace) identifies the first symbol on the right-hand side of
the production. L and R allow the action routines to find the attributes of the
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E — T { TTst:= Tval }* TT { E.val := TTval }?

TTy — + T { TTast := TTist + Tval }* TT, { TT,val := TToval }*
TT) — - T { TTyst := TTy.st — Tval }® TT, { TTival := TT.val }©
TT — e{ TTval := TTst }7

T — F { FTst := Fval }® FT { Tval := FTval }°

FTy — * F { FTy.st := FTy.st x Fval }'© FT, { FTy.val := FTp.val }*
FT\ — / F { FTy.st := FTy.st + Fval }'2 FT, { FT,val := FT,val }'3
FT — e{ FTval := FTst }**

F1 —_— - Fz { F1.Va| = = Fz.Va| }15
F — (E) {Fval := Eval }°
F — const { Fval := C.val }'7

Figure 418 LL(1) grammar for constant expressions, with action routines. The boldface
superscripts are for reference in Figure C-4.19.

symbols of the current production. The third pointer (shown as an arrow-boxed
N in the trace) identifies the first symbol within the right-hand side that has not
yet been completely parsed. It allows the parser to update L correctly when a
production is predicted.

At any given time, the attribute stack contains all symbols of all productions on
the path between the root of the parse tree and the symbol currently at the top of
the parse stack. Figure C-4.20 identifies these symbols graphically at the point in
Figure C-4.19 immediately above the eight elided lines. Symbols to the left in the
parse tree have already been reclaimed; those to the right have yet to be allocated.

At start-up, the attribute stack contains a record for the goal symbol, pointed
at by N. When we push the right-hand side of a predicted production onto the
parse stack, we add an “end-of-production” marker, represented by a colon in the
trace. At the same time, we push records for the right-hand-side symbols onto
the attribute stack. (These are added to the attribute stack; they do not replace
the left-hand side.) Prior to pushing these entries, we save the current L and R
pointers in another stack (not shown). We then set L to the old N, and make R
and N point to the newly pushed right-hand side.

When we see an action symbol at the top of the parse stack (shown in the trace
as a small bold number), we pop it and execute the corresponding action routine.
When we match a terminal at the top of the parse stack, we pop it and move N
forward one record in the attribute stack. When we see an end-of-production
marker at the top of the parse stack, we pop it, set N to the attribute record fol-
lowing the one currently pointed at by L, pop everything from R forward off of
the attribute stack, and restore the most recently saved values of L and R.

It should be emphasized that while the trace is long and tedious, its complexity
is completely hidden from the writer of action routines. Once the space man-
agement routines are integrated with the driver for a top-down parser generator,
all the compiler writer sees is the grammar of Figure C-4.18. In comparing Fig-



c-52 Chapter 4 Semantic Analysis

ES

T1TT2:$

F8FT9:1TT2:$

(E)16:8FT9:1TT2:$%

E)16:8FT9:17T2:$

T1TT2:) 16:8FT9:1T7T2:$

F8FT9:1TT2:) 16:8FT9:1T7T72:$

C17:8FT9:1TT2:) 16:8FT9:1T7T72:$

17:8FT9:1T7T72:) 16:8FT9:1T7T72:$

t8FT9:1TT2:) 16:8FT9:1T7T2:%

8FT9:1TT2:) 16:8FT9:1TT2:$

FT9:1TT2:) 16:8FT9:1T7T72:$

14:9:17T72:) 16:8FT9:17T72:$

19:17T72:) 16:8FT9:17T72:$

9:1TT2:) 16:8FT9:1T7T2:$

t1TT2:) 16:8FT9:1TT2:$

1TT2:) 16:8FT9:17T72:$

TT2:)16:8FT9:1T7T2:$

+T3TT4:2:)16:8FT9:1T7T72:$

T3TT4:2:) 16:8FT9:1TT2:$

F8FT9:3TT4:2:)16:8FT9:1TT2:$

C17:8FT9:3TT4:2:) 16:8FT9:1TT2:$
( eight lines omitted )

3TT4:2:) 16:8FT9:17T2:$

TT4:2:)16:8FT9:1T7T72:$

7:4:2:)16:8FT9:17T72:$

14:2:) 16:8FT9:1TT72:$

4:2:)16:8FT9:17T2:$

12:) 16:8FT9:1T7T72:$

2:) 16:8FT9:17T72:$

1) 16:8FT9:17T2: %

)16:8FT9:1T7T2:$

16:8FT9:17T2:$

t8FT9:17T2:$

8FT9:17T2:$

FT9:17T2:§

*FI0FT11:9:17T72:$

FIOFT11:9:1T7T2:$

C17:10FT11:9:17T72:$
17:10 FT11:9:17T72:$
(10FT11:9:17T2: %
10FT11:9:1T7T7T2:$
FT11:9:17T2:$

( six lines omitted )
1TT2:$
TT2:$
7:2:%
:2: 3%
2:3%
:$
$

E-

E, [R)N) T2 T2,
E7[L)T7 TT2,7 Fo FTo.o
E? T2 TT2 2 [L)F2 FT7 2 [R)[N) (E7 )
E? T2 TT7 2 |[L)F2 FT2 2 [R) ([N) E7 )
Eo To TT2,2 Fo FTo 2 ( E?T? TT22

E? T2 TT2,2 F2 FT2 2 (E2 ) [L) T2 TT2,2 [R)[N) F2 FT2 2

E? To TT2,2 Fo FTo 2 (E2 ) T2 TTo 2 F2 FT2,2 [R)[N) C:
Er ToTT2 2 F2 FT2,2 (E2 ) T2 TT2 2 Fz FT2 2 |R) Cy
E? To TTo,2 Fe FTo 2 (E2 ) T2 TTo 2 Fi FT2 2 [R) Ci
Er ToTT2,2 Fo FT2 2 (E2 )[L) T2 TT22 [R) Fu FTo,»

E? T2 TT7,2 F7 FT7 2 (Ee )T? TT2,2 [R) F1 FTy,7
E? To TTo,2 Fo FTo 2 (E2 ) T2 TTo 2 Fy FTy,2
Er ToTT2,2 F2 FT2 2 (E2 ) T2 TT2 2 Fy FT1,1[R)
E? T2 TT7,2 F7 FT2 2 (Ee )T? TT2,2 [R)F1 FTi1
Er To TT7 2 F2o FT2 2 (E2 )[L) Ti TT2 2 [R)F1 FT11
E? To TT2,2 Fo FTo 7 ( E2)[R) T

E? To TT2,2 F2 FT2 2 (E7 ) Ty TT1,2
E? To TT2 2 Fo FTo 2 (E2 ) Ty [L) TTu,?

+ T7 TT?Y?

E?» T2 T2 F2 FT2 2 (E2 ) Ty TTi,2 +[L) T2 TT2,2 [R)[N) F2 FT2 »
Er Tz TTe,2 Fo FTo2 (E¢ ) Ty TTy 2 + T2 TT2,2 [L) Fz FT2,2 [R)[N) Cs

E? To TT2,2 Fo FT2 2 (E7 ) Ty TTI,?
E? T2 TT7 2 F2 FT2 2 (E2 ) T1 L) TT1,7 [R)
Eo To TT2,2 Fe FTo 2 (E2 )T TT1,2 + T3
Eo To TT2 2 Fo FT2 2 (E2 ) T1i TT12 + T3
E? To TT2,2 Fo FT2 2 (E7 ) Ty
E? To TT2,2 Fo FT2 2 (E7 ) Ty R)
E? T2 TT7 2 F2 FT2 2 ([L)E2 )[R) T1 TT1 4
R) Ty TT1,4
E? T2 TT7 2 [L)F2 FT7 2 [R) (E4 [N))

E? T2 TT7,2 |[L)F2 FT7 2 |[R) (E4)
E? To TTo 2 Fy FT7 2 [R) (E4)
Ev [L) Tz TTz. [R) F4 [N) FT2.2
Ex [L) Tz TTo.2 [R) Fa [N) Fa 2
Eo To TT7 2 Fy *Fo FTo 7
*N) Fr FTo.

Eo To TTo,2 Fy FTy 2 *
Eo To TTo 2 Fa FTy 2 *

Ev T2 TT2,2 Fa[L) FTa2

Er To TT2 2 Fa

FTa4,7

Figure 4.19  Trace of the parse stack (left) and attribute stack (right) for (1 + 3) * 2, using the grammar (and action
routine numbers) of Figure C-4.18. Subscripts in the attribute stack indicate the values of attributes. For symbols with two
attributes, st comes first.
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T const (2) €

~N—-—"

const (1) € ﬁ FT €

Figure 420 Productions with symbols currently in the attribute stack during a parse of (1 +
3) * 2 (using the grammar of Figure C-4.18), at the point where we are about to parse the
3. In Figure C-4.19 this point corresponds to the line immediately above the eight elided lines.

ures C-4.17 and C-4.19, one should also note that reduction and execution of a
production’s action routine are shown as a single step in the LR trace; they are
shown separately in the LL trace, making that trace appear more complex than it
really is.

Ad Hoc Management

One drawback of automatic space management for top-down grammars is the
frequency with which the compiler writer must specify copy routines. Of the 17
action routines in Figure 4.9 or C-4.18, 12 simply move information from one
place to another. The time required to execute these routines can be minimized
by copying pointers, rather than large records, but compiler writers may still con-
sider the copies a nuisance.

An alternative is to manage space explicitly within the action routines, pushing
and popping an ad hoc semantic stack only when information is generated or con-
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EXAMPLE 428

Processing lists with an
attribute stack

E — TTT

TT — + T { binop ("+") } TT
TT — - T { binop ("=") } TT
T — €

T — FFT

FT — x F { binop ("x") } FT
FT — / F { binoop ("+") } FT
FT — ¢

F — - F {unop ("""}

F — (E)

F — const { push_leaf (cur_tok.val) }

Figure 4.21  Ad hoc management of attribute space in an LL(I) grammar to build a syntax
tree.

sumed. Using this technique, we can replace the action routines of Figure 4.9 with
the simpler version shown in Figure C-4.21. Variable cur_tok is assumed to con-
tain the synthesized attributes of the most recently matched token. The semantic
stack contains pointers to syntax tree nodes. The push_leaf routine creates a node
for a specified constant and pushes a pointer to it onto the semantic stack. The
un_op routine pops the top pointer off the stack, makes it the child of a newly
created node for the specified unary operator, and pushes a pointer to that node
back on the stack. The bin_op routine pops the top two pointers off the semantic
stack and pushes a pointer to a newly created node for the specified binary oper-
ator. When the parse of E is completed, a pointer to a syntax tree describing its
yield will be found in the top-most record on the semantic stack.

The advantage of ad hoc space management is clearly the smaller number of
rules and the elimination of the inherited attributes used to represent left con-
text. The disadvantage is that the compiler writer must be aware of what is in the
semantic stack at all times, and must remember to push and pop it when appro-
priate.

One further advantage of an ad hoc semantic stack is that it allows action rou-
tines to push or pop an arbitrary number of records. With automatic space man-
agement, the number of records that can be seen by any one routine is limited by
the number of symbols in the current production. The difference is particularly
important in the case of productions that generate lists. In Section C-4.5.1 we saw
an SLR(1) grammar for declarations in the style of C and Fortran, in which the
type name precedes the list of identifiers. Here is an LL(1) grammar fragment for
a language in the style of Pascal and Ada, in which the variables precede the type:

dec — id_list : type
id_list — id id_list_tail
id_list_taill — , id_list

— €
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Without resorting to non-L-attributed flow (see Exercise C-4.28), we cannot
pass the declared type into id_list as an inherited attribute. Instead, we must save
up the list of identifiers and enter them into the symbol table en masse when the
type is finally encountered. With automatic management of space for attributes,
the action routines would look something like this:

dec — id_list : type { declare_vars(id_list.chain, type.tp) }
id_list — id id_list_tail { idlist.chain := append(id.name, id_list_tail.chain) }
id list_tail — , id_list { id_list_tail.chain := id_list.chain }

— e { iddist_tail.chain := null }

With ad hoc management of space, we can get by without the linked list:

dec — { push(marker) }
id_list : type
{ popl(tp)
pop(name)
while name # marker
declare_var(name, tp)
pop(name) }
id_list — id { push(cur_tok.name) } id_list_tail
id_list_taill — , id_list

— €

Neither automatic nor ad hoc management of attribute space in top-down
parsers is clearly superior to the other. The ad hoc approach eliminates the need
for many copy rules and inherited attributes, and is consequently somewhat more
time and space efficient. It also allows lists to be embedded in the semantic
stack. On the other hand, it requires that the programmer who writes the ac-
tion routines be continually aware of what is in the stack and why, in order to
push and pop it appropriately. In the final analysis, the choice is mainly a matter
of taste.

\/CHECK YOUR UNDERSTANDING

I7. Explain how to manage space for synthesized attributes in a bottom-up parser.
[8. Explain how to manage space for inherited attributes in a bottom-up parser.
[9. Define left corner and trailing part.

20. Under what circumstances can an action routine be embedded in the right-
hand side of a production in a bottom-up parser? Equivalently, under what
circumstances can a marker symbol be embedded in a right-hand side with-
out rendering the grammar non-LR?
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1. Summarize the tradeoffs between automatic and ad hoc management of space
for attributes in a top-down parser.

1). At any given point in a top-down parse, which symbols will have attribute
records in an automatically managed attribute stack?
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Exercises

Repeat Exercise 4.7 using ad hoc attribute space management. Instead of
accumulating the translation into a data structure, write it to a file on the
fly.

Rewrite the grammar for declarations of Example C-4.28 without the re-
quirement that your attribute flow be L-attributed. Try to make the gram-
mar as simple and elegant as possible (you shouldn’t need to accumulate
lists of identifiers).

Fill in the missing lines in Figure C-4.19.

Consider the following grammar with action routines:
params — mode ID par_tail
{ params.list := insert({(mode.val, ID.name), par_tail.list) }
par_tail — , params { par_tail.list := params.list }
— { parztaillist := null }

mode — IN { mode.val := IN }

— 0UT { mode.val := OUT }

— 1IN OUT { mode.val := IN.OUT }

Suppose we are parsing the input IN a, 0OUT b, and that our compiler
uses an automatically maintained attribute stack to hold the active slice of
the parse tree. Show the contents of this attribute stack immediately before
the parser predicts the production par_tail — €. Be sure to indicate where
and [R) point in the attribute stack. Also show the stack of saved
and [R) values, showing where each points in the attribute stack. You may
ignore the [N) pointer.

One problem with automatic space management for attributes in a top-
down parser occurs in lists and sequences. Consider for example the fol-
lowing grammar:
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block — begin stmt_list end
stmt_list — stmt stmt_list_tail
stmt_list_tail — ; stmt_list | €

stmt — ...

After predicting the final statement of an n-statement block, the attribute
stack will contain the following (line breaks and indentation are for clarity
only):

block begin stmt_list end
stmt stmt_list_tail ; stmt_list
stmt stmt_list_tail ; stmt_list
stmt stmt_list_tail ; stmt_list
{ ntimes }

If the attribute stack is of finite size, it is guaranteed to overflow for some
long but valid block of straight-line code. The problem is especially un-
fortunate since, with the exception of the accumulated output code, none
of the repeated symbols in the attribute stack contains any useful attributes
once its substructure has been parsed.

Suggest a technique to “squeeze out” useless symbols in the attribute
stack, dynamically. Ideally, your technique should be amenable to auto-
matic implementation, so it does not constitute a burden on the compiler
writer.

Also, suppose you are using a compiler with a top-down parser that em-
ploys an automatically managed attribute stack, but does not squeeze out
useless symbols. What could you do if your program caused the compiler
to run out of stack space? How could you modify your program to “get
around” the problem?
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Explorations

4.36 Asdescribed in Section C-4.5.1, yacc/bison will refuse to accept action rou-

431

tines in the left corner of a production. Is there any way around this prob-
lem? Can you imagine implementing an extended version of the tool that
would permit action routines in arbitrary locations? What would be the
challenges? The cost?

Learn how attribute space is managed in the ANTLR parser generator. How
does it compare to the techniques described in Section C-4.5.22

c-59
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Simple generator in Icon

EXAMPLE 690

A generator inside an
expression

Control Flow

60.5.4 Generators in Icon

Like the iterators of Clu, Python, Ruby, and C#, Icon generators can be used for
enumeration-controlled iteration. Our canonical for loop example would be
written as follows in Icon:

every i := first to last by step do {
}

Here...to...by... is a built-in “mixfix” generator.

Because Icon is intended largely for string manipulation, most of its built-
in generators operate on strings. Find(substr, str), for example, generates
the positions (indices) within string str at which an occurrence of the substring
substr can be found. Upto(chars, str) generates the positions within string
str at which any character in chars appears. (The initial argument to find is a
string, delimited by double quote marks; the initial argument to upto is a cset
[character set], delimited by single quote marks.) The prefix operator ! generates
all elements of its operand, which can be a string, list, record, file, or table.

In comparison to conventional iterators, however, the generators of Icon are
more deeply embedded in the semantics of the language. A generator can be used
in any context that expects an expression. The larger context is then capable of
generating multiple results. The following code will print all positions in s that
follow a blank:

every i := 1 + upto(' ', s) do {
write(i)

}
This can even be written as

every write(1 + upto(' ', s))

c-107
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EXAMPLE 69'

Generating in search of
success

EXAMPLE 6.92

Backtracking with multiple
generators

Generators in Icon are used not only for iteration, but also for goal-directed
search, implemented via backtracking. (Backtracking is also fundamental to Pro-
log, which we will study in Chapter 12.) Where most languages use Boolean ex-
pressions to control selection and logically controlled loops, Icon uses a more
general notion of success and failure. A conditional statement such as

if 2 < 3 then {

}

is said to execute not because the condition 2 < 3 is true, but because the com-
parison 2 < 3 succeeds. The distinction is important for generators, which are
capable of producing results repeatedly until one of them causes the surrounding
context to succeed (or until no more results can be produced). For example, in

if (i := find("abc", s)) > 6 then {

}

the body of the if statement will be executed only if the string "abc" appears
beyond the sixth position in s. Because find generates its results in order, i will
represent the first such position (if any). The execution model is as follows: find
is capable of generating all positions at which "abc" occurs in s. Suppose the
first such occurrence is at position 2. Then 1 is assigned the value 2, but the com-
parison 2 > 6 fails. Because there is a generator inside the failed expression, Icon
will resume that generator and reevaluate the expression for the next generated
value. It will continue this reevaluation process until the comparison succeeds, or
until the generator runs out of values, in which case it (the generator) fails, the
overall expression fails definitively, and the body of the if is skipped.

If a failed expression contains more than one generator, all possible values will
be explored systematically. The body of the following if, for example, will be
executed if and only if an x appears at the same position in both s and t, with i
denoting the first such matching position:

if (i := find("x", s)) = find("x", t) then {

}

If there is no matching position, then i will be set to the position of the final x
in s, but the body of the loop will be skipped. If the programmer wishes to avoid
changing i in the case where the overall test fails, then the reversible assignment
operator, <- can be used instead of :=. When Icon backtracks past a reversible
assignment, it restores the original value.

Any user-defined subroutine in Icon can be a generator if it uses the suspend
expr statement instead of return expr. Suspend is Icon’s equivalent of yield. If
the expression following suspend contains an invocation of a generator, then the
subroutine will suspend repeatedly, once for each generated value.
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\/CHECK YOUR UNDERSTANDING

45. Explain how Icon generators differ from the iterators of Clu, Python, Ruby,
and C#, and from the iterator objects of Euclid, C++, and Java.

46. Describe the notions of success and failure in Icon.
41. What is backtracking? Why is it useful?

48. Name a language other than Icon in which backtracking plays a fundamental
role.
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EXAMPLE 6.94

Selection with guarded
commands

Control Flow

Nondeterminacy

In Algol 68, the lack of ordering among expression operands was explicitly defined
as an example of nondeterminacy, which the language designers called collateral
execution. Several other built-in constructs in Algol 68 were nondeterministic
as well, and an explicit collateral statement allowed the programmer to specify
nondeterminacy in the evaluation of arbitrary expressions when desired.

Among his many contributions to the art of programming, Dijkstra [Dij75]
advocated the use of nondeterminacy for selection and logically controlled loops.
His guarded command notation has been adopted by several languages. One of
these is SR, a pedagogical language of the 1980s, which we will mention again
in Chapter 13. Imagine for a moment that we are writing a function to return
the maximum of two integers. In C, we would probably employ a code fragment
something like this:

if (a > b) max = a;
else max = b;

Of course, we could also write

if (a >= b) max = a;
else max = b;

These fragments differ in their behavior when a = b: the first sets max = b; the
second sets max = a. As a practical matter the difference is irrelevant, since a and
b are equal, but it is in some sense aesthetically unpleasant to have to make an
arbitrary choice between the two. More important, the arbitrariness of the choice
makes it more difficult to reason about the code formally, or to prove it is correct.
In a language with guarded commands (the example here is in SR), one could
write the following:

c-110
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Looping with guarded
commands
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if a >= b -> max :
[T b>= a ->max :
fi

o
[ou

The general form of this construct is

if condition -> stmt_list
[0 condition -> stmt_list
[0 condition -> stmt_list

fi

Each of the conditions in this construct is known as a guard. The guard and
its following statement, together, are called a guarded command. When control
reaches an if statement in a language with guarded commands, a nondetermin-
istic choice is made among the guards that evaluate to true, and the statement list
following the chosen guard is executed. In SR, the final condition may optionally
be else. If none of the conditions evaluates to true, the statement list following
the else, if any, is executed. If there is no else, the if statement as a whole has
no effect. (In Dijkstra’s original proposal, there was no else guard option, and
it was a dynamic semantic error for none of the guards to be true.) Interestingly,
SR provides no separate case construct: the SR compiler detects when the con-
ditions of an if statement test the same expression against a nonoverlapping set
of compile-time constants, and generates table-lookup code as appropriate.

SR uses guarded commands for several purposes in addition to selection. Its
logically controlled looping construct (again patterned on Dijkstra’s proposal)
looks very much like the if statement:

do condition -> stmt_list
[0 condition -> stmt_list
[0 condition -> stmt_list

od
For each iteration of the loop, a nondeterministic choice is made among the
guards that evaluate to true, and the statement list following the chosen one is
executed. The loop terminates when none of the guards is true (there is no else

guard option for loops). Using this notation, we can write Euclid’s greatest com-
mon divisor algorithm as follows:

a-b
b -a

doa>b ->a
Ob>a-—>b
od

ged = a
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EXAMPLE 6.96

Nondeterministic message
receipt

EXAMPLE 697

Nondeterministic server in
SR

process client:
loop
toss coin
if heads, send read request to server
wait for response
if tails, send write request to server
wait for response

process server:
loop
receive read request
reply with data
OR
receive write request
update data and reply

Figure 6.7 Example of a concurrent program that requires nondeterminacy. The server must
be able to accept either a read or a write request, whichever is available at the moment. If it
insists on receiving them in any particular order; deadlock may result.

Nondeterministic Concurrency

While nondeterministic constructs have a certain appeal from an aesthetic and
formal semantics point of view, their most compelling advantages arise in con-
current programs, for which they can affect correctness. Imagine, for example,
that we are writing a simple dictionary program to support computer-aided de-
sign on a network of personal computers. The dictionary keeps a mapping from
part names to their specifications. A dictionary server process handles requests
from clients on other workstations on the network. Each request may be either
a read (return me the current specification for part X) or a write (define part Y
as follows).! Clients send requests at unpredictable times. As a result, the server
cannot tell at any given time whether it should try to receive a read or a write
request. If it makes the wrong choice the entire system may deadlock (see Fig-
ure C-6.7).

Most message-based concurrent languages provide at least one mechanism to
specify nondeterministic choice among potential communication partners. These
mechanisms do not all look like guarded commands, but they have similar seman-
tics. In SR, one could write our dictionary server as follows:

# declarations of request types:
op read_data(n : name) returns d : description
op write_data(n : name; d : description)

I This is of course an oversimplified example. Among other things, any real system of this sort
would need a mechanism to lock parts in the dictionary, so that no two clients would ever end
up designing new specifications for the same part concurrently.
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EXAMPLE 6.99

“Gotcha” in round-robin
implementation of
nondeterminism
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# local subroutines:

proc lookup ... # find info in dictionary
proc update ... # change info in dictionary
# code for server:

process server

do true -> # loop forever
in read_data(n) returns d -> d := lookup(n)
[1 write_data(n, d) -> update(n, d)
ni
od
end

Here in is a nondeterministic construct whose guards can contain communica-
tion statements. The guard write_data(n, d) will evaluate to true if and only
if some client is attempting to send a request containing a new specification for
a part. We shall see in Section C-13.5.3 that more elaborate guards can allow a
server to constrain the types of requests that it is willing to receive at a given point
in time, or even to “peek” inside a message to see if it is acceptable. If none of the
guards of an in statement is true, the server waits until one is.

Choosing among Guards

What happens if two or more guards evaluate to true? How does the language
implementation choose among them? We have glossed over this issue so far. The
most naive implementation would treat a guarded command construct like a con-
ventional if...then...else:

server:
loop
if read_data request available

elsif write_data request available

else wait until some request is available

The problem with this implementation is that it always favors one type of request
over another; if read_data requests are always available, write_data requests
will never be received.

A slightly more sophisticated implementation would maintain a circular list
of the guards in each set of guarded commands. Each time it encounters the
construct in which these commands appear, it would check guards beginning with
the one after the one that succeeded last time. This technique works well in many
cases, but can fail consistently in others. In the following, for example (again in
SR), the guard of the first in statement combines a communication test with a
Boolean condition:
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process silly
var count : int := 0
do true ->
in A() st count % 2 =1 -> ...

0 BO -> ...
0co -> ...
ni

count++

od

This example is somewhat contrived, but illustrates the problem. The st (“such
that”) clause in the first guard indicates that it can be chosen only on odd itera-
tions of the loop. Now imagine that A, B, and C requests are always available. If
we always check guards starting with the one after the one that succeeded last time
(beginning at first with the initial guard), then B will be chosen in the first itera-
tion (because count mod 2 # 1), C will be chosen in the second iteration (when
count = 2), B will be chosen again in the third iteration (because again count
mod 2 # 1), and so forth. A will never be chosen. The lesson to be learned from
this example is that no deterministic algorithm will provide a truly satisfactory
implementation of a nondeterministic construct (see Sidebar C-6.11).

One final issue has to do with side effects. Guarded command constructs make
a nondeterministic choice among the guards that evaluate to true. They do not,
however, guarantee that all guards will be evaluated before the choice is made;
the implementation is free to ignore the rest of the guards once it has chosen one
that is true. A program may therefore produce unexpected or even unpredictable

DESIGN & IMPLEMENTATION

6.1 Nondeterminacy and fairness

Ideally, what we should like in a nondeterministic construct is a guarantee of
fairness. This turns out to be trickier than one might expect: there are several
plausible ways that “fair” might be defined. Certainly we should like to guar-
antee that no guard that is always true is always skipped. Probably, we should
like to guarantee that no guard that is true infinitely often (in a hypothetical
infinite sequence of iterations) is always skipped. Better, we might ask that
any guard that is true infinitely often be chosen infinitely often. This stronger
notion of fairness will obtain if the choice among true guards is genuinely ran-
dom. Unfortunately, good pseudorandom number generators are expensive
enough that we may not want to use them to choose among guards. As a re-
sult, most implementations of guarded commands are not provably fair. Many
simply employ the circular list technique. Others use somewhat “more ran-
dom” heuristics. Many machines, for example, provide a fast-running clock
register that can be read efficiently in user-level code. A reasonable “random”
choice of the guard to evaluate first can be made by interpreting this clock as
an integer, and computing its remainder modulo the number of guards.
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results if any of the guards have side effects. This problem is the programmer’s
responsibility in SR. An alternative would have been to prohibit side effects and
have the compiler verify their absence.

/CHECK YOUR UNDERSTANDING
49. What is a guarded command?

50. Explain why nondeterminacy is particularly important for concurrent pro-
grams.

51. Give three alternative definitions of fairness in the context of nondeterminacy.

5). Describe three possible ways of implementing the choice among guards that
evaluate to true. What are the tradeoffs among these?
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Exercises

(David Hanson [Han93].) Write a program in Icon that will print the k
most common words in its input, one per line, with each preceded by a
count of the number of times it appears. If parameter k is not specified on
the command line, use 10 by default. You will want to consult the Icon man-
ual (available on-line [GG96]). In addition to suspend, upto, and write,
discussed in this text, you may find it helpful to learn about integer, many,
pull, read, sort, table, and tab. When fed the Gettysburg Address, your
program should print

e
w

that
the

we

to
here

a

and

of
nation

oo o O N 00 00 00 ©

have

Write a £indRE generator in Icon that mimics the behavior of find, but
takes as its first parameter a regular expression. Use a string to represent
your regular expression, with syntax as in Section 2.1.1. Use empty paren-
theses to represent e. Give highest precedence to Kleene closure, then con-
catenation, then alternation. You may assume that we never search for ver-
tical bar, asterisk, or parenthesis characters.
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6.38 Explain why the following guarded commands in SR are not equivalent:

if a<b ->c :=a if a<b->c :=a
[T b<c->c:=b [l b<c->c:=b
[] else -=> ¢ :=d [1 true -> ¢ :=d
fi fi

6.39 The astute reader may have noticed that the final line of the code in Ex-
ample C-6.95 embodies an arbitrary choice. It could just as easily have said
gcd := b. Show how to use a guarded command to restore the symmetry
of the program.

6.40 Write, in SR or pseudocode, a function that returns
(a) an arbitrary nonzero element of a given array
(b) an arbitrary permutation of a given array

In each case, write your code in such a way that if the implementation of

nondeterminism were truly random, all correct answers would be equally
likely.
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Explorations

6.47 Learn about Snobol, an earlier language by Ralph Griswold, who also de-
signed Icon. How do the two languages compare?

6.48 Chapter 18 of Griswold’s text on Icon [GG96] discusses scanning and pars-
ing. After reading this chapter, explain how backtracking search can be used
to generalize recursive descent. What classes of grammars can you parse
with this generalized technique? What is the worst-case time complexity?

6.49 Learn about the select routine in the Unix (POSIX) library. How does it
deal with the need for nondeterministic receipt from multiple communica-
tion partners? How would you use this routine to achieve the effect of the
SR code in Example C-6.97?

6.50 Explain how to use threads in Java to achieve the effect of Example C-6.97.
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Generic arbiter class in
C++

Type Systems

1.3.2 Generics in C++, Java, and C#

Though templates were not officially added to C++ until 1990, when the language
was almost ten years old, they were envisioned early in its evolution. C# generics,
likewise, were planned from the beginning, though they actually didn’t appear
until the 2.0 release in 2004. By contrast, generics were deliberately omitted from
the original version of Java. They were added to Java 5 (also in 2004) in response
to strong demand from the user community.

C++ Templates

Figure C-7.5 defines a simple generic class in C++ that we have named an
arbiter. The purpose of an arbiter object is to remember the “best instance”
it has seen of some generic parameter class T. We have also defined a generic
chooser class that provides an operator () method, allowing it to be called like
a function. The intent is that the second generic parameter to arbiter should
be a subclass of chooser, though this is not enforced. Given these definitions we
might write

class case_sensitive : chooser<string> {
public:
bool operator() (const string& a, const string& b) { return a < b; }

};

arbiter<string, case_sensitive> cs_names; // declare new arbiter
cs_names.consider(new string("Apple"));

cs_names.consider (new string("aardvark"));

cout << *cs_names.best() << "\n"; // prints "Apple"

Alternatively, we might define a case_insensitive descendant of chooser,
whereupon we could write

c-119
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template<typename T>
class chooser {
public:
virtual bool operator() (const T& a, const T& b) = 0;
};

template<typename T, typename C>
class arbiter {
T* best_so_far;
C comp;
public:
arbiter() { best_so_far = nullptr; }
void consider(T* t) {

if (!best_so_far || comp(*t, *best_so_far)) best_so_far = t;
}
T* best() {

return best_so_far;
}

};

Figure 1.5 Generic arbiter in C++.

arbiter<string, case_insensitive> ci_names; // declare new arbiter
ci_names.consider(new string("Apple"));

ci_names.consider(new string("aardvark"));

cout << *ci_names.best() << "\n"; // prints "aardvark"

Either way, the C++ compiler will create a new instance of the arbiter template
every time we declare an object (e.g., cs_names) with a different set of generic ar-
guments. Only when we attempt to use such an object (e.g., by calling consider)
will it check to see whether the arguments support all the required operations.

Because type checking is delayed until the point of use, there is nothing magic
about the chooser class. If we neglected to define it, and then left it out of the
header of case_sensitive (and similarly case_insensitive), the code would
still compile and run just fine.

C++ templates are an extremely powerful facility. Template parameters can
include not only types, but also values of ordinary (nongeneric) types, and
nested template declarations. Programmers can also define specialized templates
that provide alternative implementations for certain combinations of arguments.
These facilities suffice to implement recursion, giving programmers the ability,
at least in principle, to compute arbitrary functions at compile time (in other
words, templates are Turing complete). An entire branch of software engineering
has grown up around so-called template metaprogramming, in which templates
are used to persuade the C++ compiler to generate custom algorithms for special
circumstances [AG05]. As a comparatively simple example, one can write a tem-
plate that accepts a generic parameter int n and produces a sorting routine for
n-element arrays in which all of the loops have been completely unrolled.
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As described in Section 7.3.1 (“Implicit Instantiation”), C++ allows generic
parameters to be inferred for generic functions, rather than specified explicitly. To
identify the right version of a generic function (from among an arbitrary number
of specializations), and to deduce the corresponding generic arguments, the com-
piler must perform a complicated, potentially recursive pattern-matching oper-
ation. This pattern matching is, in fact, quite similar to the type inference of
ML-family languages, described in Section 7.2.4. It can, as noted in Sidebar 7.8,
be cast as unification.

Unfortunately, per-use instantiation of templates has several significant draw-
backs. First, it requires that the compiler have access to the template’s source
code at the point in the program where instantiation occurs. In the code of Fig-
ure C-7.5, the arbiter class includes complete definitions of its methods. This
is entirely appropriate for small, simple classes, even in a header (.h) file. If the
code were significantly more complex, we might wish to put only the declaration
of the generic class in our header file (call it arbiter.h), and defer the method
definitions to a separate arbiter. cc file:

// arbiter.h:

template<typename T, typename C>
class arbiter {
T* best_so_far;
C comp;
public:
arbiter();
void consider(T* t);
T* best();
};

// arbiter.cc (imagine that these methods were long and complicated):

template<class T, class C>
arbiter<T,C>::arbiter() { best_so_far = nullptr; }

template<class T, class C>
void arbiter<T,C>::consider(T* t) {
if (!best_so_far || comp(*t, *best_so_far)) best_so_far = t;

}

template<class T, class C>
T* arbiter<T,C>::best() { return best_so_far; }

Compilation units that have access to the .h file will still compile successfully,
but now the actual code of the arbiter methods will never be instantiated. The
likely symptom will be “missing symbol” errors from the linker.

C++ provides a partial solution to this problem, in the form of explicit instan-
tiation. If we anticipate the need for case-sensitive and case-insensitive string
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arbiters, we can define the appropriate chooser classes in arbiter.h, and then
instantiate corresponding arbiter classes in arbiter.cc:

template class arbiter<string, case_sensitive>;
template class arbiter<string, case_insensitive>;

Of course, explicit instantiation works only if the implementor of a template’s
.cc file knows what instantiations will eventually be required. If this cannot be
anticipated, the bodies will need to remain in the .h file, regardless of their com-
plexity. But then a second problem arises: if the same template is instantiated
with the same arguments in 20 different compilation units, the compiler will end
up compiling the same code 20 times. Most modern linkers are smart enough to
keep only one copy of the machine code for a repeatedly instantiated template,
but we will have wasted not only the cost of repeated scanning and parsing, but
of semantic analysis, optimization, and code generation as well.

C++11 provides a partial solution to this second problem, in the form of
extern template declarations. If the templated class declaration and method def-
initions of Example C-7.59 were included in their entirety in arbiter.h, and we
then needed a case-sensitive arbiter in each of 20 . cc files, we could write

extern template class arbiter<string, case_sensitive>;

in all but one of the files, instructing the compiler not to generate machine
code for that arbiter, but rather to assume that an appropriate implementation
would be generated elsewhere (presumably in the 20th file, where the extern
keyword would be omitted), and would thus be available at link time.

In day-to-day use, the final and perhaps the most frustrating problem with
per-use instantiation is its tendency to result in inscrutable error messages.
Continuing our running example, if we define

class foo { // line 31 of source
public:
bool operator() (const string& a, const unsigned int b) {

// wrong type for second parameter, from arbiter's point of view
return a.length() < b;

¥
and then say
arbiter<string, foo> oops;
oops.consider(new string("Apple")); // line 66 of source

one might hope to receive an error message along the lines of “line 66: foo's
operator() method needs to take two arguments of type string&.” Instead the
GNU C++ compiler responds
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best.cc: In instantiation of 'void arbiter<T, C>::consider (Tx*)
[with T = std::basic_string<char>; C = foo]':
best.cc:66:38: required from here
best.cc:19:26: error: no match for call to
'(foo) (std::basic_string<char>&, std::basic_string<char>&)'
if (!best_so_far || comp(*t, *best_so_far)) best_so_far = t;
best.cc:31:7: note: candidate is:
class foo {
best.cc:33:10: note: bool foo::operator() (const string&, unsigned int)
bool operator() (const string& a, const unsigned int b) {
best.cc:33:10: note: no known conversion for argument 2
from 'std::basic_string<char>' to 'unsigned int'

LLVM’s clang front end is similarly inscrutable:

best.cc:19:29: error: no matching function for call to
object of type 'foo'
if (!best_so_far || comp(xt, *best_so_far)) best_so_far = t;

best.cc:66:10: note: in instantiation of member function

oops.consider(new string("Apple"));

'arbiter<std::__1::basic_string<char>, foo>::consider' requested here

best.cc:33:10: note: candidate function not viable: no known conversion
from 'std::__1::basic_string<char>' to 'const unsigned int'
for 2nd argument

bool operator() (const string& a, const unsigned int b) {

The problem here is fundamental; it’s not poor compiler design. Because the lan-
guage requires that templates be “expanded out” before they are type checked,
it is extraordinarily difficult to generate messages without reflecting that expan-
sion. One of the principal goals of the generic parameter constraints currently
under consideration for the next release of C++ is to improve the quality of er-
ror messages, by performing more high-level checks before fully expanding the
template.

Java Generics

Generics were deliberately omitted from the original version of Java. Rather than
instantiate containers with different generic parameter types, Java programmers
followed a convention in which all objects in a container were assumed to be of
the standard base class Object, from which all other classes are descended. Users
of a container could place any type of object inside. When removing an object,
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interface Chooser<T> {
public boolean better(T a, T b);

class Arbiter<T> {
T bestSoFar;
Chooser<? super T> comp;

public Arbiter(Chooser<? super T> c) {
comp = c;
}
public void consider(T t) {
if (bestSoFar == null || comp.better(t, bestSoFar)) bestSoFar = t;
}
public T best() {
return bestSoFar;
}
}

Figure 1.6 Generic arbiter in Java.

a cast could be needed to reassert the original type. No danger was involved,
because objects in Java are self-descriptive, and casts employ run-time checks.

Though dramatically simpler than the use of templates in C++, this pro-
gramming convention has three significant drawbacks: (1) users of containers
must litter their code with casts, which many people find distracting or aes-
thetically distasteful; (2) errors in the use of a container manifest themselves as
ClassCastExceptions at run time, rather than as compile-time error messages;
(3) the casts incur overhead at run time. Given Java’s emphasis on clarity of ex-
pression, rather than pure performance, problems (1) and (2) were considered the
most serious, and became the subject of a Java Community Process proposal for
a language extension in Java 5. The solution adopted is based on the GJ (Generic
Java) work of Bracha et al. [BOSW98].

Figure C-7.6 contains a Java version of our arbiter class. It differs from the
C++ code of Figure C-7.5 in several important ways. First, Java requires that the
code for each generic class be manifestly (self-obviously) type safe, independent
of any particular instantiation. This means that the type of field comp—and in
particular, the fact that it provides a better method—must be statically declared.
As aresult, the Chooser to be used by a given Arbiter instance must be specified
as a constructor parameter; it cannot be a generic parameter. (We could have used
a constructor parameter in C++; in Java it is mandatory.) For both field comp and
constructor parameter c, we are then faced with the question: what should be the
generic parameter of Chooser?

The most obvious choice (not the one adopted in Figure C-7.6) would be
Chooser<T>. This would allow us to write
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class CaseSensitive implements Chooser<String> {
public boolean better(String a, String b) {
return a.compareTo(b) < 1;
}
b

Arbiter<String> csNames = new Arbiter<String>(new CaseSensitive());
csNames. consider (new String("Apple"));

csNames.consider (new String("aardvark"));
System.out.println(csNames.best()); // prints "Apple"

Suppose, however, we were to define

class CaseInsensitive implements Chooser<Object> { // note type!
public boolean better(Object a, Object b) {
return a.toString().compareToIgnoreCase(b.toString()) < 1;

}

Class Object defines a toString method (usually used for debugging purposes),
so this declaration is valid. Moreover since every String is an Object, we ought
to be able to pass any pair of strings to CaseInsensitive.better and get a
valid response. Unfortunately, Chooser<Object> is not acceptable as a match
for Chooser<String>. If we typed

Arbiter<String> ciNames = new Arbiter<String>(new CaselInsensitive());

the compiler would complain. The fix (as shown in Figure C-7.6) is to declare both
comp and c to be of type <? super T> instead. This informs the Java compiler
that an arbitrary type argument (“?”) is acceptable as the generic parameter of
our Chooser, so long as that type is an ancestor of T.

The super keyword specifies a lower bound on a type parameter. It is the sym-
metric opposite of the extends keyword, which we used in Example 7.51 to spec-
ify an upper bound. Together, upper and lower bounds allow us to broaden the set
of types that can be used to instantiate generics. As a general rule, we use extends
T whenever a method returns a T object (on which we need to be able to invoke
T methods); we use super T whenever we expect to pass a T object as a param-
eter, but don’t mind if the receiver is willing to accept something more general.
Given the bounded declarations of Figure C-7.6, our use of CaseInsensitive
will compile and run just fine:

Arbiter<String> ciNames = new Arbiter<String>(new CaselInsensitive());
ciNames.consider(new String("Apple"));

ciNames.consider (new String("aardvark"));
System.out.println(ciNames.best()); // prints "aardvark"



c-126  Chapter 7 Type Systems

interface Chooser {
public boolean better(Object a, Object b);

class Arbiter {
Object bestSoFar;
Chooser comp;

public Arbiter(Chooser c) {
comp = c;
}
public void consider(Object t) {
if (bestSoFar == null || comp.better(t, bestSoFar)) bestSoFar = t;
}
public Object best() {
return bestSoFar;
}
}

Figure 1.1 Arbiter in Java after type erasure. No casts are required in this portion of the code
(but see the main text for uses).

Type Erasure

Generics in Java are defined in terms of type erasure: the compiler effectively
deletes every generic parameter and argument list, replaces every occurrence of
a type parameter with Object, and inserts casts back to concrete types wherever

exameLe 1.64 objects are returned from generic methods. The erased equivalent of Figure C-7.6
Type erasure and implicit appears in Figure C-7.7. No casts are required in this portion of the code. On any
casts use of best, however, the compiler would insert an implicit cast. The statement

String winner = csNames.best();
will, in effect, be implicitly replaced with
String winner = (String) csNames.best();

Also, in order to match the Chooser<String> interface, our definition of
CaseSensitive (Example C-7.62) will in effect be replaced with

class CaseSensitive implements Chooser {
public boolean better(Object a, Object b) {
return ((String) a).compareTo((String) b) < 1;
}

The advantage of type erasure over the nongeneric (Object-based) version of
the code is that the programmer doesn’t have to write the casts. In addition, the
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compiler is able to verify in most cases that the erased code will never generate a
ClassCastException at run time. The exceptions occur primarily when, for the
sake of interoperability with preexisting code, the programmer assigns a generic
collection into a nongeneric collection:

Arbiter<String> csNames = new Arbiter<String>(new CaseSensitive());
Arbiter alias = csNames; // nongeneric
alias.consider(new Integer(3)); // unsafe

The compiler will issue an “unchecked” warning on the third line of this example,
because we have invoked method consider on a “raw” (nongeneric) Arbiter
without explicitly casting the arguments. In this case the warning is clearly war-
ranted: alias shouldn’t be passed an Integer. Other examples can be quite a bit
more subtle. It should be emphasized that the warning simply indicates the lack
of static checking; any type errors that actually occur will still be caught at run
time.

Note, by the way, that the use of erasure, and the insistence that every instance
of a given generic be able to share the same code, means that type arguments in
Java must all be descended from Object. While Arbiter<Integer> is a perfectly
acceptable type, Arbiter<int> is not.

DESIGN & IMPLEMENTATION

1.11" Why erasure?

Erasure in Java has several surprising consequences. For one, we can’t invoke
new T(), where T is a type parameter: the compiler wouldn’t know what kind
of object to create. Similarly, Java’s reflection mechanism, which allows a pro-
gram to examine and reason about the concrete type of an object at run time,
knows nothing about generics: csNames.getClass().toString() returns
"class Arbiter", not "class Arbiter<String>". Why would the Java de-
signers introduce a mechanism with such significant limitations? The answer
is backward compatibility or, more precisely, migration compatibility, which
requires complete interoperability of old and new code.

More so than most previous languages, Java encourages the assembly of
working programs, often on the fly, from components written independently
by many different people in many different organizations. The Java designers
felt it was critical not only that old (nongeneric) programs be able to run with
new (generic) libraries, but also that new (generic) programs be able to run
with old (nongeneric) libraries. In addition, they took the position that the
Java virtual machine, which interprets Java bytecode in the typical implemen-
tation, could not be modified. While one can take issue with these goals, once
they are accepted erasure becomes a natural solution.
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C# Generics

Though generics were omitted from C# version 1, the language designers al-
ways intended to add them, and the .NET Common Language Infrastructure
(CLI) was designed from the outset to provide appropriate support. As a result,
C# 2.0 was able to employ an implementation based on reification rather than
erasure. Reification creates a different concrete type every time a generic is instan-
tiated with different arguments. Reified types are visible to the reflection library
(csNames.GetType () .ToString() returns "Arbiter 1[System.Double]l"),
and it is perfectly acceptable to call new T() if T is a type parameter with a zero-
argument constructor (a constraint to this effect is required). Moreover where
the Java compiler must generate implicit type casts to satisfy the requirements of
the virtual machine (which knows nothing of generics) and to ensure type-safe
interaction with legacy code (which might pass a parameter or return a result of
an inappropriate type), the C# compiler can be sure that such checks will never
be needed, and can therefore leave them out. The result is faster code.

Of course the C# compiler is free to merge the implementations of any generic
instantiations whose code would be the same. Such sharing is significantly eas-
ier in C# than it is in C++, because implementations typically employ just-in-
time compilation, which delays the generation of machine code until immediately
prior to execution, when it’s clear whether an identical instantiation already exists
somewhere else in the program. In particular, MyType<Foo> and MyType<Bar>
will share code whenever Foo and Bar are both classes, because C# employs a
reference model for variables of class type.

Like C++, C# allows generic arguments to be value types (built-ins or
structs), not just classes. We are free to create an object of class MyType<int>;
we do not have to “wrap” it as MyType<Integer>, the way we would in Java.
MyType<int> and MyType<double> would generally not share code, but both
would run significantly faster than MyType<Integer> or MyType<Double>, be-
cause they wouldn’t incur the dynamic memory allocation required to create a
wrapper object, the garbage collection required to reclaim it, or the indirection
overhead required to access the data inside.

Like Java, C# allows only types as generic parameters, and insists that generics
be manifestly type safe, independent of any particular instantiation. It generates
reasonable error messages if we try to instantiate a generic with an argument that
doesn’t meet the constraints of the corresponding generic parameter, or if we try,
inside the generic, to invoke a method that the constraints don’t guarantee will be
available.

A C# version of our Arbiter class appears in Figure C-7.8. One small differ-
ence with respect to Figure C-7.6 can be seen in the Arbiter constructor, which
must explicitly initialize field bestSoFar to default(T). We can leave this out
in Java because variables of class type are implicitly initialized to null, and type
parameters in Java are all classes. In C# T might be a built-in or a struct, both
of which require explicit initialization.
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interface Chooser<in T> {
bool better(T a, T b);

class Arbiter<T> {
T bestSoFar;
Chooser<T> comp;
bool initialized;

public Arbiter(Chooser<T> c¢) {
comp = c;
bestSoFar = default(T);
initialized = false;

}

public void Consider(T t) {
if (!initialized || comp.better(t, bestSoFar)) bestSoFar = t;
initialized = true;

}

public T Best() {
return bestSoFar;

}

}

Figure 1.8  Generic arbiter in C#.

A more interesting difference from Figure C-7.6 appears in the definitions of
the Chooser interface, the comp member of class Arbiter, and the c parameter
of the Arbiter constructor. In Java, we used explicit lower bounds (? super
T) on comp and c to indicate that any Chooser<S>, where S is a superclass of
T, would be acceptable. While C# allows us to specify upper bounds in the form
of type constraints (we did so in the sort routine of Example 7.52), it has no
direct equivalent of lower bounds. It does, however, support the related no-
tions of covariance and contravariance. We have exploited this support in Fig-
ure C-7.8, where it appears not as bounds on the Chooser passed to a newly cre-
ated Arbiter, but as an in modifier on the generic parameter of the Chooser
interface itself.

The declaration interface Chooser<in T> indicates that objects of class T
will be used only as input parameters to methods of the interface. Suppose now
that S is a superclass of T. Since T provides all the methods of S, any method that
expects an input of class S will also accept an input of class T. This means that
in any context in which all we do is provide T objects as inputs to a Chooser, we
can use a “less choosy” Chooser that merely expects S inputs. In other words,
Chooser<T> is a superclass of Chooser<S>. Represented graphically,

T —S = Chooser<S> — Chooser<T>

where the — symbol, pronounced “is a,” indicates that the item on the left in-
herits from the item on the right. Chooser<T> is said to be “contravariant in T”
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because the relationship between S and T is reversed when wrapping them in a
Chooser.

In other situations, objects of a generic type may only be produced by the meth-
ods of an interface. Consider, for example, the notion of an iterator, as provided
by C#’s IEnumerator<T> interface. Method Current of this interface returns an
object of class T; no method takes a T object as input. In the C# standard library,
the interface is declared as

public interface IEnumerator<out T> ...

Now suppose again that S is a superclass of T. In any context in which all we do is
extract S objects from an IEnumerator, we can use a more specific IEnumerator
that gives us T objects instead. In other words, IEnumerator<S> is a superclass
of IEnumerator<T>. Graphically,

T — S = IEnumerator<T> — IEnumerator<S>

Here IEnumerator<T> is said to be “covariant in T” because the relationship be-
tween S and T is preserved when wrapping them in an IEnumerator. In many
interfaces, of course, generic parameters appear as both inputs and outputs of
methods. For such an interface Foo, there is no subclassing relationship: Foo<T>
is said to be “invariant in T.”

Returning to the Arbiter example, there is actually a simpler way to write
our code in C#. Because the Chooser interface has only a single method, we can
express it as a delegate instead:

delegate bool Chooser<T>(T a, T b);

Then in method Arbiter.Consider, we can call the delegate directly as comp (t,
bestSoFar). Our new Chooser is roughly analogous to the C declaration

typedef _Bool (*Chooser)(T a, T b);

(pointer to function of two T arguments, returning a Boolean), except that a C#
Chooser object is a closure, not a pointer: it can refer to a static function, a
method of a particular object (in which case it has access to the object’s fields), or
an anonymous nested function (in which case it has access, with unlimited extent,
to variables in the surrounding scope). In our particular case, defining Chooser
to be a delegate allows us to pass any appropriate function to the Arbiter con-
structor, without regard to the class inheritance hierarchy. We can declare

static bool CaseSensitive(String a, String b) {

return String.CompareOrdinal(a, b) < 1;

// use Unicode order, in which upper-case letters come first
}
static bool CaseInsensitive(Object a, Object b) {

return String.Compare(a.ToString(), b.ToString(), false) < 1;
}
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and then say

Arbiter<String> csNames =
new Arbiter<String>(new Chooser<String>(CaseSensitive));
csNames.Consider ("Apple") ;
csNames.Consider ("aardvark") ;
Console.WriteLine(csNames.Best()); // prints "Apple"

Arbiter<String> ciNames =
new Arbiter<String>(new Chooser<String>(CaseInsensitive));
ciNames.Consider ("Apple");
ciNames.Consider ("aardvark");
Console.WriteLine(ciNames.Best()); // prints "aardvark"

The compiler is perfectly happy to instantiate CaseInsensitive as a Chooser
<String>, because Strings can be passed as Objects.

\/CHECK YOUR UNDERSTANDING

36.

31.

38.
39.

40.
41.

42.
43.

4.
45.

Why is it difficult to produce high-quality error messages for misuses of C++
templates?

What is the purpose of explicit instantiation in C++? What is the purpose of
extern templates?

What is template metaprogramming?

Explain the difference between upper bounds and lower bounds in Java type
constraints. Which of these does C# support?

What is type erasure? Why is it used in Java?

Under what circumstances will a Java compiler issue an “unchecked” generic
warning?

Why must fields of generic parameter type be explicitly initialized in C#?

For what two main reasons are C# generics often more efficient than compa-
rable code in Java?

Summarize the notions of covariance and contravariance in generic types.

How does a C# delegate differ from an interface with a single method (e.g., the
C++ chooser of Figure C-7.5)? How does it differ from a function pointer
in C?
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C++ has no direct analogue of the extends X and super X clauses of Java.
Why not?

Write a simple abstract ordered_set<T> class (an interface) whose meth-
ods include void insert(T val), void remove (T val), bool lookup
(T val), and bool is_empty (), together with a language-appropriate iter-
ator, as described in Section 6.5.3. Using this abstract class as a base, build a
simple 1ist_set class that uses a sorted linked list internally. Try this exer-
cise in C++, Java, and C#. Note that (in Java and C#, at least) you will need
constraints on T. Discuss the differences among your implementations.

Building on the previous exercise, implement higher-level union<T>,
intersection<T>, and difference<T> functions that operate on ordered
sets. Note that these should not be members of the ordered_set<T> class,
but rather stand-alone functions: they should be independent of the de-
tails of 1ist_set or any other particular ordered_set. So, for example,
union(A, B, C) should verify that A is empty, and then add to it all the
elements found in B or C. Explain, for each of C++, Java, and C#, how to
handle the comparison of elements.

Continuing Example C-7.62, the call
csNames.consider (null);

will generate a run-time exception, because String.compareTo is not de-
signed to take null arguments.

(3 Modify Figure C-7.6 to guard against this possibility by including a
predicate public Boolean valid(T a); in the Chooser<T> interface,
and by modifying consider to make an appropriate call to this predi-
cate. Modify class CaseSensitive accordingly.

c-132
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(b) Suggest how to make similar modifications to the C# Arbiter of Fig-
ure C-7.8 and Example C-7.69. How should you handle lower bounds
when you need both Better and Valid?

1.25 (a) Modify your solution to Exercise 7.14 so that the comparison routine
is an explicit generic parameter, reminiscent of the chooser of Fig-
ure C-7.5.

(b) Give an alternative solution in which the comparison routine is an extra
parameter to sort.

1.26 Consider the C++ program shown in Figure C-7.9. Explain why the final
call to first_n generates a compile-time error, but the call to last_n does
not. (Note that first_n is genericbut last_n is not.) Show how to modify
the final call to first_n so that the compiler will accept it.

1.21 Consider the following code in C++:

template <typename T>
class cloneable_list : public list<T> {
public:
cloneable_list<T>* clone() {
auto rtn = new cloneable_list<T>();
for (auto e : *this) {
rtn->push_back(e);
¥

return rtn;

};

cloneable_list<foo> L;

cloneable_list<foo>* Lp = L.clone();

Here *Lp will be a “deep copy” of L, containing a copy of each foo object.
Try to write equivalent code in Java. What goes wrong? How might you get
around the problem?
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#include <iostream>
#include <list>
using std::cout;
using std::list;

template<typename T> void first_n(list<T> p, int n) {
for (typename list<T>::iterator 1li = p.begin(); 1i != p.end(); 1li++) {
if (n-- <= 0) break;
cout << *1i << " ",
}

cout << "\n";

void last_n(list<int> p, int n) {
for (list<int>::reverse_iterator 1li = p.rbegin(); 1i != p.rend(); li++) {
if (n-- <= 0) break;
cout << *1i << " ",
}

cout << "\n";

class int_list_box {
list<int> content;
public:
int_list_box(list<int> 1) { content = 1; }
operator list<int>() { return content; }
// user-supplied operator for coercion/conversion

};

int main() {
int i = 5;
list<int> 1;

for (int i = 0; i < 10; i++) 1l.push_back(i);
int_list_box b(1);

first_n(l, i); // works
last_n(b, i); // works (coerces b)
first_n(b, i); // static semantic error

}

Figure 1.9 Coercion and generics in C++. The compiler refuses to accept the final call to first_n.
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1.38

Type Systems

Explorations

Learn about the Concepts Lite proposal for generic parameter constraints
in C++ [SSD13], support for which is already available in experimental
versions of gcc. Compare and contrast this proposal with the constraint
mechanisms of Java and C#.

Explore the support for generics in Scala, Eiffel, Ada, or some other pro-
gramming language. Compare this support to that of C++, Java, and C#.
What might account for the differences? Which approach(es) do you prefer?
Why?

Explore more fully the concepts of covariance and contravariance in object-
oriented languages, as exemplified by the in and out modifiers for generic
parameters in C# 4.0. Discuss the connection between these concepts and
the notions of upper and lower bounds on generic parameters (? extends
T and ? super T in Java).
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8.1.3 Variant Records (Unions)

A variant record provides two or more alternative fields or collections of fields,
only one of which is valid at any given time. This notion has its roots in the

exampLe 8.59 equivalence statement of Fortran I and in the union types of Algol 68. Building
Nested structs and on the element type of Example 8.1, one could implement a variant record as
unions in traditional C follows in (pre-2011) C:

struct element {
char name[2];
int atomic_number;
double atomic_weight;
_Bool metallic;
_Bool naturally_occurring;
union {
struct {
char *source;
/* textual description of principal commercial source */
double prevalence;
/* fraction, by weight, of Earth's crust */
} natural_info;
double lifetime;
/* half-life in seconds of most stable known isotope */
} extra_fields;

} copper;

Here the programmer presumably intends for the naturally_occurring field
to indicate which parts of the union are currently valid. A true value indicates
that the element has at least one naturally occurring stable isotope; in this case
fields source and prevalence are intended to describe how the element may be
obtained and how commonly it occurs. A false value indicates that the element
results only from atomic collisions or the decay of heavier elements; in this case,
field 1ifetime is intended to indicate how long atoms so created tend to sur-
vive before undergoing radioactive decay. These mutually exclusive sets of fields
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4 bytes/32 bits ——— ‘ ‘

e N [

atomic_number

4bytes/32 bits |

atomic_number

atomic_weight

source

atomic_weight

v [ [

lifetime

prevalence

Figure 8.16 Likely memory layouts for element variants. The value of the naturally_
occurring field (shown here with a double border) is intended to indicate which of the inter
pretations of the remaining space is valid. Field source is assumed to point to a string that has
been independently allocated.

(source and prevalence, on the one hand, or 1ifetime on the other) are some-
times known as variants. Either the first or the second variant may be useful, but
never both at once. From an implementation perspective, nonoverlapping uses
suggest that the variants may share space, as shown in Figure C-8.16.

One significant problem with our nested struct and union is the need for
two extra levels of naming. While the always-present fields can be accessed as,
say, copper.atomic_weight, fields of the inner struct are much less easy to
name: copper.extra_fields.natural_info.source.

Pascal’s principal contribution to union types was to integrate them with
records. In Pascal syntax, our running example might look like this:

type element = record
name : two_chars;

atomic_number : integer;
atomic_weight : real;
metallic : Boolean;

case naturally_occurring : Boolean of
true : (
source : string_ptr;
prevalence : real;
)5
false : (
lifetime : real;

end;

Here the naturally_occurring field is introduced with the keyword case, to
formalize its role as a tag or discriminant. Note that the variant fields have no
extraneous levels of naming: we can refer directly to copper . source.
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exameLe 8.6 Leveraging an extension long supported by gcc, C11 allows a nameless (anony-
Anonymous unions in CI 1 mous) struct or union to appear within another struct or union. The members of
and C++11

the anonymous construct are then directly visible in the surrounding context:

struct element {
char name[2];
int atomic_number;
double atomic_weight;
_Bool metallic;
_Bool naturally_occurring;
union {
struct {
char *source;
double prevalence;

};
double lifetime;
};
} copper;
copper.source = '"various ores";

Anonymous nesting makes variants in C11 as convenient as those of Pascal.
C++11 even allows anonymous unions in non-struct contexts:

void foo() {
union {

int a;

int b;

Safety

exampLe 8.62 A potentially more significant problem with unions in C is the lack of type safety.
Breaking type safety with Mistakes in which the programmer writes to one field of a union and then reads
unions from the other are relatively common:

union {
int i;
double d;
}u;
u.d = 3.0;
printf("%4", u.i);

Here the printf statement, which attempts to output i as an integer, will (in
most implementations) take its bits from the floating-point representation of
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Type-safe unions in OCaml
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3.0—almost certainly a mistake, but one that the language implementation will
not catch.

To avoid these sorts of errors, Algol 68 included features to track the status
of unions at run time, and to prevent access to currently invalid fields. Similar
features can be found in Ada and in ML-family languages today. Our running
element example might be written as follows in OCaml:

type natural_info = {source : string; prevalence : floatl};;
type synthesized_info = {lifetime : float};;
type extra_info =
Natural of natural_info
| Synthesized of synthesized_info;;

type element = {
name : string;
atomic_number : int;
atomic_weight : float;
metallic : bool;
extra_fields : extra_infol};;

As in traditional C, the variant portions of a record introduce extra levels of
nesting in OCaml. To enforce correct usage, the language implementation main-
tains a hidden tag in every union object, to indicate which variant is currently
valid. Values can be declared only as aggregates that specify the tag and all the
fields:

let copper = {
name = "Cu";
atomic_number = 29;
63.546;

atomic_weight
metallic = true;
extra_fields = Natural ({
source = "various ores and native deposits";
prevalence = 0.00005
b
35

Individual fields can be read, but only in the context of a match expression that
verifies the value of the tag:

exception Union_error;;
let source (e : element) =
match e.extra_fields with
| Natural n -> n.source
| Synthesized _ -> raise Union_error;;

let copper_source = source Copper;;
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EXAMPLE 864

Ada variants and tags
(discriminants)

Variant records with mandatory tags (explicit or hidden) are known as discrim-
inated unions. Variant records without tags (as in C) are known as nondiscrimi-
nated unions. Pascal provided both, but in the absence of an analogue of match,
even the discriminated case was difficult to implement safely (more on this in Ex-
ercise C-8.26). Ada, by contrast, combines syntax reminiscent of Pascal with the
type safety of ML.

Variants in Ada

Ada variant records must always have a tag (called the discriminant). Language
rules ensure that this tag can never be changed without simultaneously assigning
values to all of the fields of the corresponding variant. The assignment can oc-
cur either via whole-record assignment (e.g., a := b, where a and b are variant
records), or via assignment of an aggregate (e.g., p := (polar => true, rho =>
1.0, theta => pi/2.0)). In addition to appearing as a field within the record,
the discriminant of a variant record in Ada must also appear in the header of the
record’s declaration:

type element (naturally_occurring : Boolean := true) is record
name : string (1..2);
atomic_number : integer;
atomic_weight : long_float;
metallic : Boolean;
case naturally_occurring is
when true =>
source : string_ptr;
prevalence : long_float;
when false =>
lifetime : long_float;
end case;
end record;

Here we have not only declared the discriminant of the record in its header,
we have also specified a default value for it. A declaration of a variable of type
element has the option of accepting this default value:

copper : element;
or overriding it:

plutonium : element (false);
neptunium : element (naturally_occurring => false);
-- alternative syntax

If the type declaration for element did not specify a default value for naturally_
occurring, then all variables of type element would have to provide a value.
These rules guarantee that the tag field of a variant record is never uninitial-
ized.
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A discriminated subtype in
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EXAMPLE 8.66

Discriminated array in Ada
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An Ada record variable whose declaration specifies a value for the discrimi-
nant is said to be constrained. Its tag field can never be changed by a subsequent
assignment. This immutability means that the compiler can allocate just enough
space to hold the specified variant; this space may in some cases be significantly
smaller than would be required for other variants. A variable whose declaration
does not provide an initial value for the discriminant is said to be unconstrained.
Its tag will be initialized to the value in the type declaration, but may be changed
by later (whole-record) assignments, so the space that the record occupies must
be large enough to hold any possible variant.

An Ada subtype definition can also constrain the discriminant(s) of its parent

type:
subtype natural_element is element (true);

Variables of type natural_element will all be constrained; their naturally_
occurring field cannot be changed. Because natural_element is a subtype,
rather than a derived type, values of type element and natural_element are
compatible with each other, though a run-time semantic check will usually be
required to assign the former into the latter.

Ada uses record discriminants not only for variant tags, but in general for any
value that affects the size of a record. Here is an example that uses a discriminant
to specify the length of an array:

DESIGN & IMPLEMENTATION

8.13 The placement of variant fields

To facilitate space saving in constrained variant records, Ada requires that all
variant parts of a record appear at the end. This rule ensures that every field
has a constant offset from the beginning of the record, with no holes (in any
variant) other than those required for alignment. When a constrained vari-
ant record is elaborated, the Ada run-time system need only allocate sufficient
space to hold the specified variant, which is never allowed to change. Pascal
had a similar rule, designed for a similar purpose. When a variant record was
allocated from the heap in Pascal (via the built-in new operator), the program-
mer had the option of specifying case labels for the variant portions of the
record. A record so allocated was never allowed to change to a different vari-
ant, so the implementation could allocate precisely the right amount of space.

Modula-2, which did not provide new as a built-in operation, eliminated
the ordering restriction on variants. All variables of a variant record type had
to be large enough to hold any variant. The usual implementation assigned a
fixed offset to every field, with holes following small internal variants as neces-
sary. Similar conventions apply to unions and structs in modern C.
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Derived types as an
alternative to unions

type element_array is array (integer range <>) of element;
type alloy (num_components : integer) is record
name : string (1..30);
components : element_array (1..num_components);
tensile_strength : long_float;
end record;

The <> notation in the initial definition of element_array indicates that the
bounds are not statically known. Further discussion of dynamic arrays appears in
Section 8.2.2. As with discriminants used for variant tags, the programmer must
either specify a default value for the discriminant in the type declaration (we did
not do so above), or else every declaration of a variable of the type must specify
a value for the discriminant (in which case the variable is constrained, and the
discriminant cannot be changed).

The Object-Oriented Alternative

In dropping variant records from their parent language, the designers of Modula-3
noted [Har92, p. 110] that much of the same effect could be obtained with classes
and inheritance. Oberon, similarly, replaced variants with a more general mecha-
nism for type extension (Section 10.2.4), and the designers of Java and C# dropped
the unions of C and C++. In place of the C code of Example C-8.59, a Java pro-
grammer might write

class Element {
public String name;
public int atomic_number;
public double atomic_weight;
public boolean metallic;

+

class NaturalElement extends Element {
public String source;
public double prevalence;

}

class SyntheticElement extends Element {
public double lifetime;

}

Like the discriminated subtypes of Ada, this approach constrains each object to a
single variant at creation time, but this may not be a problem: while the class of a
particular object never changes, class-type variables are references in Java and C#.
A variable of type Element can easily refer to an object of class NaturalElement
or SyntheticElement at run time.
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\/CHECK YOUR UNDERSTANDING

39.

40.

41.

42.

4.

44.

What are anonymous unions and structs? What purpose do they serve? How
is this related to the integration of variants with records in Pascal and its de-
scendants?

What is a tag (discriminant) in a variant record? In a language like Ada or
OCaml, how does it differ from an ordinary field?

Discuss the type safety problems that arise with variant records. How can
these problems be addressed?

Summarize the rules that prevent access to inappropriate fields of variant
records in OCaml and Ada.

Why might one wish to constrain a variable, so that it can hold only one vari-
ant of a type?

Explain how classes and inheritance can be used to obtain the effect of con-
strained variant records.
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Dangling reference
detection with tombstones

Composite Types

8.5.2 Dangling References

Memory access errors—dangling references, memory leaks, out-of-bounds access
to arrays—are among the most common program bugs, and among the most
difficult to find. Testing and debugging techniques for memory errors vary in
when they are performed, how much they cost, and how conservative they are.
Several commercial and open-source tools employ binary instrumentation (Sec-
tion 16.2.3) to track the allocation status of every block in memory and to check
every load or store to make sure it refers to an allocated block. These tools have
proved to be highly effective, but they can slow a program several-fold, and may
generate false positives—indications of error in programs that, while arguably
poorly written, are technically correct. Many compilers can also be instructed
to generate dynamic semantic checks for certain kinds of memory errors. Such
checks must generally be fast (much less than 2 x slowdown), and must never gen-
erate false positives. In this section we consider two candidate implementations
of checks for dangling references.

Tombstones

Tombstones [Lom?75, Lom85] allow a language implementation to catch all dan-
gling references, to objects in both the stack and the heap. The idea is simple:
rather than have a pointer refer to an object directly, we introduce an extra level
of indirection (Figure C-8.17). When an object is allocated in the heap (or when a
pointer is created to an object in the stack), the language run-time system allocates
a tombstone. The pointer contains the address of the tombstone; the tombstone
contains the address of the object. When the object is reclaimed, the tombstone
is modified to contain a value (typically zero) that cannot be a valid address. To
avoid special cases in the generated code, tombstones are also created for pointers
to static objects.

For heap objects, it is easy to invalidate a tombstone when the program calls
the deallocation operation. For stack objects, the language implementation must
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new(my_ptr) ;

my_ptr

1
D

ptr2 := my_ptr;

)

my_ptr

ptr2

4

delete(my_ptr);

my_ptr RIP .
(Potentially

reused)

| N

ptr2

Figure 8.17 Tombstones. A valid pointer refers to a tombstone that in turn refers to an object.
A dangling reference refers to an “expired” tombstone.

be able to find all tombstones associated with objects in the current stack frame
when returning from a subroutine. One possible solution is to link all stack-object
tombstones together in a list, sorted by the address of the stack frame in which the
object lies. When a pointer is created to a local object, the tombstone can simply
be added to the beginning of the list. When a pointer is created to a parameter,
the run-time system must scan down the list and insert in the middle, to keep it
sorted. When a subroutine returns, the epilogue portion of the calling sequence
invalidates the tombstones at the head of the list, and removes them from the list.

Tombstones may be allocated from the heap itself or, more commonly, from
a separate pool. The latter option avoids fragmentation problems, and makes
allocation relatively fast, since the first tombstone on the free list is always the
right size.

Tombstones can be expensive, both in time and in space. The time over-
head includes (1) creation of tombstones when allocating heap objects or using a
“pointer to” operator, (2) checking for validity on every access, and (3) double-
indirection. Fortunately, checking for validity can be made essentially free on
most machines by arranging for the address in an “invalid” tombstone to lie out-
side the program’s address space. Any attempt to use such an address will result in
a hardware interrupt, which the operating system can reflect up into the language
run-time system. We can also use our invalid address, in the pointer itself, to rep-
resent the constant nil. If the compiler arranges to set every pointer to nil at
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Dangling reference
detection with locks and
keys

elaboration time, then the hardware will catch any use of an uninitialized pointer.
(This technique works without tombstones, as well.)

The space overhead for tombstones can be significant. The simplest approach
is never to reclaim them. Since a tombstone is usually significantly smaller than
the object to which it refers, a program will waste less space by leaving a tomb-
stone around forever than it would waste by never reclaiming the associated ob-
ject. Even so, any long-running program that continually creates and reclaims ob-
jects will eventually run out of space for tombstones. A potential solution, which
we consider in Section 8.5.3, is to augment every tombstone with a reference count,
and reclaim tombstones themselves when the reference count goes to zero.

Tombstones have a valuable side effect. Because of double-indirection, it is
easy to change the location of an object in the heap. The run-time system need
not locate every pointer that refers to the object; all that is required is to change
the address in the tombstone. The principal reason to change heap locations is
for storage compaction, in which all dynamically allocated blocks are “scooted
together” at one end of the heap in order to eliminate external fragmentation.
Tombstones are not widely used in language implementations, but the Macintosh
operating system (versions 9 and below) used them internally, for references to
system objects such as file and window descriptors. They also closely resemble
the implementation used for smart pointers in the C++ standard library.

Locks and Keys

Locks and keys [FL80] are an alternative to tombstones. Their disadvantages are
that they work only for objects in the heap, and they provide only probabilistic
protection from dangling pointers. Their advantage is that they avoid the need to
keep tombstones around forever (or to figure out when to reclaim them). Again
the idea is simple: Every pointer is a tuple consisting of an address and a key.
Every object in the heap begins with a lock. A pointer to an object in the heap is
valid only if the key in the pointer matches the lock in the object (Figure C-8.18).
When the run-time system allocates a new heap object, it generates a new key
value. These can be as simple as serial numbers, but should avoid “common”
values such as zero and one. When an object is reclaimed, its lock is changed to
some arbitrary value (e.g., zero) so that the keys in any remaining pointers will
not match. If the block is subsequently reused for another purpose, we expect it
to be very unlikely that the location that used to contain the lock will be restored
to its former value by coincidence.

Like tombstones, locks and keys incur significant overhead. They add an extra
word of storage to every pointer and to every block in the heap. They increase
the cost of copying one pointer into another. Most significantly, they incur the
cost of comparing locks and keys on every access (or every access that cannot be
proven to be redundant). It is unclear whether the lock and key check is cheaper
or more expensive than the tombstone check. A tombstone check may result in
two cache misses (one for the tombstone and one for the object); a lock and key
check is unlikely to cause more than one. On the other hand, the lock and key
check requires a significantly longer instruction sequence on most machines.
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new(my_ptr) ;

my_ptr | 135942 / 135942

—

ptr2 := my_ptr;

my_ptr | 135942 135942

—

ptr2 | 135942

—

delete(my_ptr);

my_ptr | 135942 0

(Potentially
reused)

ptr2 | 135942

—

Figure 8.18 Locks and keys. A valid pointer contains a key that matches the lock on an object
in the heap. A dangling reference is unlikely to match.

To minimize time and space overhead, most compilers do not by default gen-
erate code to check for dangling references. Most Pascal compilers allow the pro-
grammer to request dynamic checks, which are usually implemented with locks
and keys. In most implementations of C, even optional checks are unavailable.

\/CHECK YOUR UNDERSTANDING

45. What are fombstones? What changes do they require in the code to allocate
and deallocate memory, and to assign and dereference pointers?

46. Explain how tombstones can be used to support compaction.

41. What are locks and keys? What changes do they require in the code to allocate
and deallocate memory, and to assign and dereference pointers?

48. Explain why the protection afforded by locks and keys is only probabilistic.

49. Discuss the comparative advantages of tombstones and locks and keys as a
means of catching dangling references.



Composite Types

Files and Input/Output

The first two subsections below are devoted to interactive and file-based I/O, re-
spectively. Section C-8.7.3 then considers the common special case of text files.

8.1.] Interactive 11O

On a modern machine, interactive I/O usually occurs through a graphical user
interface (GUI: “gooey”) system, with a mouse, a keyboard, and a bit-mapped
screen that in turn support windows, menus, scrollbars, buttons, sliders, and so
on. GUI characteristics vary significantly among, say, Microsoft Windows, the
Macintosh, and Unix’s X11; the differences are one of the principal reasons it is
difficult to port applications across platforms.

Within a single platform, the facilities of a GUI system usually take the form
of library routines (to create or resize a window, print text, draw a polygon, and
so on). Input events (mouse move, button push, keystroke) may be placed in a
queue that is accessible to the program, or tied to event handler subroutines that
are called by the run-time system when the event occurs. Because the handler
is triggered from outside, its activities must generally be synchronized with those
of the main program, to make sure that both parties see a consistent view of any
data shared between them. We will discuss events further in Section 9.6, and
synchronization in Section 13.3.

A few programming languages—notably Smalltalk and Java—attempt to in-
corporate a standard set of GUI mechanisms into the language. The Smalltalk
design team was part of the original group at Xerox’s Palo Alto Research Cen-
ter (PARC) that invented mouse-and-window based interfaces in the early 1970s.
Unfortunately, while the Smalltalk GUI is successful within the confines of the
language, it tends not to integrate well with the “look and feel” of the host sys-
tem on which it runs. In a similar vein, Java’s original GUI facilities (the Abstract
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Window Toolkit—AWT) had something of a “least common denominator” look
to them. Smalltalk’s GUT is a fundamental part of the language; Java’s takes the
form of a standard set of library routines. The Java routines and their interface
have evolved significantly over time; the more recent Swing and JavaFX libraries
have “pluggable” look and feel, allowing them to integrate more easily with (and
port more easily among) a variety of window systems.

The “parallel execution” of the program and the human user that characterizes
interactive systems is difficult to capture in a functional programming model. A
functional program that operates in a “batch” mode (taking its input from a file
and writing its output to a file) can be modeled as a function from input to out-
put. A program that interacts with the user, however, requires a very concrete
notion of program ordering, because later input may depend on earlier output.
If both input and output take the form of an ordered sequence of tokens, then
interactive I/O can be modeled using lazy data structures, a subject we considered
in Section 6.6.2. More general solutions can be based on the notion of monads,
which use a functional notion of sequencing to model side effects. We will con-
sider these issues again in Sections 11.5 and 11.8.

8.1.2 File-Based 11O

Persistent files are the principal mechanism by which programs that run at dif-
ferent times communicate with each other. A few language proposals (e.g.,
Argus [LS83] and x [SH92]) allow ordinary variables to persist from one invo-
cation of a program to the next, and a few experimental operating systems (e.g.,
Opal [CLFL94] and Hemlock [GSBT93]) provide persistence for variables out-
side the language proper. In addition, some language-specific programming en-
vironments, such as those for Smalltalk and Common Lisp, provide a notion of
workspace that includes persistent named variables. With coming advances in
nonvolatile memory technology, such features may find their way into a larger
number of languages. Historically, they have been more the exception than the
rule. For the most part, data that need to outlive a particular program invocation
have needed to reside in files.

Like interactive I/O, files can be incorporated directly into the language, or
provided via library routines. In the latter case, it is still a good idea for the lan-
guage designers to suggest a standard library interface, to promote portability of
programs across platforms. The lack of such a standard in Algol 60 is widely cred-
ited with impeding the language’s widespread use. One of the principal reasons
to incorporate I/O into the language proper is to make use of special syntax. In
particular, several languages, notably Fortran and Pascal, provide built-in I/O fa-
cilities in order to obtain type-safe “subroutines” that take a variable number of
parameters, some of which may be optional.

Depending on the needs of the programmer and the capabilities of the host
operating system, data in files may be represented in binary form, much as it is
in memory, or as text. In a binary file, the number 1066,, would be represented
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Files as a built-in type

EXAMPLE 8.7'

The open operation

EXAMPLE 8.72

The close operation

by the 32-bit value 10000101010,. In a text file, it would probably be represented
by the character string "1066". Temporary files are usually kept in binary form
for the sake of speed and convenience. Persistent files are commonly kept in both
forms. Text files are more easily ported across systems: issues of word size, byte
order, alignment, floating-point format, and so on do not arise. Text files also
have the advantage of human readability: they can be manipulated by text editors
and related tools. Unfortunately, text files tend to be large, particularly when used
to hold numeric data. A double-precision floating-point number occupies only
eight bytes in binary form, but can require as many as 24 characters in decimal
notation (not counting any surrounding white space). Text files also incur the
cost of binary to text conversion on output, and text to binary conversion on
input. The size problem can be addressed, at least for archival storage, by using
data compression. Mechanisms to control text/binary conversion tend to be the
most complicated part of I/O; we discuss them in the following subsection.

When I/O is built into a language, files are usually declared using a built-in
type constructor, as for example in Pascal:

var my_file : file of foo;

If I/O is provided by library routines, the library usually provides an opaque type
to represent a file. In either case, each file variable is generally bound to an ex-
ternal, operating system—supported file by means of an open operation. In C, for
example, one says

my_file = fopen(path_name, mode);

The first argument to fopen is a character string that names the file, using
the naming conventions of the host operating system. The second argument
is a string that indicates whether the file should be readable, writable, or both,
whether it should be created if it does not yet exist, and whether it should be
overwritten or appended to if it does exist.

When a program is done with a file, it can break the association between the
file variable and the external object by using a close operation:

fclose(my_file);

In response to a call to close, the operating system may perform certain “final-
izing” operations, such as unlocking an exclusive file (so that it may be used by
other programs), rewinding a tape drive, or forcing the contents of buffers out to
disk.

Most files, both binary and text, are stored as a linear sequence of characters,
words, or records. Every open file then has a notion of current position: an im-
plicit reference to some element of the sequence. Each read or write operation
implicitly advances this reference by one position, so that successive operations
access successive elements, automatically. In a sequential file, this automatic ad-
vance is the only way to change the current position. Sequential files usually
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correspond to media like printers and tapes, in which the current position has
a physical representation (how many pages we’ve printed; how much tape is on
each spool) that is difficult to change.

In other, random-access files, the programmer can change the current position
to an arbitrary value by issuing a seek operation. In a few programming languages
(e.g., Cobol and PL/T), random-access files (also called direct files) have no notion
of current position. Rather, they are indexed on some key, and every read or
write operation must specify a key. A file that can be accessed both sequentially
and by key is said to be indexed sequential.

Random-access files usually correspond to media like solid-state flash drives
or magnetic or optical disks, in which the current position can be changed with
relative ease. Where tape drives (still widely used for archival storage) can take
more than a minute to seek to a given position, modern disks take anywhere from
5 to 200 ms, depending on technology. (Note that 5 ms is still a very long time—
10 million cycles on a 2 GHz processor.) Seeking on a solid-state device is es-
sentially instantaneous. A few languages—notably Pascal—provide no random-
access files, though individual implementations may support random access as a
nonstandard language extension.

8.1.3 Text /O

It is conventional to think of text files as consisting of a sequence of lines, each of
which in turn consists of characters. In older systems, particularly those designed
around the metaphor of punch cards, lines are reflected in the organization of
the file itself. A seek operation, for example, may take a line number as argu-
ment. More commonly, a text file is simply a sequence of characters. Within
this sequence, control (nonprinting) characters indicate the boundaries between
lines. Unfortunately, end-of-line conventions are not standardized. In Unix and
in modern versions of the Mac OS, each line of a text file ends with a newline
(“control-J”) character, ASCII value 10. (On “classic” Macs, each line ended with
a carriage return (“control-M”) character, ASCII value 13.) On Windows ma-
chines, each line ends with a carriage return/newline pair. Text files are usually
sequential.

Despite the muddied conventions for line breaks, text files are much more
portable and readable than binary files.! Because they do not mirror the struc-
ture of internal data, text files require extensive conversions on input and output.
Issues to be considered include the base for integer values (and the representa-
tion of nondecimal bases); the representation of floating-point values (number

I We are speaking here, of course, of plain-text ASCII or Unicode files. So-called “rich text” files,
consisting of formatted text in particular fonts, sizes, and colors, perhaps with embedded graph-
ics, are another matter entirely. Word processors typically represent rich text with a combination
of binary and ASCII data, though ASCII-only standards such as Postscript, textual PDF, RTFE, and
XML can be used to enhance portability.
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Formatted output in
Fortran

EXAMPLE 8.74

Labeled formats

of digits, placement of decimal point, notation for exponent); the representa-
tion of enumerations and other nonnumeric, nonstring types; and positioning, if
any, within columns (right and left justification, zero or white-space fill, “float-
ing” dollar signs in Cobol). Some of these issues (e.g., the number of digits in a
floating-point number) are influenced by the hardware, but most are dictated by
the needs of the application and the preferences of the programmer.

In most languages the programmer can take complete control of input and
output formatting by writing it all explicitly, using language or library mecha-
nisms to read and write individual characters only. I/O at such a low level is
tedious, however, and most languages also provide more high-level operations.
These operations vary significantly in syntax and in the degree to which they allow
the programmer to specify I/O formats. We illustrate the breadth of possibilities
with examples from four imperative languages: Fortran, Ada, C, and C++.

Text 1/O in Fortran

In Fortran, we could write a character string, an integer, and an array of 10
floating-point numbers as follows:

character s*20
integer n
real r (10)

write (4, '(A20, I10, 10F8.2)'), s, n, r

In the write statement, the 4 indicates a unit number, which identifies a particu-
lar output file. The quoted, parenthesized expression is called a format; it specifies
how the printed variables are to be represented. In this case, we have requested
a 20-column ASCII string, a 10-column integer, and 10 eight-column floating-
point numbers (with two columns of each reserved for the fractional part of the
value). Fortran provides an extremely rich set of these edit descriptors for use in-
side of formats. Cobol, PL/I, and Perl provide comparable facilities, though with
a very different syntax.

Fortran allows a format to be specified indirectly, so it may be used in more
than one input or output statement:

write (4, 100), s, n, r ! 100 is the line number
e ! of the format statement
100 format (A20, I10, 10F8.2)

It also allows formats to be created at run time, and stored in strings:
character(len=20) :: fmt

fmt = "(A20, I10, 10F8.2)"

write (4, fmt), s, n, r
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If the programmer does not know, or does not care about, the precise allocation
of columns to fields, the format can be omitted:

write (4, *), s, n, T

In this case, the run-time system will use default format conventions.

To write to the standard output stream (i.e., the terminal or its surrogate), the
programmer can use the print statement, which resembles a write without a
unit number:

print*, s, n, r ! * means default format

For input, read is used both for standard input and for specific files; in the former
case, the unit number is omitted, together with the extra set of parentheses:

read 100, s, n, T

read*, s, n, r ! * means default format

The star may be omitted in Fortran 90.

In the full form of read, write, and print, additional arguments may be
provided in the parenthesized list with the unit number and format. These can
be used to specify a variety of additional information, including a label to which
to jump on end-of-file, a label to which to jump on other errors, a variable into
which to place status codes returned by the operating system, a set of labels (a
“namelist”) to attach to the output values, and a control code to override the usual
automatic advance to the next line of the file. Because there are so many of these
optional arguments, most of which are usually omitted, they are usually specified
using named (keyword) parameter notation, a notion we defer to Section 9.3.3.

The variety of shorthand versions of read, write, and print, together with
the fact that they operate on a variable number of program variables, makes it very
difficult to cast them as “ordinary” subroutines. Fortran 90 provides optional and
named parameters, but Fortran 77 does not, and even in Fortran 90 there is no
way to define a subroutine with an arbitrary number of parameters.

Text 11O in Ada

Ada provides a suite of five standard library packages for I/O. The sequential _
I0 and direct_I0 packages are for binary files. They provide generic file types
that can be instantiated for any desired element type. The I0_exceptions and
low_level_IO0 packages handle error conditions and device control, respectively.
The text_IO0 package provides formatted input and output on sequential files of
characters.

Using text_IO, our original three-variable Fortran output statement would
look something like this in Ada:
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s : array (1..20) of character;
n : integer;
r : array (1..10) of real;

set_output (my_file);

put(n, 10);

put(s);

for i in 1..10 loop put(r(i), 5, 2); end loop;
new_line;

In the put of an element of r (within the loop), the second parameter specifies
the number of digits before the decimal point, rather than the width of the entire
number (including the decimal point), as it did in Fortran. The put of s will use
the string’s natural length. If a different length is desired, the programmer will
have to write blanks or put a substring explicitly. If precise output positioning is
not desired for the integers and real numbers, the extra parameters in their put
calls can be omitted; in this case the run-time system will use standard defaults.
The programmer can use additional library routines to change these defaults if
desired. A call to set_output invokes a similar mechanism: it changes the default
notion of output file.

There are two overloaded forms of put for every built-in type. One takes a file
name as its first argument; the other does not. The last five lines above could have
been written

put(my_file, n, 10);

put(my_file, s);

for i in 1..10 loop put(my_file, r(i), 5, 2); end loop;
new_line(my_file);

The programmer can of course define additional forms of get and put for arbi-
trary user-defined types. All of these facilities rely on standard Ada mechanisms;
in contrast to Fortran, no support for I/O is built into the language itself.

Text 1/0 in C

C provides I/O through a library package called stdio; as in Ada, no support
for I/O is built into the language itself. Many C implementations, however, build
knowledge of I/O functions into the compiler, so it can issue warnings when ar-
guments appear to be used incorrectly.

Our example output statement would look something like this in C:

char s[20];
int n;
double r[10];

fprintf(my_file, "%20s%10d", s, n);
for (i = 0; i < 10; i++) fprintf(my_file, "%8.2f", r[il);
fprintf (my_file, "\n");
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The arguments to fprintf are a file, a format string, and a sequence of expres-
sions. The format string has capabilities similar to the formats of Fortran, though
the syntax is very different. In general, a format string consists of a sequence of
characters with embedded “placeholders,” each of which begins with a percent
sign. The placeholder %20s indicates a 20-character string; %d indicates an inte-
ger in decimal notation; %8.2f indicates an 8-character floating-point number,
with two digits to the right of the decimal point.

As in Fortran, formats can be computed and stored in strings, and a single
fprintf statement can print an arbitrary number of expressions. As in Ada, an
explicit for loop is needed to print an array. Commonly the format string also
contains labeling text and white space:

strcpy(s, "four"); /* copy "four" into s */
n = 20;
char *fmt = "Ys score and %d years ago\n";

fprintf(my_file, fmt, s, n);
A percent sign can be printed by doubling it:
fprintf (my_file, "%d%%\n", 25); /* prints "25%" */

Input in C takes a similar form. The fscanf routine takes as argument a file, a
format string, and a sequence of pointers to variables. In the common case, every
argument after the format is a variable name preceded by a “pointer to” operator:

fscanf (my_file, "%s %d %1f", &s, &n, &r([0]);

In this call, the %s placeholder will match a string of maximal length that does
not include white space. If this string is longer than 20 characters (the length of
s), then fscanf will write beyond the end of the storage for the string. (This
weakness in scanf is one of the sources of the so-called “buffer overflow” bugs
discussed in Sidebar 8.7. It can be avoided in this example by replacing the %s
specifier with %19s, which will cause fscanf to move at most 19 bytes, plus a
terminating NUL.) The three-character %1f placeholder informs the library rou-
tine that the corresponding argument is a double; the 2-character sequence %£
would read into a float.? Accidentally using a placeholder for the wrong size
variable is a common error in older implementations of C; forgetting the amper-
sand on a trailing argument is another. While such mistakes will often be caught

2 C’s doubles are double-precision IEEE floating-point numbers in most implementations;
floats are usually single precision. The lack of safety for %s arguments is only one of several
problems with f£scanf. Others include the inability to “skip over” erroneous input, and unde-
fined behavior when there is insufficient input. Instead of fscanf, seasoned C programmers
tend to use fgets, which reads (length-limited) input into a string, followed by manual parsing
using strtol (string-to-long), strtod (string-to-double), and so on.
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by a modern C compiler with special-case knowledge of fscanf, they would al-
ways be caught in a language with type-safe I/O. Note that we have read a single
element of r; as with fprintf, a for loop would be needed to read the whole
array.

We have noted above that the I/O routines of Fortran and Pascal are built into
the language largely to permit them to take a variable number of arguments. We
have also noted that moving I/O into a library in Ada forces us to make a separate
call to put for every output expression. So how do fprintf and fscanf work? It
turns out that C permits functions with a variable number of parameters (we will
discuss such functions in more detail in Section 9.3.3). Unfortunately, the types
of trailing parameters are unspecified, which makes compile-time type checking
of variable-length argument lists impossible in the general case. Moreover, the
lack of run-time type descriptors in C precludes run-time checking as well. At
the same time, because the C library (including fprintf and fscanf) is part
of the language standard, special knowledge of these routines can be built into
the compiler—and often is: while the I/O routines of C are formally defined as
“ordinary” functions, they are typically implemented in the same way as their
analogues in Fortran and Pascal. As a result, C compilers will often provide good
error diagnostics when the arguments to fprintf or fscanf do not match the
format string.

To simplify I/O to and from the standard input and output streams, stdio
provides routines called printf and scanf that omit the initial arguments of
fprintf and fscanf. To facilitate the formatting of strings within a program,
stdio also provides routines called sprintf and sscanf, which replace the ini-
tial arguments of fprintf and fscanf with a pointer to an array of characters.
The sscanf function “reads” from this array; sprintf “writes” to it. Fortran 90
provides similar support for intraprogram formatting through so-called internal

files.

Text 1/O in C++

As a descendant of C, C++ supports the stdio library described in the previous
subsection. It also supports a new I/O library called iostream that exploits the
object-oriented features of the language. The iostream library is more flexible
than stdio, provides arguably more elegant syntax (though this is a matter of
taste), and is completely type safe.

C++ streams use operator overloading to co-opt the << and >> symbols nor-
mally used for bit-wise shifts. The iostream library provides an overloaded ver-
sion of << and >> for each built-in type, and programmers can define versions
for new types. To print a character string in C++, one writes

my_stream << s;
To output a string and an integer one can write

my_stream << s << n;
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This code requires that my_stream be an instance of the ostream (output stream)
class defined in the iostream library. The << operator is syntactic sugar for the
“operator function” ostream: :operator<<, as described in Section 3.5.2. Be-
cause << associates left-to-right, the statement above is equivalent to

(my_stream.operator<<(s)) .operator<<(n) ;

The code works because ostream: :operator<< returns a reference to its first
argument as its result (as we shall see in Section 9.3.1, C++ supports both a value
model and a reference model for variables).

As shown so far, output to an ostream uses default formatting conventions. To
change conventions, one may embed so-called stream manipulators in a sequence
of << operations. To print n in octal notation (rather than the default decimal),
we could write

my_stream << oct << n;

To control the number of columns occupied by s and n, we could write

my_stream << setw(20) << s << setw(10) << n;

The oct manipulator causes the stream to print all subsequent numeric output in
octal. The setw manipulator causes it to print its next string or numeric output
in a field of a specified minimum width (behavior reverts to the default after a
single output).

The oct manipulator is declared as a function that takes an ostream as a pa-
rameter and produces a reference to an ostream as its result. Because it is not fol-
lowed by empty parentheses, the occurrence of oct in the output sequence above
is not a call to oct; rather, a reference to oct is passed to an overloaded version of
<< that expects a manipulator function as its right-hand argument. This version
of << then calls the function, passing the stream (the left-hand argument of <<)
as argument.

The setw manipulator is even trickier. It is declared as a function that returns
a reference to what we might call an “object closure”—an object containing a ref-
erence to a function and a set of arguments. In this particular case, setw(20) is
a call to a constructor function that returns a closure containing the number 20
and a pointer to the setw manipulator. (We will discuss constructors in detail
in Section 10.3, and object closures in Section 3.6.3.) The iostream library pro-
vides an overloaded version of << that expects an object closure as its right-hand
argument. This version of << calls the function inside the closure, passing it as
arguments the stream (the left-hand argument of <<) and the integer inside the
closure.

The iostrean library provides a wealth of manipulators to change the format-
ting behavior of an ostream. Because C++ inherits C’s handling of pointers and
arrays, however, there is no way for an ostream to know the length of an array.
As a result, our full output example still requires a for loop to print the r array:
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char s[20];
int n;
double r[10];

my_stream << setw(20) << s << setw(10) << n;
for (i = 0; i < 10; i++)
my_stream << setiosflags(ios::fixed)
<< setw(8) << setprecision(2) << rl[il;
my_stream << "\n";

Here the manipulators in the output sequence in the for loop specify fixed format
(rather than scientific) for floating-point numbers, with a field width of eight,
and two digits past the decimal point. The setiosflags and setprecision
manipulators change the default format of the stream; the changes apply to all
subsequent output.

To avoid calling stream manipulators repeatedly, we could modify our example
as follows:

my_stream.flags (my_stream.flags() | ios::fixed);
my_stream.precision(2);
for (i = 0; i < 10; i++) my_stream << setw(8) << r[il;

To facilitate the restoration of defaults, the flags and precision functions re-
turn the previous value:

ios::fmtflags old_flags = my_stream.flags(my_stream.flags() | ios::fixed);
int old_precision = my_stream.precision(2);

for (i = 0; i < 10; i++) my_stream << setw(8) << r[il;
my_stream.flags(old_flags);

my_stream.precision(old_precision);

Formatted input in C++ is analogous to formatted output. It uses istreams
instead of ostreams, and the >> operator instead of <<. It also supports a suite
of manipulators comparable to those for output. I/O on the standard input and
output streams does not require different functions; the programmer simply be-
gins an input or output sequence with the standard stream name cin or cout.
(In keeping with C tradition, there is also a standard stream cerr for error mes-
sages.) To support intraprogram formatting of character strings, the strstream
library provides istrstream and ostrstream object classes that are derived
from istream and ostream, and that allow a stream variable to be bound to
a string instead of to a file.
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\/CHECK YOUR UNDERSTANDING

50.

51.
52.
53.

54.

55.
56.

Explain the differences between interactive and file-based I/O, between tem-
porary and persistent files, and between binary and text files. (Some of this
information is in the main text.)

What are the comparative advantages of text and binary files?
Describe the end-of-line conventions of Unix, Windows, and Macintosh files.

What are the advantages and disadvantages of building I/O into a program-
ming language, as opposed to providing it through library routines?

Summarize the different approaches to text I/O adopted by Fortran, Ada, C,
and C++.

Describe some of the weaknesses of C’s scanf mechanism.

What are stream manipulators? How are they used in C++?
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Exercises

In Example 6.70 we described a programming idiom in which an iterator
takes a “loop body” function as argument, and applies it to every element
of a given container or set. Show how to use this idiom in ML to apply a
function to every element of the tree in Example 11.39. Write versions of
your iterator for preorder, inorder, and postorder traversals.

Show how unions can be used in C to interpret the bits of a value of one
type as if they represented a value of some other type. Explain why the same
technique does not work in Ada. After consulting an Ada manual, describe
how an unchecked pragma can be used to get around the Ada rules.

Are variant records a form of polymorphism? Why or why not?
Learn the details of variant records in Pascal.

(3) You may have noticed that the language does not allow you to pass the
tag field of a variant record to a subroutine by reference. Why not?

(b) Explain how you might implement dynamic semantic checks to catch
references to uninitialized fields of a tagged variant record. Changing
the value of the tag field should cause all fields of the variant part of the
record to become uninitialized. Suppose you want to avoid adding flag
fields within the record itself (e.g., to avoid changing the offsets of fields
in a systems program). How much harder is your task?

(¢ Explain how you might implement dynamic semantic checks to catch
references to uninitialized fields of an untagged variant record. Any as-
signment to a field of a variant should cause all fields of other variants
to become uninitialized. Any assignment that changes the record from
one variant to another should also cause all other fields of the new vari-
ant to be uninitialized. Again, suppose you want to avoid adding flag
fields within the untagged record itself. How much harder is your task?
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We noted in Section C-8.1.3 that Ada requires the variant portions of a
record to occur at the end, to save space when a particular record is con-
strained to have a comparatively small variant part. Could a compiler rear-
range fields to achieve the same effect, without the restriction on the decla-
ration order of fields? Why or why not?

In Example 8.52 we noted that reference counts can be used to reclaim
tombstones, failing only when the programmer neglects to manually delete
the object to which a tombstone refers. Explain how to leverage this obser-
vation to catch memory leaks at run time. Does your solution work in all
cases? Explain.

In Section 8.5.3 we introduced the notion of smart pointers in C++. Learn
how these are implemented, and write an explanation. Discuss the relation-
ship to tombstones.

Rewrite Example C-8.80 using fgets, strtol, strtod, etc. (read the man
pages), so that it is guaranteed not to result in buffer overflow.

The output routines of several languages (e.g., println in Swift) give spe-
cial treatment to ends of lines. By contrast, C’s printf does not; it treats
newlines and carriage returns the same as any other character. What are the
comparative advantages of these approaches? Which do you prefer? Why?
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Explorations

Research the history of smart pointers (Section 8.5.3) in C++, including
the unique_ptr, shared_ptr, and weak_ptr of C++11; the auto_ptr of
C++98, and the various pointer classes of the popular Boost library. How
has the standard set of pointers evolved over time? What accounts for the
changes? Do you consider the current mechanisms an adequate replace-
ment for automatic garbage collection? Why or why not?

Find a Cobol manual and learn about the language’s facilities for text I/0.
Prepare a written comparison of those facilities to those of the languages
described in Section C-8.7.3.

If you were designing the text I/O facilities for a new programming lan-
guage, what approach would you take? In particular, do you believe that
I/O should be a built-in part of the language, or should it be handled by
library routines?

c-162



Subroutines and Control Abstraction

EXAMPLE 9.56

Nonlocal access using a
display

9.2.1 Displays

As noted in the main text, a display is an embedding of the static chain into an
array. The jth element of the display contains a reference to the frame of the most
recently active subroutine at lexical nesting level j. The first element of the display
is thus a reference to the frame of some subroutine S nested directly inside the
main program; the second element is a reference to the frame of a routine that
is nested inside of S, and so forth, until we reach the currently active routine.
Figure C-9.7 contains an example.

If the display is stored in memory, then a nonlocal object can be loaded into a
register with two memory accesses: one to load the display element into a register,
the second to load the object. On a machine with a large number of registers, one
might be tempted to reduce the overhead to only one memory access by keeping
the entire display in registers, but that would probably be a bad idea: display
elements tend to be accessed much less frequently than other things (e.g., local
variables) that might be kept in the registers instead.

Maintaining the Display

Maintenance of a display is slightly more complicated than maintenance of a static
chain, but not by much. Perhaps the most obvious approach would be to main-
tain the static chain as usual, and simply fill the display at procedure entry and
exit, by walking down the chain. In most cases, however, the following (much
faster) scheme suffices: when calling a subroutine at lexical nesting level j, the
callee saves the current value of the jth display element into the stack, and then
replaces that element with a copy of its own (newly created) frame pointer. Before
returning, it restores the old element. Why does this mechanism work? As with
static chains, there are two cases to consider:

I. The callee is nested (directly) inside the caller. In this case the caller and the
callee share all display elements up to the current level. Putting the callee’s
frame pointer into the display simply extends the current level by one. It is
conceivable that the old value needn’t be saved, but in general there is no way
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Figure 9.7 Nonlocal access using a display. The stack configurations, from left to right, illustrate
the contents of the display (at bottom) for a sequence of subroutine calls, assuming the lexical
nesting of Figure 9.1. Display elements beyond that of the currently executing subroutine are not
used.

to tell. The caller itself might have been called by code that is very deeply
nested, and that is counting on the integrity of a very deep display, in which
case the old display element will be needed. A smart compiler may be able to
avoid the save in certain circumstances.

The callee is at lexical nesting level j, k > 0 levels out from the caller. In this case
the caller and callee share all display elements up through j — 1. The caller’s

DESIGN & IMPLEMENTATION

9.8 Lexical nesting and displays

Because the display is a fixed-size array, compilers that use a display to imple-
ment access to nonlocal objects generally impose a limit (the size of the dis-
play) on the maximum depth to which subroutines may be nested. If this limit
is larger than, say, five or six, it is unlikely that any programmer will ever wish
for more. Note that the display does not eliminate the need for a frame pointer.
Because local variables are accessed so often, it is important to have the address
of the current frame in a register, where it can be used for displacement-mode
addressing. Similarly, on a RISC processor, where a 32-bit address will not
fit in one instruction, it is important to maintain a base register for the most
commonly accessed global variables as well.
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entry at level j is different from the callee’s, so the callee must save it before
storing its own frame pointer. If the callee in turn calls a routine at level j + 1,
that routine will change another element of the display, but all old elements
will be restored before they are needed again.

If the callee is a leaf routine then the display can be left intact; no one will use the
element corresponding to the callee’s nesting level before control returns to the
caller.

Closures

A subroutine that is passed as a parameter, stored in a variable, or returned from
a function must be called through some sort of closure (Section 3.6) that cap-
tures the referencing environment. In a language implementation based on static
chains, a closure can be represented as a (code address, static link) pair. Displays
are not as simple. A standard technique is to create two “entry points”—starting
addresses—for every subroutine. One of these is for “normal” calls, the other for
calls through closures. When a closure is created, it contains the address of the
alternative entry point. The code at that entry point saves elements 1 through j of
the display into the stack (it will have to create a larger-than-normal stack frame
in order to do this), and then replaces those elements with values taken from (or
calculated from) the closure. The alternative entry then makes a nested call to the
main body of the subroutine (it skips the code immediately following the normal
entry—the code that creates the normal stack frame and updates the display).
When the subroutine returns, it comes back to the code of the alternative entry,
which restores the old value of the display before returning to the actual caller.

More space-conserving implementations of display-based closures are possible
(see Exercise C-9.26), but with higher run-time overhead.

Comparison to Static Chains

In general, maintaining a display is slightly more expensive than maintaining a
static chain, though the comparison is not absolute. In the usual case, passing
a static link to a called routine requires k > 0 load instructions in the caller,
followed by one store instruction in the callee (to place the static link at the ap-
propriate offset in the stack frame). The store may be skipped in leaf routines,
assuming that a register is available to hold the link as long as it is needed. No
overhead is required to maintain the static chain when returning from a subrou-
tine. With a display, a nonleaf callee requires two loads and three stores (1 + 2 in
the prologue and 1 + 1 epilogue) to save and restore display elements. Because
the callee does all the work, displays may save a little bit on code size, compared to
static chains. As noted above, displays significantly complicate the creation and
use of closures.

The original advantage of displays—reduced cost for access to objects in outer
scopes—seems less clear today than once it did. In fact, while displays were popu-
lar in the CISC compilers of the 1970s and 1980s, they are less common in recent
compilers. Most programs don’t nest subroutines more than two or three levels
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deep, so static chains are seldom very long, and variables in surrounding scopes
tend not to be accessed very often. If they are accessed often, common subex-
pression optimizations (to be discussed in Chapter 17) are likely to ensure that a
pointer to the appropriate frame remains in a register.

Some language designers have argued that the development of object-oriented
programming (the subject of Chapter 10) has eliminated the need for nested sub-
routines [Han81]. Others might even say that the success of C has shown such
routines to be unneeded. Without nested subroutines, of course, the choice be-
tween static chains and displays is moot.

\/CHECK YOUR UNDERSTANDING

44. Describe how we access an object at lexical nesting level k in a language im-
plementation based on displays.

45. Why isn’t the display typically kept in registers?
46. Explain how to maintain the display during subroutine calls.

41. What special concerns arise when creating closures in a language implemen-
tation that uses displays?

48. Summarize the tradeoffs between displays and static chains. Describe a pro-
gram for which displays will result in faster code. Describe another for which
static chains will be faster.
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9.2.2 Stack Case Studies: LLVM on ARM; gcc on x86

To make stack management a bit more concrete, we present a pair of case studies:
Apple’s LLVM-based C compiler for the iPhone (ARM) and the GNU compiler
suite for 32- and 64-bit x86. Both examples follow the general scheme outlined in
Section 3.2.2, with differences in details that reflect the history of the respective
compilers and the architecture of the target machines.

LLVM on ARM

An overview of the ARM instruction set architecture (ISA) can be found in Sec-
tion C-5.4.5. For the sake of interoperability, ARM Ltd. publishes a standard for
subroutine calling sequences that allows code from different vendors and compil-
ers to link and run together. The standard has several variants, reflecting hard-
ware features (Thumb mode, floating-point or vector instructions and registers,
dynamic linking) that may or may not be present on a given processor or in its
software environment. We focus here on the conventions adopted by Apple’s C
compiler for the iPhone and iPad (version 4.2), at optimization level -02. The
Apple compiler uses the 32-bit ARM back end (version 3.2svn) of the LLVM com-
piler suite. Given the level of detail in ARM’s standard, code produced by other
compilers is likely to be quite similar. Note, however, that the conventions for
64-bit code are very different; they are not documented here.

As noted in Section C-5.4.5, register r14 (also known as 1r) is special-cased by
the ISA to receive the return address in subroutine call (b1—branch-and-link)
instructions. Register r13 (also known as sp) is similarly reserved for use as
the stack pointer. It is not modified by bl instructions, but several variants of
push and pop, which do update sp, are commonly part of the subroutine calling
sequence. Some compilers for ARM, though not all, dedicate a third register by
convention for use as a frame pointer; LLVM uses r7 for this purpose.

A typical LLVM/ARM stack frame appears in Figure C-9.8. The sp register
points to the last used location in the stack (note that some compilers aim the
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Figure 9.8 Layout of the subroutine call stack for Apple’s LLVM-based C compiler for ARM,
running in 32-bit mode. As in Figure 9.2, lower addresses are toward the top of the page.

pointer at the first unused location). ARM’s subroutine calling standard requires
that the stack always be word-aligned (sp mod 4 = 0). At an external call (to a
subroutine in a different compilation unit) it must be double-word aligned (sp
mod 8 = 0).

The first four arguments to a subroutine are always passed in registers. Addi-
tional arguments may be passed on the stack, with the last argument in the deep-
est location. Space for stack-based arguments is considered a part of the calling
routine. If the current routine is not a leaf, space for any stack-based arguments it
needs to pass to additional routines is preallocated, at the top (lowest-addressed-
end) of the frame, as part of the subroutine prologue.

Space for local variables and for any temporary values that will not fit in reg-
isters is allocated in the middle of the frame. If the subroutine ever applies an
address-of operator (& in C) to a low-numbered argument (one that will have
been passed in a register), or if it passes such an argument to another routine by
reference, the compiler creates a local variable to hold the argument, and initial-
izes it with the value passed in the register.

Any callee-saves registers that may be overwritten by the current routine are
saved at the bottom of the frame, directly beyond any stack-based arguments.
The frame pointer (r7) is typically among these. LLVM arranges for the current
fp to point to the location of the saved fp.

Argument Passing Conventions Arguments and locals of the current subrou-
tine are accessed via offsets from the fp. Arguments in the process of being passed
to the next routine are assembled at the top of the frame, and are accessed via
offsets from the sp. The first four arguments are passed in registers r0-r3. A
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double-precision floating-point number is divided into two 32-bit halves, and
passed as if it were two integers. (Some other ARM compilers pass floating-point
arguments in the floating-point registers.) Records (structs) that appear early
in the argument list may also be split into 32-bit pieces, and passed in multiple
registers. An argument may be split between registers and the stack, if part but
not all of it will fit in registers.

The argument build area at the top of the frame is designed to be large enough
to hold the largest argument list that may be passed to any called routine. This
convention may waste a bit of space in certain cases, but it ensures that arguments
never need to be “pushed” in the usual sense of the word: the sp does not change
when they are placed into the stack.

Return values up to 4 bytes in length occupy register r0. Double-word scalar
return values occupy register pair r0—r1; quad-word scalar return values occupy
registers rO—r3. Record-type return values of more than four bytes are placed in
memory, at a location chosen by the caller and passed as an extra, hidden argu-
ment. If the return value is to be assigned immediately into a variable (e.g., x =
foo()), the caller can simply pass the address of the variable. If the value is to be
passed in turn to another subroutine, the caller can pass the appropriate address
within its own argument build area. (Writing the return value into this space will
probably destroy the returning function’s own arguments, but that’s fine in the
absence of call-by-value/result: at this point the arguments are no longer needed.)
Finally, though one doesn’t see this idiom often (and most languages don’t sup-
port it), C allows the caller to extract a field directly from the return value of a
function (e.g., x = foo().a + y;); in this case the caller must pass the address

DESIGN & IMPLEMENTATION

9.9 Leveraging pc = ri15

Because ARM assigns a register number to the program counter, that counter
can be read and written (almost) like any other register. Writes to the pc cause
a branch in control. This convention, together with the choice of 1r = r14
and pc = r15, enables an interesting optimization. If a subroutine is not a leaf
(i.e., it calls another routine), 1r will be among the registers saved at the bot-
tom of the frame. If we suppose, for concreteness, that the subroutine plans to
overwrite callee-saves registers r4 and r5, and we know that we need to up-
date the frame pointer (r7), then the subroutine prologue is likely to contain
apush {r4, r5, r7, 1r} instruction. This instruction stores the registers in
sorted order, with the highest-numbered register (in this case, 1r) at the high-
est address—deepest in the stack. One might naturally expect the epilogue
to contain a symmetric pop {r4, r5, r7, lr} instruction, followed imme-
diately by bx 1r (branch to location in 1r). But since the pc and 1r have
adjacent register numbers, the compiler can—and typically does—achieve the
same result with a single pop {r4, r5, r7, pcl} instruction.
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of a temporary location within the “local variables and temporaries” part of its
stack frame.

ARM and Thumb Mode Switching One of the more unusual features of the
32-bit ARM ISA (as described in Section C-5.4.5) is the presence of two sepa-
rate instruction encodings. As on most RISC machines, the A32 encoding repre-
sents each instruction with 32 bits. The alternative T32 encoding, also known as
“Thumb,” represents the most common instructions in only 16 bits; the resulting
improvement in code density can be important in embedded applications. While
the two encodings are quite different (and in particular, T32 is not a subset of
A32), program fragments that use different encodings can be linked into a single
program.

To switch from one format to another, the program uses special bx (branch
and exchange instruction set) and blx (branch with link and exchange instruc-
tion set) instructions. When the target address is statically known, the assump-
tion is that the programmer knows that the source and target encodings are dif-
ferent, so the processor needs to change modes in the course of performing the
branch. When the target address is in a register (as it will be when returning
from a subroutine, or when calling through a pointer, a virtual method table, or a
closure), ARM exploits the fact that instructions never appear at an odd address
(T32 instructions are always word aligned; A32 instructions are always longword
aligned). Because the least significant bit of the target address must always be 0,
this bit can be used in the register to specify the target instruction set: 0 means
A32; 1 means T32.

Calling Sequence Details The calling sequence to maintain the LLVM/ARM
stack is as follows. The caller

I. saves (into the “local variables and temporaries” part of its frame) any caller-
saves registers whose values are still needed

2. puts up to four small arguments (or “chunks” of larger arguments) into regis-
ters rO-r3

3. stores the remaining arguments into the argument build area at the top of the
current frame

4. performsa bl or blx instruction, which puts the return address in register 1r,
jumps to the target address, and optionally changes instruction set encoding

On 32-bit ARM, the caller-saves registers are just the ones that are used for
arguments—namely, rO—r3. In a language with nested subroutines (not sup-
ported by Apple’s compiler), the caller would need to place the static link into
another register immediately before performing the bl or blx.

In its prologue, the callee

I. pushes any necessary registers onto the stack

2. initializes the frame pointer by adding an appropriate small constant to the sp,
placing the result in r7
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3. subtracts enough from the sp to make space for local variables, temporaries,
and the argument build area at the top of the stack, rounding down to a lower
address if necessary to ensure that these objects have appropriate alignment

Saved registers include (a) the frame pointer, r7 (assuming the current routine
needs a frame pointer of its own); (b) any callee-saves registers (r4—r6 and r8—
r11) whose values may be changed before returning; and (c) the link register, 1r,
if the current routine is not a leaf, or if it uses 1r as an additional temporary.

In its epilogue, immediately before returning, the callee

I. places the function return value (if any) into r0—r3 or memory, as appropriate

2. subtracts a small constant from r7, placing the result in sp; this effectively
deallocates the bulk of the frame

3. pops saved registers from the stack, with the pc taking the place held by 1r in
the corresponding save in the prologue; this has the side effect of branching
back to the caller (see Sidebar C-9.9)

Finally, if appropriate, the caller moves the return value to wherever it is needed.
Caller-saves registers are restored lazily over time, as their values are needed.

To support the use of symbolic debuggers, the compiler generates a wealth
of symbol table information, in the open-source DWARF format [DWA10]. It
embeds this information into the object file. The information is most accurate
when the program is compiled without any code improvement (-00). For each
subroutine, the information includes the starting and ending addresses of the
routine; the name, type, and location (register name or frame pointer offset) of
every formal parameter and local variable; the set of instructions corresponding
to each line of source code; the size and layout of the stack frame; and a list of
which registers were saved.

gcc on x86

To illustrate the differences among compilers and architectures, our second case
study considers the GNU compiler collection (gcc, version 4.8.1) on the x86.
We begin with 32-bit code and then explain the differences that obtain on 64-bit
machines. Our example again focuses mostly on C, which acts as sort of a “lowest
common denominator” among high-level languages. We also consider nested
subroutines and closures, however, since these appear in some of the collection’s
supported languages.

An overview of the x86-32 ISA appears in Section C-5.4.5. Given the machine’s
CISC heritage and the comparatively small number of registers (only six are avail-
able for general-purpose use), all arguments are passed on the stack when running
in 32-bit mode. To give the compiler the freedom to evaluate arguments out of
order when desired, recent versions of gcc employ an argument build area similar
to that of the LLVM case study. Unlike LLVM, recent versions of gcc omit the use
of a separate frame pointer by default, making register ebp (rbp in 64-bit mode)
available for other purposes; exceptions occur when specified by the programmer
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(using the -no-omit-frame-pointer command-line switch), when compiling
at optimization levels -00 and -01, when a subroutine has a local variable whose
size is not known at compile time (Figure 8.7), or when a subroutine calls alloca
(a legacy mechanism to create temporary space within the current stack frame).
Historically, omission of the frame pointer made it difficult or even impossible for
symbolic debuggers to perform a “backtrace” operation (identifying the frames
of calling routines), but this limitation has been removed with modern debugging
standards like DWARE

Calling sequences for the x86 vary from vendor to vendor, and have evolved
considerably over time, as changes in microarchitecture changed performance
tradeoffs. Most modern sequences use the call and ret instructions. The for-
mer pushes the return address onto the stack, updating the sp, and branches to
the called routine. The latter pops the return address off the stack, again updat-
ing the sp, and branches back to the caller. Several additional, more complex
instructions, retained for backward compatibility, are typically not generated by
modern compilers, because they were designed for calling sequences with an ex-
plicit display and without an argument build area, or because they don’t pipeline
as well as equivalent sequences of simpler instructions.

Argument Passing Conventions Figure C-9.10 shows a stack frame for the x86-
32. Asin the LLVM case study, the sp points to the last used location on the stack.
Arguments in the process of being passed to another routine are accessed via oft-
sets from the sp; everything else is accessed via offsets from the fp, if present—
otherwise the sp. All arguments are passed in the stack. In languages (Ada, in
particular) that permit nested subroutines, register ecx is used to pass the static
link. If the current routine has at least one lexically nested child and is itself lex-
ically nested in some parent, then a copy of the static link will be saved into the
stack just above (at a lower address than) the area used for local variables and
temporaries. When a nested routine is running, its own static link will point to
the saved link in this current routine, or to the local variables and temporaries, if
this current routine is outermost.

Functions return integer or pointer values in register eax. Floating-point val-
ues are returned in the first of the “x87” floating-point registers, st (0) . Compos-
ite values (records, arrays, etc.) of 8 bytes or less are returned in the register pair
eax—edx, as are “long long” (64-bit) integers. For larger return values (records,
arrays, etc.), the compiler passes a hidden first argument (on the stack) whose
value is the address at which the return value should be written.

Calling Sequence Details The calling sequence to maintain the gcc/x86-32
stack is as follows. The caller

I. saves (into the “local variables and temporaries” part of its frame) any caller-
saves registers whose values are still needed

2. puts arguments into the build area at the top of the current frame
3. places the static link (if any) in register ecx
4. executes a call instruction
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Figure 9.9 Layout of the subroutine call stack for the GNU Compiler Collection (gcc) on
32-bit x86. The return address is present in all frames. All other parts of the frame are optional;
they are present only if required by the current subroutine. In x86 terminology, the sp is named
esp; the fp is ebp (extended base pointer). The static link, in languages with nested subroutines,
is passed in register ecx. SL marks the location that will be referenced by the static link (if any)
of any subroutine nested immediately inside this one. A routine that is neither innermost nor
outermost will save its own static link at the location referenced by the static link of its children.

The caller-saves registers consist of eax, edx, and ecx. Step 1 is skipped if none of
these contain a value that will be needed later. Step 2 is skipped if the subroutine
has no parameters. Step 3 is skipped if the language has no nested subroutines, or
if the called routine is declared at the outermost nesting level. The call instruc-
tion pushes the return address and jumps to the subroutine.

In its prologue, the callee

I. pushes the fp onto the stack (if the current routine uses the fp), implicitly
decrementing the sp by 4 (one word).

2. copies the sp into the fp if necessary, thereby establishing a frame pointer for
the current routine

3. pushes any callee-saves registers whose values may be overwritten by the cur-
rent routine

4. pushes the static link (ecx) if the language has nested subroutines and this is
not a leaf

5. subtracts the remainder of the frame size from the sp
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The callee-saves registers are ebx, esi, edi, and, for routines that don’t need a
frame pointer, ebp. For routines that do need a frame pointer, registers esp and
ebp (the sp and fp, respectively) are saved by Steps 1 and 2. The instructions
for some of these steps may be replaced with equivalent sequences by the com-
piler’s code improver, and may be mixed into the rest of the subroutine by the
instruction scheduler. In particular, if the value subtracted from the sp in Step 5
is made large enough to accommodate the callee-saves registers, then the pushes
in Steps 3 and 4 may be moved after Step 5 and replaced with fp- or sp-relative
stores.
In its epilogue, the callee

I. sets the return value
2. restores any callee-saved registers

3. copies the fp into the sp, or subtracts a constant from the sp, as appropriate,
thereby deallocating the frame

4. pops the fp, if any, off the stack

5. returns

Steps 3 and 4 may be effected on the x86 by a single 1eave instruction. As in
the previous case study, the caller moves the return value, if it is in a register, to
wherever it is needed. It restores any caller-saves registers lazily over time.

Because Ada allows subroutines to nest (and Ada 2005 allows arbitrary sub-
routines to be passed as parameters), a subroutine S that is passed as a parameter
from P to Q must be represented by a closure, as described in Section 3.6.1. In
many compilers the closure is a data structure containing the address of S and the
static link that should be used when S is called. In gcc, however, the closure con-
tains an x86 code sequence known as a trampoline—typically a pair of instructions
to load ecx with the appropriate static link and then jump to the beginning of
S. The trampoline resides in the “local variables and temporaries” section of P’s
activation record. Its address is passed to Q. Rather than “interpret” the closure
at run time, Q actually calls it. One advantage of this mechanism is its inter-
operability across programming languages: C functions passed as parameters are
simply code addresses. In fact, if S is declared at the outermost level of lexical
nesting, then gcc can pass an ordinary code address even when compiling Ada
source; in this case no trampoline is required.

x86-64 As noted in Section C-5.4.5, the x86-64 has 16 integer registers instead
of only 8. AMD, which developed the ISA for the wider architecture, suggests
a calling sequence that makes more use of registers (and less of the stack), in a
manner reminiscent of ARM (Example C-9.58) and other RISC machines. The
GNU compiler generally conforms to AMD’s suggestions.

Figure C-9.10 shows a stack frame for the x86-64. The first six integer argu-
ments are passed in registers rdi, rsi, rdx, rcx, r8, and r9, in that order. The
static link, when needed, is passed in r10 (not rcx). Registers rbx and r12-r15
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Figure 9.10 Layout of the subroutine call stack for the GNU Compiler Collection (gcc) on
64-bit x86. Conventions differ from those of Figure C-9.9 in three principal ways: (1) most data
are 64 bits wide; (2) the first 6 integer arguments are passed in registers rather than on the
stack; (3) leaf routines are permitted to use up to 128 bytes of space beyond the top of the
stack, without updating the sp.

are callee saves; rax, r10, r11, and the argument registers are caller-saves. Integer
function values are returned in rax and (if needed) rdx. The first eight floating-
point arguments are passed in XMM{/SSE registers xmmO—xmm7 (the legacy x87
registers are for the most part ignored). Additional floating-point arguments are
passed on the stack. Floating-point function values are returned in xmm0 and (if
needed) xmm1. The stack is always 16-byte aligned at the time of a call.

Perhaps the most interesting difference between the x86-32 and x86-64 con-
ventions is AMD’s specification of a “red zone” beyond the sp. Where the last
used word on the stack is guaranteed on x86-32 to be at an address no lower than
the sp, on x86-64 it can be up to 128 bytes beyond this point—in effect, the sp
protects not only the data at higher addresses (below it in the stack), but up to
128 bytes of additional data as well. Signal handlers and other system software
are required to respect this convention. As a result, leaf routines that need a stack
frame smaller than 128 bytes need not update the sp. For frequent calls to very
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small routines, the two-instruction savings in per-call bookkeeping can be signif-
icant.

\/CHECK YOUR UNDERSTANDING

49. For each of our three case studies, explain which aspects of the calling se-
quence and stack layout are dictated by the hardware, and which are a matter
of software convention.

50. Why don’t LLVM and gcc restore caller-saves registers immediately after a
call?

5. What is a subroutine closure trampoline? How does it differ from the usual
implementation of a closure described in Section 3.6.1? What are the com-
parative advantages of the two alternatives?

52. Explain the circumstances under which a subroutine needs a frame pointer
(i.e., under which access via displacement addressing from the stack pointer
will not suffice).

53. Under what circumstances must an argument that was passed in a register
also be saved into the stack?

54. What is the purpose of the “red zone” on x86-64?

DESIGN & IMPLEMENTATION

9.10 Executing code in the stack

A disadvantage of trampoline-based closures is the need to execute code in the
stack. Many machines and operating systems disallow such execution, for at
least two important reasons. First, as noted in Section C-5.1, modern micro-
processors typically have separate instruction and data caches, for fast con-
current access. Allowing a process to write and execute the same region of
memory means that these caches must be kept mutually consistent (coherent),
a task that introduces significant hardware complexity (on some machines it
requires execution of a special hardware instruction). Second, many computer
security breaches involve a code injection attack, in which an intruder exploits
software vulnerabilities (e.g., the lack of array bounds checking in C) to write
instructions into the stack, and to overwrite the saved return address so that ex-
ecution will jump into that code when the current subroutine returns. Such an
attack is possible only on machines in which writable data are also executable.
When compiling code for use on modern systems, gcc embeds a call to a li-
brary routine that reverses the system default and re-enables stack execution
prior to using a trampoline.
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9.2.3 Register Windows

As an alternative to saving and restoring registers on subroutine calls and re-
turns, the original Berkeley RISC machines [PD80, Pat85] incorporated a hard-
ware mechanism known as register windows. The basic idea is to provide a very
large set of physical registers, most of which are organized as a collection of over-
lapping windows (Figure C-9.11). A few register names (rO—r7 in the figure)
always refer to the same locations, but the rest (r8—r31 in the figure) are inter-
preted relative to the currently active window. On a subroutine call, the hardware
moves to a different window. To facilitate the passing of parameters, the old and
new windows overlap: the top few registers in the caller’s window (r24—r31 in the
figure) are the same as the bottom few registers in the callee’s window (r8-r15
in the figure). On a machine with register windows, the compiler places values
of use only within the current subroutine in the middle part of the window. It
copies values to the upper part of the window to pass them to a called routine,
within which they are read from the lower part of the window.

Since the number of physical windows is fixed, a long chain of subroutine calls
can cause the hardware to run off the end of the register set, resulting in a “win-
dow overflow” interrupt that drops the processor into the operating system. The
interrupt handler then treats the set of available windows as a circular buffer. It
copies the contents of one or more windows to memory and then resumes exe-
cution. Later, a “window underflow” interrupt will occur when control attempts
to return into a window whose contents have been written to memory. Again the
operating system recovers, by restoring the saved registers and resuming execu-
tion. In practice, eight windows appear to suffice to make overflow and underflow
relatively rare in typical programs.

Register windows have been used in several RISC processors, but only one
of these, the SPARC, is commercially significant today. The Intel IA-64 (Ita-
nium), introduced shortly after the turn of the century, also uses register win-
dows, though it is not a RISC machine. The advantage of windows, of course, is
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Figure 9.11 Register windows. \When the main program calls subroutine A, and again when

A calls B, register names r0—r7 continue to refer to the same locations, but register names
r8—r31 are changed to refer to a new, overlapping window. High-numbered registers in the
caller share locations with low-numbered registers in the callee.

that they reduce the number of loads and stores required for the typical subrou-
tine call. At the same time, register windows significantly increase the amount of
state associated with the currently running program. When the operating system
decides to give the processor to a different application for a while (something that
most systems do many times per second), it must save all this state to memory,
or arrange for the processor to trap back into the OS if the new process attempts
to access an unsaved window. Worse, while register windows nicely capture the
referencing environment of a single thread of control, they do not work well for
languages that need more than one referencing environment (execution context).
Several language features, including continuations (Section 6.2.2), iterators (Sec-
tion 6.5.3), and coroutines (Section 9.5), are difficult to implement on a machine
with register windows, because they require that we save and restore not only the
visible registers, but those in other windows as well, when switching between con-
texts. It is unclear whether the reduction in subroutine call overhead outweighs
the extra cost of context switches for typical application workloads, particularly
given that loads and stores for parameters are almost always cache hits.
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\/CHECK YOUR UNDERSTANDING
55. What are register windows? What purpose do they serve?

56. Which commercial instruction sets include register windows?
51. Explain the concepts of register window overflow and underflow.

58. Why are register windows a potential problem for multithreaded programs?
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EXAMPLE 9.64

Jensen’s device

9.3.2 call by Name

Call by name implements the normal-order argument evaluation described in
Section 6.6.2. A call-by-name parameter is reevaluated in the caller’s referencing
environment every time it is used. The effect is as if the called routine had been
textually expanded at the point of call, with the actual parameter (which may be a
complicated expression) replacing every occurrence of the formal parameter. To
avoid the usual problems with macro parameters, the “expansion” is defined to
include parentheses around the replaced parameter wherever syntactically valid,
and to make “suitable systematic changes” to the names of any formal parameters
or local identifiers that share the same name, so that their meanings never con-
flict [NBBT63, p. 12]. Call by name was the default in Algol 60; call by value was
available as an alternative. In Simula call by value was the default; call by name
was the alternative.

To implement call by name, Algol 60 implementations passed a hidden subrou-
tine that evaluated the actual parameter in the caller’s referencing environment.
Such a hidden routine is usually called a thunk.! In most cases thunks are trivial.
If an actual parameter is a variable name, for example, the thunk simply reads the
variable from memory. In some cases, however, a thunk can be elaborate. Per-
haps the most famous occurs in what is known as Jensen’s device, named after Jorn
Jensen [Rut67]. The idea is to pass to a subroutine both a built-up expression and
one or more of the variables used in the expression. Then by changing the values
of the individual variable(s), the called routine can deliberately and systematically
change the value of the built-up expression. This device can be used, for example,
to write a summation routine:

I In general, a thunk is a procedure of zero arguments used to delay evaluation of an expression.
Other examples of thunks can be seen in the delay mechanism of Example 6.88 and the promise
constructor of Exercise 11.18.
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real procedure sum(expr, i, low, high);
value low, high;
comment low and high are passed by value;
comment expr and i are passed by name;

real expr;
integer i, low, high;
begin
real rtn;
rtn := 0;
for i := low step 1 until high do
rtn := rtn + expr;
comment the value of expr depends on the value of ij;
sum := rtn
end sum

Now to evaluate the sum

y= Z 3" —5x+2

1<x<10

we can simply say

y := sum(3*x*x - 5*x + 2, x, 1, 10);

Label Parameters

Both Algol 60 and Algol 68 allowed a label to be passed as a parameter. If a called
routine performed a goto to such a label, control would usually need to escape
the local context, unwinding the subroutine call stack as it did so. Details of
the unwinding operation would depend on the location of the label. For each
intervening scope, the goto would have to restore saved registers, deallocate the

DESIGN & IMPLEMENTATION

9.11 Call by name

In practice, most uses of call by name in Algol 60 and Simula programs served
to allow a subroutine to change the value of an actual parameter; neither lan-
guage offered call by reference. Unfortunately, call by name is significantly
more expensive than call by reference: it requires the invocation of a thunk
(as opposed to a simple indirection) on every use of a formal parameter. Call
by name is also prone to subtle program bugs when a change to a variable in a
surrounding scope unintentionally alters the value of a formal parameter. (Call
by reference suffers from a milder form of this problem, as discussed in Exam-
ple 3.20.) Such deliberate subtleties as Jensen’s device are comparatively rare,
and can be imitated in other languages through the use of formal subroutines.
Call by name was dropped in Algol 68, in favor of call by reference.
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stack frame, and perform any other operations normally handled by epilogue
code. To implement label parameters, Algol implementations typically passed a
thunk that performed the appropriate operations for the given label. Note that
the target label would generally need to lie in some surrounding scope, where it
was visible to the caller under static scoping rules.

Label parameters were usually used to handle exceptional conditions—condi-
tions that prevent a subroutine from performing its usual operation, and that
cannot be handled in the local context. Instead of returning, an Algol routine
that encountered a problem (e.g., invalid input) could perform a goto to a label
parameter, on the assumption that the label refered to code that would perform
some remedial operation, or print an appropriate error message. In more re-
cent languages, label parameters have been replaced by more structured exception
handling mechanisms, as discussed in Section 9.4.

\/CHECK YOUR UNDERSTANDING

59. What is call by name? What language first provided it? Why isn’t it used by
the language’s descendants?

60. What is call by need? How does it differ from call by name? What modern
languages use it?

6. How does a subroutine with call-by-name parameters differ from a macro?

62. What is a thunk? What is it used for?

63. What is Jensen’s device?

DESIGN & IMPLEMENTATION
9.12 Call by need

Functional languages like Miranda and Haskell typically pass parameters us-
ing a memoizing implementation of normal-order evaluation, as described
in Section 6.6.2. This lazy implementation is sometimes called call by need.
Memoization calculates and records the value of a parameter the first time it is
needed, and uses the recorded value thereafter. In the absence of side effects,
call by need is indistinguishable from call by name. It avoids the expense of
repeated evaluation, but precludes the use of techniques like Jensen’s device in
languages that do have side effects. Among imperative languages, call by need
appears in the scripting language R, where it serves to avoid the expense of
evaluating (even once) any complex arguments that are not actually needed.
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9.5.3 Implementation of Iterators

exampLe 9.05 Consider the following for loop from Example 6.66:
Coroutine-based iterator
invocation for i in range(first, last, step):

Using coroutines, a compiler might translate this as

iter := new from_to_by(first, last, step, i, done, current_coroutine)
while not done do

transfer(iter)
destroy(iter)

After the loop completes, the implementation can reclaim the space consumed by

iter.
exampLe 9.66 The definition of from_to_by itself is quite straightforward:
Coroutine-based iterator
implementation coroutine from_to_by(from_val, to_val, by_amt : int;

ref i : int; ref done : bool; caller : coroutine)
i := from_val
if by_amt > 0 then
done := from_val > to_val
detach
loop
i +:= by_amt
done :=i > to_val
transfer(caller)  ——yield i

c-183



c-184  Chapter 9 Subroutines and Control Abstraction

EXAMPLE 9.67

Iterator usage in C#

else
done := from_val < to_val
detach
loop
i +:= by_amt
done =i < to_val
transfer(caller)  ——yield i

Parameters i and done are passed by reference so that the iterator can modify
them in the caller’s context. The caller’s identity is passed as a final argument so
that the iterator can tell which coroutine to resume when it has computed the
next loop index. Because the caller is named explicitly, it is easy for iterators to
nest, as in Figure 6.5.

Single-Stack Implementation

While coroutines suffice for the implementation of iterators, they are not neces-
sary. A simpler, single-stack implementation is also possible. Because a given
iterator (e.g., an instance of from_to_by) is always resumed at the same place in
the code (between iterations of a given for loop), we can be sure that the sub-
routine call stack will always contain the same frames whenever the iterator runs.
Moreover, since yield statements can appear only in the main body of the iter-
ator (never in nested routines), we can be sure that the stack will always contain
the same frames whenever the iterator transfers back to its caller. These two facts
imply that we can place the frame of the iterator directly on top of the frame of
its caller in a single central stack.

When an iterator is created, its frame is pushed on the stack. When it yields a
value, control returns to the for loop, but the iterator’s frame is left on the stack.
If the body of the loop makes any subroutine calls, the frames for those calls will
be allocated beyond the frame of the iterator. Since control must return to the
loop before the iterator resumes, we know that such frames will be gone again
before the iterator has a chance to see them: if it needs to call subroutines itself,
the stack above it will be clear. Likewise, if the iterator calls any subroutines, they
will return (popping their frames from the stack) before the for loop runs again.
Nested iterators present no special problems (see Exercise C-9.34).

Data Structure Implementation

Compilers for C# 2.0 employ yet another implementation of iterators. Like Java,
C# 1.1 provided iterator objects. Each such object implements the IEnumerator
interface, which provides MoveNext and Current methods. Typically an iterator
is obtained by calling the GetEnumerator method of an object (a container) that
implements the IEnumerable interface:

for (IEnumerator i = myTree.GetEnumerator(); i.MoveNext();) {
object o = i.Current;
Console.WriteLine(o.ToString());
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C# 2.0 provides true iterators as an extension of iterator objects. The pro-
grammer simply declares a method that contains one or more yield return

exameLe 9.68 statements, and whose return type is IEnumerator or IEnumerable. Here is an
Implementation of C# example of the latter:
iterators

static IEnumerable FromToBy (int fromVal, int toVal, int byAmt)

{
if (byAmt >= 0) {
for (int i = fromVal; i <= toVal; i += byAmt) {
yield return i;
}
} else {
for (int i = fromVal; i >= toVal; i += byAmt) {
yield return i;
}
¥
}

The compiler automatically transforms this code into a hidden class with a
GetEnumerator method, along the lines of Figure C-9.12.  Within this code,
an explicit state variable keeps track of the “program counter” of the last yield
statement. In addition, local variable i of the true iterator becomes a data mem-
ber of the FromToByImpl class, leaving the iterator with no need for a stack frame
across iterations of the loop. In a quite literal sense, the compiler transforms each
true iterator into an iterator object.

Recursive iterators present no particular difficulties: a nested iterator is allo-
cated on demand when the outer iterator enters a foreach loop, and is referred
to by a reference in that outer iterator. The details are deferred to Exercise C-9.35.
Because iterator objects are allocated from the heap, the C# implementation of
true iterators may be somewhat slower than the stack-based implementation of
the previous subsection.

\/CHECK YOUR UNDERSTANDING

64. Describe the “obvious” implementation of iterators using coroutines.

65. Explain how the state of multiple active iterators can be maintained in a single
stack.

66. Describe the transformation used by C# compilers to turn a true iterator into
an iterator object.
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static IEnumerable FromToBy(int fromVal, int toVal, int byAmt) {
return new FromToByImpl(fromVal, toVal, byAmt);
}
class FromToByImpl : IEnumerator, IEnumerable {
enum State {starting, goingUp, goingDown, done}
int i, tv, ba;
State s;

public FromToByImpl(int fromVal, int toVal, int byAmt) {
i = fromVal; tv = toVal; ba = byAmt; s = State.starting;
}
public IEnumerator GetEnumerator() {
return this;
}
public object Current {
get { return i; }
}
public bool MoveNext() {
switch (s) {
case State.starting :
if (ba >= 0) {
if (i <= tv) { s = State.goingUp; return true; }
else { s = State.done; return false; }
} else {
if (i >= tv) { s = State.goingDown; return true; }
else { s = State.done; return false; }
}
case State.goingUp
i += ba;
if (i <= tv) return true;
else { s = State.done; return false; }
case State.goingDown :
i += ba;
if (i >= tv) return true;
else { s = State.done; return false; }
default: // for completeness
case State.done : return false;

}
public void Reset() {
s = State.starting;
}
}

Figure 9.12 Iterator object equivalent of a true iterator in C#. This handwritten code cor-
responds to Example C-9.68. It represents, at the source level, what the compiler creates at
the level of intermediate code: a state machine that tracks the program counter of the original
iterator, with a starting state, an ending state, and one state for each yield return statement.
The arms of the switch statement capture the code paths in the original iterator that move
from one state to the next.
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EXAMPLE 9.69

Sequential simulation of a
complex physical system

EXAMPLE 970

Initialization of a
coroutine-based traffic
simulation

9.5.4 Discrete Event Simulation

Suppose that we wish to experiment with the flow of traffic in a city. A computer-
ized traffic model, if it captures the real world with sufficient accuracy, will allow
us to predict the effects of construction projects, accidents, increased traffic due
to new development, or changes to the layout of streets. It is difficult (though
certainly not impossible) to write such a simulation in a conventional sequential
language. We would probably represent each interesting object (automobile, in-
tersection, street segment, etc.) with a data structure. Our main program would
then look something like this:

while current_time < end_of_simulation
calculate next time t at which an interesting interaction will occur
current_time := t
update state of objects to reflect the interaction
record desired statistics
print collected statistics

The problem with this approach lies in determining which objects will interact
next, and in remembering their state from one interaction to the next. It is in
some sense unnatural to represent active objects such as cars with passive data
structures, and to make time the active entity in the program. An arguably more
attractive approach is to represent each active object with a coroutine, and to let
each object keep track of its own state.

If each active object can tell when it will next do something interesting, then we
can determine which objects will interact next by keeping the currently inactive
coroutines in a priority queue, ordered by the time of their next event. We might
begin a one-day traffic simulation by creating a coroutine for each trip to be taken
by a car that day, and inserting each coroutine into the priority queue with a
“wakeup” time indicating when the trip is to begin:
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EXAMPLE 9.7'

Traversing a street segment
in the traffic simulation

EXAMPLE 972

Scheduling a coroutine for
future execution

EXAMPLE 9.73

Queueing cars at a traffic
light

coroutine trip(...)

for each trip t
p :=new trip(...)
schedule(p, t.start_time)

Let us assume that we think of street segments as passive, and represent them
with data structures. At any given moment, we can model a segment by the num-
ber of cars that it is carrying in each direction. This number in turn will affect
the speed at which the cars can safely travel. Whenever it awakens, the coroutine
representing a trip examines the next street segment over which it needs to travel.
Based on the current load on that segment, it calculates how much time it will
take to traverse it, and schedules itself to awaken again at an appropriate point in
the future:

coroutine trip(origin, destination : location)
plan a route from origin to destination
detach
for each segment of the route
calculate time i to reach the end of the segment
schedule(current_coroutine, current_time + 1)

The schedule operation is easily built on top of transfer:

schedule(p : coroutine; t : time)
—— p may be self or other
insert (p, 1) in priority queue
if p = current_coroutine  —-self
extract earliest pair (g, s) from priority queue
current_time :=s
transfer(q)

In some cases, it may be difficult to determine when to reschedule a given
object. Suppose, for example, that we wish to more accurately model the effects
of traffic signals at intersections. We might represent each traffic signal with a
data structure that records the waiting cars in each direction, and a coroutine that
lets cars through as the signal changes color:

record controlled_intersection =
EW_cars, NS_cars : queue of trip
const per_car_lag-time : time
——how long it takes a car to start after its predecessor does
coroutine signal(EW _duration, NS_duration : time)
detach
loop
change_time := current_time + EW_duration
while current_time < change_time
if EW_cars not empty
schedule(dequeue(EW_cars), current_time)
schedule(current_coroutine, current_time + per_car_lag-time)



exampe 9.74
Waiting at a light

EXAMPLE 9.75

Sleeping in anticipation of
future execution

9.5.4 Discrete Event Simulation c-189

change_time := current_time + NS_duration
while current_time < change_time
if NS_cars not empty
schedule(NS_cars.dequeuel(), current_time)
schedule(current_coroutine, current_time + per_car_lag-time)

When it reaches the end of a street segment that is controlled by a traffic signal,
a trip need not calculate how long it will take to get through the intersection.
Rather, it enters itself into the appropriate queue of waiting cars and “goes to
sleep,” knowing that the signal coroutine will awaken it at some point in the
future:

coroutine trip(origin, destination : location)
plan a route from origin to destination
detach
for each segment of the route
calculate time i to reach the end of the segment
schedule(current_coroutine, current_time + 1)
if end of segment has a traffic light
identify appropriate queue Q
Q.enqueue(current_coroutine)
sleep)

Like schedule, sleep is easily built on top of transfer:

sleep)
extract earliest pair (g, s) from priority queue
current_time :=s
transfer(q)

The schedule operation, in fact, is simply

schedule(p : coroutine; t : time)
insert (p, 1) in priority queue
if p = current_coroutine
sleep)

Obviously this traffic simulation is too simplistic to capture the behavior of
cars in a real city, but it illustrates the basic concepts of discrete event simula-
tion. More sophisticated simulations are used in a wide range of application do-
mains, including all branches of engineering, computational biology, physics and
cosmology, and even computer design. Multiprocessor simulations (see refer-
ence [VF94], for example) are typically divided into a “front end” that simulates
the processors and a “back end” that simulates the memory subsystem. Each
coroutine in the front end consists of a machine-language interpreter that cap-
tures the behavior of one of the system’s processing cores. Each coroutine in the
back end represents a load or a store instruction. Every time a processor per-
forms a load or store, the front end creates a new coroutine in the back end. Data
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structures in the back end represent various hardware resources, including caches,
buses, network links, message routers, and memory modules. The coroutine for
a given load or store checks to see if its location is in the local cache. If not, it
must traverse the interconnection network between the processor and memory,
competing with other coroutines for access to hardware resources, much as cars
in our simple example compete for access to street segments and intersections.
The behavior of the back-end system in turn affects the front end, since a proces-
sor must wait for a load to complete before it can use the data, and since the rate
at which stores can be injected into the back end is limited by the rate at which
they propagate to memory.

\/CHECK YOUR UNDERSTANDING

67. Summarize the computational model of discrete event simulation. Explain
the significance of the time-based priority queue.

68. When building a discrete event simulation, how does one decide which things
to model with coroutines, and which to model with data structures?

69. Are all inactive coroutines guaranteed to be in the priority queue? Explain.
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9.26

9.21

9.28

9.29

Exercises

Suppose you wish to minimize the size of closures in a language implemen-
tation that uses a display to access nonlocal objects. Assuming a language
like Pascal or Ada, in which subroutines have limited extent, explain how
an appropriate display for a formal subroutine can be calculated when that
routine is finally called, starting with only (1) the value of the frame pointer,
saved in the closure at the time that the closure was created, (2) the subrou-
tine return addresses found in the stack at the time the formal subroutine
is finally called, and (3) static tables created by the compiler. How costly is
your scheme?

Elaborate on the reasons why even parameters passed in registers may some-
times need to have locations in the stack. Consider all the cases in which it
may not suffice to keep a parameter in a register throughout its lifetime.

Most versions of the C library include a function, alloca, that dynamically
allocates space within the current stack frame.? It has two advantages over
the usual malloc, which allocates space in the heap: it’s usually very fast,
and the space it allocates is reclaimed automatically when the current sub-
routine returns. Assuming the programmer wants deallocation to happen
then, it’s convenient to be able to skip the explicit free operations. How
might you implement alloca in conjunction with the calling conventions
of our various case studies?

Explain how to extend the conventions of Figure C-9.9 and Section C-9.2.2
to accommodate arrays whose bounds are not known until elaboration time
(as discussed in Section 8.2.2). What ramifications does this have for the use
of separate stack and frame pointers?

2 Unfortunately, alloca is not POSIX compliant, and implementations vary greatly in their se-
mantics and even in details of the interface. Portable programs are wise to avoid this routine.
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930

9.31

9.32

933
9.34

9.35

9.36

In all three of our case studies, stack-based arguments were placed into the
argument build area in “reverse” order, with the lowest-numbered argu-
ment at the top. Explain why this is important. (Hint: Consider subroutines
with variable numbers of arguments, as discussed in Section 9.3.3.)

How would you implement nested subroutines as parameters on a machine
that doesn’t let you execute code in the stack? Can you pass a simple code
address, or do you require that closures be interpreted at run time?

If you have read the rest of Chapter 9, you may have noticed that the term
“trampoline” is also used in conjunction with the implementation of signal
handlers (Section 9.6.1). What is the connection (if any) between these uses
of the term?

Explain how you might implement setjmp and longjmp on a SPARC.

Following the code in Figure 6.5, and assuming a single-stack implemen-
tation of iterators, trace the contents of the stack during the execution of a
for loop that iterates over all nodes of a complete, 3-level (6-node) binary
tree.

Build a preorder iterator for binary trees in Java, C#, or Python. Do not
use a true iterator or an explicit stack of tree nodes. Rather, create nested
iterator objects on demand, linking them together as a C# compiler might
if it were building the iterator object equivalent of a true preorder iterator.

One source of inaccuracy in the traffic simulation of Section C-9.5.4 has to
do with the timing at traffic signals. If a signal is currently green in the EW
direction, but the queue of waiting cars is empty, the signal coroutine will
go to sleep until current_time + EW_duration. Ifa car arrives before the
coroutine wakes up again, it will needlessly wait. Discuss how you might
remedy this problem.
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941

9.48

9.49

9.50

9.51

9.52

Explorations

Read the ARM calling sequence standard for 64-bit (v8) code. Compare and
contrast to the conventions of Section C-9.2.2. Pay particular attention to
the lists of caller- and callee-saves registers, and to the registers used to pass
arguments. Speculate as to reasons for the differences.

Research the full range of hardware support for subroutines on the x86, in-
cluding all variants of call. Note that the leave instruction is sometimes
generated by modern compilers, but others, including enter, pushad,
popad, pushfd, and popfd, usually are not. In addition, the optional ar-
gument of ret is almost never used, and push and pop are used sparingly.
Discuss the technological trends that have made this machinery obsolete.

As an example of hard-core CISC design, research the subroutine calling
conventions of the Digital VAX. Be sure to describe the behavior of the
calls instruction in detail.

Study the implementation of a user-level thread management package writ-
ten for the SPARC. How does it manage register windows?

Learn how parameter passing is implemented in the Glasgow Haskell com-
piler. How expensive is its call-by-need—based lazy evaluation?

Learn about the Time Warp system for discrete event simulation, developed
by David Jefferson and colleagues [JBW87]. Discuss its relationship to
both the classic discrete event simulation of Section €-9.5.4 and the specu-
lative parallelism of mechanisms like transactional memory (to be discussed
in Section 13.4.4).
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EXAMPLE |057

Deriving from two base
classes (reprise)

EXAMPLE |0.58

(Nonrepeated) multiple
inheritance

Data Abstraction and Object
Orientation

True Multiple Inheritance

Recall our administrative computing example in C++:
class student : public person, public system_user { ...

To implement multiple inheritance, we must be able to generate both a “person
view” and a “system_user view” of a student object on demand, for example
when assigning a reference to a student object into a person or system_user
variable. For one of the base classes (person, say) we can do the same thing
we did with single inheritance: let the data members of that base class lie at the
beginning of the representation of the derived class, and let the virtual methods of
that base class lie at the beginning of the vtable. Then when we assign a reference
to a student object into a person variable, code that manipulates the person
variable will just use a prefix of the data members and the vtable.

For the other base class (system_user), things get more complicated: we can’t
put both base classes at the beginning of the derived class. One possible solution
is shown in Figure C-10.9. It is based loosely on the implementation described
by Ellis and Stroustrup [ES90, Chap. 10], and builds on the implementation of
mix-ins described in Section 10.5. Because the system_user fields of a student
follow the person fields, the assignment of a reference to a student object into a
variable of type system_user* requires that we adjust our “view” by adding the
compile-time constant offset d.

The vtable for a student is broken into two parts. The first part lists the virtual
methods of the derived class and the first base class (person). The second part
lists the virtual methods of the second base class. (We have already introduced
a method, print_mailing_label, defined in class person. We may similarly
imagine that system_user defines a virtual method print_stats that is sup-
posed to dump account statistics to standard output.) Generalization to three or
more base classes is straightforward; see Exercise C-10.23.
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Figure 10.9 Implementation of (nonrepeated) multiple inheritance. The size d of the person portion of the object is a
compile-time constant. We access the system_user portion of the vtable by adding d to the address of a student object
before indirecting. Likewise, we create a system_user view of a student object by adding d to the object's address. Each
vtable entry consists of both a method address and a “this correction” value equal to the signed distance between the view
through which the vtable was accessed and the view of the class in which the method was defined.
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Every data member of a student object has a compile-time-constant offset
from the beginning of the object. Likewise, every virtual method has a compile-
time-constant offset from the beginning of one of the parts of the vtable. The
address of the person/student portion of the vtable is stored in the beginning
of the object. The address of the system_user portion of the vtable is stored
at offset d. Note that both parts of the vtable are specific to class student. In
particular, the system_user part of the vtable is not shared by objects of class
system_user, because the contents of the tables will be different if student has
overridden any of system_user’s virtual methods.

To call the virtual method print_mailing_label, originally defined in per-
son, we can use a code sequence similar to the one shown in Section 10.4.3 for
single inheritance. To call a virtual method originally defined in system_user,
we must first add the offset d to our object’s address, in order to find the address
of the system_user portion of the vtable. Then we can index into this system_
user vtable to find the address of the appropriate method to call. But we are
left with one final problem: what is the appropriate value of this to pass to the
method?

As a concrete example, suppose that student does not override print_stats
(though it certainly could). If our object is of class student, we should pass
a system_user view of it to print_stats: the address of the object, plus d.
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this correction

If, however, our object is of some class (transfer_student, perhaps) that
does override print_stats, then we should pass a transfer_student view to
print_stats. If we are accessing our object through a variable (a reference or
a pointer) whose methods are dynamically bound, then we can’t tell at compile
time which one of these cases applies. Worse yet, we may not even know how to
generate a transfer_student view if we have to: class transfer_student may
not have been invented when this part of our code was compiled, so we certainly
don’t know how far into it the system_user fields appear!

A common solution is for each vtable entry to consist of a pair of fields. One
is the address of the method’s code; the other is a “this correction” value, to
be added to the view through which we found the vtable. (Compare this to the
mix-in approach of Figure 10.7, where a single this correction would suffice
for the entire vtable, because we knew that every method would be provided by
the class that implements the interface, not by the interface itself.) Returning to
Figure C-10.9, the “this correction” field of the vtable entry for print_stats
would contain —d if print_stats was overridden by student, and zero oth-
erwise. In the system_user part of the vtable for the (yet to be written) class
transfer_student, the “this correction” field might contain some other value
—e. In general, the “this correction” is the distance between the view of the class
in which the method was declared (and through which we accessed the vtable) and
the view of the class in which the method was defined (and which will therefore
be expected by the subroutine’s implementation).

If variable my_student contains a reference to (a student view of ) some object
at run time, and if print_stats is the third virtual method of system_user,
then the code to call my_student .debug_print would look something like this:

r1 := my_student —— student view of object
r:=r1+d —— system_user view of object
r2 ;= xr1 —— address of appropriate vtable
r3:=%(r2 + (3—1) X 8) —— method address

r2:=%(r2 + (3—=1) x 8 + 4) —— this correction

rm:=r1+r2 ——this

call *r3

Here we have assumed that both method addresses and this corrections are four
bytes long, that this is to be passed in r1, and that there are no other argu-
ments. On a typical machine this code is three instructions (including one mem-
ory access) longer than the code required with single inheritance, and five instruc-
tions (including three memory accesses) longer than a call to a statically identified
method.

[0.6.] Semantic Ambiguities

In addition to implementation complexities (only some of which we have dis-
cussed so far), multiple inheritance introduces potential semantic problems.
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Suppose that both system_user and person define a print_stats method. If
we have a variable s of type student* and we call s->print_stats, which ver-
sion of the method should we get? In CLOS and Python, we get the version from
the base class that appeared first in the derived class’s header. In Eiffel, we get a
static semantic error if we try to define a derived class with such an ambiguity.
In C++, we can define the derived class, but we get a static semantic error if we
attempt to use a member whose name is ambiguous. To resolve the ambiguity, we
can use the feature renaming mechanism in Eiffel to give different names to the
inherited methods. In C++ we must redefine the conflicting method explicitly:

void student::print_stats() {
person: :print_stats();
system_user: :print_stats();

Here we have chosen to call the print_stats routines of both base classes, using
the :: scope resolution operator to name them. We could of course have chosen
to call just one, or to write our own code from scratch. We could even arrange for
access to both routines by giving them new names:

void student::print_person_stats() {
person: :print_stats();

}

void student::print_user_stats() {
system_user: :print_stats();

}

Things are a little messier if either or both of the identically named base class
methods are virtual, and we want to override them in the derived class. Follow-
ing Stroustrup [Str13, Sec. 21.3.3], we can solve the problem by interposing an
intermediate class between each base class and the derived class:

DESIGN & IMPLEMENTATION

10.8 The cost of multiple inheritance

The implementation we have described for multiple inheritance, using this
corrections in vtables, has the unfortunate property of increasing the over-
head of all virtual method invocations, even in programs that do not make use
of multiple inheritance. This sort of mandatory overhead is something that
language designers (and the designers of systems languages in particular) gen-
erally try to avoid; as a matter of principle, complex special cases should not
reduce the efficiency of the simpler common case. Fortunately, there are other
implementations of multiple inheritance (see Exercise C-10.28) in which the
cost of modifying this is paid only when the correction is nonzero.
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class person_interface : public person {
public:
virtual void print_person_stats() = 0;
void print_stats() { print_person_stats(); }
// overrides person::print_stats
3
class system_user_interface : public system_user {
public:
virtual void print_user_stats() = 0;
void print_stats() { print_user_stats(); }
// overrides system_user::print_stats
3
class student : public person_interface, public system_user_interface {
public:
void print_person_stats() { ...
void print_user_stats() { ...

};

We leave it as an exercise (C-10.24) to show what happens if we assign a student
object into a variable p of type person* and then call p->print_stats().

A more serious ambiguity arises when a class D inherits from two base classes,
B and C, both of which inherit from some common base class A. In this situ-
ation, should an object of class D contain one instance of the data members of
class A or two? The answer would seem to be program dependent. For example,
suppose that professors, like students, are all given accounts in our administrative
computing system. Then, like class student, we might want class professor to
inherit from both person and system_user:

class professor : public person, public system_user { ...

But now suppose that some professors take courses on occasion as nonmatricu-
lated students. In this case we might want a new class that supports both sets of
operations:

class student_prof : public student, public professor { ...

Class student_prof inherits from person and from system_user twice, once
each through student and professor. If we think about it, we probably want a
student_prof to have one instance of the data members of class person—one
name, one university ID number, one mailing address—and two instances of the
data members of class system_user—separate user accounts (with separate user
ids, disk quotas, etc.) for the student and professor roles:
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system_user person system_user
student professor

N/

student_prof

The system_user case—separate copies from each branch of the inheritance
tree—is known as replicated inheritance. The person case—a single copy from
both branches of the tree—is known as shared inheritance. Both are forms of
repeated inheritance.

Replicated inheritance is the default in C++. Shared inheritance is the default
in Eiffel. Shared inheritance can be obtained in C++ by specifying that a base
class is virtual:

class student : public virtual person, public system_user { ...
class professor : public virtual person, public system_user { ...

In this case the members of class person are shared when inherited over multiple
paths, while the members of class system_user are replicated.

Replicated inheritance of individual features can be obtained in Eiffel through
the renaming mechanism described in Section 10.2.2:

class student inherit person; system_user ...
class professor inherit person; system_user

class student_prof
inherit
student
rename
user_id as student_user_id,
disk_quota as student_disk_quota
end;
professor
rename
user_id as prof_user_id,
disk_quota as prof_disk_quota
end
feature

end -- class student_prof

Features inherited with different final names are replicated; features inherited
with the same final name are shared. Multiple inheritance in CLOS is always
shared, unless the user interposes interface classes as shown above explicitly; there
is no other renaming mechanism.
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D object D vtable (D/B part)
D view, B view, B: : A view ——> —> B::A |
B: : A fields methods
A A B (only) |
T T methods |
B c d B (only) D (only) :
\ / fields methods !
D D vtable (C part)
Cview, C: : A view ——> —> C::A i
C: : A fields methods
C(only)
C (only) methods |
fields
D (only)
fields

Figure 10.10 Implementation of replicated multiple inheritance. Fach base class contains a
complete copy of class A. As in Figure C-10.9, the vtable for class D is split into two parts, one
for each base class, and each vtable entry consists of a (method address, this correction) pair.

[0.6.2 Replicated Inheritance

Replicated inheritance introduces no serious implementation problems beyond
those of nonrepeated multiple inheritance. As shown in Figure C-10.10, an object
(in this case of class D) that inherits a base class (A) over two different paths in the
inheritance tree has two copies of A’s data members in its representation, and a set
of entries for the virtual methods of A in each of the parts of its vtable. Creation
of a B view of a D object (e.g., when assigning a pointer to a D object into a Bx
variable) would not require the execution of any code. Creation of a C view (e.g.,
when assigning into a Cx variable) would require the addition of offset d.
Because of ambiguity, we cannot access A members of a D object by name. We
can access them, however, if we assign a pointer to a D object into a B* or Cx
variable. Similarly, a pointer to a D object cannot be assigned into an A pointer
directly: there would be no basis on which to choose the A for which to create a
view. We can, however, perform the assignment through a B* or C* intermediary:

class A { ...

class B : public A { ...

class C : public A { ...

class D : public B, public C { ...

Ax a; Bx b; Cx c; Dx d;
a =d; // error; ambiguous
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b=4d; // ok
c=4d; // ok
a=b; // ok; a:=d'sB's A
a=c; // ok; a:=d'sC's A

As described in Example C-10.60, vtable entries will need to consist of (method
address, this correction) pairs.

[0.6.3 Shared Inheritance

Shared inheritance introduces a new opportunity for ambiguity and additional
implementation complexity. As in the previous subsection, assume that D inherits

from B and C, both of which inherit from A. This time, however, assume that A is
shared:

class A {
public:
virtual void f£();

3

class B : public virtual A { ...
class C : public virtual A { ...
class D : public B, public C { ...

The new ambiguity arises if B or C overrides method £, declared in A: which
version (if any) does D inherit? C++ defines a reference to £ to be unambiguous
(and therefore valid) if one of the possible definitions dominates the others, in the
sense that its class is a descendant of the classes of all the other definitions. In our
specific example, D can inherit an overridden version of £ from either B or C. If
both of them override it, however, any attempt to use £ from within D’s code will
be a static semantic error. Eiffel provides comparatively elaborate mechanisms
for controlling ambiguity. A class that inherits an overridden method over more
than one path can specify the version it wants. Alternatively, through renaming,
it can retain access to all versions.

To implement shared inheritance we must recognize that because a single in-
stance of A is a part of both B and C, we cannot make the representations of both
B and C contiguous in memory. In Figure C-10.11, in fact, we have chosen to
make neither B nor C contiguous. We insist, however, that the representation of
every B, C, or D object (and every B, C, or D view of an object of a derived class)
contain the address of the A part of the object at a compile-time constant offset
from the beginning of the view. To access a data member of A, we first indirect
through this address, and then apply the offset of the member within A. To call
the nth virtual method declared in A, we execute the following code:
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D object D vtable (D/B part)
D view, B view —> — |
B methods 1
I — :
A i
D methods |
/ \ B (only) methods :
B C fields
\D/ D vtable (C part)
Cview ——> C methods 1
— :
C (only)
fields
D (only)
fields D vtable (A part)
. T
Aview A methods
A fields )
Figure [0.11 Implementation of shared multiple inheritance. Objects of class B, C, and D

contain the address of their A components at a compile-time constant offset (in this case, imme-
diately after the vtable address). As in Figures C-10.9 and C-10.10, this corrections for virtual
methods in vtable entries are relative to the view of the class in which the method was declared
(i.e., through which the vtable was accessed).

r1 := my-D_view —— original view of object
r1:=x(r1 + 4) —— A view

r2 ;= xril —— address of A part of vtable
13 :=%(r2 + (n—1) X 8) ——method address

r2:=%(r2 + (n—1) x 8 + 4) —— this correction
r:=rl+r2 —— this

call *r3

This code sequence is the same number of instructions in length as our sequence
for nonvirtual base classes (Example C-10.60), but involves one more memory
access (to indirect through the A address). The code will work with any D view
of any object, including an object of a class derived from D, in which the D and
A views might be more widely separated. The constant 4 in the second line as-
sumes 4-byte addresses, with the address of D’s A part located immediately after
D’s initial vtable address. In an object with more than one virtual base class, the
address of the part of the object corresponding to each such base would be found
at a different offset from the beginning of the object.

The implementation strategy of Figure C-10.11 works in C++ because we al-
ways know when a base class is virtual (shared). For data members and virtual
methods of nonvirtual base classes, we continue to use the (cheaper) lookup al-
gorithms of Figures C-10.9 and C-10.10. In Eiffel, on the other hand, a feature
that is inherited via replication at one level of the class hierarchy may be inher-
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ited via sharing later on. As a result, Eiffel requires a somewhat more elaborate
implementation strategy (see Exercise C-10.29).

We can avoid the extra level of indirection when accessing virtual methods of
virtual base classes in C++ if we are willing to replicate portions of a class’s vtable.
We explore this option in Exercise C-10.30.

\/CHECK YOUR UNDERSTANDING

48. Give a few examples of the semantic ambiguities that arise when a class has
more than one base class.

49. Explain the distinction between replicated and shared multiple inheritance.
When is each desirable?

50. Explain how even nonrepeated multiple inheritance introduces the need for
“this correction” fields in individual vtable entries.

51. Explain how shared multiple inheritance introduces the need for an addi-
tional level of indirection when accessing fields of certain parent classes.

5). Explain why true multiple inheritance is harder to implement than mix-in
inheritance.
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[0.7.] The Object Model of Smalltalk

Smalltalk is heavily integrated into its programming environment. In fact, un-
like all of the other languages mentioned in this book, a Smalltalk program does
not consist of a simple sequence of characters. Rather, Smalltalk programs are
meant to be viewed within the browser of a Smalltalk implementation, where font
changes and screen position can be used to differentiate among various parts of a
given program unit. Together with the contemporaneous Interlisp and Pilot/Mesa
projects at PARC, the Smalltalk group shares credit for developing the now ubiq-
uitous concepts of bit-mapped screens, windows, menus, and mice.

Smalltalk uses an untyped reference model for all variables. Every variable
refers to an object, but the class of the object need not be statically known. As
described in Section 10.3.1, every Smalltalk object is an instance of a class de-
scended from a single base class named Object. All data are contained in objects.
The most trivial of these are simple immutable objects such as true (of class
Boolean) and 3 (of class Integer).

Operations are all conceptualized as messages sent to objects. The expression
3 + 4, for example, indicates sending a + message to the (immutable) object 3,
with a reference to the object 4 as argument. In response to this message, the
object 3 creates and returns a reference to the (immutable) object 7. Similarly,
the expression a + b, where a and b are variables, indicates sending a + message
to the object referred to by a, with the reference in b as argument. If a happens
to refer to 3 and b refers to 4, the effect will be the same as it was in the case of
the constants.

As described in Section 6.1, multiargument messages have multiword (“mix-
fix”) names. Each word ends with a colon; each argument follows a word. The
expression

myBox displayOn: myScreen at: location

c-204



EXAMPLE |07|

Selection as an ifTrue:
ifFalse: message

EXAMPLE |072

Iterating with messages

10.7.1 The Object Model of Smalltalk ~ ¢-205

sendsa displayOn: at: message to the object referred to by variable myBox, with
the objects referred to by myScreen and location as arguments.

Even control flow in Smalltalk is conceptualized as messages. Consider the
selection construct:

n<o0
ifTrue: [abs <- n negated]
ifFalse: [abs <- n]

This code begins by sending a < 0 message (a < message with 0 as argument) to
the object referred to by n. In response to this message, the object referred to by
n will return a reference to one of two immutable objects: true or false. This
reference becomes the value of the n < 0 expression.

Smalltalk evaluates expressions left-to-right without precedence or associativ-
ity. The value of n < 0 therefore becomes the recipient of an ifTrue: ifFalse:
message. This message has two arguments, each of which is a block. A block in
Smalltalk is a fragment of code enclosed in brackets. It is an immutable object,
with semantics roughly comparable to those of a lambda expression in Lisp. To
execute a block we send it a value message.

When sent an ifTrue: ifFalse: message, the immutable object true sends
a value message to its first argument (which had better be a block) and then re-
turns the result. The object false, on the other hand, in response to the same
message, sends a value message to its second argument (the block that followed
ifFalse:). The left arrow (<-) in each block is the assignment operator. As-
signment is not a message; it is a side effect of evaluation of the right-hand side.
As in expression-based languages such as Algol 68, the value of an assignment
expression is the value of the right-hand side. The overall value of our selection
expression will be the value of one of the blocks, namely a reference to n or to its
additive inverse, whichever is non-negative. For the sake of convenience, Boolean
objects in Smalltalk also implement ifTrue:, ifFalse:, and ifFalse: ifTrue:
methods.

Iteration is modeled in a similar fashion. For enumeration-controlled loops,
class Integer implements timesRepeat: and to: by: do: methods:

pow <- 1.
10 timesRepeat:
[pow <- pow * n]

sum <- 0.
1 to: 100 by: 2 do:
[:i | sum <- sum + (a at: i)]

The first of these code fragments calculates n'°. In response to a timesRepeat :
message, the integer k sends a value message to the argument (a block) k times.
The second code fragment sums the odd-indexed elements of the array referred
to by a. In response to a to: by: do: message, the integer k behaves as one might
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expect: it sends a value: message to its third argument (a block) | (t — k+ b)/b|
times, where # is the first argument and b is the second argument. Note the colon
at the end of value:. The plain value message is unary; the value: message
has an argument; it is understood by blocks that have a (single) formal parame-
ter. In our loop example, the integer 1 sends the messages value: 1, value: 3,
value: 5, and so on to the block [:i | sum <- sum + (a at:i)]. The :1i |
at the beginning of the block is its formal parameter. The at: message is un-
derstood by arrays. For iteration with a step size of one, integers also provide a
to: do: method.
Because it is an object, a block can be referred to by a variable:

b <- [n<-n+ 1]. " b is now a closure"
c <= [:1id | n<-n+i]. "soisc"

b value. "increment n by 1"
c value: 3. " increment n by 3"

A block with two parameters expects a value: value: message. A block with j
parameters expects a message whose name consists of the word value: repeated
times. Comments in Smalltalk are double-quoted (strings are single-quoted).

For logically controlled loops, Smalltalk relies on the whileTrue: message,
understood by blocks:

tail <- myList.
[tail next ~~ nil]
whileTrue: [tail <- tail next]

This code sets tail to the final element of myList. The double-tilde (~~) op-
erator means “does not refer to the same object as” The method next is as-
sumed to return a reference to the element following its recipient. In response
to a whileTrue: message, a block sends itself a value message. If the result of
that message is a reference to true, the block sends a value message to the argu-
ment of the original message and repeats. Blocks also implement a whileFalse:

method.

The blocks of Smalltalk allow the programmer to construct almost arbitrary
control-flow constructs. Because of their simple syntax, Smalltalk blocks are even
easier to manipulate than the lambda expressions of Lisp. In effect,a to: by: do:
message turns iteration “inside out,” making the body of the loop a simple mes-
sage argument that can be executed (by sending it a value message) from within
the body of the to: by: do: method. Smalltalk programmers can define similar
methods for other container classes, obtaining all the power of iterators (Sec-
tion 6.5.3) and much of the power of call_with_current_continuation (Sec-
tion 9.4.3):

myTree inorderDo: [:node | whatever ]
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It is worth noting that the uniform object model of computation in Smalltalk
does not necessarily imply a uniform implementation. Just as Clu implemen-
tations implement built-in immutable objects as values, despite their reference
semantics (Section 6.1.2), a Smalltalk implementation is likely to use the usual
machine instructions for computer arithmetic, rather than actually sending mes-
sages to integers. In a similar vein, the most common control-flow constructs
(ifTrue: ifFalse:, to: by: do:, whileTrue:, etc.) are likely to be recognized
by a Smalltalk interpreter, and implemented with special, faster code.

We end this subsection by observing that recursion works at least as well in
Smalltalk as it does in other imperative languages. The following is a recursive
implementation of Euclid’s algorithm:

gcd: other "other is a formal parameter"
(self = other)
ifTrue: [ self]. "end condition"
(self < other)
ifTrue: [1self gcd: (other - self)] "recurse"
ifFalse: [1other gcd: (self - other)] "recurse"

The up-arrow (1) symbol is comparable to the return of C or Algol 68. The
keyword self is comparable to this in C++. We have shown the code in mixed
fonts, much as it would appear in a Smalltalk browser. The header of the method
is identified by bold face type.

\/CHECK YOUR UNDERSTANDING

53. Name the three projects at Xerox PARC in the 1970s that pioneered modern
GUI-based personal computers.

54. Explain the concept of a message in Smalltalk.
55. How does Smalltalk indicate multiple message arguments?
56. What is a block in Smalltalk? What mechanism does it resemble in Lisp?

51. Give three examples of how Smalltalk models control flow as message evalu-
ation.

58. Explain how type checking works in Smalltalk.
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10.23  Suppose that class D inherits from classes A, B, and C, none of which share
any common ancestor. Show how the data members and vtable(s) of D
might be laid out in memory. Also show how to convert a reference to a D
object into a reference to an A, B, or C object.

10.24 Consider the person_interface and system_user_interface classes
described in Example C-10.62. If student is derived from person_
interface and system_user_interface, explain what happens in the
following method call:

student s;
person *p = &s;

p—>print_stats();

You may wish to use a diagram of the representation of a student object
to illustrate the method lookups that occur and the views that are com-
puted. You may assume an implementation akin to that of Figure C-10.10,
without shared inheritance.

[0.25 Given the inheritance tree of Example C-10.63, show a representation for
objects of class student_prof. You may want to consult Figures C-10.9,
C-10.10, and c-10.11.

[0.26 Given the memory layout of Figure C-10.9 and the following declarations:

student& sr;
system_user& ur;

show the code that must be generated for the assignment

c-208



10.27

10.28

10.29

10.30

10.9 Exercises c-209

ur = sr;

(Pitfall: Be sure to consider null pointers.)
Standard C++ provides a “pointer-to-member” mechanism for classes:

class C {
public:
int a;
int b;
}ocs
int C::*pm = &C::a;
// pm points to member a of an (arbitrary) C object

C* p = &c;
p—>*pm = 3; // assign 3 into c.a

Pointers to members are also permitted for subroutine members (meth-
ods), including virtual methods. How would you implement pointers to
virtual methods in the presence of C++-style multiple inheritance?

As an alternative to using (method address, this correction) pairs in the
vtable entries of a language with multiple inheritance, we could leave the
entries as simple pointers, but make them point to code that updates this
in-line, and then jumps to the beginning of the appropriate method, much
as Java 8 and Scala do to implement default methods on a standard Java
virtual machine. Show the sequence of instructions executed under this
scheme. What factors will influence whether it runs faster or slower than
the sequence shown in Example C-10.60? Which scheme will use less
space? (Remember to count both code and data structure size, and con-
sider which instructions must be replicated at every call site.)

Pursuing the replacement of data structures with executable code even
further, consider an implementation in which the vtable itself consists of
executable code. Show what this code would look like and, again, discuss
the implications for time and space overhead.

In Eiffel, shared inheritance is the default rather than the exception. Only
renamed features are replicated. As a result, it is not possible to tell when
looking at a class whether its members will be inherited replicated or
shared by derived classes. Describe a uniform mechanism for looking
up members inherited from base classes that will work whether they are
replicated or shared. (Hint: Consider the use of dope vectors for records
containing arrays of dynamic shape, as described in Section 8.2.2. For fur-
ther details, consult the compiler text of Wilhelm and Maurer [WM95,
Sec. 5.3].)

In Figure C-10.11, consider calls to virtual methods declared in A, but
called through a B, C, or D object view. We could avoid one level of in-
direction by appending a copy of the A part of the vtable to the D/B and
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C parts of the vtable (with suitably adjusted this corrections). Give call-
ing sequences for this alternative implementation. In the worst case, how
much larger may the vtable be for a class with # ancestors?

Consider the Smalltalk implementation of Euclid’s algorithm, presented
at the end of Section C-10.7.1. Trace the messages involved in evaluating
4 gcd: 6.
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Orientation

Explorations

Figure out how multiple inheritance is implemented in your local C++
compiler. How closely does it follow the strategy of Sections C-10.6.2 and
C-10.6.3? What rationale do you see for any differences?

Learn how multiple inheritance is implemented in Perl and Python (you
might begin by reading Section 14.4.4). Describe the differences with re-
spect to Sections C-10.6.2 and C-10.6.3. Discuss the advantages and draw-
backs of dynamic typing in object-oriented languages.
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Functions as sets

Functional Languages

Theoretical Foundations

Mathematically, a function is a single-valued mapping: it associates every element
in one set (the domain) with (at most) one element in another set (the range). In
conventional notation, we indicate the domain and range by writing

sgqrt: R — R

We can, of course, have functions of more than one variable—that is, functions
whose domains are Cartesian products:

plus : [R x R] — R

If a function provides a mapping for every element of the domain, the func-
tion is said to be total. Otherwise, it is said to be partial. Our sqrt function is par-
tial: it does not provide a mapping for negative numbers. We could change our
definition to make the domain of the function the non-negative numbers, but
such changes are often inconvenient, or even impossible: inconvenient because
we should like all mathematical functions to operate on R; impossible because
we may not know which elements of the domain have mappings and which do
not. Consider for example the function f that maps every natural number a to
the smallest natural number b such that the digits of the decimal representation
of a appear b digits to the right of the decimal point in the decimal expansion of
m. Clearly f(59) = 4, because 7 = 3.14159. ... But what about f(428945028), or
in general f (n) for arbitrary n? Absent results from number theory, it is not at all
clear how to characterize the values at which f is defined. In such a case a partial
function is essential.

It is often useful to characterize functions as sets or, more precisely, as subsets
of the Cartesian product of the domain and the range:

sqrt C [R x R]
plus C [R x R x R]

c-212
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Function spaces
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Higher-order functions as
sets
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Curried functions as sets
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We can specify which subset using traditional set notation:

sqrtz{(x,y)eRxR|y>0/\x:y2}
plus = {(x,7,2) ERXRXR |z=x+y}

Note that this sort of definition tells us what the value of a function like sqrt is,
but it does not tell us how to compute it; more on this distinction below.

One of the nice things about the set-based characterization is that it makes it
clear that a function is an ordinary mathematical object. We know that a function
from A to B is a subset of A x B. This means that it is an element of the powerset
of A x B—the set of all subsets of A x B, denoted 24*5;

sqrt € 27”XR*

Similarly,

plus € 2RXRXR

Note the overloading of notation here. The powerset 24 should not be confused
with exponentiation, though it is true that for a finite set A the number of ele-
ments in the powerset of A is 2", where n = |A|, the cardinality of A.

Because functions are single-valued, we know that they constitute only some of
the elements of 24*5. Specifically, they constitute all and only those sets of pairs
in which the first component of each pair is unique. We call the set of such sets
the function space of A into B, denoted A — B. Note that (A — B) C 24*5, In
our examples:

sart € [R — R]
plus € (R x R) — R]

Now that functions are elements of sets, we can easily build higher-order func-
tions:

compose = {(f,g,h) | Vx € R, h(x) = f(g(x))}

What are the domain and range of compose? We know that f, g, and h are ele-
ments of R — R. Thus

compose € (R -R) X (R—=R)] = (R—=>TR)

Note the similarity to the notation employed by the ML type system (Sec-
tion 7.2.4).

Using the notion of “currying” from Section 11.6, we note that there is an
alternative characterization for functions like plus. Rather than a function from
pairs of reals to reals, we can capture it as a function from reals to functions from
reals to reals:

curried_plus € R = (R = R)
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EXAMPLE I |.83

Juxtaposition as function
application

EXAMPLE I |84

Lambda calculus syntax

We shall have more to say about currying in Section C-11.7.3.

[1.7.] Lambda Calculus

As we suggested in the main text, one of the limitations of the function-as-set
notation is that it is nonconstructive: it doesn’t tell us how to compute the value of
a function at a given point (i.e., on a given input). Church designed the lambda
calculus to address this limitation. In its pure form, lambda calculus represents
everything as a function. The natural numbers, for example, can be represented
by a distinguished zero function (commonly the identity function) and a suc-
cessor function. (One common formulation uses a select_second function that
takes two arguments and returns the second of them. The successor function is
then defined in such a way that the number # ends up being represented by a
function that, when applied to select_second n times, returns the identity func-
tion [Mic89, Sec. 3.5]; [Sta95, Sec. 7.6]; see Exercise C-11.23.) While of theoretical
importance, this formulation of arithmetic is highly cumbersome. We will there-
fore take ordinary arithmetic as a given in the remainder of this subsection. (And
of course all practical functional programming languages provide built-in sup-
port for both integer and floating-point arithmetic.)

A lambda expression can be defined recursively as (1) a name; (2) a lambda
abstraction consisting of the letter A, a name, a dot, and a lambda expression;
(3) a function application consisting of two adjacent lambda expressions; or (4) a
parenthesized lambda expression. To accommodate arithmetic, we will extend
this definition to allow numeric literals.

When two expressions appear adjacent to one another, the first is interpreted
as a function to be applied to the second:

sqrt n

Most authors assume that application associates left-to-right (so f A B is inter-
preted as (f A) B, rather than f (A B)), and that application has higher precedence
than abstraction (so Ax.A B is interpreted as \x.(A B), rather than (\x.A) B). ML
adopts these rules.

Parentheses are used as necessary to override default groupings. Specifically, if
we distinguish between lambda expressions that are used as functions and those
that are used as arguments, then the following unambiguous CFG can be used to
generate lambda expressions with a minimal number of parentheses:

expr — mname | number | A name . expr| func arg
func — name | ( A name . expr ) | func arg

ar¢ —> name | number | ( X name . expr ) | ( func arg )

In words: we use parentheses to surround an abstraction that is used as either
a function or an argument, and around an application that is used as an argu-
ment.
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Binding parameters with A

EXAMPLE I |.86

Free variables

EXAMPLE I |.87

Naming functions for
future reference

EXAMPLE I |88

Evaluation rules
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The letter A introduces the lambda calculus equivalent of a formal parameter.
The following lambda expression denotes a function that returns the square of its
argument:

Ax.times x x

The name (variable) introduced by a A is said to be bound within the expression
following the dot. In programming language terms, this expression is the vari-
able’s scope. A variable that is not bound is said to be free.

As in a lexically scoped programming language, a free variable needs to be
defined in some surrounding scope. Consider, for example, the expression
Ax.\y.times xy. In the inner expression (Ay.times xy), y is bound but x is free.
There are no restrictions on the use of a bound variable: it can play the role of a
function, an argument, or both. Higher-order functions are therefore completely
natural.

If we wish to refer to them later, we can give expressions names:

square = Ax.timesxx
identity = Axx
const7 = Ax.7
hypot = Ax.\y.sart (plus (square x) (square y))

Here = is a metasymbol meaning, roughly, “is an abbreviation for.”
To compute with the lambda calculus, we need rules to evaluate expressions.
It turns out that three rules suffice:

beta reduction: For any lambda abstraction Ax.E and any expression M, we say
()\XE) M —B E[M\x]

where E[M\ x| denotes the expression E with all free occurrences of x replaced
by M. Beta reduction is not permitted if any free variables in M would become
bound in E[M\x].

alpha conversion: For any lambda abstraction Ax.E and any variable y that has no
free occurrences in E, we say

Mx.E —o A\y.E[y\x]
eta reduction: A rule to eliminate “surplus” lambda abstractions. For any lambda
abstraction \x.E, where E is of the form F x, and x has no free occurrences in

F, we say

A.Fx —, F
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EXAMPLE I |89

Delta reduction for
arithmetic

EXAMPLE I |.90

Eta reduction

EXAMPLE I |.9|

Reduction to simplest form

To accommodate arithmetic we will also allow an expression of the form op x
¥, where x and y are numeric literals and op is one of a small set of standard
functions, to be replaced by its arithmetic value. This replacement is called delta
reduction. In our examples we will need only the functions plus, minus, and
times:

plus 23 —5 5
minus 52 —s 3

times 23 —s 6

Beta reduction resembles the use of call by name parameters (Section 9.3.1).
Unlike Algol 60, however, the lambda calculus provides no way for an argument
to carry its referencing environment with it; hence the requirement that an argu-
ment not move a variable into a scope in which its name has a different meaning.
Alpha conversion serves to change names to make beta reduction possible. Eta
reduction is comparatively less important. If square is defined as above, eta re-
duction allows us to say that

Ax.square x —, square

In English, square is a function that squares its argument; Ax.square x is a func-
tion of x that squares x. The latter reminds us explicitly that it’s a function (i.e.,
that it takes an argument), but the former is a little less messy looking.

Through repeated application of beta reduction and alpha conversion (and
possibly eta reduction), we can attempt to reduce a lambda expression to its sim-
plest possible form—a form in which no further beta reductions are possible. An
example can be found in Figure C-11.5. In line (2) of this derivation we have to
employ an alpha conversion because the argument that we need to substitute for
g contains a free variable (/) that is bound within ¢’s scope. If we were to make
the substitution of line (3) without first having renamed the bound 4 (as k), then
the free h would have been captured, erroneously changing the meaning of the
expression.

In line (5) of the derivation, we had a choice as to which subexpression to re-
duce. At that point the expression as a whole consisted of a function application
in which the argument was itself a function application. We chose to substitute
the main argument ((Ax.xx) (Ax.xx)), unevaluated, into the body of the main
lambda abstraction. This choice is known as normal-order reduction, and corre-
sponds to normal-order evaluation of arguments in programming languages, as
discussed in Sections 6.6.2 and 11.5. In general, whenever more than one beta
reduction could be made, normal order chooses the one whose \ is left-most in
the overall expression. This strategy substitutes arguments into functions before
reducing them. The principal alternative, applicative-order reduction, reduces
both the function part and the argument part of every function application to the
simplest possible form before substituting the latter into the former.
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Nonterminating
applicative-order reduction
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(A Ag-Ah.fg(hh))(Ax.Ay.x) h(Ax.x x)
=5 (AgA.(AxAy.x)g(hh))h(Ax.xx)

(1)
—a  (AgA(AxAy.x)g(kk))h(Ax.x x) (2)
=g (Ak(AxAy.x)h(k k) (Ax.x x) (3)
= (AxAyx)h((Axxx) (Axxx)) (4)
=5 (Ah)((xxx) (Axxx)) ©)
—B h (6)

Figure I1.5 Reduction of a lambda expression. The top line consists of a function applied to
three arguments. The first argument (underlined) is the “select first” function, which takes two
arguments and returns the first. The second argument is the symbol h, which must be either a
constant or a variable bound in some enclosing scope (not shown). The third argument is an
“apply to self” function that takes one argument and applies it to itself. The particular series
of reductions shown occurs in normal order. It terminates with a simplest (normal) form of
simply h.

Church and Rosser showed in 1936 that simplest forms are unique: any se-
ries of reductions that terminates in a nonreducible expression will produce the
same result. Not all reductions terminate, however. In particular, there are ex-
pressions for which no series of reductions will terminate, and there are others
in which normal-order reduction will terminate but applicative-order reduction
will not. The example expression of Figure C-11.5 leads to an infinite “compu-
tation” under applicative-order reduction. To see this, consider the expression
at line (5). This line consists of the constant function (Ay.h) applied to the argu-
ment (Ax.xx) (Ax.x x). If we attempt to evaluate the argument before substituting
it into the function, we run through the following steps:

Ax.xx) (Ax.x x)

( (Axxx)
—s  (Axxx) (Axxx)
—s  (Axxx) (Axxx)
—p  (Axxx) (Axxx)

In addition to showing the uniqueness of simplest (normal) forms, Church and
Rosser showed that if any evaluation order will terminate, normal order will. This
pair of results is known as the Church-Rosser theorem.

[1.7.2 Control Flow

We noted at the beginning of the previous subsection that arithmetic can be
modeled in the lambda calculus using a distinguished zero function (commonly
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EXAMPLE I |93

Booleans and conditionals

EXAMPLE I |.94

Beta abstraction for
recursion

the identity) and a successor function. What about control-flow constructs—
selection and recursion in particular?

The select_first function, Ax.\y.x, is commonly used to represent the Boolean
value true. The select_second function, Ax.\y.y, is commonly used to represent
the Boolean value false. Let us denote these by T and F. The nice thing about
these definitions is that they allow us to define an if function very easily:

if = Ac. A\t hecte

Consider:
ifT34 = (AcAtdecte) (AxAy.x)34
=5 (Ax\yx)34
-5 3
ifF34 = (AcAt.decte) (AxNy.y)34
=5 (AxAyy)34
—5 4

Functions like equal and greater_than can be defined to take numeric values as
arguments, returning 7 or F.

Recursion is a little tricky. An equation like
ged = Aa.Ab.(if (equalab)a
(if (greater_than a b) (gcd (minus ab) b) (ged (Minus ba) a)))

is not really a definition at all, because gcd appears on both sides. Our previous
definitions (T, F, if) were simply shorthand: we could substitute them out to
obtain a pure lambda expression. If we try that with gcd, the “definition” just
gets bigger, with new occurrences of the gcd name. To obtain a real definition, we
first rewrite our equation using beta abstraction (the opposite of beta reduction):

ged = (Ag-Aa.Ab.(if (equalab)a
(if (greater_than ab) (g(minus a b) b) (g(minus ba) a)))) gcd

Now our equation has the form

ged = f ged
where f is the perfectly well-defined (nonrecursive) lambda expression

Ag.Aa\b.(if (equal ab)a
(if (greater_than ab) (g (minus ab) b) (g (minus ba) a)))

Clearly gcd is a fixed point of f.
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Lambda calculus list
operators
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List operator identities
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As it turns out, for any function f given by a lambda expression, we can find
the least fixed point of f, if there is one, by applying the fixed-point combinator

A (e h(xx)) (Ax(xcx))

commonly denoted Y. Y has the property that for any lambda expression f, if the
normal-order evaluation of Yf terminates, then f(Yf) and Y will reduce to the
same simplest form (see Exercise C-11.21). In the case of our gcd function, we
have

ged = (Ah.(Ax.h(xx)) (Ax.h(xx)))
(Ag-Aa.Ab.(if (equal ab) a
(if (greater_than ab) (g(minus ab) b) (g(minus ba) a))))

Figure C-11.6 traces the evaluation of gcd 4 2. Given the existence of the Y
combinator, most authors permit recursive “definitions” of functions, for conve-
nience.

[1.7.3 Structures

Just as we can use functions to build numbers and truth values, we can also use
them to encapsulate values in structures. Using Scheme terminology for the sake
of clarity, we can define simple list-processing functions as follows:

cons = AaAdAx.xad
car ALl select first
cdr = M\lLIselect_second
nil = T

null? = ALI(Ax.\y.F)

where select_first and select_second are the functions Ax.\y.x and Ax.\y.y,
respectively—functions we also use to represent true and false.

Using these definitions we can see that

car(consAB) =  (ALlselectfirst) (cons AB)
—p  (cons A B) select_first
= ((Aa.Md.Xx.xad) AB) select_first
—%  (Ax.xAB) select first

—p3 select_first AB
=  (MAyx)AB
—5 A
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gcd24 = Yf24
= ((M.(Axh(xx)) (Ax.h(xx)))f)24
=5 ((ef(xx)) (xf(xx))) 24
= (kk)24, wherek = Ax.f(xx)
—s  (f(kk))24
= ((AgAaXb.(if (=ab)a(if (>ab) (g(—ab)b) (g(—ba)a)))) (kk))24
=5 (AaXb.(if (=ab)a(if (>ab) ((kk)(—ab)b) ((kk)(—ba)a))))24
—5  if(=24)2(if(>24) ((kk) (—24)4) ((kk) (—42)2))
= (AcAtdecte) (=24)2(if (>24) (kk) (—24)4) ((kk) (—42)2))
=5 (=24)2(if (>24) ((kk) (—24)4) ((kk) (—42)2))
—s  F2(if (>24) (kk) (—24)4) ((kk) (—42)2))
= (AxApy)2(if (>24) ((kk) (—24)4) ((kk) (—42)2))
if (>24)((kk)(—24)4) ((kk)(—42)2)

£d

- ...
= (kk)(—42)2
= (OxfEOK) (—42)2
=5 (f(kk)(-42)2
= (OgAaAL(if (= ab)a(if (> ab) (g(— ab) b) (g(— ba) a)))) (kK)) (—42)2
=g (AaXb.(if (=ab)a(if (>ab) ((kk)(—ab)b) ((kk)(—ba)a))))(—42)2
S5 (= (—42)2) (= 42) (if (> (— 42) 2) (K) (= (= 42)2)2) (k) (— 2 (— 42)) (~ 42)))
=  (AcAt.decte)

(= (—42)2) (—42) (if (> (— 42) 2) ((kK) (— (— 42)2)2) ((kK) (— 2 (— 42)) (~ 42))
S5 (= (—42)2) (—42) (it (> (— 42)2) (kK) (— (— 42)2)2) ((Kk) (— 2 (— 42)) (— 42)))
= (=22)(=42) (i (> (=42)2) ((kk) (= (=42)2)2) ((kk) (- 2(=42)) (- 42)))
S5 T(—42) (i (> (—42)2) ((K) (— (= 42)2)2) ((kK) (— 2 (— 42)) (- 42)))
= (wdpa) (— 42) (I (> (— 42)2) (kK) (— (—42)2)2) (KK) (— 2 (~ 42)) (— 42)))
Sh (-42)

—6 2

Figure [1.6 Evaluation of a recursive lambda expression. As explained in the body of the text, gcd is defined to be the
fixed-point combinator Y applied to a beta abstraction f of the standard recursive definition for greatest common divisor.
Specifically, Y is Ah.(Ax.h(xx)) (Ax.h(xx)) and f is Ag.Xa.Ab.(if (=ab) a (if (>ab) (g(—ab) b) (g(— ba)a))). For brevity we
have used =, >, and — in place of equal, greater_than, and minus. We have performed the evaluation in normal order.
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cdr(consAB) = (Ml.Iselect.second) (cons A B)
—p  (cons A B) select_second
= ((Aa.Md.\x.xad) A B) select_second
—% (MAx.xAB) select_second

—p3  select_second AB

= (AxAyy)AB
—5 B
null? nil = (ALI(Ax.\y.select_second)) nil

—3  nil (Ax.\y.select_second)
= (Ax.selectfirst) (Ax.\y.select_second)

—p  select_first

= T
null? (consAB) = (ALI(Ax.\y.select_second)) (cons A B)
—3  (cons A B) (Ax.)\y.select_second)
= ((Ma.Md.Xxxad)AB) (Ax.\y.select_second)
—% (MAx.xAB) (Ax.)\y.select_second)
—s  (Ax.)\y.select_second) AB

—p3  select.second
= F

Because every lambda abstraction has a single argument, lambda expressions

are naturally curried. We generally obtain the effect of a multiargument function

Nesting of lambda by nesting lambda abstractions:
expressions

EXAMPLE I |.98

compose = M. AgAx.f (gx)

which groups as

M- (Ag-(Ax(f (%))

We commonly think of compose as a function that takes two functions as argu-
ments and returns a third function as its result. We could just as easily, however,
think of compose as a function of three arguments: the f, g, and x above. The
official story, or course, is that compose is a function of one argument that eval-
uates to a function of one argument that in turn evaluates to a function of one

argument.
exameie |1.99 If desired, we can use our structure-building functions to define a noncurried
Paired arguments and version of compose whose (single) argument is a pair:

currying
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paired_compose = Ap.\x.(car p) ((cdr p) x)

If we consider the pairing of arguments as a general technique, we can write a
curry function that reproduces the single-argument version, just as we did in
Scheme in Section 11.6:

curry = Af.Aa.\b.f(cons ab)

\/CHECK YOUR UNDERSTANDING

29.

30.
31.
32

33.

34.
35.
36.

31.

What is the difference between partial and rotal functions? Why is the differ-
ence important?

What is meant by the function space A — B?
Define beta reduction, alpha conversion, eta reduction, and delta reduction.

How does beta reduction in lambda calculus differ from lazy evaluation of
arguments in a nonstrict programming language like Haskell?

Explain how lambda expressions can be used to represent Boolean values and
control flow.

What is beta abstraction?
What is the Y combinator? What useful property does it possess?

Explain how lambda expressions can be used to represent structured values
such as lists.

State the Church-Rosser theorem.
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[1.21

[1.22

[1.23

Functional Languages

Exercises

In Figure C-11.6 we evaluated our expression in normal order. Did we
really have any choice? What would happen if we tried to use applicative
order?

Prove that for any lambda expression f, if the normal-order evaluation
of Yf terminates, where Y is the fixed-point combinator Ah.(Ax.h(x x))
(Ax.h(xx)), then f(Yf) and Yf will reduce to the same simplest form.

Given the definition of structures (lists) in Section C-11.7.3, what happens
if we apply car or cdr to nil? How might you introduce the notion of “type
error” into lambda calculus?

Let
Zero = Ax.x

succ = An.(As.(s select_second) n)

where select_second = Ax.)\y.y. Now let

one = succ zero

two = succ one

Show that

one select_second = zero

two select_second select_second = zero
In general, show that
n n
succ zero select_second = zero

Use this result to define a predecessor function pred. You may ignore the
issue of the predecessor of zero.

c-223
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Note that our definitions of T and F allow us to check whether a num-
ber is equal to zero:

iszero = An.(n select_first)

Using succ, pred, iszero, and if, show how to define plus and times recur-
sively. These definitions could of course be made nonrecursive by means
of beta abstraction and Y.
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Explorations

[1.30 Learn about the typed lambda calculus. What properties does it have that

[1.31

[1.32

standard lambda calculus does not? What restrictions does it place on per-
missible expressions? Possible places to start include Cardelli and Wegner’s
classic survey [CW85] or the newer text by Pierce [Pie02].

Learn more about fixed points. We mentioned these when presenting the Y
combinator in Section C-11.7.2. They also arise in the denotational defini-
tion of loop constructs, in metacircular interpreters [AS96, Sec. 4.1]), and
in the data flow analysis used by optimizing compilers (Section C-17.4.2).
What do these subjects have in common? Are there important differences
as well?

Explore the connection between lexical scoping in Scheme or OCaml and
the notion of free and bound variables in lambda calculus. How closely
are these related? Why does lambda calculus require alpha conversion but
Scheme and OCaml do not? Is there any analogy in lambda calculus to the
dynamic scoping of early dialects of Lisp?

c-225
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Propositions
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Different ways to say things

Logic Languages

Theoretical Foundations

In mathematical logic, a predicate is a function that maps constants (atoms) or
variables to the values true and false. Predicate calculus provides a notation and
inference rules for constructing and reasoning about propositions (statements)
composed of predicate applications, operators, and the quantifiers V and 3.! Op-
erators include and (A), or (V), not (—), implication (—), and equivalence (+).
Quantifiers are used to introduce bound variables in an appended proposition,
much as A introduces variables in the lambda calculus. The universal quantifier,
V, indicates that the proposition is true for all values of the variable. The existen-
tial quantifier, 3, indicates that the proposition is true for at least one value of the
variable. Here are a few examples:

VClrainy(C) A cold(C) — snowy(C)]
(For all cities C, if C is rainy and C is cold, then C is snowy.)
VA, VB[(3C[takes (A, C) A takes(B, C)]) — classmates(A, B)]

(For all students A and B, if there exists a class C such that A takes C and B takes
C, then A and B are classmates.)

YN[(N > 2) = =(34,3B, 3C[AY + BY = CV])]

(This is Fermat’s last theorem.)
One of the interesting characteristics of predicate calculus is that there are
many ways to say the same thing. For example,

I Strictly speaking, what we are describing here is the first-order predicate calculus. There exist
higher-order calculi in which predicates can be applied to predicates, not just to atoms and vari-
ables. Prolog allows the user to construct higher-order predicates using call; the formalization
of such predicates is beyond the scope of this book.
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(P] — Pz) = (—\P1 V Pz)
(~IX[PX)]) = (VX[-P(X)])
—|(P1 /\Pz) = (—|P1 \/—\Pz)

This flexibility of expression tends to be handy for human beings, but it can
be a nuisance for automatic theorem proving. Propositions are much easier to
manipulate algorithmically if they are placed in some sort of normal form. One
popular candidate is known as clausal form. We consider this form in the follow-
ing section.

[2.3.] Clausal Form

As it turns out, clausal form is very closely related to the structure of Prolog pro-
grams: once we have a proposition in clausal form, it will be relatively easy to
translate it into Prolog. We should note at the outset, however, that the translation
is not perfect: there are aspects of predicate calculus that Prolog cannot capture,
and there are aspects of Prolog (e.g., its imperative and database-manipulating
features) that have no analogues in predicate calculus.

Clocksin and Mellish [CM03, Chap. 10] describe a five-step procedure (based
heavily on an article by Martin Davis [Dav63]) to translate an arbitrary first-order
predicate proposition into clausal form. We trace that procedure here.

In the first step, we eliminate implication and equivalence operators. As a con-
crete example, the proposition

VA[—student(A) — (—dorm_resident(A) A —3B[takes(A, B) A class(B)])]
would become
VA[student(A) V (—dorm_resident(A) A —3B[takes(A, B) A class(B)])]

In the second step, we move negation inward so that the only negated items
are individual terms (predicates applied to arguments):

VA[student(A) V (—dorm_resident(A) A VB[—(takes(A, B) A class(B))])]
= VA[student(A) V (—dorm_resident(A) A VB[—takes(A, B) V —class(B)])]

In the third step, we use a technique known as Skolemization (due to logician
Thoralf Skolem) to eliminate existential quantifiers. We will consider this tech-
nique further in Section C-12.3.3. Our example has no existential quantifiers at
this stage, so we proceed.

In the fourth step, we move all universal quantifiers to the outside of the propo-
sition (in the absence of naming conflicts, this does not change the proposition’s
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meaning). We then adopt the convention that all variables are universally quan-
tified, and drop the explicit quantifiers:

student(A) V (—dorm_resident(A) A (—takes(A, B) V —class(B)))

Finally, in the fifth step, we use the distributive, associative, and commutative
rules of Boolean algebra to convert the proposition to conjunctive normal form, in
which the operators A and V are nested no more than two levels deep, with A on
the outside and V on the inside:

(student(A) V —~dorm_resident(A)) A (student(A) V —takes(A, B) V —class(B))

Our proposition is now in clausal form. Specifically, it is in conjunctive nor-
mal form, with negation only of individual terms, with no existential quantifiers,
and with implied universal quantifiers for all variables (i.e., for all names that are
neither constants nor predicates). The clauses are the items at the outer level: the
things that are and-ed together.

To translate the proposition to Prolog, we convert each logical clause to a Pro-
log fact or rule. Within each clause, we use commutativity to move the negated
terms to the right and the non-negated terms to the left (our example is already
in this form). We then note that we can recast the disjunctions as implications:

(student(A) < —(—dorm_resident(A)))
A (student(A) « —(—takes(A, B) V —class(B)))
= (student(A) < dorm_resident(A))
A (student(A) «+ (takes(A, B) A class(B)))

These are Horn clauses. The translation to Prolog is trivial:

student (A) :- dorm_resident(A).
student (A) :- takes(A, B), class(B).

[2.3.2 Limitations

We claimed at the beginning of Section 12.1 that Horn clauses could be used
to capture most, though not all, of first-order predicate calculus. So what is it
missing? What can go wrong in the translation? The answer has to do with the
number of non-negated terms in each clause. If a clause has more than one, then if
we attempt to cast it as an implication there will be a disjunction on the left-hand
side of the < symbol, something that isn’t allowed in a Horn clause. Similarly, if
we end up with no non-negated terms, then the result is a headless Horn clause,
something that Prolog allows only as a query, not as an element of the database.

As an example of a disjunctive head, consider the statement “every living thing
is an animal or a plant.” In clausal form, we can capture this as
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animal(X) V plant(X) V =living(X)

or equivalently
animal(X) V plant(X) « living(X)

Because we are restricted to a single term on the left-hand side of a rule, the closest
we can come to this in Prolog is

animal(X) :- living(X), \+(plant(X)).
plant(X) :- living(X), \+(animal(X)).

But this is not the same, because Prolog’s \+ indicates inability to prove, not false-
hood.

As an example of an empty head, consider Fermat’s last theorem (Exam-
ple C-12.39). Abstracting out the math, we might write

VNIbig(N) — —(34, 3B, 3C[works (A, B, C, N)))]
which becomes the following in clausal form:
=big(N) V —works (A, B, C,N)

We can couch this as a Prolog query:

7- big(N), works(A, B, C, N).
(a query that will never terminate), but we cannot express it as a fact or a rule.

The careful reader may have noticed that facts are entered on the left-hand side
of an (implied) Prolog : - sign:

rainy(rochester).
while queries are entered on the right:

?- rainy(rochester).

The former means
rainy (rochester) < true

The latter means
false < rainy(rochester)

If we apply resolution to these two propositions, we end up with the contradiction

false <+ true



c-230  Chapter 12 Logic Languages

EXAMPLE |246

Skolem constants

EXAMPLE |2.47

Skolem functions

EXAMPLE |2.48

Limitations of
Skolemization

This observation suggests a mechanism for automated theorem proving: if we are
given a collection of axioms and we want to prove a theorem, we temporarily add
the negation of the theorem to the database and then attempt, through a series of
resolution operations, to obtain a contradiction.

[2.3.3 Skolemization

In Example C-12.41 we were able to translate a proposition from predicate cal-
culus into clausal form without worrying about existential quantifiers. But what
about a statement like this one:

3X[takes (X, cs254) A class_year(X, 2)]

(There is at least one sophomore in ¢s254.) To get rid of the existential quantifier,
we can introduce a Skolem constant x:

takes(x, cs254), class_year(x,2)

The mathematical justification for this change is based on something called the
axiom of choice; intuitively, we say that if there exists an X that makes the state-
ment true, then we can simply pick one, name it x, and proceed. (If there does not
exist an X that makes the statement true, then we can choose some arbitrary X,
and the statement will still be false.) It is worth noting that Skolem constants are
not necessarily distinct; it is quite possible, for example, for x to name the same
student as some other constant y that represents a sophomore in his201.

Sometimes we can replace an existentially quantified variable with an arbitrary
constant x. Often, however, we are constrained by some surrounding universal
quantifier. Consider the following example:

VX[—dorm_resident(X) V 3A[campus_address_of (X, A)]]

(Every dorm resident has a campus address.) To get rid of the existential quan-
tifier, we must choose an address for X. Since we don’t know who X is (this is
a general statement about all dorm residents), we must choose an address that
depends on X:

VX[~dorm_resident (X) V campus_address_of (X, f(X))]

Here f is a Skolem function. If we used a simple Skolem constant instead, we’d be
saying that there exists some single address shared by all dorm residents.

Whether Skolemization results in a clausal form that we can translate into Pro-
log depends on whether we need to know what the constant is. If we are using
predicates takes and class_year, and we wish to assert as a fact that there is a
sophomore in cs254, we can write
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takes(the_distinguished_sophomore_in_254, cs254).
class_year(the_distinguished_sophomore_in_254, 2).

Similarly, we can assert that every dorm resident has a campus address by writing
campus_address_of (X, the_dorm_address_of (X)) :- dorm_resident(X).
Now we can search for classes with sophomores in them:

sophomore_class(C) :- takes(X, C), class_year(X, 2).
?- sophomore_class(C).
C = cs254

and we can search for people with campus addresses:

has_campus_address(X) :- campus_address_of (X, Y).
dorm_resident (1i_ying) .

?- has_campus_address (X) .

X = li_ying

Unfortunately, we won’t be able to identify a sophomore in cs254 by name, nor
will we be able to identify the address of 1i_ying.

\/CHECK YOUR UNDERSTANDING

[5. Define the notion of clausal form in predicate calculus.

[6. Outline the procedure to convert an arbitrary predicate calculus statement
into clausal form.

I7. Characterize the statements in clausal form that cannot be captured in Prolog.

[8. What is Skolemization? Explain the difference between Skolem constants and
Skolem functions.

[9. Under what circumstances may Skolemization fail to produce a clausal form
that can be captured usefully in Prolog?
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[2.19 Restate the following Prolog rule in predicate calculus, using appropriate
quantifiers:

sibling(X, Y) :- mother(M, X), mother(M, Y),
father(F, X), father(F, Y).

[2.20 Consider the following statement in predicate calculus:

empty-class(C) < —3X[takes(X, C)]

(a) Translate this statement to clausal form.

(b) Canyou translate the statement into Prolog? Does it make a difference
whether you're allowed to use \+?

() How about the following:

takes_everything (X) « VC[takes (X, C)]

Can this be expressed in Prolog?

[2.2] Consider the seemingly contradictory statement
—foo(X) — foo(X)

Convert this statement to clausal form, and then translate into Prolog.
Explain what will happen if you ask

?7- foo(bar).

c-232
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Now consider the straightforward translation, without the intermediate
conversion to clausal form:

foo(X) :- \+(foo(X)).
Now explain what will happen if you ask

?7- foo(bar).
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[2.27 1In Section C-12.3.1 we translated propositions into conjunctive normal
form: the AND of a collection of ORs. One can also translate proposi-
tions into disjunctive normal form: the OR of a collection of ANDs. Does
disjunctive normal form have any useful properties? What other normal
forms exist in mathematical logic? What are their uses?

[2.28 With all the different ways to express the same proposition in predicate
calculus, is there any useful notion of a “simplest” form? Is it possible,
for example, to find, among all equivalent propositions, the one with the
smallest number of symbols? How difficult is this task?

[2.29 Satisfiability is the canonical NP-complete problem. Given a formula in
propositional logic (no predicates or quantifiers), it asks whether there
exists an assignment of truth values to variables that makes the overall
proposition true. Can we use Prolog to solve the satisfiability problem? If
not, why not? If so, given that it has to take exponential time, how can we
hope to solve problems full of predicates and quantifiers quickly?

[2.30 Suppose we had a form of “constructive negation” in Prolog that allowed
us to capture information of the form VX[-P(X)]. What might such a
feature look like? What would be its implications for the Prolog search
strategy? What portions of predicate calculus (if any) would still be inex-
pressible?

c-234
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Message Passing

While shared-memory concurrent programming is common on small-scale mul-
ticore and multiprocessor machines, most programs that run on clusters, super-
computers, or geographically distributed machines are currently based on mes-
sages. In Sections C-13.5.1 through C-13.5.3 we consider three principal issues in
message-based computing: naming, sending, and receiving. In Section C-13.5.4
we look more closely at one particular combination of send and receive seman-
tics, namely remote procedure call. Most of our examples will be drawn from the
Ada, Erlang, and Go programming languages, the Java network library, and the
MPI library package.

[3.5.] Naming Communication Partners

To send or receive a message, one must generally specify where to send it to, or
where to receive it from: communication partners need names for (or references
to) one another. Names may refer directly to a thread or process. Alternatively,
they may refer to an entry or port of a module, or to some sort of socket or channel
abstraction. We illustrate these options in Figure C-13.21.

The first naming option—addressing messages to processes—appears in
Hoare’s original CSP (Communicating Sequential Processes) [Hoa78], an in-
fluential proposal for simple communication mechanisms. It also appears in
Erlang and in MPI. Each MPI process has a unique id (an integer), and each
send or receive operation specifies the id of the communication partner. MPI
implementations are required to be reentrant; a process can safely be divided into
multiple threads, each of which can send or receive messages on the process’s
behalf.

The second naming option—addressing messages to ports—appears in Ada.
An Ada entry call of the form t.foo(args) sends a message to the entry named
foo in task (thread) t (t may be either a task name or the name of a variable

c-235
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Figure [3.2] Three common schemes to name communication partners. In (a), processes
name each other explicitly. In (b), senders name an input port of a receiver. The port may be
called an entry or an operation. The receiver is typically a module with one or more threads
inside. In (c), senders and receivers both name an independent channel abstraction, which may
be called a connection or a mailbox.

whose value is a pointer to a task). As we saw in Section 13.2.3, an Ada task
resembles a module; its entries resemble subroutine headers nested directly inside
the task. A task receives a message that has been sent to one of its entries by
executing an accept statement (to be discussed in Section C-13.5.3). Every entry
belongs to exactly one task; all messages sent to the same entry must be received
by that one task.

The third naming option—addressing messages to channels—appears in Go
and Occam. (Though their concurrency features are loosely based on CSP, both
Go and Occam differ from Hoare’s proposal in several concrete ways, including
the use of channels.) Channel declarations in Go are supported with the chan
type constructor:

var cl chan int

This code declares c1 to be an (initially nil) reference to a channel. A channel
value can be created with the built-in function make:

cl = make(chan int)
Typically the declaration and initialization appear together:
var cl = make(chan int)
Here Go infers the type of c1 from the initialization expression.
To send a message on a channel, a thread uses the binary “arrow” operator <-

with a channel variable on the left and a message on the right:

cl <- 3
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To receive, it uses <- as a unary operator, with the channel on the right:
my_int = <-cil

To indicate that no further messages will be forthcoming, a thread can close a
channel. A receiving thread can check for this possibility by assigning a receive
expression into a pair, the second element of which is a Boolean:

my_int, ok = <-cl
if (ok) {
// use my_int ...

For the common idiom in which a server thread is willing to accept requests
from any of many possible client threads, each request message can include a
reference to the channel on which to send a response:

type request struct {
name string
reply_to chan string

}

// Assume a server thread is listening on chan 'service'

var ¢ = make(chan string, 1) // create channel for response
service <- request{"Alice", c} // send look-up request for Alice
println(<-c) // receive response on ¢

Internet Messaging

Java’s standard java.net library provides two styles of message passing, corre-
sponding to the UDP and TCP Internet protocols. UDP is the simpler of the
two. It is a datagram protocol, meaning that each message is sent to its destina-
tion independently and unreliably. The network software will attempt to deliver
it, but makes no guarantees. Moreover two messages sent to the same destina-
tion (assuming they both arrive) may arrive in either order. UDP messages use
port-based naming (Figure C-13.21b): each message is sent to a specific Internet
address and port number.! The TCP protocol also uses port-based naming, but
only for the purpose of establishing connections (Figure C-13.21¢), which it then
uses for all subsequent communication. Connections deliver messages reliably
and in order.

I Every publicly visible machine on the Internet has its own unique address. Though a transition
to 128-bit addresses has been underway for some time, as of 2008 most addresses are still 32-
bit integers, usually printed as four period-separated fields (e.g., 192.5.54.209). Internet name
servers translate symbolic names (e.g., gate.cs.rochester.edu) into numeric addresses. Port
numbers are also integers, but are local to a given Internet address. Ports 1024 through 4999 are
generally available for application programs; larger and smaller numbers are reserved for servers.
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To send or receive UDP messages, a Java thread must create a datagram socket:
DatagramSocket my_socket = new DatagramSocket (port_id);

The parameter of the DatagramSocket constructor is optional; if it is not speci-
fied, the operating system will choose an available port. Typically servers specify
a port and clients allow the OS to choose. To send a UDP message, a thread says

DatagramPacket my_msg = new DatagramPacket(buf, len, addr, port);
// initialize message
my_socket.send (my_msg) ;

The parameters to the DatagramPacket constructor specify an array of bytes
buf, its length len, and the Internet address and port of the receiver. Receiv-
ing is symmetric:

my_socket.receive (my_msg) ;
// parse content of my_msg

For TCP communication, a server typically “listens” on a port to which clients
send requests to establish a connection:

ServerSocket my_server_socket = new ServerSocket(port_id);
Socket client_connection = my_server_socket.accept();

The accept operation blocks until the server receives a connection request from
a client. Typically a server will immediately fork a new thread to communicate
with the client; the parent thread loops back to wait for another connection with
accept.

A client sends a connection request by passing the server’s symbolic name and
port number to the Socket constructor:

Socket server_connection = new Socket(host_name, port_id);

Once a connection has been created, a client and server in Java typically call meth-
ods of the Socket class to create input and output streams, which support all of
the standard Java mechanisms for text I/O (Section C-8.7.3):

BufferedReader in = new BufferedReader (
new InputStreamReader(client_connection.getInputStream()));
PrintStream out =
new PrintStream(client_connection.getOutputStream());
// This is in the server; the client would make streams out
// of server_connection.

String s = in.readLine();
out.println("Hi, Mom\n");



13.5.2 Sending  ¢-239

Among all the message-passing mechanisms we have considered, datagrams
are the only one that does not provide some sort of ordering constraint. In gen-
eral, most message-passing systems guarantee that messages sent over the same
“communication path” arrive in order. When naming processes explicitly, a path
links a single sender to a single receiver. All messages from that sender to that re-
ceiver arrive in the order sent. When naming ports, a path links an arbitrary num-
ber of senders to a single receiver. Messages that arrive at a port in a given order
will be seen by receivers in that order. Note, however, that while messages from
the same sender will arrive at a port in order, messages from different senders may
arrive in arbitrary orders.> When naming channels, a path links all the senders
that can use the channel to all the receivers that can use it. A Java TCP connection
has a single OS process at each end, but there may be many threads inside, each
of which can use its process’s end of the connection. The connection functions
as a queue: send (enqueue) and receive (dequeue) operations are ordered, so that
everything is received in the order it was sent.

[3.5.2 Sending

One of the most important issues to be addressed when designing a send oper-
ation is the extent to which it may block the caller: once a thread has initiated a
send operation, when is it allowed to continue execution? Blocking can serve at
least three purposes:

Resource management: A sending thread should not modify outgoing data un-
til the underlying system has copied the old values to a safe location. Most
systems block the sender until a point at which it can safely modify its data,
without danger of corrupting the outgoing message.

Failure semantics: Particularly when communicating over a long-distance net-
work, message passing is more error-prone than most other aspects of com-
puting. Many systems block a sender until they are able to guarantee that the
message will be delivered without error.

Return parameters: In many cases a message constitutes a request, for which a
reply is expected. Many systems block a sender until a reply has been received.

When deciding how long to block, we must consider synchronization semantics,
buffering requirements, and the reporting of run-time errors.

2 Suppose, for example, that process A sends a message to port p of process B, and then sends a
message to process C, while process C first receives the message from A and then sends its own
message to port p of B. If messages are sent over a network with internal delays, and if A is allowed
to send its message to C before its first message has reached port p, then it is possible for B to hear
from C before it hears from A. This apparent reversal of ordering could easily happen on the
Internet, for example, if the message from A to B traverses a satellite link, while the messages
from A to C and from C to B use ocean-floor fiber-optic cables.
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Figure [3.22 Synchronization semantics for the send operation: no-wait send (a), synchro-
nization send (b), and remote-invocation send (c). In each diagram we have assumed that the
original message arrives before the receiver executes its receive operation; this need not in
general be the case.

Synchronization Semantics

On its way from a sender to a receiver, a message may pass through many interme-
diate steps, particularly if traversing the Internet. It first descends through several
layers of software on the sender’s machine, then through a potentially large num-
ber of intermediate machines, and finally up through several layers of software
on the receiver’s machine. We could imagine unblocking the sender after any of
these steps, but most of the options would be indistinguishable in terms of user-
level program behavior. If we assume for the moment that a message-passing
system can always find buffer space to hold an outgoing message, then our three
rationales for delay suggest three principal semantic options:

No-wait send: The sender does not block for more than a small, bounded period
of time. The message-passing implementation copies the message to a safe
location and takes responsibility for its delivery.

Synchronization send: The sender waits until its message has been received.
Remote-invocation send: The sender waits until it receives a reply.

These three alternatives are illustrated in Figure C-13.22.

No-wait send appears in Erlang and in the Java Internet library. Synchro-
nization send appears in Occam and, by default, in Go. (If a Go channel is
declared with an explicit buffering capacity, however, no-wait send is used.)
Remote-invocation send appears in Ada and in Occam. MPI provides an
implementation-oriented hybrid of no-wait send and synchronization send: a
send operation blocks until the data in the outgoing message can safely be mod-
ified. In implementations that do their own internal buffering, this rule amounts
to no-wait send. In other implementations, it amounts to synchronization send.
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The programmer has the option, if desired, to insist on no-wait send or synchro-
nization send; performance may suffer on some systems if the request is different
from the default.

Buffering

In practice, unfortunately, no message-passing system can provide a version of
send that never waits (unless of course it simply throws some messages away). If
we imagine a thread that sits in a loop sending messages to a thread that never
receives them, we quickly see that unlimited amounts of buffer space would be
required. At some point, any implementation must be prepared to block an over-
active sender, to keep it from overwhelming the system. Such blocking is a form
of backpressure. Milder backpressure can also be applied by reducing a thread’s
scheduling priority or by increasing the (still bounded) delay before a “no-wait”
send returns.

For any fixed amount of buffer space, it is possible to design a program that
requires a larger amount of space to run correctly. Imagine, for example, that the
message-passing system is able to buffer n messages on a given communication
path. Now imagine a program in which A sends 7 4+ 1 messages to B, followed by
one message to C. C then sends one message to B, on a different communication
path. Finally, B insists on receiving the message from C before receiving the mes-
sages from A. If A blocks after message 7, implementation-dependent deadlock
will result. The best that an implementation can do is to provide a sufficiently

DESIGN & IMPLEMENTATION

[3.10 The semantic impact of implementation issues

The inability to buffer unlimited amounts of data and, likewise, to report er-
rors synchronously to a sender that has continued execution are only the most
recent of many examples we have seen in which pragmatic implementation is-
sues may restrict the language semantics available to the programmer. Other
examples include limitations on the length of source lines or variable names
(Section 2.1.1); limits on the memory available for data (whether global, stack,
or heap allocated) and for recursive function evaluation (Section 3.2); the lack
of ranges in case statement labels (Section 6.4.2); in reverse, downto, and
constant step sizes for for loops (Section 6.5.1); limits on set universe size
(to accommodate bit vectors—Section 8.4); limited procedure nesting (to ac-
commodate displays—Section 9.1); the pointer-only restriction on opaque ex-
ports in Modula-2 (Section 10.2.1); and the lack of nested threads or of unre-
stricted arms on a cobegin statement (to avoid the need for cactus stacks—
Section 9.5.1). Some of these limitations are reflected in the formal semantics
of the language. Others (generally those that vary most from one implementa-
tion to another) restrict the set of semantically valid programs that the system
will run correctly.
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Figure 13.23  Acknowledgment messages for error detection. In the absence of piggy-
backing, remote-invocation send (left) may require four underlying messages; synchronization
send (right) may require two.

large amount of space that realistic applications are unlikely to find the limit to
be a problem.

For synchronization send and remote-invocation send, buffer space is not
generally a problem: the total amount of space required for messages is bounded
by the number of threads, and there are already likely to be limits on how many
threads a program can create. A thread that sends a reply message can always
be permitted to proceed: we know that we shall be able to reuse the buffer space
quickly, because the thread that sent the request is already waiting for the reply.

Error Reporting

If the underlying message-passing system is unreliable, a language or library will
typically employ acknowledgment messages to verify successful transmission (Fig-
ure C-13.23). If an acknowledgment is not received within a reasonable amount
of time, the implementation will typically resend. If several attempts fail to elicit
an acknowledgment, an error will be reported.

As long as the sender of a message is blocked, errors that occur in attempting
to deliver a message can be reflected back as exceptions, or as status information
in result parameters or global variables. Once a sender has continued, there is no
obvious way in which to report any problems that arise. Like limits on message
buffering, this dilemma poses semantic problems for no-wait send. For UDP,
the solution is to state that messages are unreliable: if something goes wrong, the
message is simply lost, silently. For TCP, the “solution” is to state that only “catas-
trophic” errors will cause a message to be lost, in which case the connection will
become unusable and future calls will fail immediately. An even more drastic ap-
proach was taken in the original version of MPI: certain implementation-specific
errors could be detected and handled at run time, but in general if a message
could not be delivered then the program as a whole was considered to have failed.
Newer versions of MPI provide a richer set of error-reporting facilities that can
be used, with some effort, to build fault-tolerant programs.
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Emulation of Alternatives

All three varieties of send can be emulated by the others. To obtain the effect
of remote-invocation send, a thread can follow a no-wait send of a request with
a receive of the reply, as we saw in Example C-13.56. Similar code will allow
us to emulate remote-invocation send using synchronization send. To obtain
the effect of synchronization send, a thread can follow a no-wait send with a
receive of a high-level acknowledgment, which the receiver will send immedi-
ately upon receipt of the original message. To obtain the effect of synchronization
send using remote-invocation send, a thread that receives a request can simply
reply immediately, with no return parameters.

To obtain the effect of no-wait send using synchronization send or remote-
invocation send, we must interpose a buffer process (the message-passing
analogue of our shared-memory bounded buffer) that replies immediately to
“senders” or “receivers” whenever possible. The space available in the buffer pro-
cess makes explicit the resource limitations that are always present below the
surface in implementations of no-wait send.

Syntax and Language Integration

In the emulation examples above, our hypothetical syntax assumed a library-
based implementation of message passing. Because send, receive, accept, and
so on are ordinary subroutines in such an implementation, they usually take a

DESIGN & IMPLEMENTATION

[3.11" Emulation and efficiency

Unfortunately, user-level emulations of alternative send semantics are seldom
as efficient as optimized implementations using the underlying primitives.
Suppose for example that we wish to use remote-invocation send to emulate
synchronization send. Suppose further that our implementation of remote-
invocation send is built on top of network software that needs acknowledg-
ments to verify message delivery. After sending a reply, the server’s run-time
system will wait for an acknowledgment from the client. If a server thread can
work for an arbitrary amount of time before sending a reply, then the run-time
system will need to send separate acknowledgments for the request and the re-
ply. If a programmer uses this implementation of remote-invocation send
to emulate synchronization send, then the underlying network may end up
transmitting a total of four messages (more if there are any transmission er-
rors). By contrast, a “native” implementation of synchronization send would
require only two underlying messages. In some cases the run-time system
for remote-invocation send may be able to delay transmission of the first ac-
knowledgment long enough to “piggy-back” it on the subsequent reply if there
is one; in this case an emulation of synchronization send may transmit three
underlying messages instead of only two. We consider the efficiency of emula-
tions further in Exercise C-13.36 and Exploration C-13.52.
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fixed, static number of parameters, two of which typically specify the location
and size of the message to be sent. To send a message containing values held in
more than one program variable, the programmer may need to explicitly gather,
or marshal, those values into the fields of a record. On the receiving end, the
programmer may then need to scatter (unmarshal) the values back into program
variables. By contrast, a concurrent programming language can provide message-
passing operations whose “argument” lists can include an arbitrary number of
values to be sent. Moreover, the compiler can arrange to perform type checking
on those values, using techniques similar to those employed for subroutine link-
age across compilation units (to be described in Section 15.6.2). Finally, as we
shall see in Section C-13.5.3, an explicitly concurrent language can employ non-
procedure-call syntax, for example to couple a remote-invocation accept and
reply in such a way that the reply doesn’t have to explicitly identify the accept
to which it corresponds.

[3.5.3 Receiving

Probably the most important dimension on which to categorize mechanisms for
receiving messages is the distinction between explicit receive operations and the
implicit receipt described in Section 13.2.3. Among the languages and systems we
have been using as examples, none provides implicit receipt, but it appears in a
variety of research languages, and in some of the RPC systems we will consider in
Section C-13.5.4).

With implicit receipt, every message that arrives at a given port (or over a given
channel) will create a new thread of control, subject to resource limitations (any
implementation will have to stall incoming requests when the number of threads
grows too large). With explicit receipt, a message will be queued until some
already-existing thread indicates a willingness to receive it. At any given point in
time there may be a potentially large number of messages waiting to be received.
Most languages and libraries with explicit receipt allow a thread to exercise some
sort of selectivity with respect to which messages it wants to consider.

In MPI, every message includes the id of the process that sent it, together with
an integer fag specified by the sender. A receive operation specifies a desired
sender id and message tag. Only matching messages will be received. In many
cases receivers specify “wild cards” for the sender id and/or message tag, allowing
any of a variety of messages to be received. Special versions of receive also
allow a process to test (without blocking) to see if a message of a particular type
is currently available (this operation is known as polling), or to “time out” and
continue if a matching message cannot be received within a specified interval of
time.

Because they are languages instead of library packages, Ada, Erlang, Go, and
Occam are able to use special, non-procedure-call syntax for selective message re-
ceipt. Moreover because messages are built into the naming and typing system,
these languages are able to receive selectively on the basis of port/channel names
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task buffer is
entry insert(d : in bdata);
entry remove(d : out bdata);
end buffer;

task body buffer is
SIZE : constant integer := 10;
subtype index is integer range 1..SIZE;
buf : array (index) of bdata;

next_empty, next_full : index := 1;
full_slots : integer range 0..SIZE := 0;
begin
loop
select

when full_slots < SIZE =>
accept insert(d : in bdata) do
buf (next_empty) := d;
end;
next_empty := next_empty mod SIZE + 1;
full_slots := full_slots + 1;
or
when full_slots > 0 =>
accept remove(d : out bdata) do
d := buf(next_full);
end;
next_full := next_full mod SIZE + 1;
full_slots := full_slots - 1;
end select;
end loop;
end buffer;

Figure [3.24 Bounded buffer in Ada, with an explicit manager task.

and parameters, rather than the more primitive notion of tags. In all four lan-
guages, the selective receive construct is a special form of guarded command, as
described in Section C-6.7.

Figure C-13.24 contains code for a bounded buffer in Ada 83. Here an active
“manager” thread executes a select statement inside a loop. (Recall that it is
also possible to write a bounded buffer in Ada using protected objects, without
a manager thread, as described in Section 13.4.2.) The Ada accept statement
receives the in and in out parameters (Section 9.3.1) of a remote invocation
request. At the matching end, accept returns the in out and out parameters as
a reply message. A client task would communicate with the bounded buffer using
an entry call:

-- producer: -- consumer:
buffer.insert(3); buffer.remove(x) ;
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The select statement in our buffer example has two arms. The first arm may
be selected when the buffer is not full and there is an available insert request;
the second arm may be selected when the buffer is not empty and there is an
available remove request. Selection among arms is a two-step process: first the
guards (when expressions) are evaluated, then for any that are true the subsequent
accept statements are considered to see if a message is available. (The guard in
front of an accept is optional; if missing it behaves as when true =>.) If both
of the guards in our example are true (the buffer is partly full) and both kinds
of messages are available, then either arm of the statement may be executed, at
the discretion of the implementation. (For a discussion of issues of fairness in the
choice among true guards, see Sidebar C-6.11.)

Every select statement must have at least one arm beginning with accept
(and optionally when). In addition, it may have three other types of arms:

when condition => delay how_long
other_statements

or when condition => terminate

else ...

A delay arm may be selected if no other arm becomes selectable within how_long
seconds. (Ada implementations are required to support delays as long as 1 day
or as short as 20ms.) A terminate arm may be selected only if all potential
communication partners have already terminated or are likewise stuck in select
statements with terminate arms. Selection of the arm causes the task that was
executing the select statement to terminate. An else arm, if present, will be
selected when none of the guards are true or when no accept statement can be
executed immediately. A select statement with an else arm is not permit-
ted to have any delay arms. In practice, one would probably want to include a
terminate arm in the select statement of a manager-style bounded buffer.
In Go, a bounded buffer is trivial: it’s just a buffered channel:

type bdata struct {
n int // or whatever

}

var buffer = make(chan bdata, 10) // space for ten items of type bdata
buffer <- bdata{3} // insert

my_int = (<-buffer).n // remove

To illustrate language features, we can also build a bounded buffer with an ex-
plicit thread, an array, and a pair of default (unbuffered) channels, in a manner
similar to the Ada example of Figure C-13.24, but with synchronization send in-
stead of remote invocation. Code for this alternative appears in Figure C-13.25.
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Unlike built-in buffered channels, it could easily be augmented to support func-
tionality like priority-based (as opposed to FIFO) queueing, or methods to clear
the buffer or to query the number of messages currently queued. To use the basic
insert/remove operations, we might write:

var b = make_buffer()
b.insert (bdata{3}) // insert

my_int = b.remove().n // remove

As in the Ada example, requests are processed by an active manager thread
(called a “goroutine” in Go), here started with the go command. The select
statement in Go does not support explicit guards; we have achieved a similar effect
in Figure C-13.25 by setting the ic and rc channels to nil when they should not
be selected. Because we have used synchronization send—channels insert_c
and remove_c have zero capacity—there is an asymmetry between the handling
of insert and remove requests: the former need only send the manager data;
the latter must send a channel reference and then wait for the manager to send
the data back.

In Erlang, which uses no-wait send, one might at first expect asymmetry sim-
ilar to that of Figure C-13.25: a consumer would have to receive a reply from a
bounded buffer, but a producer could simply send data. Such asymmetry would
have a hidden flaw, however: because a process does not wait after sending, the
producer could easily send more items than the buffer can hold, with the excess
being buffered in the message system. If we want the buffer to truly be bounded,
we must require the producer to wait for an acknowledgment. Code for the buffer
appears in Figure C-13.26. Because Erlang is a functional language, we use tail re-
cursion instead of iteration. Code for the producer and consumer looks like this:

-- producer: -- consumer:
Buffer ! {insert, X, self()}, Buffer ! {remove, self()},
receive ok -> [] end. receive X -> [] end.

The exclamation point (! ), borrowed from CSP, is used to send a message.
Several languages—Erlang among them—place the parameters of an incoming

message within the scope of the guard condition, allowing a receiver to “peek

inside” a message before deciding whether to receive it. In Erlang, we can say

receive
{insert, D} when D rem 2 == 1 -> % accept only odd numbers

The ability to peek implies that the content of incoming messages must be visible
to the language run-time system. An Erlang implementation must therefore be
prepared to accept (and buffer) an arbitrary number of messages; it cannot rely
on the operating system or other underlying software to provide the buffering for
it. Moreover the fact that buffer space can never be truly unlimited means that
guards and scheduling expressions will be unable to see messages whose delivery
has been delayed by backpressure.
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type buffer struct {
full_slots, next_full, next_empty int
buf [SIZE]bdata
insert_c chan bdata
remove_c chan chan bdata
¥
func manager (b *buffer) {
var ic chan bdata = b.insert_c
var rc chan chan bdata = nil
for { // at least one of ic and rc will always be non-nil
select {
case d := <-ic: // := means "declare and initialize"
b.buf [b.next_empty] = d
b.next_empty = (b.next_empty + 1) 7% SIZE
b.full_slots++

rc = b.remove_c // there is definitely data to remove
if b.full_slots == SIZE { ic = nil }
case c := <-rc:

¢ <- b.buf[b.next_full]

b.next_full = (b.next_full + 1) % SIZE

b.full_slots--

ic = b.insert_c // there is definitely space to fill
if b.full_slots == 0 { rc = nil }

}
}
}
func make_buffer() (b *buffer) { // return value has name 'b'
b = new(buffer)
b.full_slots = 0
b.next_full = 0
b.next_empty = 0
b.insert_c = make(chan bdata)
b.remove_c = make(chan chan bdata)
go manager (b) // create active manager thread
return
}
func (b *buffer) insert(e bdata) {
b.insert_c <- e // send data to manager
}

func (b *buffer) remove() bdata {
var ¢ = make(chan bdata)
b.remove_c <- ¢ // send temporary channel to manager
return <-c // receive and return response

}

Figure [3.25 Bounded buffer with an explicit manager thread in Go. The insert and remove
functions serve as methods of buffer b. Note that in the absence of additional functionality (not
shown), this code would better be replaced by trivial use of a buffered channel with capacity
SIZE. Also, if using this version, we would probably want a way to terminate the manager
thread when the buffer is no longer needed.
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buffer (Max, Free, Q) —->

receive
{insert, D, Client} when Free > 0 ->
Client ! ok, % send ack
buffer (Max, Free-1, queue:in(D, Q)); % enqueue
{remove, Client} when Free < Max ->
{{value, D}, NewQ} = queue:out(Q), % dequeue
Client ! D, % send element

buffer (Max, Free+1l, NewQ)
end.

Figure 13.26 Bounded buffer in Erlang. Variables (names that can be instantiated with a value)
begin with a capital letter; constants begin with a lower-case letter. Queue operations (in, out)
are provided by the standard Erlang library. Typing is dynamic. The send operator (!) is as in
CSP and Occam. Each clause of the receive ends with a tail recursive call.

[3.54 Remote Procedure Call

Any of the three principal forms of send (no-wait, synchronization, remote-
invocation) can be paired with either of the principal forms of receive (explicit
or implicit). The combination of remote-invocation send with explicit receipt
(e.g., as in Ada) is sometimes known as rendezvous. The combination of remote-
invocation send with implicit receipt is usually known as remote procedure call.
RPC is available in several concurrent languages, and is also supported on many
systems by augmenting a sequential language with a stub compiler. The stub com-
piler is independent of the language’s regular compiler. It accepts as input a for-
mal description of the subroutines that are to be called remotely. The description
is roughly equivalent to the subroutine headers and declarations of the types of
all parameters. Based on this input the stub compiler generates source code for
client and server stubs. A client stub for a given subroutine marshals request pa-
rameters and an indication of the desired operation into a message buffer, sends
the message to the server, waits for a reply message, and unmarshals that message
into result parameters. A server stub takes a message buffer as parameter, unmar-
shals request parameters, calls the appropriate local subroutine, marshals return
parameters into a reply message, and sends that message back to the appropri-
ate client. Invocation of a client stub is relatively straightforward. Invocation of
server stubs is discussed under “Implementation” below.

Semantics

A principal goal of most RPC systems is to make the remote nature of calls as
transparent as possible; that is, to make remote calls look as much like local calls
as possible [BN84]. In a stub compiler system, a client stub should have the same
interface as the remote procedure for which it acts as proxy; the programmer
should usually be able to call the routine without knowing or caring whether it is
local or remote.

Several issues make it difficult to achieve transparency in practice:
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Parameter modes: Tt is difficult to implement call-by-reference parameters across
a network, since actual parameters will not be in the address space of the called
routine. (Access to global variables is similarly difficult.)

Performance: There is no escaping the fact that remote procedures may take a
long time to return. In the face of network delays, one cannot use them casu-
ally.

Failure semantics: Remote procedures are much more likely to fail than are local
procedures. It is generally acceptable in the local case to assume that a called
procedure will either run exactly once or else the entire program will fail. Such
an assumption is overly restrictive in the remote case.

We can use value/result parameters in place of reference parameters so long as
program correctness does not rely on the aliasing created by reference parame-
ters. As noted in Section 9.3.1, Ada declares that a program is erroneous if it can
tell the difference between pass-by-reference and pass-by-value/result implemen-
tations of in out parameters. If absolutely necessary, reference parameters and
global variables can be implemented with message-passing thunks in a manner
reminiscent of call-by-name parameters (Section C-9.3.2), but only at very high
cost. As noted in Section 7.4, a few languages and systems perform deep copies of
linked data structures passed to remote routines.

Performance differences between local and remote calls can be hidden only by
artificially slowing down the local case. Such an option is clearly unacceptable.

DESIGN & IMPLEMENTATION

[3.12 Parameters to remote procedures

Ada’s comparatively high-level semantics for parameter modes allows the same
set of modes to be used for both subroutines and entries (rendezvous). An
Ada compiler will generally pass a large argument to a subroutine by reference
whenever possible, to avoid the expense of copying. If tasks are on separate
nodes of a cluster, however, the compiler will generally pass the same argument
to an entry by value-result.

A few concurrent languages provide parameter modes specifically designed
with remote invocation in mind. In Emerald [BHJLO7], for example, every
parameter is a reference to an object. References to remote objects are imple-
mented transparently via message passing. To minimize the frequency of such
references, objects passed to remote procedures often migrate with the call:
they are packaged with the request message, sent to the remote site (where
they can be accessed locally), and returned to the caller in the reply. Emerald
calls this call by move. In Hermes [SBGT91] and Rust, parameter passing is de-
structive: arguments become uninitialized from the caller’s point of view, and
can therefore migrate to a remote callee without danger of inducing remote
references.
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Exactly-once failure semantics can be provided by aborting the caller in the
event of failure or, in highly reliable systems, by delaying the caller until the oper-
ating system or language run-time system is able to rebuild the failed computation
using information previously dumped to disk. (Failure recovery techniques are
beyond the scope of this text.) An attractive alternative is to accept “at-most-
once” semantics with notification of failure. The implementation retransmits
requests for remote invocations as necessary in an attempt to recover from lost
messages. It guarantees that retransmissions will never cause an invocation to
happen more than once, but it admits that in the presence of communication
failures the invocation may not happen at all. If the programming language pro-
vides exceptions then the implementation can use them to make communication
failures look like any other kind of run-time error.

Implementation

At the level of the kernel interface, receive is usually an explicit operation. To
make receive appear implicit to the application programmer, the code produced
by an RPC stub compiler (or the run-time system of an RPC-based language)
must bridge this explicit-to-implicit gap. The typical implementation resembles
the thread-based event handling of Section 9.6.2. We describe it here in terms of
stub compilers; in a concurrent language with implicit receipt the regular com-
piler does essentially the same work.

Figure C-13.27 illustrates the layers of a typical RPC system. Code above the
upper horizontal line is written by the application programmer. Code in the mid-
dle is a combination of library routines and code produced by the RPC stub com-
piler. To initialize the RPC system, the application makes a pair of calls into the
run-time system. The first provides the system with pointers to the stub routines
produced by the stub compiler; the second starts a message dispatcher. What hap-
pens after this second call depends on whether the server is concurrent and, if so,
whether its threads are implemented on top of one OS process or several.

In the simplest case—a single-threaded server on a single OS process—the dis-
patcher runs a loop that calls into the kernel to receive a message. When a message
arrives, the dispatcher calls the appropriate RPC stub, which unmarshals request
parameters and calls the appropriate application-level procedure. When that pro-
cedure returns, the stub marshals return parameters into a reply message, calls
into the kernel to send the message back to the caller, and then returns to the
dispatcher.

This simple organization works well so long as each remote request can be han-
dled quickly, without ever needing to block. If remote requests must sometimes
wait for user-level synchronization, then the server’s process must manage a ready
list of threads, as described in Section 13.2.4, but with the dispatcher integrated
into the usual thread scheduler. When the current thread blocks (in application
code), the scheduler/dispatcher will grab a new thread from the ready list. If the
ready list is empty, the scheduler/dispatcher will call into the kernel to receive a
message, fork a new user-level thread to handle it, and then continue to execute
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Figure 13.27 Implementation of a remote procedure call server. Application code initializes
the RPC system by installing stubs generated by the stub compiler (not shown). It then calls into
the run-time system to enable incoming calls. Depending on details of the particular system in
use, the dispatcher may use the thread from the main program (in which case the call to start
the dispatcher never returns), or it may create a pool of threads that handle incoming requests.

runnable threads until the list is empty again (each thread will terminate when it
finishes handling its request).

In a multithreaded server, the call to start the dispatcher will generally ask the
kernel to fork a “pool” of threads to service remote requests. Each of these threads
will then perform the operations described in the previous paragraphs. In a lan-
guage or library with a one—one correspondence between user threads and kernel
threads, each will repeatedly receive a message from the kernel, call the appropri-
ate stub, and loop back for another request. With a more general thread package,
each kernel thread will run threads from the application’s ready list until the list
is empty, at which point it (the kernel thread) will call into the kernel for another
message. So long as the number of runnable user threads is greater than or equal
to the number of kernel threads, no new messages will be received. When the
number of runnable user threads drops below the number of kernel threads, the
extra kernel threads will call into the kernel, where they will block until requests
arrive.

\/CHECK YOUR UNDERSTANDING

50. Describe three ways in which processes or threads commonly name their
communication partners.

5. What is a datagram?
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Why, in general, might a send operation need to block?

What are the three principal synchronization options for the sender of a mes-
sage? What are the tradeoffs among them?

What are gather and scatter operations in a message-passing program? What
are marshalling and unmarshalling?

Describe the tradeoffs between explicit and implicit message receipt.
What is a remote procedure call (RPC)? What is a stub compiler?

What are the obstacles to transparency in an RPC system?

What is a rendezvous? How does it differ from a remote procedure call?
Explain the purpose of a select statement in Ada or Go.

What semantic and pragmatic challenges are introduced by the ability to
“peek” inside messages before they are received?
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[3.34 In Section 13.4.1 we cast monitors as a mechanism for synchronizing ac-
cess to shared memory, and we described their implementation in terms
of semaphores. It is also possible to think of a monitor as a module inhab-
ited by a single thread, which accepts request messages from other threads,
performs appropriate operations, and replies. Give the details of a mon-
itor implementation consistent with this conceptual model. Be sure to
include condition variables. (Hint: See the discussion of early reply in
Section 13.2.3.)

[3.35 Show how shared memory can be used to implement message passing.
Specifically, choose a set of message-passing operations (e.g., no-wait
send and explicit message receipt) and show how to implement them in
your favorite shared-memory notation.

[3.36  When implementing reliable messages on top of unreliable messages, a
sender can wait for an acknowledgment message, and retransmit if it
doesn’t receive it within a bounded period of time. But how does the
receiver know that its acknowledgment has been received? Why doesn’t
the sender have to acknowledge the acknowledgment (and the receiver ac-
knowledge the acknowledgment of the acknowledgment ...)? (For more
information on the design of fast, reliable protocols, you might want to
consult a text on computer networks [TW12, PD12].)

[3.37 While Go allows both input (receive) and output (send) guards on its
select statements, Occam and CSP allow only input guards. The dif-
ference has to do with the fact that Go is designed for communication
among threads in a single address space, while Occam and CSP were de-
signed for a distributed environment. Why should this make a difference?
Suppose you wished to add output guards to Occam. How would the im-
plementation work? (Hint: For ideas, see the article by Bagrodia [Bag89].)

c-254
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[3.38 In Section C-13.5.3 we described the semantics of a terminate arm on
an Ada select statement: this arm may be selected if and only if all po-
tential communication partners have terminated, or are likewise stuck in
select statements with terminate arms. Erlang and Occam have no
similar facility, though the original CSP proposal does. How would you
implement terminate arms in Ada? Why do you suppose they were left
out of Erlang and Occam? (Hint: For ideas, see the work of Apt and
Francez [Fra80, AF84].)
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Explorations

Find out how message passing is implemented in some locally available
concurrent language or library. Does this system provide no-wait send,
synchronization send, remote-invocation send, or some related hybrid?
If you wanted to emulate the other options using the one available, how
expensive would emulation be, in terms of low-level operations performed
by the underlying system? How would this overhead compare to what
could be achieved on the same underlying system by a language or library
that provided an optimized implementation of the other varieties of send?

MPI provides extensive facilities for collective communication, in which
there are more than two communicating parties. Examples include mul-
ticast, in which a message is sent simultaneously to a group of recipients;
scatter, in which elements of an array-structured message are sent, one
each, to a group of recipients; gather, in which an array-structured mes-
sage is created, at the sole recipient, from elements provided by a group of
senders; all-to-all, in which participants provide one element each of an
array-structured message that is received by all; and reduction, in which
messages from a group of senders are combined, using a commutative op-
erator, into a result that is received by one or all. Learn more about both
the semantics and the implementation of collective communication. What
opportunities does it provide for optimizations that are difficult to imple-
ment at the application level?

Language designers and concurrency experts have argued for nearly 40
years over whether shared memory or message passing is a more appeal-
ing programming model. The argument is to a large extent subjective—
and hence not subject to definitive settlement—but it includes substantive
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issues of fault containment, implementation efficiency, hardware require-
ments, and algorithmic expressiveness as well. Do a literature search on
“shared memory versus message passing.” How many papers do you find?
Read a sampling of these and summarize their arguments. Do you find
any of the positions particularly convincing?
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Scripting Languages

[4.3.5 XSLT

HTML was inspired by an older and more complicated standard known as SGML
(standard generalized markup language). SGML was developed in the 1980s by a
consortium of government agencies and major corporations, to represent struc-
tured data. It was used, for example, to computerize both the Oxford English
Dictionary and the technical documentation of Boeing Corp.

In the early days of the Web, SGML was clearly too complex and formal for
web pages, which needed to be written by hand and rendered in real time by slow
computers. The more informal replacement evolved in an ad hoc way, with the
result that HTML has been very difficult to standardize. Incompatibilities among
browsers continue to frustrate web designers, and several features of the language
that have been deprecated in the most recent standards are nonetheless still widely
used. Other features, while not deprecated, are widely regarded in hindsight to
have been mistakes.

Probably the biggest problem with HTML is that it does not adequately distin-
guish between the content and the presentation (appearance) of a document. As a
trivial example, web designers sometimes use <i> ... </i> tags to request that text
be set in an italic font, when <em> ... </em> (emphasis) would be more appropri-
ate. A browser for the visually impaired might choose to emphasize text with
something other than italics, and might render book titles (also often specified
with <i>...</i>) in some entirely different fashion. More significantly, many
web designers use tables (<table> ...</table>) to control the relative position-
ing of elements on a page, when the content isn’t tabular at all. As the Web extends
across cell phones, televisions, tablets, watches, and audio-only devices, the need
to distinguish between content and presentation has become essential.

This is where XML steps in. A streamlined descendant of SGML, developed
by the World Wide Web Consortium in the mid to late 1990s, XML has at least
three important advantages over HTML: (1) its syntax and semantics are more
regular and consistent, and more consistently implemented across platforms; (2)
it is extensible, meaning that users can define new tags; (3) it specifies content
only, leaving presentation to a companion standard known as XSL (extensible

c-258
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stylesheet language). As noted in the main text, XSLT is a portion of XSL de-
voted to transforming XML: selecting, reorganizing, and modifying tags and the
elements they delimit—in effect, scripting the processing of data represented in
XML.

Internet Alphabet Soup

Learning about web standards can be a daunting task: there is an enormous num-
ber of buzzwords, standards, and multiletter abbreviations. The standards—and
the relationships among them—are also moving targets, promulgated by groups
whose interests are not always in sync. To start, it may help to note that each of
the major markup languages—SGML, HTML, and XML—has a corresponding
stylesheet language: DSSSL, CSS, and XSL, respectively. A stylesheet language
is used to control the presentation of a document, separate from its content.
Stylesheet languages are essential for SGML and XML; without them there is no
way to know whether a <RECORD> represents a database entry, an antique phono-
graph album, or an Olympic achievement, much less how to display it. HTML is
less dependent on stylesheets, but most professionally maintained web sites use
CSS to create a uniform “look and feel” across a collection of pages without em-
bedding redundant information in every page.

SGML is still used for large-scale projects in the business world, though many
newer projects have chosen to use the simpler XML. HTML continues to evolve
(see sidebar C-14.14). HTMLS5, finalized by the World Wide Wide Consortium
in 2014, adds extensive new support for multimedia content, and specifies both
general and XML-compliant versions of the syntax.

XML and XHTML

As a general rule, the syntax of XML is simpler than that of SGML or HTML. To
allow XML tools (XSLT in particular) to be used to process web pages, the HTML5
standard defines a restricted version of the HTML syntax, known as XHTML.
With a few minor exceptions, any web page that can be specified in HTML can
also be specified in XHTML, and vice versa. The content-type header that pre-
cedes a web page when transmitted over the Internet tells the browser which
parser to use: text/html means “regular” HTML; application/xhtml+xml
means XHTML. In practice, the principal differences between the notations are
that XHTML is harder for human beings to write, because the rules are stricter,
and XML parsers are designed to reject (and decline to render) any page that is
not well formed (syntactically correct). HTML parsers are designed to tolerate—
and do something reasonable with—even the worst “tag soup.” With some care,
it is possible to write pages that will be processed correctly by both HTML and
XHTML parsers; such pages are said to use polyglot markup (syntax).

In any well-formed XML document (including those written in XHTML), tags
must either constitute properly nested, matched pairs, or be explicit singletons,
which end with a “/>” delimiter. Similarly, the values of attributes (key-value
pairs embedded within tags) must always be specified with quotes. The following
fragment, for example, is well formed (though incomplete) XHTML:
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<em><q id="favorite">I defy the tyranny of precedent</q></em><br />
(Clara Barton)

Here the quotation element (<g> ... </qg>) is nested inside the emphasis element
(<em>...</em>). Moreover the “break” element (<br />), which usually causes
subsequent text to start on a new line, is explicitly a singleton; it has a slash be-
fore its closing “>” delimiter. (To avoid confusing certain legacy browsers, one
sometimes needs a space in front of the slash.) The example fragment would be
malformed if the slash were missing, if the opening <em><q> tags were reversed
(<g><em>), or if the attribute value "favorite" had not be enclosed in quote
marks. An HTML parser would tolerate these errors; an XML parser will not.
The set of tags to be used in an XML document can be specified by naming a
document type definition (DTD) in the document’s DOCTYPE header, or by naming
an XML Schema in an attribute of the document’s top-level tag. (XML Schemas
are a newer format, but DTDs remain in widespread use.) Among other things, a
DTD or Schema indicates which tags are allowed, whether those tags are pairs or
singletons, whether they permit attributes, and whether any attributes are manda-
tory. If a document has no DTD or Schema, it is said to define a DTD implicitly by

DESIGN & IMPLEMENTATION

[4.14 W3C and WHATWG

Standardization efforts for HTML have a complicated history. With the com-
pletion in 1998 of the XML 1.0 specification, the World Wide Web Consortium
(W3C) focused on XHTML, in an effort to push the world toward a “cleaned-
up,” XML-compliant version of HTML. Over the next few years, this strategy
proved increasingly contentious. In 2004, a group of influential individuals
from Apple, Mozilla, and Opera split off to form a separate Web Hypertext Ap-
plication Technology Working Group (WHATWG), with the goal of evolving
HTML in a way that preserved complete backward compatibility and interop-
erability. In 2006, the W3C reconsidered its position, and began to work with
WHATWG toward what eventually became HTMLS5.

As 0f2015, W3C and WHATWG remain separate organizations. Their stan-
dards, while very similar, are not entirely compatible. Both groups acknowl-
edge that the world would be best served by a uniform definition of HTML,
but their approaches to standardization differ greatly. W3C develops dated,
numbered documents that codify the notion of conformance with a particular
version of the standard. WHATWG maintains an unnumbered “living stan-
dard” that evolves continuously over time. W3C is more willing to label cer-
tain practice as noncomforming; WHATWG believes that its standard should
reflect actual practice, as implemented in all past browsers by all major ven-
dors. Both groups distinguish carefully between what a conforming document
should contain and what a conforming browser should be able to render: the
latter is significant superset of the former.



14.3.5 XSLT c-261

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> /
<head> |
<meta charset="UTF-8" /> html
<title>Favorite Quote</title> __

</head> Coo--mTTIIEC -
<body> xmlns lang xml:lang head body

<p>
<em><q id="favorite">I defy meta title

p
the tyranny of precedent</q></em><br /> E | /////1\\\\\

Cl Bart
(Clara Barton) charset text em br text

</p>
</body> |
</html> Q\

id text

Figure 1422 A complete XHTML document and its corresponding tree. Child elements are shown with solid lines, attributes
with dashed lines.

virtue of which tags are actually used. Implicit definition suffices for the examples
in this chapter.
Because tags must nest in XML, a document has a natural tree-based structure.

exameLe [4.83 Figure C-14.22 shows the source for a small but complete polyglot HTML5 doc-
XHTML to display a ument, together with the tree it represents. There are three kinds of nodes in the
favorite quote tree: elements (delimited by tags in the source), text, and attributes. The internal

(nonleaf) nodes are all elements. Everything nested between the beginning and
ending tags of an element is an attribute or child of that element in the tree.

The root of our document, named “/” by convention, has one child—the html
element. This in turn has three attributes—=xmlns, lang, and xml:lang—and
two child elements—head and body. The xmlns attribute specifies a URI for our
document’s namespace. This serves a purpose similar to that of C++ namespaces
or Java packages (Section 3.8): it allows us to give tag names a disambiguating
prefix: xhtml:table versus furniture:table. With the value we have specified
for the xmlns attribute, any tag in the document that doesn’t have a prefix will
automatically be interpreted as being in the xhtml namespace. The lang and
xml: lang tags specify the source language (English) for HTML and XML parsers,
respectively.

XSLT and XPath

XSL (extensible stylesheet language) can be thought of as a language for specify-
ing what to do with an XML document. It has four sublanguages, called XSLIT,
XPath, XSL-FO, and XQuery. XSLT is a scripting language that takes XML as
input and produces textual output—often transformed XML or HTML, but po-
tentially other formats as well.
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EXAMPLE |4.84

XPath names for XHTML
elements

EXAMPLE |485

Creating a reference list
with XSLT

XPath is a language used to name things in XML documents. XPath
names frequently appear in the attributes of XSLT elements. Returning to Fig-
ure C-14.22, the quotation element of our document could be named in XPath
as /html/body/p/em/q. The emphasis element and its break and text-node sib-
lings, together, could be named as /html/body/p/*. XPath includes a rich set of
naming mechanisms, including absolute (from the root) and relative (from the
current node) navigation, wildcards, predicates, substring and regular expression
manipulation, and counting and arithmetic functions. We will see some of these
in the extended example below.

XSL-FO (XSL formatting objects) is a set of tags to specify the layout (presenta-
tion) of a document, in terms of pages, regions (e.g., header, body, footer), blocks
(paragraph, table, list), lines, and in-line elements (character, image). An XSLT
script might be used to add XSL-FO tags to an XML document, or to transform a
document that already has XSL-FO tags in it—perhaps to split a long single-page
document intended for the Web into a multipage document intended for printing
on paper.

XQuery is a language in which to frame information-retrieval questions for a
database stored in XML format. (In a bibliographic database, for example, we
might use XQuery look for journal articles written since the turn of the century.)
The purpose and behavior of XQuery parallel those of SQL, the standard language
used for relational database queries. For the sake of simplicity, we will not use
XSL-FO or XQuery in our extended example. Rather we will peruse an entire
XML document, using XSLT to format its content as HTML.

An XML document can explicitly specify an XSLT script that should be used
to transform or format it. All major browsers today include an XSLT interpreter,
and will perform the transformation on the client machine. This is a standard
but somewhat restrictive way to go about things: by tying a single stylesheet to
the XML file we compromise the separation between content and presentation
that was a principal motivation for creating XML in the first place. An alternative
is to use client-side JavaScript or server-side PHP to invoke the XSLT processor,
passing the XML document and the XSLT script as arguments.

Extended Example: Bibliographic Formatting

As an example of a task for which we might realistically use XSLT, consider the
creation of a bibliographic reference list. Figure C-14.23 contains XML source
for such a list. (Field names have been borrowed from BIBTEX [Lam94, App.
B].) The document begins with a declaration to specify the XML version and
character encoding, and a processing instruction to specify the XSL stylesheet
to be used to format the file. These declarations are included for the benefit of
tools that process the document; they aren’t part of the XML source itself. (Note
the syntactic resemblance to the processing instructions used in Section 14.3.2 to
provide input to the PHP interpreter.)

At the top level, the bibliography element consists of a series of book,
article, and inproceedings elements, each of which may contain elements
for author and editor names, title, publisher, date and address, and so on. Some
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<?xml version="1.0" encoding="UTF-8"7>
<?xml-stylesheet type="text/xsl" href="bib.xsl"7?>
<bibliography>
<book>
<author>Guido van Rossum</author>
<editor>Fred L. Drake, Jr.</editor>
<title>The Python Language Reference Manual (version 3.2)</title>
<publisher>Network Theory, Ltd.</publisher>
<address>Bristol, UK</address>
<year>2011</year>
<note>Available at <uri>http://www.network-theory.co.uk/python/language/</uri></note>
</book>
<article>
<author>John K. Ousterhout</author>
<title>Scripting: Higher-Level Programming for the 21st Century</title>
<journal>Computer</journal>
<volume>31</volume>
<number>3</number>
<month>March</month>
<year>1998</year>
<pages>23&#8211;30</pages>
</article>
<inproceedings>
<author>Theodor Holm Nelson</author>
<title>Complex Information Processing: A File Structure for the
Complex, the Changing, and the Indeterminate</title>
<booktitle>Proceedings of the Twentieth ACM National Conference</booktitle>
<month>August</month>
<year>1965</year>
<address>Cleveland, 0H</address>
<pages>84&#8211;100</pages>
</inproceedings>
<inproceedings>
<author>Stephan Kepser</author>
<title>A Simple Proof for the Turing-Completeness of XSLT and XQuery</title>
<booktitle>Proceedings, Extreme Markup Languages 2004</booktitle>
<address>Montr&#233;al, Canada</address>
<year>2004</year>
<month>August</month>
<note>Available at <uri>http://conferences.idealliance.org/extreme/html/2004/Kepser01/
EML2004Kepser01.html</uri></note>
</inproceedings>

Figure 1423 A bibliography in XML. References (two books, a journal article, and three conference papers) appear in
arbitrary order. The Kepser URI has been wrapped to fit on the printed page. (continued)
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<inproceedings>

<author>David G. Korn</author>

<title><code>ksh</code>: An Extensible High Level Language</title>
<booktitle>Proceedings of the USENIX Very High Level Languages Symposium</booktitle>
<address>Santa Fe, NM</address>

<year>1994</year>

<month>0ctober</month>
<pages>129&#8211;146</pages>

</inproceedings>
<book>

<author>Tom Christiansen</author>
<author>brian d foy</author>

<author>Larry Wall</author>

<author>Jon Orwant</author>
<title>Programming Perl</title>
<edition>fourth</edition>
<publisher>0&#8217;Reilly Media</publisher>
<address>Sebastopol, CA</address>

<year>2012</year>

</book>
</bibliography>

Figure 14.23  (continued)

elements may contain nested uri elements, which specify on-line links. Charac-
ters that cannot be represented in ASCII are shown as Unicode character entities,
as described in Sidebar 7.3.

Figure C-14.24 contains an XSLT stylesheet (script) to format the bibliography
as HTML, which may then be rendered in a browser. This script was named at the
beginning of the XML document (Figure C-14.23). In a manner analogous to that
of the XML document, the script begins with a declaration to specify the XML
version and character encoding, and an xsl:stylesheet element to specify the
XSL version and namespace. The remainder of the script contains a mix of XSL
and HTML elements. The XSL tags all specify the xs1: namespace explicitly.
They are recognized by the XSLT processor. Elements from other namespaces are
treated as ordinary text, to be copied through to the output when encountered.

The fundamental construct in XSIT is the template, which specifies a set of
instructions to be applied to nodes in an XML source tree. Templates are typically
invoked by executing an apply-templates or a call-template instruction in
some other template. Each invocation has a concept of current node. The execu-
tion as a whole begins by invoking an initial template with the root of the source
tree (/) as current node. In our bibliographic example, the initial template is the
one at the top of the script, because its match attribute is the XPath expression
"/". The body of the initial template begins with a string of HTML elements and
text. This string is copied directly to the output. The for-each element, however,
is an XSLT instruction, so it is executed.
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<?xml version="1.0" encoding="UTF-8"7>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<html><head><title>Bibliography</title></head><body><h1>Bibliography</hi1><ol>
<xsl:for-each select="bibliography/*"><xsl:sort select="title"/>
<1li><xsl:apply-templates select="."/></1li>
</xsl:for-each>
</0l1></body></html>
</xsl:template>

<xsl:template match="bibliography/article">
<g><xsl:apply-templates select="title/node()"/>,</q>
by <xsl:call-template name="author-list"/>.&#160;
<em><xsl:apply-templates select="journal/node()"/>
<xsl:text> </xsl:text><xsl:apply-templates select="volume/node()"/>
</em>:<xsl:apply-templates select="number/node()"/>
(<xsl:apply-templates select="month/node()"/><xsl:text> </xsl:text>
<xsl:apply-templates select="year/mnode()"/>),
pages <xsl:apply-templates select="pages/node()"/>.
<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>
</xsl:template>

<xsl:template match="bibliography/book">

<em><xsl:apply-templates select="title/node()"/>,</em>

by <xsl:call-template name="author-list"/>.&#160;

<xsl:apply-templates select="publisher/node()"/>,

<xsl:apply-templates select="address/node()"/>,

<xsl:if test="edition">

<xsl:apply-templates select="edition/node()"/> edition, </xsl:if>

<xsl:apply-templates select="year/node()"/>.

<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>
</xsl:template>

<xsl:template match="bibliography/inproceedings">
<g><xsl:apply-templates select="title/node()"/>,</q>
by <xsl:call-template name="author-list"/>.&#160;
In <em><xsl:apply-templates select="booktitle/node()"/></em>

<xsl:if test="pages">, pages <xsl:apply-templates select="pages/node()"/></xsl:if>
<xsl:if test="address">, <xsl:apply-templates select="address/node()"/></xsl:if>

<xsl:if test="month">, <xsl:apply-templates select="month/node()"/></xsl:if>

<xsl:if test="year">, <xsl:apply-templates select="year/node()"/></xsl:if>.

<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>
</xsl:template>

c-265

Figure 14.24 Bibliography stylesheet in XSL. This script will generate HTML when applied to a bibliography like that of

Figure C-14.23. (continued)
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<xsl:template name="author-list"> <!-- format author list -->

<xsl:for-each select="author|editor">
<xsl:if test="last() > 1 and position() = last()"> and </xsl:if>
<xsl:apply-templates select="./node()"/>
<xsl:if test="self::editor"> (editor)</xsl:if>
<xsl:if test="last() > 2 and last() > position()">, </xsl:if>

</xsl:for-each>
</xsl:template>

<xsl:template match="uri"> <!-- format link -->
<a><xsl:attribute name="href"><xsl:value-of select="."/></xsl:attribute>
<xsl:value-of select="substring-after(., 'http://')"/></a>

</xsl:template>

<xsl:template match="@x|node()"> <!-- default: copy content -->

<xsl:copy><xsl:apply-templates select="@*|node()"/></xsl:copy>

</xsl:template>
</xsl:stylesheet>

Figure 14.24  (continued)

The select attribute of the for-each element uses an XPath expression
("bibliography/*") to build a node set consisting of all top-level entries in
our bibliography. Other expressions could have been used if we wanted to
be selective: "bibliography/*[year>=2000]" would match only recent en-
tries; "bibliography/* [note]" would match only entries with note elements;
"bibliography/article|bibliography/book" would match only articles and
books.

The nested sort instruction forces the selected node set to be ordered alpha-
betically by title. The body of the for-each is then executed with each entry
in turn selected as current node. The body contains a recursive invocation of
apply-templates, bracketed by HTML list tags (<1i>...</1i>). These tags are
copied to the output, with the result of the recursive call nested in between.

So how does the recursive call work? Its select attribute, like that of
for-each, uses XPath to build a node set. In this case it is the trivial node set
containing only ".", the current node of the current iteration of for-each. The
XSLT processor searches for a template that matches this node. We have created
three appropriate candidates, one for each kind of bibliographic entry. When it
finds the matching template, the processor invokes it, with an updated notion of
current node.

Each of our three main templates contains a set of instructions to format its
kind of entry (article, book, conference paper). Most of the instructions use ad-
ditional invocations of apply-templates to format individual portions of an
entry (author, title, publisher, etc.). Interspersed in these instructions are snip-
pets of text and HTML elements. In several cases we use an if instruction to
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generate output only when a given XML element is present in the source. In most
of these the recursive call uses the XPath node () function to select all children of
the element in question.

White space is ignored when it comes between the end of one instruction and
the beginning of the next. To force white space into the output in this case,
we must delimit it with <text>...</text> tags. Extra white space (e.g., after
the ends of sentences) is specified with the “nonbreaking space” character entity,
&#160;.

Three extra templates end our script. The most interesting of these serves
to format author lists. It has a name attribute rather than a match attribute,
and is invoked with call-template rather than apply-templates. A called
template always takes the current node of the caller—in this case the node that
represents a bibliographic entry. Internally, the author list template executes a
for-each instruction that selects all child nodes representing authors or editors.
The for-each, in turn, uses the XPath last() and position() functions to
determine how many names there are, and where each name falls in the list. It
inserts the word “and” between the final two names, and puts commas after all
names but the last in lists of three or more.

The template with match="uri" serves to format URIs that appear anywhere
in the XML source. It creates an HTML link in the output, but uses the XPath
substring-after function to strip the leading http:// off the visible text. XPath
provides a variety of similar functions for string and regular expression manipu-
lation. The value-of instruction copies the contents of the selected node to the
output, as a character string.

Our final template serves as a default case. The XPath expression "@* |node ()"
will match any attribute or other node in the XML source. Inside, the copy in-
struction copies the node’s tags, if any, to the output, with the result of a recursive
call to apply-templates in between. The "@*|node ()" on the recursive call se-
lects a node set consisting of all the current node’s attributes and children. The
end result is that any XML elements in the source that are delimited by tags for
which we do not have special templates will be regenerated in the output just as
they appear in the source. The recursion stops at text nodes and attributes, which
are the leaves of the XML tree.

HTML output from our script appears in Figure C-14.25. The rendered web
page appears in Figure C-14.26.

While lengthy by the standards of this text, our example illustrates only a frac-
tion of the capabilities of XSLT. In the standard categorization of programming
languages, the notation is strongly declarative: values may have names, but there
are no mutable variables, and no side effects. There is a limited looping mecha-
nism (for-each), but the real power comes from recursion, and from recursive
traversal of XML trees in particular.
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<html><head><title>Bibliography</title></head>
<body><h1>Bibliography</h1><ol>
<1i>
<g>A Simple Proof for the Turing-Completeness of XSLT and XQuery,</q>
by Stephan Kepser.&nbsp; In <em>Proceedings, Extreme Markup Languages
2004</em>, Montr&eacute;al, Canada, August, 2004. Available at
<a href="http://conferences.idealliance.org/extreme/html/2004/Kepser01l
/EML2004Kepser01.html">conferences.idealliance.org/extreme/html/2004
/Kepser01/EML2004Kepser01.html</a>.</1i>
<1i>
<g>Complex Information Processing: A File Structure for the Complex,
the Changing, and the Indeterminate,</q> by Theodor Holm Nelson.&nbsp;
In <em>Proceedings of the Twentieth ACM National Conference</em>,
pages 84&ndash;100, Cleveland, OH, August, 1965.</1i>
<1i>
<g><code>ksh</code>: An Extensible High Level Language,</q> by David
G. Korn.&nbsp; In <em>Proceedings of the USENIX Very High Level Languages
Symposium</em>, pages 129&ndash;146, Santa Fe, NM, October, 1994.</1i>
<1i>
<em>Programming Perl,</em> by Tom Christiansen, brian d foy, Larry Wall,
and Jon Orwant.&nbsp; O&rsquo;Reilly Media, Sebastopol, CA, fourth
edition, 2012.</1i>
<1i>
<g>Scripting: Higher-Level Programming for the 21st Century,</q> by
John K. Ousterhout.&nbsp; <em>Computer 31</em>:3 (March 1998), pages
23&ndash;30.</1i>
<1i>
<em>The Python Language Reference Manual (version 3.2),</em> by Guido
van Rossum and Fred L. Drake, Jr. (editor).&nbsp; Network Theory, Ltd.,
Bristol, UK, 2011. Available at <a href="http://www.network-theory.co.uk
/python/language/">www.network-theory.co.uk/python/language/</a>.</1i>
</ol>
</body></html>

Figure 14.25 Result of applying the stylesheet of Figure C-14.24 to the bibliography of Figure C-14.23.

\/CHECK YOUR UNDERSTANDING

55. Explain the relationships among SGML, HTML, and XML. What are their
corresponding stylesheet languages?

56. Why does XML work so hard to distinguish between content and presentation?

51. What are the four main components of XSL? What are their respective pur-
poses?

58. What is XHTML? How does it differ from “ordinary” HTML?
59. Explain the correspondence between XML documents and trees.

60. What does it mean for an XML document to be well formed?
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Figure 1426 Rendered version of the HTML in Figure C-14.25.

6l.

62.
63.

Explain the distinctions (syntactic and semantic) among elements, declara-
tions, and processing instructions in XML. Also explain the distinctions among
elements, tags, and attributes.

Summarize the execution model of XSLT. In a nutshell, how does it work?

Explain the difference between applying templates and calling them in XSLT.
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Exercises

14.19 Modify the XSLT of Figure C-14.24 to do one or more of the following:

14.20

c-270

)

Alter the titles of conference papers so that only first words, words
that follow a dash or colon (and thus begin a subtitle), and proper
nouns are capitalized. You will need to adopt a convention by which
the creator of the document can identify proper nouns.

Sort entries by the last name of the first author or editor. You will
need to adopt a convention by which the creator of the document can
identify compound last names (“von Neumann,” for example, should
be alphabetized under V).

Allow bibliographic entries to contain an abstract element, which
when formatted appears as an indented block of text in a smaller font.

In addition to the book, article, and inproceedings elements, add
support for other kinds of entries, such as manuals, technical reports,
theses, newspaper articles, web sites, and so on. You may want to
draw inspiration from the categories supported by BIBTEX [Lam94,
App. BJ.

Format entries according to some standard style convention (e.g.,
that of the Chicago Manual of Style [www.chicagomanualofstyle.org/
16/chi14/ch14_toc.html] or the ACM Transactions [www.acm.org/
publications/article-templates/acm-latex-style-guide]).

Suppose bibliographic entries in Figure C-14.23 contain a mandatory key
element, and that other documents can contain matching cite elements.
Create an XSLT script that imitates the work of BibTgX. Your script should

)

read an XML document, find all the cite elements, collect the keys
they contain, and replace them with bibref elements that contain
small integers instead.
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14.6 Exercises c-271

(b) read a separate XML bibliography document, extract the entries with
matching keys, and write them, in sorted order, to a new (and proba-
bly smaller) bibliography.

The small numbers in the bibref elements of the new document from (a)
should match the corresponding numbered entries in the new bibliogra-
phy from (b).

Write a program that will read an XHTML file and print an outline of its

contents, by extracting all <title>, <h1>, <h2>, and <h3> elements, and
printing them at varying levels of indentation. Write

() inCorJava

(b) in sed or awk

(¢) in Perl, Python, Tcl, or Ruby
(d) in XSLT

Compare and contrast your solutions.
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Explorations

Learn more about DTDs and XML Schemas. Compare the DTD and XML
Schema definitions of XHTML. What appear to the prospects for migrat-
ing to the newer specification language?

Academics often keep lists of publications in multiple places and formats:
an on-line web page, a printable resume, a BIBTEX database for paper writ-
ing [Lam94, App. B]. Using XSLT, build a set of tools that will construct
these lists automatically from a single XML source file.

Learn about XSL-FO. Use it to reimplement Example C-14.85. Your new
version should be a two-stage process: one XSLT script should add for-
matting tags to the XML bibliography; a second should convert the tagged
bibliography to XHTML. Try to make these stages as general as possible:
you should be able to modify the appearance of the output list by changing
the first script only. You should also be able to write alternative versions
of the second script that generate output in formats other than XHTML
(e.g., LaTeX).

Learn more about the history of W3C and WHATWG. What are the com-
parative advantages and disadvantages of their approaches to standardiza-
tion? Do you find yourself more in sympathy with one approach or the
other? How large are the technical differences between the most recent
versions of the HTML standards? Are these differences significant enough
to pose a problem for web developers?
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[5.2. GIMPLE and RTL

Traditionally, all machine-independent code improvement in gcc was based on
RTL. Over time it became clear that the IF had become an obstacle to further im-
provements in the compiler, and that a higher-level form was needed. GIMPLE
was introduced to meet that need. As of gcc v.4.9, GENERIC is used for seman-
tic analysis and, in a few cases, for certain language-specific code improvement.
As its final task, each front end converts the program from GENERIC into GIM-
PLE. Depending on the requested level of code improvement, the “middle end”
may perform over 140 phases of code improvement and transformation on the
GIMPLE representation, after which it converts to RTL and performs as many
as 70 additional phases before handing the result to the back end for target code
generation.

Both GIMPLE and RTL are meant to be kept in memory across compiler
phases, rather than being written to a file. Both IFs have a human-readable exter-
nal format, which the compiler can write and (partially) read, but this format is
not needed by the compiler: the internal version is much better suited for auto-
matic manipulation.

GIMPLE

The GIMPLE code generated by a gcc front end is essentially a distillation of
GENERIC, with many of the most complex (and often language-specific) features
“lowered” into a smaller, common set of tree node types. As a simple example,
consider the gcd program of Example 1.20:
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int main () {

int i = getint();

int j = getint();

while (i !'= j) {
if A>3 i=1-3;
else j = j - 1i;

}

putint(i);

Figure C-15.11 illustrates the “high GIMPLE” produced by the C front end of
gece 4.8 when given this program as input. If we compare this GIMPLE code to
Figure 15.2, which loosely! resembles GENERIC, we see at least two significant
differences. First, all of the nodes that comprise a subroutine appear on a sin-
gle list, with control flow represented by explicit gotos and by true and false
branches for conditions. Second, both conditions and assignments have been de-
signed to capture an embedded binary expression, allowing us in many cases to
collapse a small subtree into a GIMPLE single node.

Over the course of its many phases, the gcc middle end will make many ad-
ditional changes to this code, not only to improve its quality but also to further
lower its level of abstraction. This “flattening” of the tree makes it easier to trans-
late into RTL.

Perhaps the most significant transformation of GIMPLE is the conversion to
static single assignment (SSA) form. We will study SSA in more detail in Sec-
tion C-17.4.1. Briefly, the SSA conversion introduces extra variable names into
the program in such a way that nothing is ever written in more than one place.
If there are 10 assignments to variable foo in the source code, there will be (at
least) 10 separate variables fooy, ..., foojp in SSA. When control paths merge
(e.g., after an if...then...else), versions of a variable arriving on different
paths are combined, using a hypothetical “phi function” to create yet another
version (foo;; := ¢ (fooy, foo,)). As in functional programming languages, the
single-assignment character of SSA means that expressions are referentially trans-
parent—independent of evaluation order. Referential transparency significantly
simplifies many forms of code improvement.

RTL

RTL is loosely based on the S-expressions of Lisp. Each RTL expression consists
of an operator or expression type and a sequence of operands. In its external
form, these are represented by a parenthesized list in which the element immedi-
ately inside the left parenthesis is the operator. Each such list is then embedded

I Unlike the informal notation of Figure 15.2, GENERIC and GIMPLE make no distinction be-
tween syntax tree nodes and symbol table nodes. In effect, the symbol table is merged into the
syntax tree.
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bind
int — . call

int
l | /F call
i .

i (getint) (i) /Fgot_o\
(getint)  (j) "

" label
= )
assign

= ) ()

" label
= .
assign

2660 T label
cond

"~ label

—
call

(putint)  (void) (i)

Figure I5.11  Simplified GIMPLE for the gcd program. The left child of the bind node holds
local symbol table information; references to this information—and to global functions getint
and putint—are indicated in the rest of the figure with parenthesized names. The first child of a
call node names the function, the second the place to assign the return value, and the rest the
arguments. An assign node with children (op, a, b, ¢) represents the assignment a := b op c.
In each condition node, the first three children are a comparison operator and its operands; the
last two are pointers to the subtrees for the outcomes true and false.

in a wrapper that points to predecessor and successor expressions in linear or-
der. Internally, RTL expressions are represented by C structs and pointers. This
pointer-rich structure constitutes the interface among the compiler’s many back-
end phases. There are several dozen expression types, including constants, refer-
ences to values in memory or registers, arithmetic and logical operations, com-
parisons, bit-field manipulations, type conversions, and stores to memory or reg-
isters.
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An RTL insn sequence

The body of a subroutine consists of a sequence of RTL expressions. Each
expression in the sequence is called an insn (instruction). Each insn begins
with one of six special codes:

insn: an “ordinary” RTL expression.

jump_insn: an expression that may transfer control to a label.
call_insn: an expression that may make a subroutine call.
code_label: a possible target of a jump.

barrier: an indication that the previous insn always jumps away. Control will
never “fall through” to here.

note: a pure annotation. There are nine different kinds of these, to identify the
tops and bottoms of loops, scopes, subroutines, and so on.

The sequence is not always completely linear; insns are sometimes collected
into pairs or triples that correspond to target machine instructions with delay
slots. Over a dozen different kinds of (non-note) annotations can be attached to
an individual insn, to identify side effects, specify target machine instructions or
registers, keep track of the points at which values are defined and used, automat-
ically increment or decrement registers that are used to iterate over an array, and
so on. Insns may also refer to various dynamically allocated structures, including
the symbol table.

A simplified insn sequence for the code of Example C-15.19 appears in Fig-
ure C-15.12. The three leading numbers in each insn represent the insn’s unique
id and those of its predecessor and successor, respectively. The fourth, when
present, identifies the insn’s basic block. Fields for the various insn annota-
tions are not shown. The :SI mode specifier on a memory or register reference
indicates access to a single (4-byte) integer; :DI and :QI modes correspond to
double (8-byte) and quarter (1-byte) integers.

A full explanation of the RTL notation is beyond what we can cover here. As an
example, however, insn 26 loads the memory location found 4 bytes back from
the frame pointer (namely, i) into virtual register 64. The following insn, 27,
sets the memory location found 8 bytes back from the frame pointer (namely,
j) to the result of subtracting register 64 from that same memory location. In
parallel (as a side effect), insn 27 also “clobbers” (overwrites) the contents of
virtual condition code register 17.

In order to generate target code, the back end matches insns against patterns
stored in a semiformal description of the target machine. Both this description
and the routines that manipulate the machine-dependent parts of an insn are
segregated into a relatively small number of separately compiled files. As a result,
much of the compiler back end is machine independent, and need not actually be
modified when porting to a new machine.
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(insn 5 2 6 2 (set (reg:QI O ax) (const_int 0)))
(call_insn 6 5 7 2 (set (reg:SI 0 ax) (call (mem:QI (symbol_ref:DI ("getint"))) (comst_int 0))))
(insn 7 6 8 2 (set (reg:SI 60) (reg:SI 0 ax)))
(insn 8 7 9 2 (set (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4))) (reg:SI 60)))
(insn 9 8 10 2 (set (reg:QI 0 ax) (comst_int 0)))
(call_insn 10 9 11 2 (set (reg:SI 0 ax) (call (mem:QI (symbol_ref:DI ("getint"))) (comst_int 0))))
(insn 11 10 12 2 (set (reg:SI 61) (reg:SI 0 ax)))
(insn 12 11 13 2 (set (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8))) (reg:SI 61)))
(jump_insn 13 12 14 2 (set (pc) (label_ref 28)))
(barrier 14 13 30)
(code_label 30 14 15 4 4 "")
(insn 16 15 17 4 (set (reg:SI 62) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))))
(insn 17 16 18 4 (set (reg:CCGC 17)
(compare:CCGC (reg:SI 62) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8))))))

(jump_insn 18 17 19 4 (set (pc) (if_then_else (le (reg:CCGC 17) (comst_int 0)) (label_ref 24) (pc))))
(insn 20 19 21 5 (set (reg:SI 63) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8)))))
(insn 21 20 22 5 (parallel [

(set (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))

(minus:SI (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4))) (reg:SI 63)))

(clobber (reg:CC 17))
ID))
(jump_insn 22 21 23 5 (set (pc) (label_ref 28)))
(barrier 23 22 24)
(code_label 24 23 25 6 3 "")
(insn 26 25 27 6 (set (reg:SI 64) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))))
(insn 27 26 28 6 (parallel [

(set (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8)))

(minus:SI (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8))) (reg:SI 64)))

(clobber (reg:CC 17))
ID))
(code_label 28 27 29 7 2 "")
(insn 31 29 32 7 (set (reg:SI 65) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))))
(insn 32 31 33 7 (set (reg:CCZ 17)

(compare:CCZ (reg:SI 65) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8))))))

(jump_insn 33 32 34 7 (set (pc) (if_then_else (ne (reg:CCZ 17) (const_int 0)) (label_ref 30) (pc))))
(insn 35 34 36 8 (set (reg:SI 66) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))))
(insn 36 35 37 8 (set (reg:SI 5 di) (reg:SI 66)))
(call_insn 37 36 40 8 (call (mem:QI (symbol_ref:DI ("putint"))) (comst_int 0)))
(insn 40 37 41 8 (clobber (reg/i:SI 0 ax)))
(insn 41 40 39 8 (clobber (reg:SI 59 [ <retval> ]1)))
(insn 39 41 42 8 (set (reg/i:SI 0 ax) (reg:SI 59 [ <retval> ])))
(insn 42 39 0 8 (use (reg/i:SI 0 ax)))

Figure 15.12  Simplified textual RTL for the gcd program. Most annotations (more than half the original length) have been
elided here. Register 54 is the frame pointer. Local variable i is at offset —4. Local variable j is at offset —8.
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\/CHECK YOUR UNDERSTANDING

25.

26.
17.
28.

Characterize GIMPLE, RTL, Java bytecode, and Common Intermediate Lan-
guage as high-, medium-, or low-level intermediate forms.

Name three languages (other than C) for which there exist gcc front ends.
What is the internal IF of gcc’s front ends?

Give brief descriptions of GIMPLE and RTL. How do they differ? Why was
GIMPLE introduced?
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Dynamic Linking

To be amenable to dynamic linking, a library must either (1) be located at the
same address in every program that uses it, or (2) have no relocatable words in its
code segment, so that the content of the segment does not depend on its address.
The first approach is straightforward but restrictive: it generally requires that we
assign a unique address to every sharable library; otherwise we run the risk that
some newly created program will want to use two libraries that have been given
overlapping address ranges. In Unix System V R3, which took the unique-address
approach, shared libraries could only be installed by the system administrator.
This requirement tended to limit the use of dynamic linking to a relatively small
number of popular libraries. The second approach, in which a shared library can
be linked at any address, requires the generation of position-independent code. It
allows users to employ dynamic linking whenever they want, without adminis-
trator intervention.

The cost of user-managed dynamic linking is that executable programs are no
longer self-contained. They depend for correct execution on the availability of
appropriate dynamic libraries at execution time. If different programs are built
with different expectations of (which versions of ) which libraries will be available,
conflicts can arise. On Microsoft platforms, where dynamic libraries have names
ending in .d11, compatibility problems are sometimes referred to as “DLL hell.”
The frequency and severity of the problem can be minimized with good software
engineering practice. In particular, a package management system may maintain a
database of dependences between programs and libraries, and among the libraries
themselves. If installer programs use the database correctly, problems will be de-
tected at install time, when they can reasonably be addressed, rather than at the
arbitrarily delayed point at which a program first attempts to use an incompatible
or missing library.
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exampLe |5.21
PIC under x86/Linux

[5.7.] Position-Independent Code

A code segment that contains no relocatable words is said to constitute position-
independent code (PIC). To generate PIC, the compiler must observe the following
rules:

I. Use PC-relative addressing, rather than jumps to absolute addresses, for all
internal branches.

2. Similarly, avoid absolute references to statically allocated data, by using dis-
placement addressing with respect to some standard base register. If the code
and data segments are guaranteed to lie at a known offset from one another,
then the program counter can be used for this purpose. Otherwise, the caller
must initialize some other base register as part of the entry point’s calling se-
quence.

3. Use an extra level of indirection for every control transfer out of the PIC seg-
ment, and for every load or store of static memory outside the corresponding
data segment. The indirection allows the (non-PIC) target address to be kept
in the data segment, which is private to each program instance.

Exact details vary among processors, vendors, and operating systems. Conventions
for gcc on recent versions of x86 Linux are illustrated in Figure C-15.13. Each
code segment is accompanied by a linkage table—known in Linux as the seg-
ment’s global offset table (GOT). This table lists the locations of all code and data
whose addresses were not statically determined. All processes that use the same
library share a single copy of the library’s code segment, but each process has its
own copy of the library’s GOT. Both the code segment and the GOT can lie at dif-
ferent locations in the address spaces of different processes, but the offset between
the two must always be the same.

Like the main program, each shared library is typically composed of multiple
compilation units, joined together by a static linker, which resolves internal refer-
ences. Resolution of references from the main program into shared libraries—or
among the libraries themselves—is delayed until load time or run time, and is the
job of the dynamic linker. By construction, shared libraries never make references
back into the main program.

Libraries are permitted to have (process-private) data as well as code, but the
total amount of such data is assumed (in Linux, at least) to be small enough that
the data can be statically linked without wasting significant space. Each process
therefore has a single data segment (shown in the figure at the lower left), con-
taining the data of the main program and of all the libraries it may call, directly
or indirectly. (Extensions to delay the linking of library data are considered in
Exercise C-15.14.)

Focusing for the moment on the dashed arrows of the figure (and ignoring
the dotted arrows), a read of X or Y in main can use a statically resolved address.
A read of X or Y in foo uses PC-relative addressing to find the appropriate slot
in foo’s GOT, and then loads X or Y indirectly. Similar indirection is required



PLT
for <
main

GOT
for
main

Data
segment

Main program
(addresses all statically known)

int X;
extern int Y;

main:
--load
eax :

o>
>

--load Y:

eax := Y
--foo():

call foo_stub

foo_stub:
jmp *foo_ptr
push A < 1.
jmp t1 '

tl:
push GOT_main
jmp linker

A

foo_ptr: |

15.7.1 Position-Independent Code

Dynamically linked
shared library

int Y;
extern int X;
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--bar():
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Shared code

[ (PIC)
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- foo
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GOT for foo
> (separate copy
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Figure [5.13 A dynamically linked shared library. Calls to foo and bar are made indirectly, using an address stored in the
global offset tables (GOTs) of main and foo, respectively. Similarly, references to global variables X and Y, when made from
foo, must employ a level of indirection. Resolved values are shown with dashed lines; initial values to support lazy linking
(Section C-15.7.2) are shown with dotted lines. In the prologue of foo, register ebx is set to point to foo's GOT, using
pc-relative arithmetic.

for subroutine calls into dynamically linked libraries. To avoid duplication of
the indirection code, the compiler incorporates a (shared, read-only) procedure
linkage table (PLT) in each code segment. To effect a call to foo, main calls
a stub routine, here named foo_stub. This, in turn, performs an indirect jump
to the address of foo found in main’s GOT. Inside foo, the call to bar is only
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EXAMPLE |522

PC-relative addressing on
the x86

EXAMPLE |523

Dynamic linking in Linux
on the x86

slightly more complicated: the compiler must use PC-relative addressing to find
the appropriate slot in foo’s GOT.

Most machines—including the x86—can perform branches and calls using
PC-relative addressing. In our Linux example (Figure C-15.13), the machine-
language encoding of call bar_stub in library foo will specify the offset be-
tween the call instruction and the bar_stub location in foo’s PLT.

Many machines can also use PC-relative addressing in load and store instruc-
tions. On the x86-64, for example, the load of X in foo could say rax := *(rip
+ G), where G is the offset from the load instruction to X’s entry in foo’s GOT
(on the x86-64, rip [instruction pointer register] is the name of the program
counter). Unfortunately, the x86-32 does not support PC-relative addressing for
loads and stores. To compensate, each PIC code segment on x86-32 Linux defines
the following tiny subroutine:

get_pc:
ebx := *esp -- load location referred to by esp
ret -- i.e., the return address -- into ebx

Given this definition, the pseudo-instruction ebx := pc + Bin Figure C-15.13
can be implemented as

call get_pc
ebx += B

after which ebx can be used as the base for displacement addressing within foo’s
GOT.

[5.7.2 Fully Dynamic (Lazy) Linking

If all or most of the symbols exported by a shared library were always referenced
by the parent program, it might make sense to link the library in its entirety at
load time. When the program began running, its GOTs would then appear as
suggested by the dashed arrows in Figure C-15.13. Certain systems indeed work
in this fashion. In any given execution of a program, however, there may be ref-
erences to libraries that are not actually used, because the input data never cause
execution to follow the code path(s) on which the references appear. If these
“potentially unnecessary” references are numerous, we may avoid a significant
amount of work by linking the library lazily on demand. Moreover even in a
program that uses all its symbols, incremental lazy linking may improve the sys-
tem’s interactive responsiveness by allowing programs to begin execution faster. A
language system that allows the dynamic creation or discovery of program com-
ponents (e.g., as in Common Lisp or Java) must also use lazy linking to delay the
resolution of external references in dynamically compiled components.

When a Linux program first starts running, the data entries in its GOTs are
indeed initialized as previously discussed; all addresses are known, because data
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locations are statically assigned. Code entries in the GOTs, however, point back
into the corresponding PLTs, as suggested by the dotted arrows in Figure C-15.13.

Now consider what happens when main calls foo_stub. The foo_ptr entry
in main’s GOT points to the second instruction of foo_stub—immediately after
the indirect jump. That jump, in other words, ends up targeting the very next
instruction, as if it had not happened at all. The next instruction, for its part,
pushes onto the stack the offset of foo’s entry in main’s GOT. It then jumps
(using PC-relative addressing) to a special entry in the PLT. This entry in turn
pushes the address of main’s GOT and jumps to the dynamic linker, whose ad-
dress is statically known. The dynamic linker consults symbol table information
found in main’s executable file. Specifically, it looks up the GOT address and oft-
set that were passed to it on the stack and discovers that they correspond to foo. It
chooses a place for foo in the process’s address space, creates a (process-specific)
foo GOT at the appropriate offset (using symbol table information from foo’s
own object file), initializes any data locations in that GOT to point to appropriate
locations in the process’s data segment, and initializes code locations in the GOT
to point to the second instructions of the corresponding entries in foo’s PLT.

Now that foo has been given a location in the process’s address space, the dy-
namic linker can modify foo’s entry in main’s PLT so that subsequent calls from
main to foo will skip the linking step, and instead follow the single indirection
suggested by the dashed arrow in Figure C-15.13. Last of all, the linker pops its
arguments from the stack (leaving the return address pushed by main in its orig-
inal call to foo_stub) and branches directly to foo. When foo completes, it will
return to the correct address in main.

If and when foo calls bar, a similar series of events will take place. The prin-
cipal difference is that both the body of foo and the stubs in its PLT must use
PC-relative addressing to access entries in foo’s GOT.

\/CHECK YOUR UNDERSTANDING
19. Explain the addressing challenge faced by dynamic linking systems.

30. What is position-independent code? What is it good for? What special precau-
tions must a compiler follow in order to produce it?

31. Explain the need for PC-relative addressing in position-independent code.
How is it accomplished on the x86-32?

3. What is the purpose of a linkage table?
33. What is lazy dynamic linking? What is its purpose? How does it work?
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15.13

15.14

5.15
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Exercises

Compare and contrast GIMPLE with the notation we have been using for
syntax tree attribute grammars (Section 4.6).

PC-relative branches on many processors are limited in range—they can
only target locations within 2* bytes of the current PC, for some k less
than the wordsize of the machine. Explain how to generate position-
independent code that needs to branch farther than this.

We have noted that Linux creates a single data segment containing all the
static data of libraries that might be called (directly or indirectly) by a given
program. The space required for this segment is usually not a problem:
most libraries have little static data—often none at all. Suppose this were
not the case. If we wanted to perform dynamic linking for modules with
large amounts of per-module static data, how could we extend Linux’s
dynamic linking mechanisms to perform fully dynamic (lazy) linking not
only of code, but also of data?

In Example C-9.61 we described how the GNU Ada Translator (gnat) for
the x86 uses dynamically generated code to represent a subroutine closure.
Explain how a similar technique could be used to simplify the mechanism
of Figure C-15.13, if we were willing to modify code segments at run time.
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15.21

15.22

15.23

15.24

15.25

Explorations

Find the on-line documentation for gcc, which explains both GIMPLE
and RTL, and enumerates command-line flags that will cause the com-
piler to dump its intermediate forms to standard output. (Version 4.8.4 of
the compiler supports 26 such flags for GIMPLE and 67 for RTL.) Using
appropriate flags and a small but nontrivial input program, arrange for
the compiler to dump several versions of both GIMPLE and RTL. Study
the output and describe how it has been changed by the intervening code
improvement phases.

Find out how linking works under your favorite non-Linux system. Can
code be dynamically linked? Can (nonprivileged) users create shared li-
braries? How does the loader or dynamic linker determine which li-
braries a program will need? How does it locate their object code? If
your compiler can generate both position-independent and non-position-
independent code, how do the two compare in size and run-time effi-
ciency?

Learn about pointer swizzling [Wil92a], originally developed to run pro-
grams on machines with insufficient virtual address space. Explain its con-
nection to dynamic linking.

Learn about ASIS, the Ada Semantic Interface Specification. How does it
improve on tools based on the earlier Diana notation? How does it work
in gnat?

We have had occasion in several previous sections to refer to the LLVM
compiler suite. Much of the early work on LLVM revolved around its low-
level IF, from which the system takes its name (Low Level Virtual Ma-
chine). Learn about this IF. How does it compare to RTL?
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[6.1.2 The Common Language Infrastructure

Work on the system that became the Common Language Infrastructure (CLI) be-
gan at Microsoft Corporation in the late 1990s, and was able to benefit from expe-
rience with Java and the JVM, which were already well established. The most sig-
nificant differences between the virtual machines, however, stem from Microsoft’s
emphasis on cross-language interoperability—an emphasis that predates the JVM
by many years.

Growing out of earlier work on the DDE, OLE, COM, ActiveX, and DCOM
projects, the beta version of .NET was released in 2000. In addition to a virtual
machine, it includes libraries, servers, and tools for a wide variety of local and
distributed services, including user interface management, database access, net-
working, and security. A specification for the virtual machine—the CLI—was
standardized by ECMA in 2001 and by the ISO in 2003. The standard has been
updated several times over the years; version 6 was released in June 2012 [Int12a].

Perhaps the most significant contribution of the CLI is the definition of a Com-
mon Type System (CTS) for all supported languages. Encompassing nearly every-
thing described in Chapters 8 and 10 of this book, the CTS provides a superset
of what any particular language needs, while requiring common semantics and
implementation wherever the type systems of more than one language intersect.
In addition to the CTS, the CLI defines a virtual machine architecture, the VES
(Virtual Execution System); an instruction set for that machine, the CIL (Com-
mon Intermediate Language); and a portable file format for code and metadata,
PE (Portable Executable) assemblies.

C# is in some sense the premier language for .NET, and was developed concur-
rently with it. Several dozen languages have been ported to the CLI, however, and
several of these, including Visual Basic, C++, and JScript, are now in widespread
use. Several interesting challenges for the CTS were raised by the development of
F#, an ML descendant designed by Microsoft and introduced in 2005.

Thanks to the ECMA/ISO standard, it is possible for organizations other than
Microsoft to build implementations of the CLI. The leading such implementation
is the open-source Mono project, led by Xamarin, Inc. Mono runs on a wide
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variety of platforms, but tends to lag slightly behind .NET in the addition of new
features. Outside Microsoft, Java and the JVM still dominate. Within Microsoft,
most new development today employs C#. Microsoft calls its CLI implementation
the Common Language Runtime (CLR); it refers to CIL as Microsoft Intermediate
Language (MSIL).

Architecture and Comparison to the JVM

In many ways, the CLI resembles the JVM. Both systems define a multithreaded,
stack-based virtual machine, with built-in support for garbage collection, excep-
tions, virtual method dispatch, and mix-in inheritance. Both represent programs
using a platform-independent, self-descriptive, bytecode notation. For languages
like C#, the CLI provides all the safety of the JVM, including definite assignment,
strong typing, and protection against overflow or underflow of the operand stack.

The biggest contrasts between the JVM and CLI stem from the latter’s support
for multiple programming languages (the following is not a comprehensive list).

Richer Type System The Common Type System (discussed below) supports both
value and reference variables of structured types (the JVM is limited to ref-
erences). The CTS also has true multidimensional arrays (allocated, contigu-
ously, as a single operation); function pointers; explicit support for generics;
and the ability to enforce structural type equivalence.

DESIGN & IMPLEMENTATION

[6.7 Assuming a just-in-time compiler

Like the JVM, the CLI has behavior defined in terms of an abstract virtual ma-
chine. Where Java’s virtual machine may in practice be either interpreted or
just-in-time compiled, however, the CLI was designed from the outset for just-
in-time compilation. Several minor differences between the virtual machines
reflect this difference in expected implementations. Arithmetic instructions
in Java bytecode generally include an explicit indication of operand type: there
are, for example, four separate opcodes for 32- and 64-bit integer and floating-
point addition. In the CLI’s Common Intermediate Language (CIL), there is
only one add instruction: it figures out what to do based on the types of its
operands. In type-safe code, of course, the type of every operand is statically
known, and either a compiler or an interpreter can inspect the types of argu-
ments and figure out what to do. The compiler, however, only has to do this
once, at compile time; the interpreter has to do it every time it encounters the
instruction. In a similar vein, slots in the local variable array of the CLI VES
can be of arbitrary size, and are required to hold a value of a single, statically
known type throughout the execution of the method. For the sake of space
efficiency and rapid indexing, the JVM reserves exactly 32 bits for every slot
(longs and doubles take two consecutive slots), and a given slot can be used
for values of different types at different points in time.
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Richer Calling Mechanisms To facilitate the implementation of functional lan-
guages, the CLI provides explicit tail-recursive function calls (Section 6.6.1);
these discard the caller’s frame while retaining the dynamic link. The CLI also
supports both value and reference parameters, variable numbers of parame-
ters (in the fully general sense of C), multiple return values, and nonvirtual
methods, all of which the JVM lacks.

Unsafe Code For the benefit of C, C++, and other non-type-safe languages, the
CLI supports explicitly unsafe operations: nonconverting type casts, dynamic
allocation of non-garbage-collected memory, pointers to non-heap data, and
pointer arithmetic. The CLI distinguishes explicitly between verifiable code,
which cannot use these features, and unverifiable code, which can. (Verifiable
code must also follow a host of other rules.)

Miscellaneous Again for the sake of multiple languages, the CLI supports global
data and functions, local variables whose shapes and sizes are not stati-
cally known, optional detection of arithmetic overflow, and rich facilities for
“scoped” security and access control.

As in the JVM, every CLI thread has a small set of base registers and a stack
of method call frames, each of which contains an array of local variables and an
operand stack for expression evaluation. Each frame also contains a local memory
pool for variables of dynamic and elaboration-time shape. Incoming parameters
have their own separate space in the CLI; in the JVM they occupy the first few
slots of the local variable array.

The Common Type System

The VES and CIL provide instructions to manipulate data of certain built-in
types. A few additional types are predefined, and have built-in names in CLI
metadata. To these, the CTS adds a wide variety of type constructors. For each,
it defines both behavior and representation. No single language provides all the
types of the CTS, but (with occasional compromises) each provides a subset.

The Common Language Specification (CLS) defines a subset of the CTS
intended for cross-language interaction. It omits several type constructors
provided by the CTS, and places restrictions on others. Standard libraries (col-
lection classes, XML, network support, reflection, extended numerics) restrict
themselves (with occasional exceptions) to types in the CLS. Not all languages
support the full CLS; code written in those languages cannot make use of library
facilities that require unsupported types.

Built-in Types The VES and CIL provide instructions to manipulate the follow-
ing types:
Integers in 8-, 16-, 32-, and 64-bit lengths, both signed and unsigned

“Native” integers, of the length supported by the underlying hardware, again
both signed and unsigned
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IEEE floating point, both single and double precision
Object references and “managed” pointers

Managed pointers are different from references: while typed, they don’t neces-
sarily point to the beginning of a dynamically created object. Specifically, they can
refer to fields within an object or to data outside the heap. The CIL makes sure
these pointers are known to the garbage collector, which must avoid reclaiming
any object O when a managed pointer refers to a field inside O. More details on
pointers and references can be found in Sidebar C-16.8.

Beyond the basic hardware-level types, CLI metadata treats Booleans, char-
acters, and strings as built-ins. Booleans and characters are manipulated in the
VES using instructions intended for short integers; strings are manipulated by
accessing their internal structure.

Constructed Types To the built-in types, the CTS adds the following:

Dynamically allocated instances of class, interface, array, and delegate types.
These are the things to which references (the built-in type) can refer. Arrays
can be multidimensional, and are stored in row-major order. Delegates are
closures (subroutine references paired with referencing environments).

Methods — function types.

Properties — getters and setters for objects.

Events — lists of delegates, associated with an object, that should be called in re-
sponse to changes to the object.

Value types — records (structures), unions, and enumerations.

Boxed value types — values embedded in a dynamically allocated object so that
one can create references to them.

Function pointers — references to static functions: type-safe, but without a refer-
encing environment.

Typed references — pointers bundled together with a type descriptor, used for
C-style variable argument lists.

Unmanaged pointers — as in C, these can point to just about anything, and sup-
port pointer arithmetic. They cannot point to garbage-collectible objects (or
parts of objects) in the heap.

With these type constructors come extensive semantic rules, covering such top-
ics as identity and equality,! casting and coercion, scoping and visibility, mix-in
inheritance, hiding and overriding of members, memory layout, initialization,
type safety, and verification. The details occupy hundreds of pages in the CLI
documentation.

I These are reminiscent of the relationships tested by eq and eqv in Scheme, as discussed in Sec-
tions 7.4 and 11.3.3.
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The Common Language Specification Because no single language imple-
ments the entire CTS, one cannot use arbitrary CTS types in a general-purpose
interface intended for use from many different languages. The Common Lan-
guage Specification (CLS) defines a subset of the CTS that most (though not all)
languages can accommodate. Among other things, it omits several of the types
provided by the CTS, including signed 8-bit integers; unsigned native, 16-, 32-,
and 64-bit integers; boxed value types; global static fields and methods; unman-
aged pointers; typed references; and methods with variable numbers and types
of arguments. The CLS also imposes a variety of restrictions on the use of other
types. It establishes naming conventions, limits the use of overloading, and de-
fines the operators and conversions that programs can assume are supported on
built-in types. It requires a lower bound of zero on each dimension of array in-
dexing. It prohibits fields and static methods in interfaces. It insists that a con-
structor be called exactly once for each created object, and that each constructor
begin with a call to a constructor of its base class. None of these restrictions ap-
plies to program components that operate only within a given language.

Generics As described in Section C-7.3.2, generics were added to Java and C#
in very different ways. Partly to avoid the need to modify the JVM, Java generics

DESIGN & IMPLEMENTATION

16.8 References and pointers

The reference and pointer types of the CTS are a source of potential confu-
sion. In a language like Java, reference types provide the only means of indi-
rection. They refer to dynamically allocated instances of class, interface, and
array types. Managed pointers provide additional functionality for languages
like C# and Microsoft’s C++/CLI (formerly Managed C++), which permit ref-
erences to the insides of objects and to values outside the CLI heap. Managed
pointers are understood by the garbage collector, and can be used in type-safe
code: If a managed pointer p refers to a field of object O, then the collector will
know that O is live. It will also update p automatically whenever it moves O.

Unmanaged pointers exist for the sake of languages like C. They are incom-
patible with garbage collection, and cannot point to objects in the heap. They
are also incompatible with type safety, and cannot be used in verifiable code.

Typed references (typedrefs) in the CLI include the information needed
to correctly manipulate references to values (e.g., in variable argument lists)
whose type cannot be statically determined.

Version 2.0 of the CLI introduced controlled-mutability managed pointers
(also known, somewhat inaccurately, as read-only pointers). Operations on
these pointers are constrained to prevent modification of the referenced ob-
ject. Read-only pointers are used in boxing and array contexts where generics
require the ability to generate a pointer to data of a value type, but modifica-
tion of that data might not be safe.
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were defined in terms of type erasure, which effectively converts all generic types
to Object before generating bytecode. C# generics were defined in terms of reifi-
cation, which creates a new concrete type every time a generic is instantiated with
different arguments. Reified generics have been supported directly by the CLI
since .NET version 2.0, introduced by Microsoft in 2005 and codified by ECMA
and ISO in 2006.

Reified generic types are fully described in CLI metadata, allowing full type
checking and reflection. Consider the following code in C#:

class Node<T> {

public T val;

public Node<T> next;
}

Node<int> n = new Node<int>();
Console.WriteLine(n.GetType() .ToString());

If Node is an outermost class, the final line will print Node~1[System.Int32].
The equivalent code in Java (running on the JVM) will simply print class Node.
To support generics, CLI version 2 extended the rules for type compatibility and
verification, and introduced new versions of several CIL instructions.

Metadata and Assemblies

Portable Executable (PE) assemblies are the rough equivalent of Java . jar files:
they contain the code for a collection of CLI classes. PE is based on the Common
Object File Format (COFF), originally developed for AT&T’s System V Unix. It is
the native object file format for Windows and DOS systems, extended to accom-
modate CIL as an optional instruction set. Given the requirements of native-code
executable files (e.g., relocation—see Section 15.4), PE is quite a bit more com-
plicated than Java .class and .jar format. A PE assembly contains a general-
purpose PE header, a special CLI header, metadata describing the assembly’s types
and methods, and CIL code for the methods.

The metadata of an assembly has a complex internal structure. (A diagram
of the interconnections among some two dozen different kinds of tables fills two
pages of the annotated CLI standard [MRO04, pp. 322-323].) The metadata begins
with a manifest that specifies the files included and directly referenced, the types
exported and imported, versioning information, and security permissions. This
is followed by descriptions of all the types, and signatures for all the methods.
Unlike the Java constant pool, the metadata of an assembly is not directly visible to
the assembly’s code; it may be rearranged by the JIT compiler in implementation-
dependent ways, so long as it remains available to reflection routines at run time
(obviously, those routines are also implementation dependent).

The Common Intermediate Language

Just as the CLI VES bears a strong resemblance to the JVM, CIL bears a strong
resemblance to Java bytecode. Version 6 of the ECMA standard defines some
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219 instructions, most with single-byte opcodes. Most instructions take their ar-
guments from, and return results to, the operand stack of the current method
frame. Others take explicit arguments representing variables, types, or methods.
Java bytecode and CIL are similarly dense—they require roughly the same num-
ber of bytes per instruction on average.

Many of the differences between the two intermediate languages are essentially
trivial. Java bytecode is big-endian; CIL is little-endian. Java bytecode has explicit
instructions for monitor entry and exit; these are method calls in the CLI. CIL
allows arbitrary offsets for branches; Java bytecode limits them to 64K bytes.

A few more significant differences stem from the assumption that CIL will
always be JIT-compiled, as described in Sidebar C-16.7. The most obvious dif-
ference here is that Java bytecode encodes type information explicitly in opcodes,
while CIL requires it to be inferred from arguments. CIL also includes an explicit
instruction (1dtoken) that will push a “run-time handle” for a method, type, or
field. While the metadata of a CIL assembly must all be available at run time, its
format may be implementation dependent; the JIT compiler translates 1dtoken
into machine code consistent with that format. In the JVM, the class file constant
pool is assumed to be available at run time, in its standard format; an ordinary
“load constant” instruction suffices to push the desired reference.

A more subtle difference is the separation of arguments from local variables in
the CLI (they share one array in the JVM). Separate arrays admit special one-byte
load instructions for both the first few arguments and the first local variables,
without requiring that they have interleaved slots; this in turn may make it eas-
ier to generate object code in which arguments occupy contiguous locations in
memory (as, for example, in the argument build area of the stack described in
Section C-9.2.2).

Finally, as already suggested, several features of CIL, not found in Java byte-
code, stem from the need to support multiple source languages. We have noted
that the CLI provides value types, reference parameters, and optional overflow
checking on arithmetic; all of these are reflected in the CIL instruction set. There
are also several extra ways to make subroutine calls. Where Java bytecode sup-
ports only static, virtual, and dynamic method invocations, CIL has (1) non-
virtual method calls, as in C++ (these implicitly pass this, as virtual calls do);
(2) indirect calls (i.e., calls through function pointers); (3) tail calls, which discard
the caller’s frame; and (4) jumps, which redirect control to a method after execut-
ing some optional prologue (e.g., for this pointer adjustment in languages with
multiple inheritance; see Section C-10.6).

To illustrate CIL, let us return to the linked-list set of Example 16.3. The dec-
larations given there are valid in both Java and C#. The insert method for this
class appears in Figure C-16.7. C# source (which is again identical to the Java
version) is on the left; a symbolic representation of the corresponding CIL is on
the right. As in Example 16.3, there are many examples of special one-byte load
and store instructions (here specified with a .index suffix on the opcode), and of
instructions that operate implicitly on the operand stack.



public void insert(int v) {

node n = head;

while (n.next != null
&& n.next.val < v) {

n = n.next;
}
if (n.next == null
|| n.next.val > v) {

node t = new node();

t.val = v;

t.next = n.next;

n.next = t;

} // else v already in set

16.1.2 The Common Language Infrastructure

.method private hidebysig
instance default void insert (int32 v)

{

// Method begins at RVA 0x210c
// Code size 108 (0x6c) //
.maxstack 3

.locals init (
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cil managed

// RVA == relative
virtual address

class LLset/node V_o0, // n
class LLset/node v_1) // t
IL_0000: 1ldarg.0
IL_0001: 1dfld class LLset/node LLset::head
IL_0006: stloc.0
IL_0007: br IL_0013 // jump to header of rotated loop
IL_000c: 1ldloc.0O // n -- beginning of loop body
IL_000d: 1dfld class LLset/node LLset/node: :next
IL_0012: stloc.0 // n = n.next
IL_0013: 1ldloc.0 // n -- beginning of loop test
IL_0014: 1dfld class LLset/node LLset/node: :next
IL_0019: brfalse IL_002f // exit loop if n null
IL_001e: 1dloc.0 // n
IL_001f: 1dfld class LLset/node LLset/node: :next
IL_0024: 1dfld int32 LLset/node::val
IL_0029: ldarg.1l // v
IL_002a: blt IL_000c // continue loop
IL_002f: 1dloc.0 // n
IL_0030: 1dfld class LLset/node LLset/node::next
IL_0035: brfalse IL_004b
IL_003a: 1dloc.0 // n
IL_003b: 1dfld class LLset/node LLset/node::next
IL_0040: 1dfld int32 LLset/node::val
IL_0045: 1ldarg.1 // v
IL_0046: ble IL_006b
IL_004b: newobj instance void class LLset/node::'.ctor'()
IL_0050: stloc.1 // t
IL_0051: 1ldloc.1 /]t
IL_0052: 1ldarg.1 /] v
IL_0053: stfld int32 LLset/node::val
IL_0058: 1ldloc.1 //t
IL_0059: 1dloc.0 // n
IL_005a: 1dfld class LLset/node LLset/node::next
IL_005f: stfld class LLset/node LLset/node::next
IL_0064: 1dloc.0 // n
IL_0065: 1ldloc.1 //t
IL_0066: stfld class LLset/node LLset/node::next
IL_006b: ret

} // end of method LLset::

insert

Figure 16.7 C# source and CIL for a list insertion method. Output on the right was produced by the Mono project’s mcs
(compiler) and monodis (disassembler) tools, with additional comments inserted by hand. Note that the compiler has rotated
the test to the bottom of the while loop, which occupies lines IL_000c through IL_002a in the output code.
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Verification As we have noted, the CLI distinguishes between verifiable and un-
verifiable code. Verifiable code must satisfy a large variety of constraints that guar-
antee type safety and catch many common programming errors. In particular, the
VES can be sure that a verifiable program will never access data outside its logical
address space. Among other things, this guarantee ensures fault containment for
verifiable modules that share a single physical address space.

Unverifiable code can make use of unsafe language features (e.g., unions and
pointer arithmetic in C), but must still conform to more basic rules for validity
(well-formedness) of CIL. Together, the components of the VES (i.e., the JIT
compiler, loader, and run-time libraries) validate all loaded assemblies, and verify
those that claim to be verifiable. Any standard-conforming implementation of
the CLI must run all verifiable programs. Optionally, it may also run validated
but not verifiable programs.

As in the JVM, verification requires data flow analysis to check type consis-
tency and lack of underflow and overflow in the operand stack. The CLI stan-
dard requires verifiable routines to specify that all local variables are initialized to
zero. CLI implementations typically perform definite assignment data flow anal-
ysis anyway, to identify cases in which those initializations can safely be omitted.
The standard also requires numerous checks on individual instructions. Many of
these are also performed by the JVM. Local variable references, for example, are
statically checked to make sure they lie within the declared bounds of the stack
frame. Other checks stem from the presence of unsafe features in the CLI. Ver-
ifiable code cannot use unmanaged pointers or unions, for example, nor can it
perform most indirect method calls.

\/CHECK YOUR UNDERSTANDING

38. Summarize the architecture of the Common Language Infrastructure. Con-
trast it with the JVM. Highlight those features intended to facilitate cross-
language interoperability.

39. Describe how the choice of just-in-time compilation (and the rejection of
interpretation) influenced the structure of the CLI.

40. Describe several different kinds of references supported by the CLI. Why are
there so many?

41. What is the purpose of the Common Language Specification? Why is it only
a subset of the Common Type System?

4). Describe the CLI’s support for unsafe code. How can this support be recon-
ciled with the need for safety in embedded settings?
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[6.14

16.15

16.16

[6.17

Exercises

Using your local implementations of Java and C#, compile the code of
Figures 16.2 and C-16.7 all the way to machine language. Disassemble and
compare the results. Can all the differences be attributed to variations in
the quality of the compilers, or are any reflective of more fundamental
differences between the source languages or virtual machines?

Rewrite the list insertion method of Example C-16.40 in F# instead of C#.
Compile to CIL and compare to the right side of Figure C-16.7. Discuss
any differences you find.

Building on the previous exercise, rewrite your list insertion routine (both
C# and F# versions) to be generic in the type of the list elements. Compare
the generic and nongeneric versions of the resulting CIL and discuss the
differences.

Extend your F# code from Exercise C-16.16 to include list removal and
search routines. After finding and reading appropriate documentation,
package these routines in a library that can be called in a natural way not
only from F# but also from C#.

c-295



Run-Time Program Management

16.24

16.25
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Explorations

Learn the details of the CLI verification algorithm (Partition III, Section
1.8 of the ECMA standard, version 4 [Int12a]). Pay particular attention to
the rules for merging compatible types at joins in the control flow graph,
and for dealing with generics.

Learn more about the .NET Language-Integrated Query mechanism
(LINQ), mentioned in Example 16.29. Discuss its use of attributes. Write
a program that uses it to interface to a database through SQL. Write
another program that uses it to process the elements of a set from the
System.Collections library.
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