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This student’s solutions manual provides solutions to 
nearly all of the exercises and nearly all of the odd-numbered 
problems in  Mathematics for Physical Chemistry, Fourth 
Edition, by Robert G. Mortimer. This edition is a revision of 
the third edition, published by Elsevier/Academic Press in 
2005. Some of the exercises and problems have been carried 
over from the third edition.  Others have been modified, and 
a number of new ones have been added. 
I am pleased to acknowledge the cooperation and help 
of Linda Versteeg-Buschman, Beth Campbell, Jill Cetel, 

and their collaborators at Elsevier. It is also a pleasure to 
acknowledge the assistance of all those who helped with all 
editions of the book for which this is the solutions manual, 
and especially to thank my wife, Ann, for her patience, love, 
and forbearance.
There are inevitably errors in the solutions in this man-
ual, and I would appreciate learning of them through the  
publisher.
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�Chapter 1

Problem Solving and Numerical
Mathematics

EXERCISES

Exercise 1.1. Take a few fractions, such as 2
3 ,

4
9 or 3

7 and
represent them as decimal numbers, finding either all of the
nonzero digits or the repeating pattern of digits.

2

3
= 0.66666666 · · ·

4

9
= 0.4444444 · · ·

3

7
= 0.428571428571 · · ·

Exercise 1.2. Express the following in terms of SI base
units. The electron volt (eV), a unit of energy, equals
1.6022 × 10−18 J.

a. (13.6 eV)

(
1.6022 × 10−19 J

1 eV

)
= 2.17896 × 10−19 J

≈ 2.18 × 10−18 J

b. (24.17 mi)

(
5280 ft

1 mi

)(
12 in

1 ft

)(
0.0254m

1 in

)

= 3.890 × 104 m

c. (55 mi h−1)

(
5280 ft

1 mi

)(
12 in

1 ft

)(
0.0254 m

1 in

)
(

1 h

3600 s

)
= 24.59 m s−1 ≈ 25 m s−1

d. (7.53 nm ps−1)

(
1 m

109 nm

)(
1012 ps

1 s

)

= 7.53 × 103 m s−1

Exercise 1.3. Convert the following numbers to scientific
notation:

a. 0.00000234 = 2,34 × 10−6

b. 32.150 = 3.2150 × 101

Exercise 1.4. Round the following numbers to three
significant digits

a. 123456789123 ≈ 123,000,000,000
b. 46.45 ≈ 46.4

Exercise 1.5. Find the pressure P of a gas obeying the
ideal gas equation

PV = n RT

if the volume V is 0.200 m3, the temperature T is 298.15 K
and the amount of gas n is 1.000 mol. Take the smallest
and largest value of each variable and verify your number
of significant digits. Note that since you are dividing by
V the smallest value of the quotient will correspond to the
largest value of V.

P = n RT

V

= (1.000 mol)(8.3145 J K−1 mol−1)(298.15 K)

0.200 m3

= 12395 J m−3 = 12395 N m−2 ≈ 1.24 × 104 Pa

Pmax = n RT

V

= (1.0005 mol)(8.3145 J K−1 mol−1)(298.155 K)

0.1995 m3

= 1.243 × 104 Pa

Pmin = n RT

V

= (0.9995 mol)(8.3145 J K−1 mol−1)(298.145 K)

0.2005 m3

= 1.236 × 104 Pa

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00047-1
© 2013 Elsevier Inc. All rights reserved. e1
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Exercise 1.6. Calculate the following to the proper
numbers of significant digits.

a. 17.13 + 14.6751 + 3.123 + 7.654 − 8.123 = 34.359
≈ 34.36

b. ln (0.000123)

ln (0.0001235) = −8.99927

ln (0.0001225) = −9.00740

The answer should have three significant digits:

ln (0.000123) = −9.00

PROBLEMS

1. Find the number of inches in 1.000 meter.

(1.000 m)

(
1 in

0.0254 m

)
= 39.37 in

3. Find the speed of light in miles per second.

(299792458 m s−1)

(
1 in

0.0254 m

)(
1 ft

12 in

)

×
(

1 mi

5280 ft

)
= 186282.397 mi s−1

5. A furlong is exactly one-eighth of a mile and a
fortnight is exactly 2 weeks. Find the speed of light
in furlongs per fortnight, using the correct number of
significant digits.

(299792458 m s−1)

(
1 in

0.0254 m

)(
1 ft

12 in

)

×
(

1 mi

5280 ft

)(
8 furlongs

1 mi

)

×
(

3600 s

1 h

)(
24 h

1 d

)(
14 d

1 fortnight

)

= 1.80261750 × 1012 furlongs fortnight−1

7. A U. S. gallon is defined as 231.00 cubic inches.

a. Find the number of liters in 1.000 gallon.

(1 gal)

(
231.00 in3

1 gal

)(
0.0254 m

1 in

)3 (1000 l

1 m3

)

= 3.785 l

b. The volume of 1.0000 mol of an ideal gas
at 0.00 ◦C (273.15 K) and 1.000 atm is
22.414 liters. Express this volume in gallons and
in cubic feet.

(22.414 l)

(
1 m3

1000 l

)(
1 in

0.0254 m3

)3

×
(

1 gal

231.00 in3

)
= 5.9212 gal

(22.414 l)

(
1 m3

1000 l

)(
1 in

0.0254 m3

)3

×
(

1 ft

12 in

)3

= 0.79154 ft3

9. Find the average length of a century in seconds and in
minutes. Use the rule that a year ending in 00 is not a
leap year unless the year is divisible by 400, in which
case it is a leap year. Therefore, in four centuries there
will be 97 leap years. Find the number of minutes in a
microcentury.

Number of days in 400 years

= (365 d)(400 y)+ 97 d = 146097 d

Average number of days in a century

= 146097 d

4
= 36524.25 d

1 century = (36524.25 d)

(
24 h

1 d

)(
60 min

1 h

)

= 5.259492 × 107 min

(5.259492 × 107 min)

(
1 century

1 × 106 microcenturies

)

= 52.59492 min

(52.59492 min)

(
60 s

1 min

)
= 3155.695 s

11. The Rankine temperature scale is defined so that the
Rankine degree is the same size as the Fahrenheit
degree, and absolute zero is 0 ◦R, the same as 0 K.

a. Find the Rankine temperature at 0.00 ◦C.

0.00 ◦C ↔ (273.15 K)

(
9 ◦F

5 K

)
= 491.67 ◦R

b. Find the Rankine temperature at 0.00 ◦F.

273.15 K − 18.00 K = 255.15 K

(255.15 K)

(
9 ◦F

5 K

)
= 459.27 ◦R

13. The volume of a right circular cylinder is given by

V = πr2h,

where r is the radius and h is the height. If a right
circular cylinder has a radius given as 0.134 m and a
height given as 0.318 m, find its volume, specifying
it with the correct number of digits. Calculate the
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smallest and largest volumes that the cylinder might
have with the given information and check your first
answer for the volume.

V = π(0.134 m)2(0.318 m) = 0.0179 m3

Vmin = π(0.1335 m)2(0.3175 m) = 0.01778 m3

Vmax = π(0.1345 m)2(0.3185 m) = 0.0181 m3

15. Some elementary chemistry textbooks give
the value of R, the ideal gas constant, as
0.0821 l atm K−1 mol−1.

a. Using the SI value, 8.3145 J K−1 mol−1, obtain
the value in l atm K−1 mol−1 to five significant
digits.

(8.3145 J K−1 mol−1)

(
1 Pa m3

1 J

)(
1 atm

101325 Pa

)

×
(

1000 l

1 m3

)
= 0.082058 l atm K−1 mol−1

b. Calculate the pressure in atmospheres and in
N m−2 (Pa) of a sample of an ideal gas with n =
0.13678 mol, V = 10.000 l and T = 298.15 K.

P = n RT

V

= (0.13678 mol)(0.082058 l atm K−1 mol−1)(298.15 K)

1.000 l
= 0.33464 atm

P = n RT

V

= (0.13678 mol)(8.3145 J K−1 mol−1)(298.15 K)

10.000 × 10−3 m3

= 3.3907 × 104 J m−3 = 3.3907 × 104 N m−2

= 3.3907 × 104 Pa

17. The specific heat capacity (specific heat) of a substance
is crudely defined as the amount of heat required to
raise the temperature of unit mass of the substance by
1 degree Celsius (1 ◦C). The specific heat capacity of

water is 4.18 J ◦C−1 g−1. Find the rise in temperature
if 100.0 J of heat is transferred to 1.000 kg of water.

�T = 100.0 J

(4.18 J ◦C−1 g−1)(1.000 kg)

(
1 kg

1000 g

)

= 0.0239 ◦C

19. The volume of a sphere is equal to 4
3πr3 where r is the

radius of the sphere. Assume that the earth is spherical
with a radius of 3958.89 miles. (This is the radius of
a sphere with the same volume as the earth, which
is flattened at the poles by about 30 miles.) Find the
volume of the earth in cubic miles and in cubic meters.
Use a value of π with at least six digits and give the
correct number of significant digits in your answer.

V = 4

3
πr3 = 4

3
π(3958.89 mi)3

= 2.59508 × 1011 mi3

(2.59508 × 1011 mi3)

(
5280 ft

1 mi

)3 (12 in

1 ft

)3

×
(

0.0254 m

1 in

)3

= 1.08168 × 1021 m3

21. The hectare is a unit of land area defined to equal
exactly 10,000 square meters, and the acre is a unit
of land area defined so that 640 acres equals exactly
one square mile. Find the number of square meters in
1.000 acre, and find the number of acres equivalent to
1.000 hectare.

1.000 acre =
(
(5280 ft)2

640

)(
12 in

1 ft

)2

×
(

0.0254 m

1 in

)2

= 4047 m2

1.000 hectare = (1.000 hectare)

(
10000 m2

1 hectare

)

×
(

1 acre

4047 m2

)
= 2.471 acre
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�Chapter 2

Mathematical Functions

EXERCISES

Exercise 2.1. Enter a formula into cell D2 that will
compute the mean of the numbers in cells A2,B2, and C2.

= (A2 + B2 + C2)/3

Exercise 2.2. Construct a graph representing the function

y(x) = x3 − 2x2 + 3x + 4 (2.1)

Use Excel or Mathematica or some other software to
construct your graph.

Here is the graph, constructed with Excel:

Exercise 2.3. Generate the negative logarithms in the short
table of common logarithms.

�

�

�

	

x y = log10 (x) x y = log10 (x)

1 0 0.1 −1

10 1 0.01 −2

100 2 0.001 −3

1000 3 0.0001 −4

0.1 = 1/10

log (0.1) = − log (10) = −1

0.01 = 1/100

log (0.01) = − log (100) = −2

0.001 = 1/1000

log (0.001) = − log (1000) = −3

0.0001 = 1/10000

log (0.001) = − log (10000) = −4

Exercise 2.4. Using a calculator or a spreadsheet, evaluate
the quantity (1+ 1

n )
n for several integral values of n ranging

from 1 to 1,000,000. Notice how the value approaches the
value of e as n increases and determine the value of n needed
to provide four significant digits.

Here is a table of values

�

�

�

	

x (1 + 1/n)n

1 2

2 2.25

5 2.48832

10 2.59374246

100 2.704813829

1000 2.716923932

10000 2.718145927

100000 2.718268237

1000000 2.718280469

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00048-3
© 2013 Elsevier Inc. All rights reserved. e5
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To twelve significant digits, the value of e is
2.71828182846. The value for n = 1000000 is accurate
to six significant digits. Four significant digits are obtained
with n = 10000.

Exercise 2.5. Without using a calculator or a table of
logarithms, find the following:

a. ln (100.000) = ln (10) log10 (100.000)
= (2.30258509 · · ·)(2.0000) = 4.60517

b. ln (0.0010000) = ln (10) log10 (0.0010000)
= (2.30258509 · · ·)(−3.0000) = −6.90776

c. log10 (e) = ln (e)

ln (10)
= 1

2.30258509 · · · = 0.43429 · · ·

Exercise 2.6. For a positive value of b find an expression
in terms of b for the change in x required for the function
ebx to double in size.

f (x +�x)

f (x)
= 2 = eb(x+�x)

ebx
= eb�x

�x = ln (2)

b
= 0.69315 · · ·

b

Exercise 2.7. A reactant in a first-order chemical reaction
without back reaction has a concentration governed by the
same formula as radioactive decay,

[A]t = [A]0e−kt ,

where [A]0 is the concentration at time t = 0, [A]t is the
concentration at time t, and k is a function of temperature
called the rate constant. If k = 0.123 s−1 find the time
required for the concentration to drop to 21.0% of its initial
value.

t =
(

1

k

)
ln

( [A]0

[A]t

)
=
(

1

0.123 s−1

)
ln

(
100.0

21.0

)

= 12.7 s

Exercise 2.8. Using a calculator, find the value of the
cosine of 15.5◦ and the value of the cosine of 375.5◦.
Display as many digits as your calculator is able to display.
Check to see if your calculator produces any round-off error
in the last digit. Choose another pair of angles that differ by
360◦ and repeat the calculation. Set your calculator to use
angles measured in radians. Find the value of sin (0.3000).
Find the value of sin (0.3000 + 2π). See if there is any
round-off error in the last digit.

cos (15.5◦) = 0.96363045321

cos (375.5◦) = 0.96363045321

sin (0.3000) = 0.29552020666

sin (0.3000 + 2π) = sin (6.58318530718)

= 0.29552020666

There is no round-off error to 11 digits in the calculator
that was used.

Exercise 2.9. Using a calculator and displaying as many
digits as possible, find the values of the sine and cosine of
49.500◦. Square the two values and add the results. See if
there is any round-off error in your calculator.

sin (49.500◦) = 0.7604059656

cos (49.500◦) = 0.64944804833

(0.7604059656)2 + (0.64944804833)2 = 1.00000000000

Exercise 2.10. Construct an accurate graph of sin (x) and
tan (x) on the same graph for values of x from 0 to 0.4 rad
and find the maximum value of x for which the two functions
differ by less than 1%.

The two functions differ by less than 1% at 0.14 rad.
Notice that at 0.4 rad, sin (x) ≺ x ≺ tan (x) and that the
three quantities differ by less than 10%.

Exercise 2.11. For an angle that is nearly as large as π/2,
find an approximate equality similar to Eq. (2.36) involving
(π/2)− α, cos (α), and cot (α).

Construct a right triangle with angle with the angle
(π/2) − α, where α is small. The triangle is tall, with a
small value of x (the horizontal leg) and a larger value of y
(the vertical leg). Let r be the hypotenuse, which is nearly
equal to y.

cos ((π/2)− α) = x

r
cot ((π/2) − α) = x

y ≈ x
r . The measure of the angle

in radians is equal to the arc length subtending the angle
α divided by r and is very nearly equal to x/r . Therefore

cos ((π/2)− α) ≈ α

cot ((π/2)− α) ≈ α

cos ((π/2)− α) ≈ cot ((π/2)− α)

Exercise 2.12. Sketch graphs of the arcsine function, the
arccosine function, and the arctangent function. Include
only the principal values.
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Here are accurate graphs:

Exercise 2.13. Make a graph of tanh (x) and coth (x) on
the same graph for values of x ranging from 0.1 to 3.0.

Exercise 2.14. Determine the number of significant digits
in sin (95.5◦).

We calculate sin (95.45◦) and sin (95.45◦). Using a
calculator that displays 8 digits, we obtain

sin (95.45◦) = 0.99547946

sin (95.55◦) = 0.99531218

We report the sine of 95.5◦ as 0.9954, specifying four
significant digits, although the argument of the sine was
given with three significant digits. We have followed the
common policy of reporting a digit as significant if it might
be incorrect by one unit.

Exercise 2.15. Sketch rough graphs of the following
functions. Verify your graphs using Excel or Mathematica.

a. e−x/5 sin (x). Following is a graph representing each
of the factors and their product:

b. sin2 (x) = [sin (x)]2

Following is a graph representing sin (x) and sin2 (x).

PROBLEMS

1. The following is a set of data for the vapor pressure
of ethanol taken by a physical chemistry student.
Plot these points by hand on graph paper, with the
temperature on the horizontal axis (the abscissa) and
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the vapor pressure on the vertical axis (the ordinate).
Decide if there are any bad data points. Draw a smooth
curve nearly through the points, disregarding any bad
points. Use Excel to construct another graph and notice
how much work the spreadsheet saves you.�

�

�

	

Temperature/◦C Vapor pressure/torr

25.00 55.9

30.00 70.0

35.00 97.0

40.00 117.5

45.00 154.1

50.00 190.7

55.00 241.9

Here is a graph constructed with Excel:

The third data point might be suspect. Here is a
graph omitting that data point:

3. A reactant in a first-order chemical reaction without
back reaction has a concentration governed by the
same formula as radioactive decay,

[A]t = [A]0e−kt ,

where [A]0 is the concentration at time t = 0, [A]t

is the concentration at time t, and k is a function
of temperature called the rate constant. If k =
0.232 s−1 at 298.15 K find the time required for the
concentration to drop to 33.3% of its initial value at a
constant temperature of 298.15 K.

t = ln
([A]0/[A]t

)
k

= ln (1/0.333)

0.232 s−1 = 4.74 s

5. Express the following with the correct number of
significant digits. Use the arguments in radians:

a. tan (0.600)

tan (0.600) = 0.684137

tan (0.5995) = 0.683403

tan (0.60005) = 0.684210

We report tan (0.600) = 0.684. If a digit is
probably incorrect by 1, we still treat it as
significant.

b. sin (0.100)

sin (0.100) = 0.099833

sin (0.1005) = 0.100331

sin (0.0995) = 0.099336

We report sin (0.100) = 0.100.
c. cosh (12.0)

cosh (12.0) = 81377

cosh (12.05) = 85550

cosh (11.95) = 77409

We report cosh (12.0) = 8 × 104. There is only
one significant digit.

d. sinh (10.0)

sinh (10.0) = 11013

sinh (10.01) = 11578

sinh (9.995) = 10476

We report sinh (10.0) = 11000 = 1.1 × 104

7. Tell where each of the following functions is
discontinuous. Specify the type of discontinuity:

a. tan (x) Infinite discontinuities at x = π/2,
x = 3π/2, x = 5π/2, · · ·

b. csc (x) Infinite discontinuities at x = 0, x = π ,
x = 2π, · · ·

c. |x | Continuous everywhere, although there is a
sharp change of direction at x = 0.
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9. If the two ends of a completely flexible chain (one
that requires no force to bend it) are suspended at the
same height near the surface of the earth, the curve
representing the shape of the chain is called a catenary.
It can be shown1 that the catenary is represented by

y = a cosh
( x

a

)

where

a = T

gρ

and where ρ is the mass per unit length, g is the
acceleration due to gravity, and T is the tension force
on the chain. The variable x is equal to zero at the center
of the chain. Construct a graph of this function such
that the distance between the two points of support is
10.0 m and the mass per unit length is 0.500 kg m−1,
and the tension force is 50.0 N.

a = T

gρ
= 50.0 kg m s2

(9.80 m2 s−2)(0.500 kg m−1)
= 10.20 m

y = (10.20 m) cosh (x/10.20 m)

1 G. Polya, Mathematical Methods in Science, The Mathematical Associa-
tion of America, 1977, pp. 178ff.

For this graph, we have plotted y − 11.4538 such that
this quantity vanishes at the ends of the chain.

11. Construct a graph of the two functions: 2 cosh (x) and
ex for values of x from 0 to 3. At what minimum value
of x do the two functions differ by less than 1%?

By inspection in a column of values of the
difference, the two functions differ by less than 1%
at x = 2.4.

13. Verify the trigonometric identity

cos (2x) = 1 − 2 sin2 (x)

for x = 0.50000 rad. Use as many digits as your
calculator will display and check for round-off error.

cos (1.00000) = 0.54030230587

1 − 2 sin2 (0.50000) = 1 − 0.45969769413

= 0.54030230587

There was no round-off error to 11 significant digits
in the calculator that was used.
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Problem Solving and Symbolic
Mathematics: Algebra

EXERCISES

Exercise 3.1. Write the following expression in a simpler
form:

B = (x2 + 2x)2 − x2(x − 2)2 + 12x4

6x3 + 12x4 .

B = x2(x2 + 4x + 4)− x2(x2 − 4x + 4)+ 12x4

6x3 + 12x4

= x4 + 4x3 + 4x2 − x4 + 4x3 − 4x2 + 12x4

6x3 + 12x4

= 12x4 + 8x3

6x3 + 12x4 = 12x + 8

12x + 6
= 6x + 4

6x + 3

Exercise 3.2. Manipulate the van der Waals equation into
an expression for P in terms of T and Vm. Since the pressure
is independent of the size of the system (it is an intensive
variable), thermodynamic theory implies that it can depend
on only two independent intensive variables.(

P + a

V 2
m

)
(Vm − b) = RT

P + a

V 2
m

= RT

Vm − b

P = RT

Vm − b
− a

V 2
m

Exercise 3.3. a. Find x and y if ρ = 6.00 and φ = π/6
radians

x = (6.00) cos (π/6) = (6.00)(0.866025) = 5.20

y = ρ sin (φ) = (6.00)(0.500) = 3.00

b. Find ρ and φ if x = 5.00 and y = 10.00.

ρ =
√

x2 + y2 = √
125.0 = 11.18

φ = arctan (y/x) = arctan (2.00) = 1.107 rad

= 63.43◦

Exercise 3.4. Find the spherical polar coordinates of the
point whose Cartesian coordinates are (2.00, 3.00, 4.00).

r =
√
(2.00)2 + (3.00)2 − (4.00)2 = √

29.00 = 5.39

φ = arctan

(
3.00

2.00

)
= 0.98279 rad = 56.3◦

θ = arccos

(
4.00

5.39

)
= 0.733 rad = 42.0◦

Exercise 3.5. Find the Cartesian coordinates of the point
whose cylindrical polar coordinates are ρ = 25.00,φ =
60.0◦, z = 17.50

x = ρ cos (φ) = 25.00 cos (60.0◦)
= 25.00 × 0.500 = 12.50

y = ρ sin (φ) = 25.00 sin (60.0◦)
= 25.00 × 0.86603 = 21.65

z = 17.50

Exercise 3.6. Find the cylindrical polar coordinates of the
point whose Cartesian coordinates are (−2.000,−2.000,
3.000).

ρ =
√
(− 2.00)2 + (− 2.00)2 = 2.828

φ = arctan

(−2.00

−2.00

)
= 0.7854 rad = 45.0◦

z = 3.000

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00049-5
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Exercise 3.7. Find the cylindrical polar coordinates of
the point whose spherical polar coordinates are r = 3.00,
θ = 30.00◦, φ = 45.00◦.

z = r cos (θ) = (3.00) cos (30.00◦) = 3.00 × 0.86603

= 2.60

ρ = r sin (θ) = (3.00) sin (30.00◦) = (3.00)(0.500)

= 1.50

φ = 45.00◦

Exercise 3.8. Simplify the expression

(4 + 6i)(3 + 2i)+ 4i

(4 + 6i)(3 + 2i)+ 4i = 12 + 18i + 8i − 12 + 4i = 30i

Exercise 3.9. Express the following complex numbers in
the form reiφ :

a. z = 4.00 + 4.00i

r = √
32.00 = 5.66

φ = arctan

(
4.00

4.00

)
= 0.785

z = 4.00 + 4.00i = 5.66e0.785i

b. z = −1.00

z = −1 = eπ i

Exercise 3.10. Express the following complex numbers in
the form x + iy

a. z = 3eπ i/2

x = r cos (φ) = 3 cos (π/2) = 3 × 0 = 0

y = r sin (φ) = 3 sin (π/2) = 3 × 1 = 3

z = 3i

b. z = e3π i/2

x = r cos (φ) = cos (3π/2) = 0

y = r sin (φ) = sin (3π/2) = −1

z = −i

Exercise 3.11. Find the complex conjugates of

a. A = (x + iy)2 − 4eixy

A = x2 + 2i xy + y2 − 4eixy

A∗ = x2 − 2i xy + y2 − 4e−i xy

= (x − iy)2 − 4e−i xy

Otherwise by changing the sign in front of every i:

A∗ = (x − iy)2 − 4e−i xy

b. B = (3 + 7i)3 − (7i)2.

B∗ = (3 − 7i)3 − (−7i)2 = (3 − 7i)3 − (7)2

Exercise 3.12. Write a complex number in the form x +iy
and show that the product of the number with its complex
conjugate is real and nonnegative

(x + iy)(x − iy) = x2 + i xy − i xy + y2 = x2 + y2

The square of a real number is real and nonnegative, and x
and y are real.

Exercise 3.13. If z = (3.00 + 2.00i)2, find R(z), I (z), r ,
and φ.

z = 9.00 + 6.00i − 4.00 = 5.00 + 6.00i

R(z) = 5.00

I (z) = 6.00

r = √
25.00 + 36.00 = 7.781

φ = arctan (6.00/5.00) = 0.876 rad = 50.2◦

Exercise 3.14. Find the square roots of z = 4.00 + 4.00i .
Sketch an Argand diagram and locate the roots on it.

z = reiφ

r = √
32.00 = 5.657

φ = arctan (1.00) = 0.785398 rad = 45.00◦

√
z =

{ √
5.657e0.3927i

√
5.657 exp

[(
0.785398+2π

2

)
i
]

= √
5.657e3.534i

To sketch the Argand diagram, we require the real and
imaginary parts. For the first possibility

√
z = √

5.657( cos (22.50◦))+ i sin (22.50◦)
= √

5.657(0.92388 + i(0.38268)

= 2.1973 + 0.91019i

For the second possibility

√
z = √

5.657( cos (202.50◦))+ i sin (202.50◦)
= √

5.657(−0.92388 + i(−0.38268)

= −2.1973 − 0.91019i

Exercise 3.15. Find the four fourth roots of −1.

−1 = eπ i , e3π i , e5π i , e7π i

4
√

eπ i = eπ i/4, e3π i/4, e5π i/4, e7π i/4
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Exercise 3.16. Estimate the number of house painters in
Chicago.

The 2010 census lists a population of 2,695,598 for the
city of Chicago, excluding surrounding areas. Assume that
about 20% of Chicagoans live in single-family houses or
duplexes that would need exterior painting. With an average
family size of four persons for house-dwellers, this would
give about 135,000 houses. Each house would be painted
about once in six or eight years, giving roughly 20,000
house-painting jobs per year. A crew of two painters might
paint a house in one week, so that a crew of two painters
could paint about 50 houses in a year. This gives about 400
two-painter crews, or 800 house painters in Chicago.

PROBLEMS

1. Manipulate the van der Waals equation into a cubic
equation in Vm. That is, make a polynomial with terms
proportional to powers of Vm up to V 3

m on one side of
the equation.

(
P + a

V 2
m

)
(Vm − b) = RT

Multiply by V 2
m

(PV 2
m + a)(Vm − b) = RT V 2

m

PV 3
m + aVm − bPV 2

m − ab = RT V 2
m

PV 3
m − (b + RT )V 2

m + aVm − ab = 0

3. A Boy Scout finds a tall tree while hiking and wants to
estimate its height. He walks away from the tree and
finds that when he is 45 m from the tree, he must look
upward at an angle of 32◦ to look at the top of the tree.
His eye is 1.40 m from the ground, which is perfectly
level. How tall is the tree?

h = (45 m) tan (32◦)+ 1.40 m = 28.1 m + 1.40 m

= 29.5 m ≈ 30 m

The zero in 30 m is significant, which we indicated
with a bar over it.

5. Express the equation y = b, where b is a constant, in
plane polar coordinates.

y = ρ sin (φ) = b

ρ = b

sin (φ)
= b csc (φ)

7. Find the values of the plane polar coordinates that
correspond to x = 3.00, y = 4.00.

ρ = √
9.00 + 16.00 = 5.00

φ = arctan

(
4.00

3.00

)
= 53.1◦ = 0.927 rad

9. A surface is represented in cylindrical polar
coordinates by the equation z = ρ2. Describe the
shape of the surface. This equation represents a
paraboloid of revolution, produced by revolving a
parabola around the z axis.

11. Find the complex conjugate of the quantity
e2.00i + 3eiπ

e2.00i + 3eiπ = e2.00i − 3 = cos (2.00)

+ i sin (2.00)− 3

(e2.00i + 3eiπ )∗ = cos (2.00)− i sin (2.00)− 3

= e−2.00i − 3

13. Find the difference 3.00eπ i − 2.00e2π i .

3.00eπ i − 2.00e2π i = −3.00 − 2.00 = 5.00

15. Find the four fourth roots of 3.000i .

3.000i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3.000eπ i/2

3.000e5π i/2

3.000e9π i/2

3.000e13π i/2

4
√

3.000i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4
√

3.000eπ i/8 = 1.316eπ i/8

4
√

3.000e5π i/8 = 1.316e5π i/8

4
√

3.000e9π i/8 = 1.316e9π i/8

4
√

3.000e13π i/8 = 1.316e13π i/8

17. If z =
(

3 + 2i

4 + 5i

)2

, find R(z), I (z), r, and φ.

(4 + 5i)−1 = 4 − 5i

16 + 25
= 4 − 5i

41
3 + 2i

4 + 5i
=
(

4 − 5i

41

)
(3 + 2i)

= 12

41
+
(−15 + 8

41

)
i + 10

41

= 22

41
− 7i

41(
22

41
− 7i

41

)2

=
(

22

41

)2

−
(

2 × 22 × 7

(41)2

)
i +

(
5

41

)2

= 0.43378 − 0.18322i

R(z) = 0.43378

I (z) = −0.18322

r =
√
(0.43378)2 + (0.18322)2 = 0.47079

φ = arctan

(−0.18322

0.43378

)
= arctan (− 0.42238)

= −0.39965
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The principal value of the arctangent is in the fourth
quadrant, equal to −0.39965 rad. Since φ ranges from
0 to 2π , we subtract 0.39965 from 2π to get

φ = 5.8835 rad

19. Estimate the number of grains of sand on the beaches
of the major continents of the earth. Exclude islands
and inland bodies of water.

Assume that the earth has seven continents with an
average radius of 2000 km. Since the coastlines are
somewhat irregular, assume that each continent has a
coastline of roughly 10000 km = 1 × 107 m for a
total coastline of 7 × 107 m. Assume that the average
stretch of coastline has sand roughly 5 m deep and
50 m wide. This gives a total volume of beach sand

of 1.75 × 1010 m3. Assume that the average grain of
sane is roughly 0.3 mm in diameter, so that each cubic
millimeter contains roughly 30 grains of sand. This is
equivalent to 3 × 1010 grains per cubic meter, so that
we have roughly 5×1020 grains of sand. If we were to
include islands and inland bodies of water, we would
likely have a number of grains of sand nearly equal to
Avogadro’s constant.

21. Estimate the number of blades of grass in a lawn with
an area of 1000 square meters.

Assume approximately 10 blades per square
centimeter.

number = (10 cm−2)

(
100 cm

1 m

)2

(1000 m2)

= 1 × 108
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Vectors and Vector Algebra

EXERCISES

Exercise 4.1. Draw vector diagrams and convince your-
self that the two schemes presented for the construction of
D = A − B give the same result.

Exercise 4.2. Find A − B if A = (2.50,1.50) and
B = (1.00,−7.50)

A − B = (1.50,9.00) = 1.50i + 9.00j

Exercise 4.3. Let |A| = 4.00,|B| = 2.00, and let the angle
between them equal 45.0◦. Find A · B.

A · B = (4.00)(2.00) cos (45◦) = 8.00 × 0.70711 = 5.66.

Exercise 4.4. If A = (3.00)i − (4.00)j and B =
(1.00)i + (2.00)j.

a. Draw a vector diagram of the two vectors.
b. Find A · B and (2.00A) · (3.00B).

A · B = 3.00 × 1.00

+(−4.00)(2.00) = −5.00

(2A) · (3B) = 6(−5.00) = −30.00

Exercise 4.5. If A = 2.00i − 3.00 j and B = −1.00i +
4.00 j

a. Find |A| and |B|.

|A| = A = √
4.00 + 9.00 = 3.606

|B| = B = √
1.00 + 16.00 = 4.123

b. Find the components and the magnitude of 2.00A − B.

2.00A − B = i(4.00 + 1.00)+j(−6.00 + 4.00)

= i(5.00)+j(−2.00)

|2.00A − B| = √
25.00 + 4.00 = 5.385

c. Find A · B.

A · B = (2.00)(−1.00)+ (−3.00)(4.00) = −14.00

d. Find the angle between A and B.

cos (α) = A · B
AB

= −14.00

(3.606)(4.123)
= −0.94176

α = arccos (−0.94176) = 2.799 rad = 160.3◦

Exercise 4.6. Find the magnitude of the vector
A = (−3.00, 4.00,−5.00).

A = √
9.00 + 16.00 + 25.00 = √

50.00 = 7.07

Exercise 4.7. a. Find the Cartesian components of the
position vector whose spherical polar coordinates are
r = 2.00, θ = 90◦, φ = 0◦. Call this vector A.

x = 2.00

y = 0.00

z = r cos (θ) = 0.00

A = (2.00)i

b. Find the scalar product of the vector A from part a
and the vector B whose Cartesian components are
(1.00, 2.00, 3.00).

A · B = 2.00 + 0 + 0 = 2.00

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00050-1
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c. Find the angle between these two vectors. We must first
find the magnitude of B.

|B| = B = √
1.00 + 4.00 + 9.00

= √
14.00 = 3.742

cos (α) = 2.00

(2.00)(3.742)
= 0.26726

α = arccos (0.26726) = 74.5◦ = 1.300 rad

Exercise 4.8. From the definition, show that

A × B = −(B × A) .

This result follows immediately from the screw-thread
rule or the right-hand rule, since reversing the order of the
factors reverses the roles of the thumb and the index finger.

Exercise 4.9. Show that the vector C is perpendicular to B.
We do this by showing that B · C = 0.

B · C = Bx Cx + ByCy + BzCz

= −1 + 2 − 1 = 0.

Exercise 4.10. The magnitude of the earth’s magnetic
field ranges from 0.25 to 0.65 G (gauss). Assume that the
average magnitude is equal to 0.45 G, which is equivalent to
0.000045 T. Find the magnitude of the force on the electron
in the previous example due to the earth’s magnetic field,
assuming that the velocity is perpendicular to the magnetic
field.

|F| = F = (1.602 × 10−19 C)

×(1.000 × 105 m s−1)(0.000045 T)

= 7.210 × 10−19 A s m s−1 kg s−2 A−1

= 7.210 × 10−19 kg m s−2 = 7.210 × 10−19 N

Exercise 4.11. A boy is swinging a weight around his
head on a rope. Assume that the weight has a mass of
0.650 kg, that the rope plus the effective length of the boy’s
arm has a length of 1.45 m and that the weight makes
a complete circuit in 1.34 s. Find the magnitude of the
angular momentum, excluding the mass of the rope and that
of the boy’s arm. If the mass is moving counterclockwise
in a horizontal circle, what is the direction of the angular
momentum?

v = 2π(1.45 m)

1.34 s
= 6.80 m s−1

L = mvr = (0.650 kg)(6.80 m s−1)

×(1.45 m) = 6.41 kg m2 s−1

By the right-hand rule, the angular momentum is vertically
upward.

PROBLEMS

1. Find A − B if A = 2.00i + 3.00 j and B = 1.00i +
3.00 j − 1.00k.

A − B = −1.00i + 2.00k.

3. Find A · B if A = (0,2) and B = (2,0).

A · B = 0 + 0 = 0

5. Find A · B if A = (1.00)i + (2.00) j + (3.00)k and
B = (1.00)i + (3.00) j − (2.00)k.

A · B = 1.00 + 6.00 − 6.00 = 1.00

7. Find A × B if A = (0.00,1.00,2.00) and B =
(2.00,1.00,0.00).

A × B = A × B = i(Ay Bz − Az By)

+ j(Az Bx − Ax Bz)+ k(Ax By − Ay Bx )

= i(0.00 − 2.00)+ j(4.00 − 0.00)

+ k(0.00 − 2.00)

= −2.00i + 4.00j − 2.00k

9. Find the angle between A and B if A = 1.00i+2.00 j+
1.00k and B = 1.00i − 1.00k.

A · B = 1.00 + 0 − 2.00 = −1.00

A = √
1.00 + 4.00 + 1.00 = √

6.00 = 2.4495

B = √
1.00 + 1.00 = √

2.00 = 1.4142

cos (α) = −1.00

(2.4495)(1.4142)
= −0.28868

α = arccos (−0.28868) = 107◦ = 1.86 rad

11. A spherical object falling in a fluid has three forces
acting on it: (1) The gravitational force, whose
magnitude is Fg = mg, where m is the mass of the
object and g is the acceleration due to gravity, equal to
9.80 m s−2; (2) The buoyant force, whose magnitude
is Fb = mfg, where mf is the mass of the displaced
fluid, and whose direction is upward; (3) The frictional
force, which is given by Ff = −6πηrv, where r
is the radius of the object, v its velocity, and η the
coefficient of viscosity of the fluid. This formula for
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the frictional forces applies only if the flow around
the object is laminar (flow in layers). The object is
falling at a constant speed in glycerol, which has a
viscosity of 1490 kg m−1 s−1. The object has a mass
of 0.00381 kg, has a radius of 0.00432 m, a mass of
0.00381 kg, and displaces a mass of fluid equal to
0.000337 kg. Find the speed of the object. Assume
that the object has attained a steady speed, so that the
net force vanishes.

Fz,total = 0 = −(0.00381 kg)(9.80 m s−2)

+ (0.000337 kg)(9.80 m s−2)

+ 6π(1490 kg m−1 s−1)(0.00432 m)v

v =
∣∣∣∣∣
−(0.00381 kg)(9.80 m s−2)+(0.000337 kg)(9.80 m s−2)

6π(1490 kg m−1 s−1)(0.00432 m)

∣∣∣∣∣
= 0.18 m s−1

13. An object of mass 12.000 kg is moving in the x
direction. It has a gravitational force acting on it equal
to −mgk, where m is the mass of the object and g is
the acceleration due to gravity, equal to 9.80 m s−1.
There is a frictional force equal to (0.240 N)i . What
is the magnitude and direction of the resultant force
(the vector sum of the forces on the object)?

Ftotal = −(12.000 kg)(9.80 m s−1)k + (0.240 N)i

= −(117.60 N)k + (0.240 N)i

Ftotal =
√
(117.6 N)2 + (0.240 N)2 = 118 N

The angle between this vector and the negative z axis is

α = arctan

(
0.240

117.6

)
= 0.117◦ = 0.00294 rad

15. According to the Bohr theory of the hydrogen atom,
the electron in the atom moves around the nucleus
in one of various circular orbits with radius r = a0n2

where a0 is a distance equal to 0.529×10−10 m, called
the Bohr radius and n is a positive integer. The mass
of the electron is 9.109 × 10−31 kg. According to the
theory, L = nh/2π , where h is Planck’s constant,
equal to 6.626 × 10−34 J s. Find the speed of the
electron for n = 1 and for n = 2.

Since the orbit is circular, the position vector and the
velocity are perpendicular to each other, and L = mvr .

For n = 1:

v = L

mr
= (6.626 × 10−34 J s)

2π(9.109 × 10−31 kg)(0.529 × 10−10 m)

= 2.188 × 106 m s−1

For n = 2

v = L

mr
= 2(6.626 × 10−34 Js)

2π(9.109 × 10−31 kg)22(0.529 × 10−10 m)

= 1.094 × 106 m s−1

Notice that the speed for n = 1 is nearly 1% of the
speed of light.
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Problem Solving and the Solution
of Algebraic Equations

EXERCISES

Exercise 5.1. Show by substitution that the quadratic
formula provides the roots to a quadratic equation.

For simplicity. we assume that a = 1.

(
−b ± √

b2 − 4c

2

)2

+ b

(
−b ± √

b2 − 4c

2

)
+ c

= b2

4
∓ b

√
b2 − 4c

2
+ b2 − 4c

4
− b2

4

± b
√

b2 − 4c

2
+ c = 0

Exercise 5.2. For hydrocyanic acid (HCN), Ka = 4.9 ×
10−10 at 25 ◦C. Find [H+] if 0.1000 mol of hydrocyanic
acid is dissolved in enough water to make 1.000 l. Assume
that activity coefficients are equal to unity and neglect
hydrogen ions from water.

x = −Ka ±
√

K 2
a + 0.4000Ka

2

= −4.9 × 10−10 ±
√(

4.9 × 10−10
)2 + (0.4000)

(
4.9 × 10−10

)
2

= 7.00 × 10−6 or − 7.00 × 10−6

[H+] = [A−] = 7.00 × 10−6 mol l−1.

The neglect of hydrogen ions from water is acceptable, since
neutral water provides 1 × 10−7 mol l−1 of hydrogen ions,
and will provide even less in the presence of the acid.

Exercise 5.3. Carry out the algebraic manipulations to
obtain the cubic equation in Eq. (5.9).

Ka = xy

y = Ka

x

where we let y = [A−]/c◦. Since the ionization of water
and the ionization of the acid both produce hydrogen ions,

[HA]
c◦ = c

c◦ − (
x − y

)

Ka =
x

[
x − Kw

x

]

c

c◦ − x + Kw

x

Ka

[
c

c◦ − x + Kw

x

]
= x2 − Kw

Multiply this equation by x and collect the terms:

x3 + Kax2 −
(

cKa

c◦ + Kw

)
x − Ka Kw = 0

Exercise 5.4. Solve for the hydrogen ion concentration
in a solution of acetic acid with stoichiometric molarity
equal to 0.00100 mol l−1. Use the method of successive
approximations.

For the first approximation

x2 =
(

1.754 × 10−5
)
(0.00100 − x)

≈ (1.754 × 10−5)(0.00100) = 1.754 × 10−8

x ≈
√

1.754 × 10−8 = 1.324 × 10−4

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00051-3
© 2013 Elsevier Inc. All rights reserved. e19

http://dx.doi.org/10.1016/B978-0-12-415809-2.00051-3


e20 Mathematics for Physical Chemistry

For the next approximation

x2 =
(

1.754 × 10−5
)
(0.00100 − 1.324 × 10−4)

≈
(

1.754 × 10−5
)
(8.676 × 10−4)

= 1.5217 × 10−8

x ≈
√

1.5217 × 10−8 = 1.236 × 10−4

For the third approximation

x2 = (1.754 × 10−5)(0.00100 − 1.236 × 10−4)

≈ (1.754 × 10−5)(8.7664 × 10−4)

= 1.5376 × 10−8

x ≈
√

1.5376 × 10−8 = 1.24 × 10−4

[H+] = 1.24 × 10−4 mol l−1

Since the second and third approximations yielded nearly
the same answer, we stop at this point.

Exercise 5.5. Verify the prediction of the ideal gas
equation of state given in the previous example.

Vm = V

n
= RT

P

=
(
8.3145 J K−1 mol−1

)
(298.15 K)

1.01325 × 106 Pa

= 2.447 × 10−3 m3 mol−1

Exercise 5.6. Substitute the value of the molar volume
obtained in the previous example and the given temperature
into the Dieterici equation of state to calculate the pressure.
Compare the calculated pressure with 10.00 atm =
1.01325 × 106 Pa, to check the validity of the linearization
approximation used in the example.

Pea/Vm RT (Vm − b) = RT

P = RT e−a/Vm RT

(Vm − b)

e−a/Vm RT = exp

⎡
⎣−

(
0.468 Pa m6 mol−2

)
(

2.30 × 10−3 m3 mol−1
) (

8.3145 J K−1 mol−1
) (

298.15 K
)
⎤
⎦

= e−8.208×10−2 = 0.9212

P = RT e−a/Vm RT

(Vm − b)

=
(

8.3145 J K−1 mol−1
) (

298.15 K
) (

0.9212
)

(
2.30 × 10−3 m3 mol−1 − 4.63 × 10−5 m3 mol−1

)

= 1.013328 × 106 Pa

which compares with 1.01325 × 106 Pa.

Exercise 5.7. Find approximately the smallest positive
root of the equation

tan (x)− x = 0.

Since tan (x) is larger than x in the entire range from x = 0
to x = π , we look at the range from x = π to x = 2π .
By trial and error we find that the root is near 4.49. The
following graph of tan (x) − x shows that the root is near
x = 4.491.

Exercise 5.8. Using a graphical procedure, find the most
positive real root of the quartic equation:

x4 − 4.500x3 − 3.800x2 − 17.100x + 20.000 = 0

The curve representing this function crosses the x axis in
only two places. This indicates that two of the four roots
are complex numbers. Chemists are not usually interested
in complex roots to equations.

A preliminary graph indicates a root near x = 0.9 and
one near x = 5.5. The following graph indicates that the
root is near x = 5.608. To five significant digits, the correct
answer is x = 5.6079.

Exercise 5.9. Use the method of trial and error to find the
two positive roots of the equation

ex − 3.000x = 0

to five significant digits. Begin by making a graph of the
function to find the approximate locations of the roots.

A rough graph indicates a root near x = 0.6 and a root
x = 1.5. By trial and error, values of 0.61906 and 1.5123
were found.
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Exercise 5.10. Use Excel to find the real root of the
equation

x3 + 5.000x − 42.00 = 0

The result is that x = 3.9529.

Exercise 5.11. Write Mathematica expressions for the
following:

a. The complex conjugate of (10)e2.657i

10 Exp[−2.635 I]

b. ln (100!)− (100 ln (100)− 100)

Log[100!] − (100 Log[100] − 100]

c. The complex conjugate of (1 + 2i)2.5

(1+2I)ˆ2.5

Exercise 5.12. In the study of the rate of the chemical
reaction:

aA + bB → products

the quotient occurs:

1

([A]0 − ax)([B]0 − bx)

where [A]0 and [B]0 are the initial concentrations of A
and B, a and b are the stoichiometric coefficients of these
reactants, and x is a variable specifying the extent to which
the reaction has occurred. Write a Mathematica statement
to decompose the denominator into partial fractions.

In[1] : = Clear[x]
Apart

[
1/
((

A − a∗x
) (

B − b∗x
))]

Exercise 5.13. Verify the real solutions in the preceding
example by substituting them into the equation.

The equation is

f (x) = x4 − 5x3 + 4x2 − 3x + 2 = 0

By calculation

f (0.802307) = 8.3 × 10−7

f (4.18885) = 0.000182

By trial and error, these roots are correct to the number of
significant digits given.

Exercise 5.14. Use the NSolve statement in Mathematica
to find the numerical values of the roots of the equation

x3 + 5.000x − 42.00 = 0

The result is

x =

⎧⎪⎨
⎪⎩

3.00

−1.500 + 3.4278i

−1.500 − 3.4278i

Use the Find Root statement to find the real root of the same
equation.
The result is

x = 3.00

Exercise 5.15. Solve the simultaneous equations by the
method of substitution:

x2 − 2xy − x = 0

x + y = 0

We replace y in the first equation by −x :

x2 + 2x2 − x = 3x2 − x = 0

This equation can be factored

x(3x − 1) = 0

This has the two solutions:

x =
⎧⎨
⎩

0
1

3

The first solution set is

x = 0, y = 0

The second solution set is

x = 1

3
, y = −1

3

Exercise 5.16. Solve the set of equations

3x + 2y = 40

2x − y = 10

We multiply the second equation by 2 and add it to the
first equation

7x = 60

x = 60

7

We substitute this into the second equation

120

7
− y = 10

y = 120

7
− 10 = 50

7

Substitute these values into the second equation to check
our work;

120

7
− 50

7
= 70

7
= 10
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Exercise 5.17. Determine whether the set of equations has
a nontrivial solution, and find the solution if it exists:

5x + 12y = 0

15x + 36y = 0.

We multiply the first equation by 3, which makes it
identical with the second equation. There is a nontrivial
solution that gives y as a function of x. From the first
equation

y = −5x

12
= −0.4167x

Exercise 5.18. Use Mathematica to solve the simultane-
ous equations

2x + 3y = 13

x − 4y = −10

The result is

x = 2

y = 3

PROBLEMS

1. Solve the quadratic equations:

a.

x2 − 3x + 2 = 0

(x − 2)(x − 1) = 0

x =
{

1

2

b.

x2 − 1 = 0

(x − 1)(x + 1) = 0

x =
{

1

−1

c.

x2 + x + 2 = 0

x = −1 ± √
1 − 8

2
= −1

2
±

√
7i

2
= 0.500 ± 1.323i

3. Rewrite the factored quadratic equation
(x − x1)(x − x2) = 0 in the form
x2 − (x1 + x2)x + x1x2 = 0. Apply the quadratic
formula to this version and show that the roots are
x = x1 and x = x2.

x = x1 + x2 ±√
(x1 + x2)2 − 4x1x2

2

=
x1 + x2 ±

√
x2

1 + 2x12x + x2
2 − 4x1x2

2

=
x1 + x2 ±

√
x2

1 − 2x12x + x2
2

2

= x1 + x2 ± (x1 − x2)

2
=
{

x1 if + is chosen

x2 if − is chosen

5. The acid ionization constant of chloroacetic acid is
equal to 1.40 × 10−3 at 25 ◦C. Assume that activity
coefficients are equal to unity and find the hydrogen
ion concentration at the following stoichiometric
molarities.

a. 0.100 mol l−1

1.40 × 10−3 = x2

0.100 − x
≈ x2

0.100

x ≈ [(
1.40 × 10−3) (0.100)

]1/2
= 0.0118

x ≈ [(
1.40 × 10−3) (0.100 − 0.0118

)]1/2
= 0.0111

x ≈ [(
1.40 × 10−3) (0.100 − 0.0111)

]1/2
= 0.0112

[H+] = 0.011 mol l−1

b. 0.0100 mol l−1

1.40 × 10−3 = x2

0.0100 − x
≈ x2

0.0100

x ≈ [(1.40 × 10−3)(0.0100)]1/2

= 0.00374

x ≈ [(1.40 × 10−3)(0.0100

− 0.00374)]1/2

= 0.00296

x ≈ [(1.40 × 10−3)(0.0100

− 0.00296)]1/2

= 0.00314

x ≈ [(1.40 × 10−3)(0.0100

− 0.00314)]1/2

= 0.00310

[H+] = 0.0031 mol l−1

7. Make a properly labeled graph of the function y(x) =
ln (x)+ cos (x) for values of x from 0 to 2π
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a.

b. Repeat part a using Mathematica.

9. Using a graphical method, find the two positive roots
of the following equation.

ex − 3.000x = 0.

The following graph indicates a root near x = 0. 6 and
one near x = 1.5.

By trial and error, the roots are at x = 0.61906 and
x = 1.5123

11. Write an Excel worksheet that will convert a list of
distance measurements in meters to miles, feet, and
inches. If the length in meters is typed into a cell in
column A, let the corresponding length in miles appear
on the same line in column B, the length in feet in
column C, and the length in inches in column C. Here
is the result:

�

�

�

	

meters miles feet inches

1 0.000621371 3.28084 39.37007874

2 0.001242742 6.56168 78.74015748

5 0.003106855 16.4042 196.8503937

10 00.00621371 32.8084 393.7007874

100 0.0621371 328.084 3937.007874

13. An approximate equation for the ionization of a weak
acid, including consideration of the hydrogen ions
from water is

[H+]/co = √
Kac/co + Kw,

where c is the gross acid concentration. This
equation is based on the assumption that the con-
centration of unionized acid is approximately equal
to the gross acid concentration. Consider a solution
of HCN (hydrocyanic acid) with stoichiometric acid
concentration equal to 1.00 × 10−5 mol l−1. Ka =
4.0 × 10−10 for HCN. At this temperature, Kw =
1.00 × 10−14.

a. Calculate [H+] using this equation.

[H+]/co

=
√
(4.0 × 10−10)(1.00 × 10−5)+ 1.00 × 10−14

= 1.18 × 10−7 ≈ 1.2 × 10−7

Roughly 20% greater than the value in pure water.
b. Calculate [H+]/co using Eq. (5.9).

x3 + (
4.0 × 10−10) x2

−
[(

1.00 × 10−5
) (

4.0 × 10−10)+ 1.00

×10−14
]

x − (
4.0 × 10−10) (1.00 × 10−14) = 0

x3 +
(

4.0 × 10−15
)

x2

− (
1.00 × 10−14) x − 4.0 × 10−25 = 0

The solution is

x =

⎧⎪⎨
⎪⎩

−4.0 × 10−11

−9.9980 × 10−8

1.0002 × 10−7

We reject the negative roots and take [H+]/co =
1.0002×10−7, barely more than the value in pure
water.

15. Solve the cubic equation by trial and error, factoring,
or by using Mathematica or Excel:

x3 + x2 − 4x − 4 = 0

This equation can be factored:

(x + 1)(x − 2)(x + 2) = 0

The solution is:

x =

⎧⎪⎨
⎪⎩

−2

−1

2

17. Find the root of the equation

x − 2.00 sin (x) = 0
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By trial and error, the solution is

x = 1.8955

19. Find the real roots of the equation

x2 − 2.00 − cos (x) = 0

A graph indicates roots near x = ±1.4. By trial and
error, the roots are

x = ±1.4546

21. Solve the simultaneous equations by hand, using the
method of substitution:

x2 + x + 3y = 15

3x + 4y = 18

Use Mathematica to check your result. Since the first
equation is a quadratic equation, there will be two
solution sets.

y = 18 − 3x

4
Substitute this into the first equation

x2 + x + 3

(
18 − 3x

4

)
= 15

x2 +
(

1 − 9

4

)
x + 54

4
= 15

x2 − 1.25x + 13.5 = 15

x2 − 1.25x − 1.50 = 0

4x2 − 5x − 6 = 0

x = 5 ± √
25 + 96

8

= 5 ± √
121

8

x = 5 ± 11

8
=
⎧⎨
⎩

2

−3

4

Check the x = −3/4 value:

4

(
9

16

)
− 5

(
3

4

)
− 6 =

For x = 2

y = 18 − 6

4
= 3

For x = −3/4

y = 18 + 9/4

4
= 18 + 2.25

4
= 5.0625

Check this

9

16
− 3

4
+ 3(5.0625) = 15

23. The Dieterici equation of state is

Pea/Vm RT (Vm − b) = RT ,

where P is the pressure, T is the temperature, Vm is
the molar volume, and R is the ideal gas constant.
The constant parameters a and b have different
values for different gases. For carbon dioxide, a =
0.468 Pa m6 mol−2, b = 4.63 × 10−5 m3 mol−1.
Without linearization, find the molar volume of carbon
dioxide if T = 298.15 K and P = 10.000 atm =
1.01325 × 106 Pa. Use Mathematica, Excel, or trial
and error.

(1.01325 × 106 Pa)

exp

(
0.468 Pa m6 mol−2

Vm(8.3145 J K−1 mol−1)(298.15 K)

)

× (Vm − 4.63 × 10−5 m3 mol−1)

= (8.3145 J K−1 mol−1)(298.15 K)

Divide this equation by (1.01325 × 106 Pa) and
ignore the units

exp

(
0.468 Pa m6 mol−2

Vm(8.3145 J K−1 mol−1)(298.15 K

)

× (Vm − 4.63 × 10−5 m3 mol−1)

= (8.3145J K−1 mol−1)(298.15 K)

(1.01325 × 106 Pa)

exp

(
0.00018879

Vm

)
(Vm − 4.63 × 10−5)− 0.00244655 = 0

Using trial and error with various values of Vm we seek
a value so that this quantity vanishes. The result was

Vm = 0.0023001 m3 mol−1

Compare this with the ideal gas value:

Vm = RT

P
= (8.3145J K−1mol−1)(298.15 K)

(1.01325 × 106 Pa)

= 0.002447 m3 mol−1

25. Solve the set of equations using Mathematica or by
hand with the method of substitution:

x2 − 2xy + y2 = 0

2x + 3y = 5

To solve by hand we first solve the quadratic equation
for y in terms of x. The equation can be factored into
two identical factors:

x2 − 2xy + y2 = (
x − y

)2 = 0

Both roots of the equation are equal:

y = x
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We substitute this into the second equation

2x + 3y = 5x = 5

x = 1

The final solution is

x = 1

y = 1

Since the two roots of the quadratic equal were equal
to each other, this is the only solution.

Alternate solution: Solve the second equation for y

y = 5 − 2x

3

x2 − 2x

(
5 − 2x

3

)
+
(

5

3
− 2x

3

)2

= 0

x2 − 10x

3
+ 4x2

3
+ 25

9
− 20x

9
+ 4x2

9
= 0

25

9
x2 − 50

9
x + 25

9
= 0

Multiply by 9/25

x2 − 2x + 1 = 0

This equation can be factored to give two identical
factors, leading to two equal roots:

(x − 1)2 = 0

x = 1

This gives

2 + 3y = 5

y = 1
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�Chapter 6

Differential Calculus

EXERCISES

Exercise 6.1. Using graph paper plot the curve represent-
ing y = sin (x) for values of x lying between 0 and π/2
radians. Using a ruler, draw the tangent line at x = π/4.
By drawing a right triangle on your graph and measuring
its sides, find the slope of the tangent line.

Your graph should look like this:

The slope of the tangent line should be equal to
√

2
2 =

0.70717 · · ·
Exercise 6.2. Decide where the following functions are
differentiable.

a.

y = 1

1 − x
This function has an infinite discontinuity at x = 1 and
is not differentiable at that point. It is differentiable
everywhere else.

b.
y = x + 2

√
x

This function has a term, x, that is differentiable
everywhere, and a term 2

√
x , that is differentiable only

for x ≺ 0.

c.
y = tan (x)

This function is differentiable except at x = π/2, 3π/2,
5π/2, . . .

Exercise 6.3. The exponential function can be represented
by the following power series

ebx = 1 + bx + 1

2!b2x2 + 1

3!b3x3 + · · · + 1

n!bn xn · · ·

where the ellipsis (· · ·) indicates that additional terms
follow. The notation n! stands for n factorial, which is
defined to equal n(n − 1)(n − 2) · · · (3)(2)(1) for any
positive integral value of n and to equal 1 for n = 0. Derive
the expression for the derivative of ebx from this series.

d

dx

(
1 + bx + 1

2!b2x2 + 1

3!b3x3 + · · · + 1

n!bn xn · · ·
)

= b + 2

(
1

2!b2x

)
+ 3

(
1

3!b3x2

)
+ · · · + n

(
1

n!bn xn−1
)

· · ·

= b

(
1 + bx + 1

2!b2x2 + 1

3!b3x3 + · · · + 1

n!bn xn · · ·
)

= bebx

Exercise 6.4. Draw rough graphs of several functions from
Table 6.1. Below each graph, on the same sheet of paper,
make a rough graph of the derivative of the same function.

Solution not given here.

Exercise 6.5. Assume that y = 3.00x2 − 4.00x + 10.00.
If x = 4.000 and �x = 0.500, Find the value of �y using
Eq. (6.2). Find the correct value of �y

�y ≈
(

dy

dx

)
�x = (6.00x − 4.00)(0.500)

×(24.00 − 4.00)(0.500) = 10.00

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00052-5
© 2013 Elsevier Inc. All rights reserved. e27
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Now we compute the correct value of �y:

y(4.500) = (3.00)(4.5002)− (4.00)(4.500)+ 10.00

= 52.75

y(4.000) = (3.00)(4.0002)− (4.00)(4.000)+ 10.00

= 42.00

�y = y(4.500)− y(4.00) = 52.75 − 42.00

= 10.75

Our approximation was wrong by about 7.5%.

Exercise 6.6. Find the following derivatives. All letters
stand for constants except for the dependent and
independent variables indicated.

a.
dy

dx
, where y = (ax2 + bx + c)−3/2

d

dx
(ax2+bx+c)−3/2 = −3

2

(
2ax + b

(ax2 + bx + c)−5/2

)

b.
d ln (P)

dT
, where P = ke−Q/T

ln (P) = ln (k)− Q

T
d ln (P)

dT
= −d(Q/T )

dT
= Q

T 2

c.
dy

dx
, where y = a cos (bx3)

d

dx
a cos (bx3) = −a sin (bx3)(3bx2)

= −3abx2 sin (bx3)

Exercise 6.7. Carry out Newton’s method by hand to find
the smallest positive root of the equation

1.000x2 − 5.000x + 1.000 = 0
d f

dx
= 2.000x − 5.000

A graph indicates a root near x = 0.200. we take x0 =
0.2000.

x1 = x0 − f (x0)

f (1)(x0)

f (0.2000) = 0.04000 − (5.000)(0.200)+ 1.000

= 0.04000

f (1)(0.2000) = (2.000)(0.2000)− 5.000 = −4.600

x1 = 0.2000− 0.04000

−4.600
= 0.2000+0.008696 = 0.208696

x2 = x1 − f (x1)

f (1)(x1)

f (0.208696) = 0.043554 − (5.000)(0.208696)

+ 1.000 = 0.000074

f (1)(0.208696) = 2(0.208696)− 5.000 = −4.58261

x2 = 0.208696 + 0.000074

4.58261
= 0.20871

We discontinue iteration at the point, since the second
approximation does not differ significantly from the first
approximation. This is the correct value of the root to five
significant digits.

Exercise 6.8. Find the second and third derivatives of
the following functions. Treat all symbols except for the
specified independent variable as constants.

a. y = y(x) = axn

dy

dx
= anxn−1

d2 y

dx2 = an(n − 1)xn−2

d3 y

dx3 = an(n − 1)(n − 2)xn−3

b. y = y(x) = aebx

dy

dx
= abebx

d2 y

dx2 = ab2ebx a

d3 y

dx3 = ab3ebx

Exercise 6.9. Find the curvature of the function y =
cos (x) at x = 0 and at x = π/2.

dy

dx
= − sin (x)

d2 y

dx2 = − cos (x)

K = d2 y/dx2

[
1 +

(
dy

dx

)2
]3/2 = − cos (x)[

1 + ( sin (x))2
]3/2

at x = 0

K = −1

13/2 = −1

at x = π/2.

K = 0

23/2 = 0

Exercise 6.10. For the interval −10 < x < 10, find the
maximum and minimum values of

y = −1.000x3 + 3.000x2 − 3.000x + 8.000
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We take the first derivative:

dy

dx
= −3.000x2 + 6.000x − 3.000

= −3.000(x2 − 2.000x + 1.000)

= −3.000(x − 1.000)2 = 0 if x = 1

We test the second derivative to see if we have a relative
maximum, a relative minimum, or an inflection point:

d2 y

dx2 = −6.000x + 6.000

= 0 if x = 1.000

The point x = 1.000 is an inflection point. The possible
maximum and minimum values are at the ends of the
interval

ymax = y(−10.000) = 1538

ymin = y(10.000) = −522

The maximum is at x = −10 and the minimum is at x = 10.

Exercise 6.11. Find the inflection points for the function
y = sin (x). The inflection points occur at points where the
second derivative vanishes.

dy

dx
= cos (x)

d2 y

dx2 = − sin (x)

d2 y

dx2 = 0 when x = ±0,± π,± 2π,± 3π, . . .

Exercise 6.12. Decide which of the following limits exist
and find the values of those that do exist.

a. limx→π/2[x tan (x)] This limit does not exist, since
tan (x) diverges at x = π/2.

b. limx→0[ln (x)]. This limit does not exist, since ln (x)
diverges at x = 0.

Exercise 6.13. Find the value of the limit:

lim
x→0

[
tan (x)

x

]

We apply l’Hôpital’s rule.

lim
x→0

[
tan (x)

x

]
= lim

x→0

[
d tan (x)dx

dx/dx

]
= lim

x→0

[
sec2 (x)

1

]

= lim
x→0

[
1

cos2 (x)

]
= 1

Exercise 6.14. Investigate the limit

lim
x→∞ (x

−nex )

for any finite value of n.

lim
x→∞ (x

−nex ) = lim
x→∞

(
ex

xn

)
= lim

x→∞

(
ex

nxn−1

)

Additional applications of l’Hôpital’s rule give decreasing
powers of x in the denominator times n(n − 1)(n − 2) · · ·,
until we reach a denominator equal to the derivative of a
constant, which is equal to zero. The limit does not exist.

Exercise 6.15. Find the limit

lim
x→∞

[
ln (x)√

x

]
.

We apply l’Hôpital’s rule.

lim
x→∞

[
ln (x)√

x

]
= lim

x→∞

[
1/x

x−1/2

]

= lim
x→∞

[
x1/2

x

]
= lim

x→∞

[
1√
x

]
= 0

Exercise 6.16. Find the limit

lim
ν→∞

(
Nhν

ehν/kBT − 1

)

We apply Hôpital’s rule

lim
ν→∞

(
Nhν

ehν/kBT − 1

)

= lim
ν→∞

(
Nh

h
kBT ehν/kBT

)
lim
ν→∞

(
NkBT

ehν/kBT

)
= 0

Notice that this is the same as the limit taken as T → 0.

PROBLEMS

1. The sine and cosine functions are represented by the
two series

sin (x) = x − x3

3! + x5

5! − x7

7! + · · ·

cos (x) = 1 − x2

2! + x4

4! − x6

6! + · · ·

Differentiate each series to show that

d sin (x)

dx
= cos (x)

and
d cos (x)

dx
= − sin (x)
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The derivative of the first series is

d sin (x)

dx
= 1 − 2x2

3! + 5x4

5! − yx6

7! + · · ·

= 1 − x2

2! + x4

4! − x6

6! + · · ·

The derivative of the second series is

d cos (x)

dx
= −2x

2! + 4x3

4! − 6x5

6! + · · ·

= −
(

1 − x2

2! + x4

4! − x6

6! + · · ·
)
.

3. Use the definition of the derivative to derive the
formula

d(yz)

dx
= y

dz

dx
+ z

dy

dx
where y and z are both functions of x.

d(yz)

dx
= lim

x2→x1

y(x2)z(x2)− y(x1)z(x1)

x2 − x1

Work backwards from the desired result:

y
dz

dx
+ z

dy

dx
= lim

x2→x1
y

z(x2)− z(x1)

x2 − x1

+ lim
x2→x1

z
y(x2)− y(x1)

x2 − x1

= lim
x2→x1

y(x2)z(x2)− y(x2)z(x1)

x2 − x1

+ lim
x2→x1

z
y(x2)z(x1)− y(x1)z(x1)

x2 − x1

Two terms cancel:

y
dz

dx
+ z

dy

dx
= lim

x2→x1

y(x2)z(x2)− y(x1)z(x1)

x2 − x1

5. Find the first and second derivatives of the following
functions

a. P = P(Vm) = RT
(
1/Vm + B/V 2

m + C/V 3
m

)
where R, B, and C are constants

dP

dVm
= RT

(
−1/V 2

m − 2B/V 3
m − 3C/V 4

m

)

d2 P

dV 2
m

= RT
(

2/V 3
m + 6B/V 4

m + 12C/V 5
m

)

b. G = G(x) = G◦ + RT x ln (x) + RT (1 − x) ln
(1 − x), where G◦, R, and T are constants

dG

dx
= RT [1 + ln (x)] + RT [−1 − ln (1 − x)]

d2G

dx2 = RT

[
1

x

]
+ RT

[
1

1 − x

]

c. y = y(x) = a ln (x1/3)

dy

dx
= a

x1/3

(
1

3

)(
x−2/3

)
= a

3x

7. Find the first and second derivatives of the following
functions.

a. y =
(

1

x

)(
1

1 + x

)

dy

dx
= −

(
1

x2

)(
1

1 + x

)
−
(

1

x

)(
1

(1 + x)2

)

= 2

(
1

x3

)(
1

1 + x

)
+
(

1

x2

)(
1

(1 + x)2

)

+
(

1

x2

)(
1

(1 + x)2

)
+ 2

(
1

x

)(
1

(1 + x)3

)

= 2

(
1

x3

)(
1

1 + x

)

+ 2

(
1

x2

)(
1

(1 + x)2

)
+ 2

(
1

x

)(
1

(1 + x)3

)

b. f = f (v) = ce−mv2/(2kT ) where m, c, k, and T
are constants

d f

dv
= −ce−mv2/(2kT )

(
2mv

2kT

)

= −ce−mv2/(2kT )
(mv

kT

)

d2 f

dv2 = ce−mv2/(2kT )
(mv

kT

)2

− ce−mv2/(2kT )
( m

kT

)

9. Find the second and third derivatives of the following
functions. Treat all symbols except for the specified
independent variable as constants.

a. vrms = vrms(T ) =
√

3RT
M

dvrms

dT
=
(

1

2

)(
3RT

M

)−1/2

d2vrms

dT 2 = −
(

1

2

)(
1

2

)(
3RT

M

)−3/2

= −
(

1

4

)(
3RT

M

)−3/2

d3vrms

dT 3 =
(

1

4

)(
3

2

)(
3RT

M

)−5/2

=
(

3

8

)(
3RT

M

)−5/2
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b. P = P(V ) = n RT

(V − nb)
− an2

V 2

dP

dV
= − n RT

(V − nb)2
+ 2

an2

V 3

d2 P

dV 2 = 2
n RT

(V − nb)3
− 6

an2

V 4

d3 P

dV 3 = −6
n RT

(V − nb)4
+ 24

an2

V 5

11. Find the following derivatives and evaluate them at the
points indicated.

a. (dy/dx)x=1, if y = (ax3 + bx2 + cx + 1)−1/2,
where a, b, and c are constants

dy

dx
=
(−1

2

)
(ax3 + bx2 + cx + 1)−3/2

× (3ax2 + 2bx + c)(
dy

dx

)
x=1

=
(−1

2

)
(a + b + c + 1)−3/2

(3a + 2b + c)

b. (d2 y/dx2)x=0, if y = ae−bx , where a and b are
constants.

dy

dx
= −abe−bx

d2 y

dx2 = ab2e−bx

(
d2 y

dx2

)
x=0

= ab2

13. Find a formula for the curvature of the function

P(V ) = n RT

V − nb
− an2

V 2 .

where n, R, a, b, and T are constants

K = d2 y/dx2

[1 + (dy/dx)2]3/2

dP

dV
= − n RT

(V − nb)2
+ 2

an2

V 3

d2 P

dV 2 = 2
n RT

(V − nb)3
− 6

an2

V 4

K =
2

n RT

(V − nb)3
− 6

an2

V 4[
1 +

(
− n RT

(V − nb)2
+ 2

an2

V 3

)2
]3/2

15. Draw a rough graph of the function

y = y(x) = e−|x |

Your graph of the function should look like this:

Is the function differentiable at x = 0? Draw a rough
graph of the derivative of the function.

dy

dx
=
{

−e−x if x � 0

ex if x � 0

The function is not differentiable at x = 0. Your graph
of the derivative should look like this:

17. Draw a rough graph of the function

y = y(x) = cos (|x |)

Is the function differentiable at x = 0? Since the
cosine function is an even function

cos (|x |) = cos (x)

The function is differentiable at all points. Draw a
rough graph of the derivative of the function, your
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graph of the function should look like a graph of the
cosine function:

19. Show that the function ψ(x) = cos (kx) satisfies the
equation

d2ψ

dx2 = −k2ψ

if A and k are constants.

dψ

dx
= −k sin (kx)

d2ψ

dx2 = −k2 cos (kx) = −k2ψ

21. The mean molar Gibbs energy of a mixture of two
enantiomorphs (optical isomers of the same substance)
is given at a constant temperature T by

Gm = Gm(x)

= G◦
m + RT x ln (x)+ RT (1 − x) ln (1 − x)

where x is the mole fraction of one of them. G
◦
m is

a constant, R is the ideal gas constant, and T is the
constant temperature. What is the concentration of
each enantiomorph when G has its minimum value?
What is the maximum value of G in the interval
0 � x � 1?

dGm

dx
= RT [1 + ln (x)] + RT [−1 − ln (1 − x)]

This derivative vanishes when

1 + ln (x)− 1 − ln (1 − x) = 0

ln (x)− ln (1 − x) = 0

ln

(
x

1 − x

)
= 0

x

1 − x
= 1

x = 1 − x

x = 1

2

The minimum occurs at x = 1/2. There is no
relative maximum. To find the maximum, consider the

endpoints of the interval:

Gm(0) = G
◦
m + RT lim

x→0
[x ln (x)]

Apply l’Hôpital’s rule

lim
x→0

ln (x)

x−1 = lim
x→0

1/x

−1/x2 = lim
x→0

(x) = 0

The same value occurs at x = 1, since 1 − x plays
the same role in the function as does x. The maximum
value of the function is

Gm(0) = Gm(1) = G
◦
m

23. The sum of two nonnegative numbers is 100. Find their
values if their product plus twice the square of the first
is to be a maximum. We denote the first number by x
and let

f = x(100 − x)+ 2x2

d f

dx
= 100 − 2x + 4x = 100 + 2x

At an extremum

0 = 100 + 2x

This corresponds to x = −50. Since we specified that
the numbers are nonzero, we inspect the ends of the
region.

f (0) = 0

f (100) = 20000

The maximum corresponds to x = 100.
25. Find the following limits.

a. limx→∞[ln (x)/x2] Apply l’Hôpital’s rule:

lim
x→∞[ln (x)/x2] = lim

x→∞

[
1/x

2x

]
= 0

b. limx→3[(x3 − 27)/(x2 − 9)] Apply l’Hôpital’s
rule:

lim
x→3

[
(x3 − 27)

(x2 − 9)

]
= lim

x→3

[
3x2

2x

]

= lim
x→3

[
3x

2

]
= 9

2

c. limx→∞
[

x ln

(
1

1 + x

)]

lim
x→∞

[
x ln

(
1

1 + x

)]
= lim

x→∞

⎡
⎣ ln

(
1

1+x

)
1/x

⎤
⎦

= lim
x→∞

[− ln (1 + x)

1/x

]
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Apply l’Hôpital’s rule:

lim
x→∞

[− ln (1 + x)

1/x

]
= lim

x→∞

[−1/(1 + x)

−1/x2

]

= lim
x→∞

[
x2

1 + x

]

This diverges and the limit does not exist.

27. Find the following limits

a. limx→∞ (e−x2
/e−x ).

lim
x→∞

(
e−x2

e−x

)
= lim

x→∞ (e
−x2+x ) = 0

b. limx→0[x2/(1−cos (2x))]. Apply l’Hôpital’s rule
twice:

lim
x→0

[
x2

1 − cos (2x)

]

= lim
x→0

[
2x

2 sin (2x)

]
= lim

x→0

[
2

4 cos (2x)

]
= 1

2

c. limx→π [sin (x)/ sin (3x/2)]. Apply l’Hôpital’s
rule

lim
x→π

[
sin (x)

sin (3x/2)

]
lim

x→π

[
cos (x)

3 cos 3x)/2

]
= 2

3

29. If a hydrogen atom is in a 2s state, the probability of
finding the electron at a distance r from the nucleus
is proportional to 4πr2ψ2

2s where ψ represents the
orbital (wave function):

ψ2s = 1

4
√

2π

(
1

a0

)3/2 (
2 − r

a0

)
e−r/2a0 ,

where a0 is a constant known as the Bohr radius, equal
to 0.529 × 10−10 m.

a. Locate the maxima and minima ofψ2s . To find the
extrema, we omit the constant factor:

d
dr

[(
2 − r

a0

)
e−r/2a0

]

=
(−1

a0

)
e−r/2a0 +

(
2 − r

a0

)
e−r/2a0

( −1

2a0

)
= 0

We cancel the exponential factor, which is the
same in all terms:(−1

a0

)
+
(

2 − r

a0

)(−1

2a0

)
= 0

− 2

a0
+ r

2a2
0

= 0

At the relative extremum

r = 4a0

This is a relative minimum, since the function is
negative at this point. The function approaches
zero as r becomes large, so the maximum is
at r = 0.

b. Draw a rough graph of ψ2s . For a rough graph,
we omit the constant factor and let r/a0 = u. We
graph the function

f = (2 − u)e−u/2

your graph should look like this:

c. Locate the maxima and minima of ψ2
2s .

ψ2
2s = 1

4
√

2π

(
1

32π

)(
1

a0

)3 (
2 − r

a0

)2
e−r/a0 ,

To locate the extrema, we omit the constant factor

d

dr

[(
2 − r

a0

)2

e−r/a0

]

= d

dr

[(
4 − 4r

a0
+ r2

a2
0

)
e−r/a0

]

=
(

− 4

a0
+ 2r

a2
0

)
e−r/a0

+
(

4 − 4r

a0
+ r2

a2
0

)
e−r/a0

(−1

a0

)
= 0

Cancel the exponential term:

− 4

a0
+ 2r

a2
0

−
(

4

a0
− 4r

a2
0

+ r2

a3
0

)
= 0

− 4

a0
+ 2r

a2
0

− 4

a0
+ 4r

a2
0

− r2

a3
0

= 0

− 8

a0
+ 6r

a2
0

− r2

a3
0

= 0
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Let u = r/a0: and multiply by a0

u2 − 6u + 8 = (x − 2)(x − 4) = 0

The relative extrema occur at x = 3 and x = 4.
The first is a relative minimum, where f = 0,
and the second is a relative maximum.

d. Draw a rough graph of ψ2
2s . For a rough graph,

we plot
f (u) = (2 − u)2e−u

e. Locate the maxima and minima of 4πr2ψ2
2s .

4πr2ψ2
2s = 4π

4
√

2π

(
1

32π

)(
1

a0

)3
r2
(

2 − r

a0

)2
e−r/a0

= 1

32
√

2π

(
1

a0

)3
(

2r − r2

a0

)2

e−r/a0

To locate the relative extrema, we omit the
constant factor

d f

dr
= d

dr

(
2r − r2

a0

)2

e−r/a0

= 2

(
2r − r2

a0

)(
2 − 2r

a0

)
e−r/a0

+
(

2r − r2

a0

)2

e−r/a0

(−1

a0

)
= 0

We cancel the exponential factor

(
4r − 2r2

a0

)(
2 − 2r

a0

)
−
(

2r − r2

a0

)2 (
1

a0

)
= 0

(
8r − 12r2

a0
+ 4r3

a2
0

)
−
(

4r2

a0
− 4r3

a2
0

+ r4

a3
0

)
= 0

Divide by a0, replace r/a0 by u and collect terms:

8u − 16u2 + 8u3 − u4 = 0

We multiply by −1

u(−8 + 16u − 8u2 + u3) = 0

One root is u = 0. The roots from the cubic factor
are

u =

⎧⎪⎨
⎪⎩

0.763 93

2

5. 236 1

The two minima are at r = 0 and at r = 2a0, and
the maximum is at r = 5. 236 1a0

f. Draw a rough graph of 4πr2ψ2
2s . For our rough

graph, we plot

f = (2u − u2)2e−u

31. According to the Planck theory of black-body
radiation, the radiant spectral emittance is given by
the formula

η = η(λ) = 2πhc2

λ5(ehc/λkBT − 1)
,

whereλ is the wavelength of the radiation, h is Planck’s
constant, kB is Boltzmann’s constant, c is the speed of
light, and T is the temperature on the Kelvin scale.
Treat T as a constant and find an equation that gives
the wavelength of maximum emittance.

dη

dλ
= (2πhc2)

[ −5

λ6(ehc/λkBT − 1)

− 1

λ5(ehc/λkBT − 1)2
ehc/λkBT

( −hc

λ2kBT

)]

At the maximum, this derivative vanishes. We place
both terms in the square brackets over a common
denominator and set this factor equal to zero.

−5(ehc/λkBT − 1)+ ehc/λkT (hc/λkBT )

λ6(ehc/λkBT − 1)2
= 0

We set the numerator equal to zero

−5(ehc/λkT − 1)+ ehc/λkBT (hc/λkBT ) = 0

We let x = hc/λkBT so that

−5(ex − 1)+ ex x = 0
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We divide by ex

−5(1 − e−x )+ x = 0

This equation is solved numerically to give x = 4.965

λmax = hc

kBT x
= hc

4.965kBT

33. Draw a rough graph of the function

y = tan (x)

x

in the interval −π < x < π . Use l’Hôpital’s rule to
evaluate the function at x = 0. Here is an accurate
graph. The function diverges at x = −π/2 and x =
π/2 so we plot only from 1.5 to 1.5. At x = 0

lim
x→0

tan (x)

x
= lim

x→0

sec2 (x)

1
= sec2 (0)

1
= 1

35. The van der Waals equation of state is(
P + n2a

V 2

)
(V − nb) = n RT

When the temperature of a given gas is equal to
its critical temperature, the gas has a state at which
the pressure as a function of V at constant T and n
exhibits an inflection point at which dP/dV = 0 and
d2 P/dV 2 = 0. This inflection point corresponds to the
critical point of the gas. Write P as a function of T, V,
and nand write expressions for dP/dV and d2 P/dV 2,
treating T and n as constants. Set these two expressions
equal to zero and solve the simultaneous equations to
find an expression for the pressure at the critical point.

P = n RT

V − nb
− n2a

V 2

dP

dV
= − n RT

(V − nb)2
+ 2n2a

V 3

= 0 at the critical point (6.1)

d2 P

dV 2 = 2n RT

(V − nb)3
+ 6n2a

V 4

= 0 at the critical point (6.2)

Solve Eq. (6.1) for Tc:

Tc = 2n2a(Vc − nb)2

n RV 3
c

(6.3)

Substitute this expression into Eq. (6.2):

0 = −
(

2n R

(V − nb)3

)(
2n2a(V − nb)2

n RV 3

)
+ 6n2a

V 4

0 = − 4n2a

(V − nb)
+ 6n2a

V

0 = − 2

(V − nb)
+ 3

V
when V = Vc

Vc = 3nb

Substitute this into Eq. (6.3)

Tc = 2n2a(2nb)2

n R(27n3b3)
= 8a

27Rb

Pc = n RTc

Vc − nb
− n2a

V 2
c

= 8n Ra

27Rb(2nb)
− n2a

9n2b2

= 4a

27b2 − a

9b2 = a

27b2

37. Solve the following equations by hand, using
Newton’s method. Verify your results using Excel or
Mathematica:

a. e−x − 0.3000x = 0. A rough graph indicates a
root near x = 1. We take x0 = 1.000

f = e−x − 0.3000x

f ′ = −e−x − 0.3000

x1 = x0 − f (x0)

f ′(x0)

f (1.000) = e−1.000 − 0.3000 = 0.06788

f ′(1.000) = −e−1.000 − 0.3000 = −1.205

x1 = 1.000 − 0.06788

−1.205
= 1.000 + 0.0563 = 1.0563

x2 = x1 − f (x1)

f ′(x1)

f (1.0563) = e−1.0563 − (0.3000)(1.0563)

= 0.3477 − 0.3169 = 0.03082

f ′(1.0563) = −e−1.0563 − (0.3000)(1.0563)

= −0.3477 − 0.3169 = −0.6646

x2 = 1.0563 − 0.03082

−0.6646
= 1.0563 + 0.0464 = 1.10271

x3 = x2 − f (x2)

f ′(x2)
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f (1.10271) = e−1.10271 − (0.3000)(1.10271)

= 0.33197 − 0.33081 = 0.001155

f ′(1.10271) = −e−1.0563 − (0.3000)(1.0563)

= −0.33197 − 0.33081 = −0.66278

x3 = 1.10271 − 0.001155

−0.66278
= 1.1045

To five significant digits, this is the correct answer.

b. sin (x)/x − 0.7500 = 0. A graph indicates a root
near x = 1.25. We take x0 = 1.25.

sin (x)/x − 0.7500

f ′ = cos (x)

x
− sin (x)

x2

x1 = x0 − f (x0)

f ′(x0)

f (1.25) = sin (1.25)

1.25
− 0.7500 = 0.009188

f ′(1.25) = cos (x)

x
− sin (x)

x2

= 0.25226 − 0.60735 = −0.35509

x1 = 1.25 − 0.009188

−0.35509
= 1.25 + 0.02587 = 1.2759

x2 = x1 − f (x1)

f ′(x1)

f (1.2759) = sin (1.2759)

1.2759
− 0.7500

= −0.00006335

f ′(1.2759) = cos (x)

x
− sin (x)

x2

= 0.2278 − 0.58878 = −0.35997

x1 = 1.2759 − −0.00006335

−0.35997
= 1.2759 − 0.000259 = 1.2756

We stop iterating at this point. The correct answer
to five significant digits is x = 1.2757
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Integral Calculus

EXERCISES

Exercise 7.1. Find the maximum height for the particle in
the preceding example.

We find the time of the maximum height by setting the
first derivative of z(t) equal to zero:

dz

dt
= 0.00 m s−1 = 10.00 m s−1 − (9.80 m s−2)t = 0

The time at which the maximum height is reached is

t = 10.00 m s−1

9.80 m s−2 = 1.020 s

The position at this time is

z(t) = (10.00 m s−1)(1.020 s)− (9.80 m s−2)(1.020 s)2

2
= 5.204 m

Exercise 7.2. Find the function whose derivative is
−(10.00)e−5.00x and whose value at x = 0.00 is 10.00.

The antiderivative of the given function is

F(x) = (2.00)e−5.00x + C

where C is a constant.

F(0.00) = 10.00 = (2.00)e0.00 + C

C = 10.00 − 2.00 = 8.00

F(x) = (2.00)e−5.00x + 8.00

Exercise 7.3. Evaluate the definite integral

∫ 1

0
ex dx .

The antiderivative function is F = ex so that the definite

integral is

∫ 1

0
ex dx = ex |10 = e1 − e0 = 2.71828 · · · − 1

= 1.71828 · · ·

Exercise 7.4. Find the area bounded by the curve
representing y = x3, the positive x axis, and the line
x = 3.000.

area =
∫ 3.000

0.000
x3 dx = 1

2
x2
∣∣∣∣
3.000

0.000
= 1

2
(9.000 − 0.000)

= 4.500

Exercise 7.5. Find the approximate value of the integral

∫ 1

0
e−x2

dx

by making a graph of the integrand function and measuring
an area.

We do not display the graph, but the correct value of the
integral is 0.74682.

Exercise 7.6. Draw a rough graph of f (x) = xe−x2
and

satisfy yourself that this is an odd function. Identify the
area in this graph that is equal to the following integral and
satisfy yourself that the integral vanishes:

∫ 4

−4
xe−x2

dx = 0.

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00053-7
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The area to the right of the origin is positive, and the area
to the left of the origin is negative, and the two areas have
the same magnitude.

Exercise 7.7. Draw a rough graph of f (x) = e−x2
. Satisfy

yourself that this is an even function. Identify the area in
the graph that is equal to the definite integral

I1 =
∫ 3

−3
e−x2

dx

and satisfy yourself that this integral is equal to twice the
integral

I2 =
∫ 3

0
e−x2

dx .

Here is the graph. The area to the left of the origin is
equal to the area to the right of the origin. The value of the
integrals areI1 = 1.4936 and I2 = 0.7468.

Exercise 7.8. a. By drawing rough graphs, satisfy
yourself that ψ1 is even about the center of the box.
That is, ψ1(x) = ψ1(a − x). Satisfy yourself that ψ2
is odd about the center of box.

For the purpose of the graphs, we let a = 1. Here
is a graph for ψ1

Here is a graph for ψ2:

b. Draw a rough graph of the product ψ1ψ2 and satisfy
yourself that the integral of this product from x = 0
to x = a vanishes. Here is graph of the two functions
and their product:

Exercise 7.9. Using a table of indefinite integrals, find the
definite integral. ∫ 3.000

0.000
cosh (2x)dx

∫ 3.000

0.000
cosh (2x)dx = 1

2

∫ 6.000

0.000
cosh (y)dy

= 1

2
sinh (y)

∣∣∣∣
6.000

0.000
= 1

2
[sinh (6.000)− sinh (0.000)]
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= 1

2
sinh (6.000) = 1

4
[e6.000 − e−6.000] = 100.8

Exercise 7.10. Determine whether each of the following
improper integrals converges, and if so, determine its value:

a.
∫ 1

0

( 1
x

)
dx

∫ 1

0

(
1

x

)
dx = lim

b→0
ln (x)|1b = 0 + ∞

This integral diverges since the integrand tends strongly
toward infinity as x approaches x = 0.

b.
∫∞

0

(
1

1+x

)
dx

∫ ∞

0

(
1

1 + x

)
dx = lim

b→∞ ln (1 + x)|b0 = ∞

This integral diverges since the integrand approaches
zero too slowly as x becomes large.

Exercise 7.11. Evaluate the integral

∫ π/2

0
esin (θ) cos (θ)dθ

without using a table of integrals. We let

y = sin (θ)

dy = cos (θ)dθ

∫ π/2

0
esin (θ) cos (θ)dθ =

∫ θ=π/2

0
ey dy =

∫ y=1

0
ey dy

= ey |10 = e − 1 = 1.7183

Exercise 7.12. Evaluate the integral

∫ π

0
x2 sin (x)dx

without using a table. You will have to apply partial
integration twice. For the first integration, we let u(x) = x2

and sin (x)dx = dv

du = 2x dx

v = − cos (x)∫ π

0
x2 sin (x)dx = −x2 cos (x)|π0 + 2

∫ π

0
x cos (x)dx

For the second integration, we let u(x) = x and
cos (x)dx = dv

du = dx

v = sin (x)

∫ π

0
x cos (x)dx = x sin (x)|π0 −

∫ π

0
sin (x)dx

= 0 + cos (x)|π0 = −2

∫ π

0
x2 sin (x)dx = −x2 cos (x)|π0 + 2 × (− 2)

= π2 − 4

Exercise 7.13. Solve the simultaneous equations to obtain
the result of the previous example.

A1 + A2 = 6

A1 + 2A2 = −30

Subtract the first equation from the second equation:

A2 = −36

Substitute this into the first equation

A1 − 36 = 6

A1 = 42

Exercise 7.14. Use Mathematica to verify the partial
fractions in the above example.

Solution not given.

Exercise 7.15. Show that the expressions for G and H
are correct. Verify your result using Mathematica if it is
available. Substitute the expressions for G and H into the
equation

1

([A]0 − ax)([B]0 − bx)

=
(

1

[A]0 − ax

)(
1

[B]0 − b[A]0/a

)

+
(

1

[B]0 − bx

)(
1

[A]0 − a[B]0/b
.

)

=
(

1

[A]0 − ax

)(
([B]0 − bx)

[B]0 − bx

)(
a

a[B]0 − b[A]0

)

+
( [A]0 − ax

[B]0 − bx

)(
1

[A]0 − ax

)(
b

b[A]0 − a[B]0
.

)

=
(

1

[A]0 − ax

)(
([B]0 − bx)

[B]0 − bx

)(
a

a[B]0 − b[A]0

)

−
( [A]0 − ax

[B]0 − bx

)(
1

[A]0 − ax

)(
b

(a[B]0 − b[A]0)

)

= a([B]0 − bx)− b([A]0 − ax)

([B]0 − bx)([A]0 − ax)(a[B]0 − b[A]0)

= a[B]0 − abx − b[A]0 + abx

([B]0 − bx)([A]0 − ax)(a[B]0 − b[A]0)

= 1

([B]0 − bx)([A]0 − ax)
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Exercise 7.16. Using the trapezoidal approximation, eval-
uate the following integral, using five panels.

∫ 2.00

1.00
cosh (x)dx

We apply the definition of the hyperbolic cosine

cosh (x) = 1

2
(ex + e−x )

∫ 2.00

1.00
ex dx ≈

(
e1.00

2
+ e1.20 + e1.400

+e1.600 + e1.800 + e2.00

2

)

(0.200) = 4.686∫ 2.00

1.00
e−x dx ≈

(
e−1.00

2
+ e−1.20 + e−1.400

+e−1.600 + e−1.800 + e−2.00

2

)

×(0.200) = 0.2333

∫ 2.00

1.00
cosh (x)dx ≈ 4.6866 + 0.2333

2
= 2.460

The correct value is 2.4517

Exercise 7.17. Apply Simpson’s rule to the integral

∫ 20.00

10.00
x2 dx

using two panels. Since the integrand curve is a parabola,
your result should be exactly correct.

∫ 20.00

10.00
x2 dx ≈ ( f0 + 4 f1 + fn)�x

3

= 1

3
(10.002 + 4(15.00)2 + 20.002)(5.00) = 2333.3

This is correct to five significant digits.

Exercise 7.18. Using Simpson’s rule, calculate the integral
from x = 0.00 to x = 1.20 for the following values of the
integrand.

x 0.00 0.20 0.40 0.60 0.80 1.00 1.20

f (x) 1.000 1.041 1.174 1.433 1.896 2.718 4.220

∫ 1.20

0.00
f (x)dx ≈ 1

3
[1.000 + 4(1.041)+ 2(1.174 + 4(1.433)

+2(1.896)+ 4(2.718)+ 4.200)](0.20) ≈ 2.142

Exercise 7.19. Write Mathematica entries to obtain the
following integrals:

a.
∫

cos3 (x)dx

b.
∫ 2

1 e5x2
dx

The correct values are

a. ∫
cos3 (x)dx = 3

4
sin x + 1

12
sin 3x

b. ∫ 2

1
e5x2

dx = 2.4917 × 107

PROBLEMS

1. Find the indefinite integral without using a table:

a.
∫

x ln (x)dx

u(x) = x

du/dx = 1

ln (x) = dv/dx

v = x ln (x)− x∫
x ln (x)dx = x(x ln (x)− x)

−
∫
(x ln (x)− x)dx + C

2
∫

x ln (x)dx = x(x ln (x)− x)+
∫

x dx + C

= x2 ln (x)− x2 + x2

2

= x2 ln (x)− x2

2∫
x ln (x)dx =

(
1

2

)
x2 ln (x)− x2

4

b.
∫

x sin2 (x)dx

∫
x sin2 (x)dx = 1

2

∫
x[1 − cos (2x)]dx

= 1

2

∫
x dx − 1

2

∫
x cos (2x)dx

∫
x cos (2x)dx = 1

2
x sin (2x)

−1

2

∫
sin (2x)dx

= 1

2
x sin (2x)+ 1

4
sin (2x)∫

x sin2 (x)dx = 1

4
x2 − 1

4
x sin (2x)

−1

8
cos (2x)
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3. Evaluate the definite integrals, using a table of
indefinite integrals

a.
∫ 2.000

1.000
ln (3x)

x dx

∫ 2.00

1.00

ln (3x)

x
dx = 1

2
[ln (3x)]2

∣∣∣∣
2

1

= 1

2
{[ln (6.000)]2 − [ln (3.000)]}2 = 1.0017

b.
∫ 5.000

0.000 4x dx .

∫ 5.000

0.000
4x dx = 4x

ln (4)

∣∣∣∣
5.000

0.000

= 1

ln (4)

(
45.000 − 40.000

)

= 1

1.38629
(1024.0 − 1.000)

= 737.9

5. Evaluate the definite integral:
∫ 4

2
1

x ln (x)dx

∫ 4

2

1

x ln (x)
dx = ln ( ln (|(x)|)|42 = ln ( ln (4)))

− ln ( ln 2))

= ln (1.38629)− ln (0.69315)

= 0.32663 + 0.36651 = 0.69314

7. Evaluate the definite integral:
∫ 10

1 x ln (x)dx

∫ 10

1
x ln (x)dx =

(
x2

2
ln (x)− x2

4

)∣∣∣∣
10

1

= 50 ln (10)− 100

4
+ 1

4

= 50 ln (10)− 99

4
= 90.38

9. Evaluate the definite integral:
∫ π/2

0 x sin (x2)

dx = 1
2 − 1

2 cos 1
4π

2.
∫

x sin (x2)dx = − 1
2 cos x2.

∫ π/2

0
x sin (x2)dx = 1

2

∫ π2/4

0
sin (u)du

= − 1

2
cos (u)

∣∣∣∣
π2/4

0

= −1

2
cos (π2/4)+ 1

2
= −1

2
(− 0.78121)+ 1

2
= 0.89061

11. Find the following area by computing the values of a
definite integral: The area bounded by the straight line

y = 2x + 3, the x axis, the line x = 1, and the line
x = 4.

area =
∫ 4

1
(2x + 3)dx = (x2 + 3x)|41

= 16 + 12 − 1 − 3 = 24

13. Determine whether each of the following improper
integrals converges, and if so, determine its value:

a.
∫∞

0
1
x3 dx

∫ ∞

0

1

x3 dx = − 1

2x2

∣∣∣∣
∞

0
= 0 + ∞ (diverges)

b.
∫ 0
−∞ ex dx

∫ 0

−∞
ex dx = ex |0−∞ = 1 (converges)

15. Determine whether the following improper integrals
converge. Evaluate the convergent integrals

a.
∫ 1

0
1

x ln (x)
dx = −∞

b.
∫∞

1

(
1

x

)
dx = ∞

17. Determine whether the following improper integrals
converge. Evaluate the convergent integrals.

a.
∫∞

0 sin (x)dx diverges, The integrand continues to
oscillate as x increases,

b.
∫ π/2
−π/2 tan (x)dx

∫ π/2

−π/2
tan (x)dx = lim

u→π/2
ln (| cos (u)|)

∣∣∣∣
u

−u

= lim
u→π/2

[ln ( cos (u))− ln ( cos (u))] = 0

Since the cosine is an even function, the two terms
are canceled before taking the limit, so that the
result vanishes.

19. Using Simpson’s rule, evaluate erf(2):

erf(2) = 2√
π

∫ 2.000

0
e−t2

dt

Compare your answer with the correct value from a
more extended table than the table in Appendix G,
er f (2.000) = 0.995322265. With �x = 0.0500, the
result from Simpson’s rule was 0.997100808. With
�x = 0.100, the result from Simpson’s rule was
0.99541241.
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21. Find the integral:
∫

x ln (x2)dx = 1

2

∫
ln (u)du

= 1

2
[u ln (u)− u] = 1

2
x2 ln (x2)− 1

2
x2

23. The entropy change to bring a sample from 0 K
(absolute zero) to a given state is called the absolute
entropy of the sample in that state.

Sm(T
′) =

∫ T ′

0

CP,m

T
dT

where Sm(T ′) is the absolute molar entropy at
temperature T ′,CP,m is the molar heat capacity at
constant pressure, and T is the absolute temperature.
Using Simpson’s rule, calculate the absolute entropy
of 1.000 mol of solid silver at 270 K. For the region
0 K to 30 K, use the approximate relation

CP = aT 3,

where a is a constant that you can evaluate from the
value of CP at 30 K. For the region 30 K to 270 K,
use the following data:1

�

�

�

	

T/K CP/J K−1 mol−1 T/K CP/J K−1 mol−1

30 4.77 170 23.61

50 11.65 190 24.09

70 16.33 210 24.42

90 19.13 230 24.73

110 20.96 250 25.03

130 22.13 270 25.31

150 22.97

1 Meads. Forsythe, and Giaque, J. Am. Chem. Soc. 63, 1902 (1941).

We divide the integral into two parts, one from t = 0 K
to T = 30 K, and one from 30 K to 270 K.

a = 4.77 J K−1 mol−1

(30 K)3
= 1.77 × 10−4

Sm(30 K) =
∫ 30 K

0

CP,m

T
dT =

∫ 30 K

0

a

T 4 dT

= 1

3

a

T 3 = 1

3
CP.m(30 K)

= 1.59 J K−1 mol−1

Sm(270 K) = 1.59 J K−1 mol−1

+
∫ 270 K

30 K

CP,m

T
dT

The second integral is evaluated using Simpson’s rule.
The result is of this integration is 38.397 J K−1 mol−1

so that

Sm(270 K) = 1.59 J K−1 mol−1 + 38.40 J K−1 mol−1

= 39.99 J K−1 mol−1

25. Use Simpson’s rule with at least 4 panels to evaluate
the following definite integral. Use Mathematica to
check your results.

∫ 3

1
ex2

dx

With 20 panels, the result was 1444.2. The correct
value is 1443.1.
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Differential Calculus with Several
Independent Variables

EXERCISES

Exercise 8.1. The volume of a right circular cylinder is
given by

V = πr2h,

where r is the radius and h the height. Calculate the
percentage error in the volume if the radius and the
height are measured and a 1.00% error is made in each
measurement in the same direction. Use the formula for the
differential, and also direct substitution into the formula for
the volume, and compare the two answers.

�V ≈
(
∂V

∂r

)
h
�r +

(
∂V

∂h

)
r
�h

≈ 2πrh�r + πr2�h
�V

V
≈ 2πrh�r

πr2h
+ πr2�h

πr2h
= 2�r

r
+ �h

h
= 2(0.0100)+ 0.0100 = 0.0300

The estimated percent error is 3%. We find the actual
percent error:

V2 − V1

V1
= πr2(1.0100)2h(1.0100)

πr2h
− πr2h

πr2h

= (1.0100)3 − 1 = 1.03030 − 1 = .03030

percent error = 3.03%

Exercise 8.2. Complete the following equations.

a.
(
∂H

∂T

)
P, n

=
(
∂H

∂T

)
V, n

+?

(
∂H

∂T

)
P, n

=
(
∂H

∂T

)
V, n

+
(
∂H

∂V

)
t,n

(
∂V

∂T

)
P, n

b.
(
∂z

∂u

)
x,y

=
(
∂z

∂u

)
x,w

+?

(
∂z

∂u

)
x,y

=
(
∂z

∂u

)
x,w

+
(
∂z

∂w

)
x,u

(
∂w

∂u

)
x,y

c. Apply the equation of part b if z = z(x,y,u) =
cos (x)+ y/u and w = y/u.(

∂z

∂u

)
x,y

= − y

u2

z(x,u,w) = cos (x)+ w(
∂z

∂w

)
x,u

= 1

w(x,y,u) = − cos (x)+ z(
∂w

∂u

)
x,y

=
(
∂z

∂u

)
x,y

= − y

u2

(
∂z

∂w

)
x,u

(
∂w

∂u

)
x,y

= 1
(
− y

u2

)
=
(
∂z

∂u

)
x,y

Exercise 8.3. Show that the reciprocal identity is satisfied
by (∂z/∂x) and (∂z/∂z)y if

z = sin

(
x

y

)
and x = y sin−1 (z) = y arcsin (z).

From the table of derivatives(
∂z

∂x

)
y

= 1

y
cos

(
x

y

)
(
∂x

∂z

)
y

= y
1√

1 − z2
= y√

1 − sin2
(

x
y

) = y

cos
(

x
y

)

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00054-9
© 2013 Elsevier Inc. All rights reserved. e43
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where we have used the identity

sin2 (α)+ cos2 (α) = 1

Exercise 8.4. Show by differentiation that (∂2z/∂ y∂x) =
(∂2z/∂x∂ y) if

z = exy sin (x).

∂2z

∂ y∂x
= ∂

∂ y
[yexy sin (x)+ exy cos (x)]

= ∂

∂ y
{exy[y sin (x)+ cos (x)]}

= exy[xy sin (x)+ x cos (x)] + exy sin (x)]

∂2z

∂x∂ y
= ∂

∂x
xexy sin (x)

= exy sin (x)+ xyexy sin (x)+ xexy cos (x)

= exy[xy sin (x)+ x cos (x)] + exy sin (x)]

Exercise 8.5. Using the mnemonic device, write three
additional Maxwell relations.

(
∂T

∂P

)
S,n

=
(
∂V

∂S

)
V, n(

∂S

∂P

)
T, n

= −
(
∂V

∂T

)
P, n(

∂S

∂V

)
T, n

=
(
∂P

∂T

)
V, n

Exercise 8.6. For the function y = x2/z, show that the
cycle rule is valid.

(
∂ y

∂x

)
z

= 2x

z(
∂x

∂z

)
y

=
(
∂[(yz)1/2]

∂z

)
y

= 1

2
y1/2z−1/2

(
∂z

∂ y

)
x

= − x2

y2

(
∂ y

∂x

)
z

(
∂x

∂z

)
y

(
∂z

∂ y

)
x

=
(

2x

z

)(
1

2
y1/2z−1/2

)

×
(

− x2

y2

)
= − x3

z3/2 y3/2

= − z3/2 y3/2

z3/2 y3/2 = −1

Exercise 8.7. Show that if z = ax2 + bu sin (y) and x =
uvy then the chain rule is valid.

z(u,v,y) = a(uvy)2 + bu sin (y)(
∂z

∂ y

)
u,v

= 2au2v2 y + bu cos (y)

z(u,v,x) = ax2 + bu sin
( x

uv

)
(
∂z

∂x

)
u,v

= 2ax + bu

uv
cos

( x

uv

)
(
∂x

∂ y

)
u,v

= uv

(
∂z

∂x

)
u,v

(
∂x

∂ y

)
u,v

=
[

2ax + bu

uv
cos

( x

uv

)]
uv

= 2auvx + bu cos (y)

= 2au2v2 y + bu cos (y)

Exercise 8.8. Determine whether the following differen-
tial is exact:

du = (2ax + by2)dx + (bxy)dy

(
∂(2ax + by2)

∂ y

)
x

= 2by

(
∂(bxy)

∂x

)
y

= by

The differential is not exact.

Exercise 8.9. Show that the following is not an exact
differential du = (2y)dx + (x)dy + cos (z)dz.

(
∂(2y)

∂ y

)
x

= 2

(
∂x

∂x

)
y

= 1

There is no need to test the other two relations.

Exercise 8.10. The thermodynamic energy of a mona-
tomic ideal gas is given by

U = 3n RT

2

Find the partial derivatives and write the expression for dU
using T, V, and n as independent variables. Show that your
differential is exact.(

∂U

∂T

)
V, n

= 3n R

2(
∂U

∂V

)
T, n

= 0

(
∂U

∂n

)
V, n

= 3RT

2
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dU =
(

3n R

2

)
dT + (0)dV +

(
3RT

2

)
dn

(
∂2U

∂V ∂T

)
n

= 0

(
∂2U

∂T ∂V

)
n

= 0

(
∂2U

∂V ∂n

)
T

= 0

(
∂2U

∂n∂V

)
T

= 0

(
∂2U

∂n∂T

)
V

= 3R

2(
∂2U

∂T ∂n

)
V

= 3R

2

Exercise 8.11. Show that the differential

(1 + x)dx +
[

x ln (x)

y
+ x2

y

]
dy

is inexact, and that y/x is an integrating factor.

∂

∂ y
(1 + x) = 0

∂

∂x

[
x ln (x)

y
+ x2

y

]
= ln (x)

y
+ 1

y
+ 2x

y
�= 0

The new differential is

y(1 + x)

x
dx + [ln (x)+ x]dy( y

x
+ y

)
dx + [ln (x)+ x]dy

∂

∂ y

( y

x
+ 1

)
= 1

x
+ 1

∂

∂x
[ln (x)+ x] = 1

x
+ 1

Exercise 8.12. Evaluate D at the point (0,0) for the
function of the previous example and establish that the point
is a local maximum.(

∂ f

∂x

)
y

= −2xe−x2−y2

(
∂2 f

∂x2

)
y

= −2e−x2−y2 − 2xe−x2−y2
(− 2x)

= (4x2 − 2)e−x2−y2

(
∂ f

∂ y

)
x

= −2ye−x2−y2 = 0

(
∂2 f

∂ y2

)
x

= −2e−x2−y2 − 2ye−x2−y2
(− 2y)

= (4y2 − 2)e−x2−y2

(
∂2 f

∂x∂ y

)
= −2ye−x2−y2

(− 2x) = 4xye−x2−y2

At (0,0)

D = (− 2)(− 2)− 0 = 4(
∂2 f

∂x2

)
y

= −2

Since D � 0 and (∂2 f /∂x2)y ≺ 0, we have a local
maximum.

Exercise 8.13. a. Find the local minimum in the
function

f (x,y) = x2 + y2 + 2x

At a relative extremum(
∂ f

∂x

)
y

= 2x + 2

(
∂2 f

∂x2

)
y

= 2

(
∂ f

∂ y

)
x

= 2y

(
∂2 f

∂ y2

)
x

= 2

(
∂2 f

∂x∂ y

)
= 0

At the extremum

2x + 2 = 0

2y = 0

This corresponds to x = −1,y = 0.

D =
(
∂2 f

∂x2

)(
∂2 f

∂ y2

)
−
(
∂2 f

∂x∂ y

)2

= (2)(2)−0 = 4

This point, (− 1,0), corresponds to a local minimum.
The value of the function at this point is

f (− 1,0) = (− 1)2 + 2(− 1) = −1

b. Find the constrained minimum subject to the
constraint

x + y = 0.

On the constraint, x = −y. Substitute the con-
straint into the function. Call the constrained function
g(x,y).

g(x,y) = x2 + (− x)2 + 2x = 2x2 + 2x
∂g

∂x
= 4x + 2
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At the constrained relative minimum

x = −1/2, y = 1/2

The value of the function at this point is

f (− 1/2,1/2) = 1

4
+ 1

4
− 2(1/2) = −1

2

c. Find the constrained minimum using the method of
Lagrange.

The constraint can be written

g(x,y) = x + y = 0

so that

u(x,y) = x2 + y2 + 2x + λ(x + y)

The equations to be solved are
(
∂u

∂x

)
y

= 2x + 2 + λ = 0

(
∂u

∂ y

)
x

= 2y + λ = 0

Solve the second equation for λ:

λ = −2y

Substitute this into the first equation:

2x + 2 − 2y = 0

We know from the constraint that y = −x so that

4x + 2 = 0

x = −1

2

y = 1

2

The value of the function is

f

(
−1

2
,
1

2

)
= 1

4
+ 1

4
− 1 = −1

2

Exercise 8.14. Find the minimum of the previous example
without using the method of Lagrange. We eliminate y and
z from the equation by using the constraints:

f = x2 + 1 + 4 = x2 + 5

The minimum is found by differentiating:

∂ f

∂x
= 2x = 0

The solution is

x = 0, y = 1, z = 2

Exercise 8.15. Find the gradient of the function

g(x,y,z) = ax3 + yebz,

where a and b are constants.

∇g = i
(
∂g

∂ y

)
+j
(
∂g

∂ y

)
+k

(
∂g

∂z

)
= i3ax2+jebz+kbyebz

Exercise 8.16. The average distance from the center of the
sun to the center of the earth is 1.495 × 1011 m. The mass
of the earth is 5.983 × 1024 kg, and the mass of the sun
is greater than the mass of the earth by a factor of 332958.
Find the magnitude of the force exerted on the earth by the
sun and the magnitude of the force exerted on the sun by
the earth.

The magnitude of the force on the earth due to the sun
is the same as the magnitude of the force on the sun due to
the earth:

F = Gmsme
|r|
r3 = Gmsme

1

r2

= (6.673×10−11 m3 s−2 kg−1)(5.983×1024 kg)2(332958)

(1.495 × 1011 m)2

= 3.558 × 1022 kg m2 s−2 = 3.558 × 1022 J

Exercise 8.17. Find ∇ · r if

r = ix + jy + kz.

∇ · r =
(
∂x

∂x

)
+
(
∂ y

∂ y

)
+
(
∂z

∂z

)
= 3

Exercise 8.18. Find ∇ × r where

r = ix + jy + kz.

Explain your result.

∇×r = i
(
∂z

∂ y
− ∂ y

∂z

)
+ j

(
∂x

∂z
− ∂z

∂x

)
+ k

(
∂ y

∂x
− ∂x

∂ y

)

= 0

The interpretation of this result is that the vector r has no
rotational component.

Exercise 8.19. Find the Laplacian of the function

f = exp (x2 + y2 + z2) = ex2
ey2

ez2
.

∇2 f =
(
∂

∂x
2xex2

)
ey2

ez2 +
(
∂

∂ y
2yey2

)
ex2

ez2

+
(
∂

∂z
2zez2

)
ex2

ey2

= (2ex2 + 4x2ex2
)ey2

ez2 + (2ey2 + 4y2ey2
)ex2

ez2

+ (2ez2 + 4z2ez2
)ex2

ey2

= [6 + 4(x2 + y2 + z2)]ex2
ey2

ez2
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Exercise 8.20. Show that ∇ × ∇ f = 0 if f is a differ-
entiable scalar function of x,y, and z.

∇ f = i
∂ f

∂x
+ j

∂ f

∂ y
+ k

∂ f

∂z

∇ × ∇ f = i
(
∂2 f

∂ y∂z
− ∂2 f

∂z∂z

)
+ j

(
∂2 f

∂z∂x
− ∂2 f

∂x∂z

)

+ k
(
∂2 f

∂x∂ y
− ∂2 f

∂ y∂x

)
= 0

This vanishes because each term vanishes by the Euler
reciprocity relation.

Exercise 8.21. a. Find the h factors for cylindrical polar
coordinates.

hr = 1

hφ = ρ

hz = 1

b. Find the expression for the gradient of a function of
cylindrical polar coordinates, f = f (ρ,φ,z).

∇ f = eρ
∂ f

∂ρ
+ eφ

1

r

∂ f

∂φ
+ k

∂ f

∂z

c. Find the gradient of the function

f = e−(ρ2+z2)/a2
sin (φ).

∇e−(ρ2+z2)/a2
sin (φ) = eρ

[−2ρ

a2 e−(ρ2+z2)/a2
sin (φ)

]

+ eφ
1

ρ
e−(ρ2+z2)/a2

cos (φ)

+ k
[
−2z

a2 e−(ρ2+z2)/a2
sin (φ)

]

= eρ

[−2ρ

a2 sin (φ)

]
+ eφ

1

r
cos (φ)

+ k
[
−2z

a2 sin (φ)

]
e−(ρ2+z2)/a2

Exercise 8.22. Write the formula for the divergence of a
vector function F expressed in terms of cylindrical polar
coordinates. Note that ez is the same as k.

∇ · F = 1

ρ

[
∂

∂ρ
(Fρρ)+ ∂

∂φ
(Fφ)+ ∂

∂z
(Fzρ)

]

Exercise 8.23. Write the expression for the Laplacian of

the function e−r2

∇2e−r2 = 1

r2

∂

∂r

(
r2 ∂e−r2

∂r

)
= 1

r2

∂

∂r

[
r2(− 2r)

1

r2 e−r2
]

= − 2

r2

∂

∂r
[re−r2 ]

= − 2

r2 (e
−r2 − 2r2e−r2

) = 2

r2 (2r2 − 1)e−r2

= 2

(
2 − 1

r2

)
e−r2

PROBLEMS

1. A certain nonideal gas is described by the equation of
state

PVm

RT
= 1 + B2

Vm

where T is the temperature on the Kelvin scale, Vm is
the molar volume, P is the pressure, and R is the gas
constant. For this gas, the second virial coefficient B2
is given as a function of T by

B2 = [−1.00 × 10−4 − (2.148 × 10−6)

×e(1956 K)/T ]m3 mol−1,

Find (∂P/∂Vm)T and (∂P/∂T )Vm and an expression
for dP.

P = RT

Vm
+ RT B2

V 2
m

(
∂P

∂Vm

)
T

= − RT

V 2
m

− 2RT B2

V 3
m(

∂P

∂T

)
Vm

= R

Vm
+ RB2

V 2
m

+ RT

V 2
m

(
d B2

dT

)

= R

Vm
+ RB2

V 2
m

+ need term here

dP =
[
− RT

V 2
m

− 2RT B2

V 3
m

+ RT

V 2
m

(
d B2

dT

)]
dT

+
(

R

Vm
+ RB2

V 2
m

)
dVm

3. Find (∂ f /∂x)y , and (∂ f /∂ y)x for each of the
following functions, where a, b, and c are constants.

a. f = axy ln (y)(
∂ f

∂x

)
y

= ay ln (y)

(
∂ f

∂ y

)
x

= ax ln (y)+ ax

b. f = c sin (x2 y)(
∂ f

∂x

)
y

= c cos (x2 y)(2xy)

(
∂ f

∂ y

)
x

= c cos (x2 y)(x2)
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5. Find (∂ f /∂x)y , and (∂ f /∂ y)x for each of the
following functions, where a, b, and c are constants.

a. f = a cos2 (bxy)
(
∂ f

∂x

)
y

= −2a cos (bxy)a sin (bxy)(by)

(
∂ f

∂ y

)
x

= −2a cos (bxy)a sin (bxy)(bx)

b. f = a exp −b(x2 + y2)

(
∂ f

∂x

)
y

= a exp (− b(x2 + y2)(− 2bx)

(
∂ f

∂ y

)
x

= a exp (− b(x2 + y2)(− 2by)

7. Find (∂2 f /∂x2)y,(∂
2 f /∂x∂ y),(∂2 f /∂ y∂x), and

(∂2 f /∂ y2), for each of the following functions, where
a, b, and c are constants.

a. f = e(ax2+by2)

(
∂ f

∂x

)
y

= e(ax2+by2)(2ax)

(
∂2 f

∂x2

)
y

= e(ax2+by2)(2a)+ e(ax2+by2)(2ax)2

(
∂2 f

∂ y∂x

)
= e(ax2+by2)(2ax)(2by)

(
∂ f

∂ y

)
x

= e(ax2+by2)(2by)

(
∂2 f

∂ y2

)
x

= e(ax2+by2)(2b)+ e(ax2+by2)(2by)2

(
∂2 f

∂x∂ y

)
= e(ax2+by2)(2ax)(2by)

b. f = ln (bx2 + cy2)

(
∂ f

∂x

)
y

= 1

(bx2 + cy2)
(2bx)

(
∂2 f

∂x2

)
y

= 1

(bx2 + cy2)
(2b)

− 1

(bx2 + cy2)2
(2bx)2

(
∂2 f

∂ y∂x

)
= − 1

(bx2 + cy2)2
(2bx)(2cy)

(
∂ f

∂ y

)
x

= 1

(bx2 + cy2)
(2cy)

(
∂2 f

∂ y2

)
x

= 2

(x2 + y2)3
(2x)2 − 2

(x2 + y2)2

= 1

(bx2 + cy2)
(2c)

− 1

(bx2 + cy2)2
(2cy)2

(
∂2 f

∂x∂ y

)
= − 1

(bx2 + cy2)2
(2bx)(2cy)

9. Test each of the following differentials for exactness.

a. du = sec2 (xy)dx + tan (xy)dy

∂

dy
[sec2 (xy)] = 2 sec (xy) sec (xy) tan (xy)(x)

= 2x sec2 (xy) tan (xy)
∂

dx
[tan (xy)] = sec2 (xy)(y)

The differential is not exact.
b. du = y sin (xy)dx + x sin (xy)dy

∂

dy
[y sin (xy)] = sin (xy)+ xy cos (xy)

∂

dx
[x sin (xy)] = sin (xy)+ xy cos (xy)

The differential is exact.

11. Test each of the following differentials for exactness.

a. du = xy dx + xy dy

∂(xy)

dy
= x

∂(xy)

dx
= y

The differential is not exact.
b. du = yeaxy dx + xeaxy dy.

∂

dy
(yeaxy) = eaxy + axyeaxy

∂

dx
(xeaxy) = eaxy + axyeaxy

The differential is exact.

13. Complete the formula(
∂S

∂V

)
P, n

=
(
∂S

∂V

)
T, n

+?

dS =
(
∂S

∂V

)
T, n

dV +
(
∂S

∂T

)
V, n

dT

(
∂S

∂V

)
P, n

=
(
∂S

∂V

)
T, n

(
∂V

∂V

)
P, n

+
(
∂S

∂T

)
V, n

(
∂T

∂V

)
P, n

=
(
∂S

∂V

)
T, n

+
(
∂S

∂T

)
V, n

(
∂T

∂V

)
P, n
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15. Find the minimum in the function of the previous
problem subject to the constraint x + y = 2. Do this
by substitution and by the method of undetermined
multipliers. On the constraint

y = 2 − x

f = x2 − x − (2 − x)+ (2 − x)2

= x2 − 2 + 4 − 4x + x2

= 2x2 − 4x + 2

d f

dx
= 4x − 4 = 0 at the minimum

x = 1 at the minimum

y = 2 − x = 1 at the minimum

Now use Lagrange’s method. The constraint can be
written

g(x,y) = x + y − 2 = 0

u(x,y) = x2 − x − y + y2 + λ(x + y − 2)

The equations to be solved are

(
∂u

∂x

)
y

= 2x − 1 + λ = 0

(
∂u

∂ y

)
x

= −1 + 2y + λ = 0

Solve the second equation for λ:

λ = 1 − 2y

Substitute this into the first equation:

2x − 1 + 1 − 2y = 0

We know from the constraint that y = 2 − x so that

2x − 1 + 1 − 2(2 − x) = 0

4x − 4 = 0

x = 1

y = 1

17. Find the maximum in the function of the previous
problem subject to the constraint x + y = 2.

f (x,y) = x2 − 6x + 8y + y2

We replace y by 2 − x :

f (x) = x2 − 6x − 8(2 − x)+ (2 − x)2

= x2− 6x −16 + 8x + 2 − 2x + x2 =2x2−14

d f

dx
= 4x

This vanishes at x = 0, corresponding to (0,2), which
is on the boundary of our region. This constrained
maximum must be at (0,2) or at (2,0). The value of
the function at (0,2) is 20 and the value at (0,2) is 20.
This is the same as the unconstrained maximum.

19. Find an expression for the gradient of the function

f (x,y,z) = cos (xy) sin (z)

∇ f = −iy sin (xy) sin (z)+ j x sin (xy) sin (z)

+ k cos (xy) cos (z)

21. Find an expression for the Laplacian of the function

f = r2 sin (θ) cos (φ)

∇2 f = = 1

r2

∂

∂r

(
r2 ∂

∂r
r2 sin (θ) cos (φ)

)

+ 1

r2 sin (θ)

∂

∂θ

[
sin (θ)

∂

∂θ
r2 sin (θ) cos (φ)

]

+ 1

r2 sin2 (θ)

∂2

∂φ2 r2 sin (θ) cos (φ)

= 2 sin (θ) cos (φ)

r2

∂

∂r
(r3)

+ r2 cos (φ)

r2 sin (θ)

∂

∂θ
[sin (θ) cos (θ)]

− r2

r2 sin2 (θ)
sin (θ) cos (φ)

= 6( sin (θ) cos (φ))

+ cos (φ)

sin (θ)
[cos2 (θ)− sin2 (θ)]

− 1

sin2 (θ)
sin (θ) cos (φ)

= 6 sin (θ) cos (φ)+ cos2 (θ) cos (φ)

sin (θ)

− sin (θ) cos (φ)− cos (φ)

sin (θ)

=
[

6 sin (θ)+ cos2 (θ)

sin (θ)
− 1

sin (θ)

]
cos (φ)
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�Chapter 9

Integral Calculus with Several
Independent Variables

EXERCISES

Exercise 9.1. Show that the differential in the preceding
example is exact.

The differential is

dF = (2x + 3y)dx + (3x + 4y)dy

We apply the test based on the Euler reciprocity theorem:

∂

∂ y
(2x + 3y) = 3

∂

∂x
(3x + 4y) = 3

Exercise 9.2. a. Show that the following differential is
exact:

dz = (yexy)dx + (xexy)dy

∂

∂ y
(yexy) = exy + xyexy

∂

∂x
(xexy) = exy + xyexy

b. Calculate the line integral
∫

c dz on the line segment
from (0,0) to (2,2). On this line segment, y = x and
x = y.

∫
c

dz =
∫ 2

0
(xex2

)dx +
∫ 2

0
(yey2

)dy

= 2
∫ 2

0
(xex2

)dx

We let u = x2; du = 2x dx

2
∫ 2

0
(xex2

)dx =
∫ 4

0
(eu)du = e4 − e0 = e4 − 1

c. Calculate the line integral
∫

c dz on the path going from
(0,0) to (0,2) and then to (2,2) (a rectangular path).

On the first leg:
∫

c
dz =

∫ 2

0
((0)e0)dx + 0 = 0

On the second leg
∫

c
dz = 0 +

∫ 2

0
(2)e2y dy

We let w = 2y; dw = 2 dy
∫ 2

0
(2)e2y dy =

∫ 4

0
ew dw = e4 − 1

Exercise 9.3. Carry out the two line integral of du = dx +
x dy from (0,0) to (x1,y1):

a. On the rectangular path from (0,0) to (0,y1) and then
to (x1,y1);

On the first leg ∫
c

dz = 0 +
∫ y1

0
0 dy = 0

On the second leg:∫
c

dz =
∫ x1

0
dx + 0 = x1

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00055-0
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The line integral is
∫

c
(dx + x dy) = x1

b. On the rectangular path from (0,0) to (x1,0) and then
to (x1,y1).

On the first leg
∫

c
dz =

∫ x1

0
dx + 0 = x1

On the second leg:
∫

c
dz = 0 +

∫ y1

0
x1 dy = x1 y1

The line integral is
∫

c
(dx + x dy) = x1 + x1 y1

The two line integrals do not agree, because the differential
is not exact.

Exercise 9.4. Carry out the line integral of the previous
example, du = yz dx + xz dy + xy dz, on the path from
(0,0,0) to (3,0,0) and then from (3,0,0) to (3,3,0) and then
from (3,3,0) to (3,3,3).

On the first leg

y = 0, z = 0

∫
c

du =
∫ 3

0
(0)dx + 0 + 0

On the second leg

x = 3, z = 0∫
c

du =
∫ 3

0
(0)dy + 0

On the third leg

x = 3, y = 3∫
c

du =
∫ 3

0
(9)dz = 27

The line integral on the specified path is
∫

c
(yz dx + xz dy + xy dz) = 0 + 0 + 27 = 27

The function with this exact differential is u = xyz + C
where C is a constant, and the line integral is equal to

z(3,3,3)− z(0,0,0) = 27 + C − 0 − C = 27

Exercise 9.5. A two-phase system contains both liquid
and gaseous water, so its equilibrium pressure is determined
by the temperature. Calculate the cyclic integral of dwrev
for the following process: The volume of the system is
changed from 10.00 l to 20.00 l at a constant temperature of
25.00 ◦C, at which the pressure is 24.756 torr. The system
is then heated to a temperature of 100.0 ◦C at constant
volume of 20.00 l. The system is then compressed to a
volume of 10.00 l at a temperature of 100.0 ◦C, at which
the pressure is 760.0 torr. The system is then cooled from
100.0 ◦C to a temperature of 25.00 ◦C at a constant volume
of 10.00 l. Remember to use consistent units.

On the first leg

∫
C

dwrev = −
∫

C
P dV = −P

∫
C

dV = −P�V

= −(23.756 torr)

(
101325 Pa

760 torr

)

× (10.00 l)

(
1 m3

1000 l

)
= −31.76 J

On the second leg
∫

C
dwrev = 0

On the third leg

∫
C

dwrev = −
∫

C
P dV = −P�V

−(760.0 torr)

(
101325 Pa

760.0 torr

)
(− 10.00 l)

(
1 m3

1000 l

)

= 1013 J

On the fourth leg

∫
C

dwrev = 0

wrev =
∮

dwrev = −31.76 J + 1013 J = 981 J

The cyclic integral does not vanish because the differential
is not exact.

Exercise 9.6. The thermodynamic energy of a monatomic
ideal gas is temperature-independent, so that dU = 0 in an
isothermal process (one in which the temperature does not
change). Evaluatewrev and qrev for the isothermal reversible
expansion of 1.000 mol of a monatomic ideal gas from a
volume of 15.50 l to a volume of 24.40 l at a constant
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temperature of 298.15 K.

�U = q + w

wrev = −
∫

C
P dV = −n RT

∫ V2

V1

1

V
dV

= −n RT ln

(
V2

V1

)

= −(1.000 mol)(8.3145 J K−1 mol−1)

×(298.15 K) ln

(
24.40 l

15.50 l

)

= −1125 J

qrev = 1125 J

The negative sign of w indicates that the system did work
on its surroundings, and the positive sign of q indicates that
heat was transferred to the system.

Exercise 9.7. Evaluate the double integral

∫ 4

2

∫ π

0
x sin2 (y)dy dx .

We integrate the dy integral and then the dx integral. We
use the formula for the indefinite integral over y:

∫ 4

2

∫ π

0
x sin2 (y)dy dx

=
∫ 4

2
x

[
y

2
− sin (2y)

4

∣∣∣∣
π

0

]
dx =

∫ 4

2
x
π

2
dx

= π

2

x2

2

∣∣∣∣
4

2
= π

2

(
16

2
− 4

2

)
= 3π

Exercise 9.8. Find the volume of the solid object shown in
Fig. 9.3. The top of the object corresponds to f = 5.00−x−
y, the bottom of the object is the x-y plane, the trapezoidal
face is the x-f plane, and the large triangular face is the y-f
plane. The small triangular face corresponds to x = 3.00.

V =
∫ 3.00

0

∫ 5.00−x

0
(5.00 − x − y)dy dx

The first integration is

∫ 5.00−x

0
(5.00 − x − y)dy

= (5.00y − xy − y2/2)
∣∣∣5.00−x

0

= 5.00(5.00 − x)− 5.00x − 25.00 − 10.00x + x2

2

= 12.50 − 5.00x + x2

2

V =
∫ 3.00

0

(
12.50 − 5.00x + x2

2

)
dx = 12.50x

−5.00x2

2
+ x3

6

∣∣∣∣
3.00

0

= 37.5 − 22.50 + 27.00

6
= 19.5

Exercise 9.9. Find the value of the constant A so that the
following integral equals unity.

A
∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dy dx .

The integral can be factored

A
∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dy dx

= A
∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e−y2

dy

The integrals can be looked up in a table of definite integrals∫ ∞

−∞
e−x2

dx = 2
∫ ∞

0
e−x2

dx = √
π

A
∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dy dx = Aπ = 1

A = 1

π

Exercise 9.10. Use a double integral to find the volume of
a cone of height h and radius a at the base. If the cone is
standing with its point upward and with its base centered at
the origin, the equation giving the height of the surface of
the cone as a function of ρ is

f = h
(

1 − ρ

a

)
.

V = h
∫ a

0

∫ 2π

0

(
1 − ρ

a

)
ρ dφ dρ

= 2πh
∫ a

0

(
ρ − ρ2

a

)
ρ dρ

= 2πh

(
ρ2

2
− ρ3

3a

)∣∣∣∣
a

0
= 2πh

(
a2

2
− a2

3

)
= πha2

3

Exercise 9.11. Find the Jacobian for the transformation
from Cartesian to cylindrical polar coordinates. Without
resorting to a determinant, we find the expression for the
element of volume in cylindrical polar coordinates:

dV = element of volume = ρ dφ dρ dz.
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The Jacobian is
∂(x,y,z)

∂(ρ,φ,z)
= ρ

Exercise 9.12. Evaluate the triple integral in cylindrical
polar coordinates:

I =
∫ 3.00

0

∫ 4.00

0

∫ 2π

0
zρ3 cos2 (φ)dφ dρ dz

The integral can be factored:

I =
∫ 2π

0
cos2 (φ)dφ

∫ 4.00

0
ρ3 dρ

∫ 3.00

0
z dz

The φ integral can be looked up in a table of indefinite
integrals:

∫ 2π

0
cos2 (φ)dφ =

(
φ

2
− sin (2φ)

4

)∣∣∣∣
2π

0
= π

∫ 4.00

0
ρ3dρ = ρ4

4

∣∣∣∣
4.00

0
= 64.0

∫ 3.00

0
z dz = z2

2

∣∣∣∣
3

0
= 9.00

2
= 4.50

I = 4.50 × 64.0 × π = 288π = 905

PROBLEMS

1. Perform the line integral∫
C

du =
∫

C
(x2 y dx + xy2 dy),

a. on the line segment from (0,0) to (2,2). On this
path, x = y, so
∫

C
du
∫ 2

0
x3 dx +

∫ 2

0
y3 dy = x4

4

∣∣∣∣
2

0
+ y4

4

∣∣∣∣
2

0

= 16

4
+ 16

4
= 8

b. on the path from (0,0) to (2,0) and then from (2,0)
to (2,2). On the first leg of this path, y = 0 and
dy = 0, so both terms of the integral vanish on
this leg. On the second leg, x = 2 and dx = 0.

∫
C

du = 0 +
∫ 2

0
2y2 dy = 2

y3

3

∣∣∣∣
2

0
= 16

3

The two results do not agree, so the differential is
not exact. Test for exactness:[

∂

∂ y
(x2 y)

]
x

= x2

[
∂

∂x
(xy2)

]
y

= y2

The differential is not exact.

3. Perform the line integral

∫
C

du =
∫

C

(
1

x
dx + 1

y
dy

)

on the curve represented by

y = x

From (1,1) to (2,2).

∫
C

du =
∫ 2

1

1

x
dx +

∫ 2

1

1

y
dy

= [ln (x)]2
1 + [ln (y)]2

1

= 2[ln (2)− ln (1)] = 2 ln (2)

Note that du is exact, so that

u = ln (xy)

the line integral is equal to

u(2,2)− u(1,1) = ln (22)− 2 ln (2) = 1.38629

5. Find the function f (x,y) whose differential is

d f = (x + y)−1dx + (x + y)−1dy

and which has the value f (1,1) = 0. Do this by
performing a line integral on a rectangular path from
(1,1) to (x1,y1) where x1 > 0 and y1 > 0. Since the
differential is exact,

f (x1,y1)− f (1,1)

=
∫

C

(
(x + y)−1dx + (x + y)−1dy

)

We choose the path from (1,1) to (1,x1) and from
(1,x1) to (x1,y1). On the first leg, x = 1 and dy = 0.
On the second leg, x = x1 and dx = 0

∫
C

(
(x + y)−1dx + (x + y)−1dy

)

=
∫ x1

1

1

x + 1
dx +

∫ y1

1

1

x1 + y
dy

= ln (x + 1)|x1
1 + ln (x1 + y)|y1

1

= ln (x1 + 1)− ln (2)+ ln (x1 + y1)− ln (x1 + 1)

f (x1,y1)− f (1,1) = ln (x1 + y1)− ln (2)

Since f (1,1) = 0 the function is

f (x,y) = ln (x + y)− ln (2)

where we drop the subscripts on x and y.
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7. Find the moment of inertia of a uniform disk of radius
0.500m and a mass per unit area of 25.00 g m2. The
moment of inertia, is defined by

I =
∫ ∫

m(ρ)ρ2 dA =
∫ R

0

∫ 2π

0
m(ρ)ρ2ρ dφ dρ

where m(ρ) is the mass per unit area and R is the radius
of the disk.

I = (25.00 g m−2)

(
1 kg

1000 g

)

×
∫ 0.500 m

0

∫ 2π

0
ρ2ρ dφ dρ

= (0.02500 kg m−2)(2π)
∫ 0.500 m

0
ρ3 dρ

= (0.15708 kg m−2)

(
(0.500 m)4

4

)

= 0.002454 kg m2

The mass of the disk is

M =
∫ ∫

m(ρ)dA =
∫ R

0

∫ 2π

0
m(ρ)ρ dφ dρ

= 2πm(ρ)
∫ R

0
ρ dρ = 2πm(ρ)

R2

2

= 2π(0.02500 kg m2)

[
(0.500 m)2

2

]

= 0.01963 kg

The standard formula from an elementary physics
book is

I = 1

2
M R2 = 1

2
(0.01963 kg)(0.500 m)2

= 0.002454 kg m2

9. Find an expression for the moment of inertia of a
hollow sphere of radius a, a thickness �a, and a
uniform mass per unit volume of m. Evaluate your
expression if a = 0.500 m, �a = 0.112 mm,
m = 3515 kg m−3.

I =
∫ a+�a

a

∫ π

0

∫ 2π

0
mr2r2 sin (θ)dφ dθ d

r = 2π
∫ a+�a

a

∫ π

0
mr2r2 sin (θ)dθ dr

= (2)2π
∫ a+�a

a
mr4 dr

= 4πm

[
(a +�a)5

5
− a5

5

]

Expanding the polynomial

(a +�a)5 = a5 + 5a4�a + 10a3�a2 + 10a2�a3

+5a�a4 +�a5

If �a is small, so that we can ignore �a2 compare
with �a,

(a +�a)5 − a5 ≈ 5a4�a

I ≈ 4πma4�a

We apply this approximation

I ≈ 4π(3515 kg m−3)(0.500 m)4(0.112 mm)

×
(

1 m

1000 mm

)
= 0.309 kg m2

11. Derive the formula for the volume of a right circular
cylinder of radius a and height h.

V =
∫ h

0

∫ a

0

∫ 2π

0
ρ dφ dρ dz

= 2π
∫ h

0

∫ a

0
ρ dρ dz

= 2π
∫ h

0

∫ a

0
ρ dρ dz

= 2π
∫ h

0
dz

(
a2

2

)
= πa2h

13. Find the volume of a right circular cylinder of radius
a = 4.00 with a paraboloid of revolution scooped out
of the top of it such that the top surface is given by

z = 10.00 + 1.00ρ2

and the bottom surface is given by z = 0.00.

V =
∫ 2.00

0

∫ 10.00+1.00ρ2

0.00

∫ 2π

0
ρ dφ dz dρ

The limit on ρ is obtained from the fact that ρ = 2.00
when the parabola intersects with the cylinder.

V = 2π
∫ 2.00

0

∫ 10.00+1.00ρ2

0.00
ρ dz dρ

= 2π
∫ 2.00

0
ρ dρ[10.00 + 1.00ρ2]

= 20.00π

(
4.00

2

)
+ 2.00π

(
8

3

)

= 40.00π + 16.00π

3
= 142.4

15. Find the volume of a solid produced by scooping out
the interior of a circular cylinder of radius 10.00 cm



e56 Mathematics for Physical Chemistry

and height 12.00 cm so that the inner surface conforms
to z = 2.00 cm + (0.01000 cm−2)ρ3.

V =
∫ 10.00 cm

0

∫ 2π

0

×
[
2.00 cm + (0.01000 cm−2)ρ3

]
ρ dρ dφ

=
∫ 2π

0
dφ

×
[

2.00 cm

2
ρ2 +

(
0.01000 cm−2

5

)
ρ5
]10.00 cm

0.00

= (2π)
[
100.0 cm3 + (0.00200 cm−2)

×(1.00 × 105 cm5)
]

= 1885 cm3

17. Find the moment of inertia of a flat rectangular plate
with dimensions 0.500 m by 0.400 m around an axis
through the center of the plate and perpendicular to it.
Assume that the plate has a mass M = 2.000 kg and
that the mass is uniformly distributed.

I =
∫ 0.250 m

−0.250 m

∫ 0.200 m

−0.200 m
m(x2 + y2)dx dy

where we let m be the mass per unit area.

m = 2.000 kg

0.200 m2 = 10.00 kg m2

I =
∫ 0.250 m

−0.250 m

∫ 0.200 m

−0.200 m
mx2 dx dy + I

=
∫ 0.250 m

−0.250 m

∫ 0.200 m

−0.200 m
my2 dx dy

= (0.500 m)
∫ 0.200 m

−0.200 m
mx2 dx

+(0.400 m)
∫ 0.250 m

−0.250 m
my2 dy

= (0.500 m)
1

3
m[x3]0.200 m−0.200 m

+(0.400 m)
1

3
m
[

y3
]0.250 m

−0.250 m

= (0.500 m)
2

3
m(0.200 m)3

+(0.400 m)
2

3
m(0.250 m)3

= (0.500 m)
2

3
(10.00 kg m−2)(0.00800 m3)

+(0.400 m)
2

3
(10.00 kg m−2)(0.015625 m3)

= 0.02667 kg m2 + 0.04167 kg m2

= 0.06833 kg m2

From an elementary physics textbook

I = 1

12
M(a2 + b2)

where a and b are the dimensions of the plate. From
this formula

I =
(

1

12

)
(2.000 kg)

[
(0.400 m)2 + (0.500 m)2

]

= 0.06833 kg m2
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Mathematical Series

EXERCISES

Exercise 10.1. Show that in the series of Eq. (10.4) any
term of the series is equal to the sum of all the terms
following it. ( Hint: Factor a factor out of all of the following
terms so that they will equal this factor times the original
series, whose value is now known.)

Let the given term be denoted by

term = 1

2n

The following terms are

1

2n+1 + 1

2n+2 + 1

2n+3 + 1

2n+4 + · · ·

= 1

2n+1

(
1 + 1

2
+ 1

4
+ 1

8
+ · · · + 1

2n
+ · · ·

)

= 2

2n+1 = 1

2n

Exercise 10.2. Consider the series

s = 1 + 1

22 + 1

32 + 1

42 + · · · + 1

n2 + · · ·

which is known to be convergent and to equal
π26/ = 1.64993 · · ·. Using Eq. (10.5) as an approximation,
determine which partial sum approximates the series to

a. 1%
1% of 1.64993 is equal to 0.016449. The n = 8 term is
equal to 0.015625, so we need the partial sum S8, which
is equal to 1.2574· · ·. The series is slowly convergent
and S8 is equal to 1.5274, so this approximation does
not work very well.

b. 0.001%.
0.001% of 1.64993 is equal to 0.00016449. The
n = 79 term is equal to 0.0001602, so we need the
partial sum S79. However, this partial sum is equal to
1.6324, so again this approximation does not work very
well.

Exercise 10.3. Find the value of the infinite series

∞∑
n=0

[ln (2)]n

Determine how well this series is approximated by S2,S5,
and S10.

This is a geometric series, so the sum is

s = 1

1 − ln (2)
= 3.25889 · · ·

The partial sums are

S2 = 1 + ln (2) = 1.693 · · ·
S5 = 1 + ln (2)+ ln (2)2 + ln (2)3 + ln (2)4

= 2.73746 · · ·
S10 = 3.175461

S20 = 3.256755 · · ·

Exercise 10.4. Evaluate the first 20 partial sums of the
harmonic series.

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00056-2
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Here are the first 20 partial sums, obtained with Excel:�

�

�

	

1

1.5

1.833333333

2.083333333

2.283333333

2.45

2.592857143

2.717857143

2.828968254

2.928968254

3.019877345

3.103210678

3.180133755

3.251562327

3.318228993

3.380728993

3.439552523

3.495108078

3.547739657

3.597739657

Exercise 10.5. Show that the geometric series converges
if r2 ≺ 1.

If r is positive, we apply the ratio test:

lim
n→∞

an+1

an
= r

If r2 ≺ 1 and if r is positive, then r ≺ 1, so the series
converges. If r is negative, apply the alternating series test.
Each term is smaller than the previous term and approaches
zero as you go further into the series, so the series converges.

Exercise 10.6. Test the following series for convergence.

∞∑
n=1

1

n2

Apply the ratio test:

r = lim
n→∞

1/(n + 1)2

1/n2 = lim
n→∞

(
n2

(n + 1)2

)
= 1

The ratio test fails. We apply the integral text:∫ ∞

1

1

x2 dx = −
(

1

x

)∣∣∣∣
∞

1
= 1

The integral converges, so the series converges.

Exercise 10.7. Show that the Maclaurin series for ex is

ex = 1 + 1

1! x + 1

2! x2 + 1

3! x3 + 1

4! x4 + · · ·

Every derivative of ex is equal to ex

an = 1

n!
(

dn f

dxn

)
x=0

= 1

n!
Exercise 10.8. Find the Maclaurin series for ln (1 + x).
You can save some work by using the result of the previous
example.

The series is

ln (1 + x) = a0 + a1x + a2x2 + · · ·

a0 = ln (1) = 0
d f

dx

∣∣∣∣
x=0

= 1

1 + x

∣∣∣∣
x=0

= 1

The second derivative is

d2 f

dx2

∣∣∣∣
x=0

= (−1
) 1(

1 + x
)2
∣∣∣∣∣
x=0

= −1

The derivatives follow a pattern:
(

dn f

dxn

)
x=1

= (− 1)n−1 (n − 1)!
(1 + x)n

∣∣∣∣
x=0

=(−1
)n−1

(n−1)!
1

n!
(

dn f

dxn

)
x=1

= (− 1)n−1

n

The series is

ln (1+x) = x−
(

1

2

)
x2+

(
1

3

)
x3−

(
1

4

)
x4+

(
1

5

)
x5+· · ·

Exercise 10.9. Find the Taylor series for ln (x), expanding
about x = 2, and show that the radius of convergence for
this series is equal to 2, so that the series can represent the
function in the region 0 ≺ x � 4.

The first term is determined by letting x = 2 in which
case all of the terms except for a0 vanish:

a0 = ln (2)

The first derivative of ln (x) is 1/x , which equals 1/2 at
x = 2. The second derivative is −1/x2, which equals −1/4
at x = 2. The third derivative is 2!/x3, which equals 1/4 at
x = 1. The derivatives follow a regular pattern,
(

dn f

dxn

)
x=2

= (−1)n−1 (n − 1)!
xn

∣∣∣∣
x=2

= (− 1)n−1 (n − 1)!
2n

so that
1

n!
(

dn f

dxn

)
x=1

= (−1)n−1

n2n



e59CHAPTER | 10 Mathematical Series

and

ln (x) = ln (2)+ (x − 2)− 1

8
(x − 2)2 + 1

24
(x − 2)3

− 1

64
(x − 2)4 + · · ·

The function is not analytic at x = 0, so the series is
not valid at x = 0. For positive values of x the series is
alternating, so we apply the alternating series test:

tn = an(x − 2)n = (x − 2)n(− 1)n−1

n2n

lim
n→∞ |tn| =

{
0 if|x − 2| ≺ 2 or 0 ≺ x � 4

∞ if|x − 2| > 2 or x > 4.

Exercise 10.10. Find the series for 1/(1 − x), expanding
about x = 0. What is the interval of convergence?

1

1 + x
= a0 + a1x + a2x2 + · · ·

a0 = 1

a1 = d

dx

(
1

1 + x

)∣∣∣∣
x=0

= − 1

(1 + x)2

∣∣∣∣
x=0

= −1

a2 = 1

2!
d

dx

(
1

(1 + x)2

)∣∣∣∣
x=0

= 2

2! − 1

(1 + x)3

∣∣∣∣
x=0

= 1

The pattern continues:

an = (−1)n

1

1 + x
= 1 − x + x2 − x3 + x4 − x5 + · · ·

Since the function is not analytic at x = −1, the interval of
convergence is −1 ≺ x ≺ 1

Exercise 10.11. Find the relationship between the
coefficients A3 and B3.

We begin with the virial equation of state

P = RT

Vm
+ RT B2

V 2
m

+ RT B3

V 3
m

+ · · ·

We write the pressure virial equation of state:

P = RT

Vm
+ A2 P

Vm
+ A3 P2

Vm
+ · · ·

We replace P and P2 in this equation with the expression
from the virial equation of state:

P = RT

Vm
+ A2

Vm

(
RT

Vm
+ RT B2

V 2
m

+ RT B3

V 3
m

+ · · ·
)

+ A3

Vm

(
RT

Vm
+ RT B2

V 2
m

+ RT B3

V 3
m

+ · · ·
)2

+ · · ·

We use the expression for the square of a power series from
Eq. (5) of Appendix C, part 2:(

RT

Vm
+ RT B2

V 2
m

+ RT B3

V 3
m

+ · · ·
)2

=
(

RT

Vm

)2

+ 2

(
RT

Vm

)(
RT B2

V 2
m

)
+ O

(
1

Vm

)4

=
(

RT

Vm

)2

+ 2

(
R2T 2 B2

V 3
m

)
+ O

(
1

Vm

)4

P = RT

Vm
+ A2

Vm

(
RT

Vm
+ RT B2

V 2
m

+ RT B3

V 3
m

+ · · ·
)

+ A3

Vm

((
RT

Vm

)2

+ 2

(
R2T 2 B2

V 3
m

)
+ O

(
1

Vm

)4
)

+ · · · = RT

Vm
+ RT A2

V 2
m

+ RT A2 B2

V 3
m

+ A3

Vm

(
RT

Vm

)2

= RT

Vm
+ RT B2

V 2
m

+ RT B2
2

V 3
m

+ A3 R2T 2

V 3
m

where we have replaced A2 by B2. We now equation
coefficients of equal powers of

(
1/Vm

)2 in the two series
for P:

RT B3 = RT B2
2 + A3 R2T 2

A3 = B3 − RT B2
2

Exercise 10.12. Determine how large X2 can be before
the truncation of Eq. (10.28) that was used in Eq. (10.16)
is inaccurate by more than 1%.

− ln (X1) = − ln (1 − X2) = X2 − 1

2
X2

2 + · · ·
If the second term is smaller than 1% of the first term
(which was the only one used in the approximation) the
approximation should be adequate. By trial and error, we
find that if X2 = 0.019, the second term is equal to
0.0095 = 0.95% of the first term.

Exercise 10.13. From the Maclaurin series for ln (1 + x)

ln (1 + x) = x − 1

2
x2 + 1

3
x3 + · · ·

find the Taylor series for 1/(1 + x), using the fact that

d[ln (1 + x)]
dx

= 1

1 + x
.

For what values of x is your series valid?

1

1 + x
= d

dx

(
x − 1

2
x2 + 1

3
x3 · · ·

)

= 1 − 2x

2
+ 3x2

3
− 4x3

4
= 1 − x + x2 − x3 + x4 − x5 + · · ·

which is the series already obtained for 1/(1 + x) in an
earlier example. The series is invalid if x � 1.
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Exercise 10.14. Find the formulas for the coefficients in a
Taylor series that expands the function f (x,y) around the
point x = a,y = b.

f (x,y) = a00 + a10(x − a)+ a01(y − b)+ a11(x − a)

(y − b)+ a21(x − a)2(y − b)+ a12(x − a)

(y − b)2 + · · ·
a00 = f (a,b)

a10 =
(
∂ f

∂ y

)
x

∣∣∣∣
x=a,b=y

a01 =
(
∂ f

∂ y

)
x

∣∣∣∣
a,b

a11 =
(
∂2 f

∂ y∂x

)∣∣∣∣
a,b

amn = 1

n!m!
(
∂n+m f

∂m y∂n x

)∣∣∣∣
a,b

PROBLEMS

1. Test the following series for convergence.
∞∑

n=0

((− 1)n(n − 1)/n2).

We apply the alternating series test:

limn→∞ |tn|= limn→∞
(

n − 1

n2

)
= limn→∞

( n

n2

)

= limn→∞
(

1

n

)
= 0

The series is convergent.
3. Test the following series for convergence.

∞∑
n=0

(
1/n!) .

Try the ratio test

r = lim
n→∞

an+1

an
= lim

n→∞
n!

(n + 1)! = lim
n→∞

1

n + 1
= 0

The series converges.
5. Find the Taylor series for cos (x), expanding about

x = π/2.

cos (x)= a0 + a1(x − π/2)+ a2(x − π/2)2 + · · ·
a0 = cos

(
π/2

) = 0

a1 = 1

1!
d

dx
[cos (x)]

∣∣∣∣
π/2

= − 1

2! sin (x)

∣∣∣∣
π/2

= −1

a2 = 1

2!
d

dx
[cos (x)]

∣∣∣∣
π/2

= − 1

2! cos (x)

∣∣∣∣
π/2

= 0

a3 = − 1

3!
d

dx
[cos (x)]

∣∣∣∣
π/2

= 1

3! sin (x)

∣∣∣∣
π/2

= 1

3!

There is a pattern, with all even-numbered coefficients
vanishing and odd-numbered coefficients alternating
between 1/n! and −1/n!.

cos (x) = − 1

1! (x − π/2)+ 1

3! (x − π/2)3

− 1

5! (x − π/2)5 + · · ·

7. Find the coefficients of the first few terms of the Taylor
series

sin (x) = a0 + a1

(
x − π

4

)
+ a2

(
x − π

4

)2 + · · ·

where x is measured in radians. What is the radius of
convergence of the series?

a0 = sin (π/4) = 1√
2

= 0.717107

a1 = 1

1! cos (x)

∣∣∣∣
π/4

= 1√
2

a2 = − 1

2! sin (x)

∣∣∣∣
π/4

= − 1

2!√2

a3 = 1

3! cos (x)

∣∣∣∣
π/4

= 1

3!√2

The coefficients form a regular pattern:

an = −(−1)n
1

n!√2

sin (x) = 1√
2

− 1√
2

(
x − π

4

)
+ 1

2!√2

(
x − π

4

)2

− 1

3!√2

(
x − π

4

)3 + · · · − (−1
)n 1

n!√2

(
x − π

4

)n

+ · · ·

Since the function is analytic everywhere, the radius
of convergence is infinite.

9. The sine of π/4 radians (45◦) is
√

2/2 =
0.70710678 . . .. How many terms in the series

sin (x) = x − x3

3! + x5

5! − x7

7! + · · ·

must be taken to achieve 1% accuracy at x = π/4?

π

4
= 0.785398

x − x3

3! = 0.785398 − 0.080746 = 0.704653
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This is accurate to about 0.4%, so only two terms are
needed.

11. Estimate the largest value of x that allows ex to be
approximated to 1% accuracy by the following partial
sum

ex ≈ 1 + x .

Here is a table of values:�

�

�

	

a. • x difference 1 + x ex %

• 0.20000 1.20000 1.221402758 1.78

• 0.19000 1.19000 1.209249598 1.62

• 0.18000 1.18000 1.197217363 1.46

• 0.17000 1.17000 1.185304851 1.31

• 0.15000 1.15000 1.161834243 1.03

• 0.14000 1.14000 1.150273799 0.90

• 0.14500 1.14500 1.156039570 0.96

• 0.14777 1.14777 1.159246239 0.9999

• By trial and error, 1% accuracy is obtained

with x ≺ 0.14777.

13. Find two different Taylor series to represent the
function

f (x) = 1

x
such that one series is

f (x) = a0 + a1(x − 1)+ a2(x − 1)2 + · · ·
and the other is

f (x) = b0 + b1(x − 2)+ b3(x − 2)2 + · · ·
Show that bn = an/2n for any value of n. Find the
interval of convergence for each series (the ratio test
may be used). Which series must you use in the vicinity
of x = 3? Why? Find the Taylor series in powers of
(x − 10) that represents the function ln (x).

1

x
= a0 + a1(x − 1)+ a2(x − 1)2 + · · ·

a0 = 1

1
= 1

a1 = − 1

x2

∣∣∣∣
1

= −1

a2 = 1

2!
(

2

x3

)∣∣∣∣
1

= 1

a3 = − 1

2!
(

6

x4

)∣∣∣∣
1

= 1

The coefficients follow a regular pattern so that

an = (− 1)n
1

x
= 1 − (x − 1)+ (x − 1)2

−(x − 1)3 + (x − 1)4 + · · ·

The function is not analytic at x = 0, so the interval
of convergence is 0 ≺ x ≺ 2

1

x
= b0 + b1(x − 2)+ b2(x − 2)2 + · · ·

b0 = 1

2
= 1

2

b1 = − 1

x2

∣∣∣∣
2

= −1

4

b2 = 1

2!
(

2

x3

)∣∣∣∣
2

= 1

8

b3 = − 1

2!
(

6

x4

)∣∣∣∣
2

= − 1

16

The coefficients follow a regular pattern so that

bn = (− 1)n
1

2n
= an

2n

1

x
= 1

2
− 1

4
(x − 1)+ 1

8
(x − 1)2

− 1

16
(x − 1)3 + 1

32
(x − 1)4 + · · ·

The function is not analytic at x = 0, so the interval
of convergence is 0 ≺ x ≺ 4. The second series must
be used for x = 3, since this value of x is outside the
region of convergence of the first series.

15. Using the Maclaurin series for ex , show that the
derivative of ex is equal to ex .

ex = 1 + x + x2

2! + x3

3! + x4

4! + · · ·
d

dx
ex = 0 + 1 + 2x

2! + 3x2

3! + 4x3

4! + · · ·

= 1 + x + x2

2! + x3

3! + · · · = ex

17. Find the Taylor series for sin (x), expanding around
π/2.

sin (x) = a0 + a1(x − π/2)+ a2(x − π/2)2

+a3(x − π/2)3 + · · ·
a0 = sin

(
π/2

) = 1

an = 1

n!
dn

dxn
sin (x)

∣∣∣∣
π/2

d f

dx
= cos (x)

a1 = cos
(
π/2

) = 0

d2 f

dx2 = − sin (x)

a2 = − 1

2! sin
(
π/2

) = − 1

2!
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d3 f

dx3 = − cos (x)

a3 = − 1

3! cos
(
π/2

) = 0

d4 f

dx4 = sin (x)

a4 = 1

4! sin (π/2) = 1

4!

There is a pattern. Only even values of n occur,and
signs alternate.

sin (x) = 1 − 1

2! (x − π/2)2 + 1

4! (x − π/2)4

− 1

6! (x − π/2)6 + · · ·

19. Find the interval of convergence for the series for
cos (x).

cos (x) = 1 − x2

2! + x4

4! − x6

6! + · · ·

Apply the alternating series test. Each term is smaller
than the previous term if x is finite and if you go far
enough into the series. The series converges for all
finite values of x.

21. Using the Maclaurin series, show that
∫ x1

0
esdx = ex

∣∣x1
0 = ex1 − 1

∫ x ′

0
esdx =

∫ x ′

0

(
1 + x + x2

2! + x3

3! + x4

4! + · · ·
)

dx

=
(

x + x2

2
+ x3

(3)2! + x4

(4)3! + · · ·
)∣∣∣∣

x1

0

= 1 + x + x2

2! + x3

3! + x4

4! + · · · − 1

= ex1 − 1

23. Find the first few terms of the two-variable Maclaurin
series representing the function

f (x,y) = sin (x + y)

f (0,0) = sin (0) = 0(
∂ f

∂x

)
y

∣∣∣∣∣
0,0

= cos (x + y)|0,0 = 1

(
∂ f

∂ y

)
x

∣∣∣∣
0,0

= cos (x + y)|0,0 = 1

(
∂2 f

∂ y∂x

)∣∣∣∣
0,0

= − sin (x + y)|0,0 = 1

(
∂2 f

∂x2

)∣∣∣∣
0,0

= − sin (x + y)|0,0 = 0

(
∂2 f

∂ y2

)∣∣∣∣
0,0

= − sin (x + y)|0,0 = 0

(
∂3 f

∂ y∂x2

)∣∣∣∣
0,0

= − (
cos (x + y)

)∣∣
0,0 = −1

(
∂3 f

∂ y2∂x

)∣∣∣∣
0,0

= − (
cos (x + y)

)∣∣
0,0 = −1

(
∂4 f

∂ y2∂x2

)∣∣∣∣
0,0

= (
sin (x + y)

)∣∣
0,0 = 0

(
∂5 f

∂ y2∂x3

)∣∣∣∣∣
0,0

= (
cos (x + y)

)∣∣
0,0 = 1

There is a pattern. If n + m is even, the derivative
vanishes. If n +m is odd, the derivative has magnitude
1 with alternating signs.

sin (x + y) = x + y − 1

1!2! (x
2 y + xy2)

+ 1

3!2! (x
2 y3 + x3 y2)− 1

3!4! (x
4 y3 + x3 y4)+ · · ·
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Functional Series and Integral Transforms

EXERCISES

Exercise 11.1. Using trigonometric identities, show that
the basis functions in the series in Eq. (11.1) are periodic
with period 2L .

We need to show for arbitrary n that

sin

[
nπ(x + 2L)

L

]
= sin

(nπx

L

)

and

cos

[
nπ(x + 2L)

L

]
= cos

(nπx

L

)

From a trigonometric identity

sin

[
nπ(x + 2L)

L

]
= sin

[
nπ(x)

L

]
cos[2nπ ]

+ cos

[
nπ(x)

L

]
sin (2nπ)

= sin

[
nπ(x)

L

]

This result follows from the facts that

cos[2nπ ] = 1

sin (2nπ) = 0

Similarly,

cos

[
nπ(x + 2L)

L

]
= cos

[
nπ(x)

L

]
cos[2nπ ]

+ sin

[
nπ(x)

L

]
sin (2nπ)

= cos

[
nπ(x)

L

]

Exercise 11.2. Sketch a rough graph of the product
cos

(
πx
L

)
sin
(
πx
L

)
from 0 to 2π and convince yourself that

its integral from −L to L vanishes. For purposes of the
graph, we let u = x/L , so that we plot from −π to π .

Here is an accurate graph showing the sine, the cosine,
and the product. It is apparent that the negative area of the
product cancels the positive area.

Exercise 11.3. Show that Eq. (11.15) is correct.

∫ L

−L
f (x) sin

(mπx

L

)
dx =

∞∑
n=0

an

∫ L

−L
cos

(nπx

L

)

× sin
(mπx

L

)
dx

+
∞∑

n=0

bn

∫ L

−L
sin
(nπx

L

)

× sin
(mπx

L

)
dx

By orthogonality, all of the integrals vanish except the
integral with two sines and m = n. This integral equals L.

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00057-4
© 2013 Elsevier Inc. All rights reserved. e63
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∫ L

−L
f (x) sin

(nπx

L

)
dx = bn L

bn = 1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx

Exercise 11.4. Show that the an coefficients for the series
representing the function in the previous example all vanish.

a0 = 1

2L

∫ L

−L
xdx = x2

2

∣∣∣∣
L

−L
= 0

an = 1

L

∫ L

−L
x cos

(nπx

L

)
dx

Integrate by parts: Let u = x,du = dx,dv = (dv/dx)dx =
cos (nπx/L)dx, v = (L/nπ) sin (nπx/L)∫

udv = uv −
∫
vdu

∫ L

−L
x cos

(nπx

L

)
dx = x

(
L

nπ

)
sin (nπx/L)

∣∣∣∣
L

−L

−
(

L

nπ

)∫ L

−L
sin
(nπx

L

)
dx

=
(

L

nπ

)
[nπ sin (nπ)

−nπ sin (− nπ)]
+
(

L

nπ

)
( cos

(nπx

L

)∣∣∣∣
L

−L

= 0 +
(

L

nπ

)
[cos (nπ)

− cos (− nπ)] = 0

Exercise 11.5. Find the Fourier cosine series for the even
function

f (x) = |x | for − L < x < L.

Sketch a graph of the periodic function that is represented
by the series. This is an even function, so the b coefficients
vanish.

a0 = 1

2L

∫ L

−L
|x |dx = 1

L

∫ L

0
xdx = 1

L

x2

2

∣∣∣∣
L

0
= L

2

For n � 1,

an = 1

L

∫ L

−L
|x | cos

(nπx

L

)
dx = 2

L

∫ L

0
x cos

(nπx

L

)
dx

∫ L

0
x cos

(nπx

L

)
dx = x

(
L

nπ

)
sin (nπx/L)

∣∣∣∣
L

0

−
(

L

nπ

)∫ L

0
sin
(nπx

L

)
dx

=
(

L

nπ

)
[nπ sin (nπ)− nπ

sin (0)] +
(

L

nπ

)
( cos

(nπx

L

)∣∣∣∣
L

0

= 0 +
(

L

nπ

)
[cos (nπ)− cos (0)]

=
(

L

nπ

)
[(− 1)n)− 1]

|x | = L

2
+

∞∑
n−1

(
L

nπ

)
[(− 1)n)− 1]

× cos
(nπx

L

)

Exercise 11.6. Derive the orthogonality relation expressed
above.

∫ L

−L
exp

(
imπx

L

)∗
exp

(
inπx

L

)
dx

=
∫ L

−L

[
cos

(mπx

L

)
− i sin

(mπx

L

)]
[
cos

(nπx

L

)
+ i sin

(nπx

L

)]
dx

=
∫ L

−L
cos

(mπx

L

)
cos

(nπx

L

)
dx

− i
∫ L

−L
× sin

(mπx

L

)
cos

(nπx

L

)
dx

+ i
∫ L

−L
cos

(mπx

L

)
sin
(nπx

L

)
dx

+
∫ L

−L
sin
(mπx

L

)
sin
(nπx

L

)
dx

= δmn L − i × 0 + i × 0 + δmn L = 2δmn L

We have looked up the integrals in the table of definite
integrals.

Exercise 11.7. Construct a graph with the function f from
the previous example and c1ψ1 on the same graph. Let a =
1 for your graph. Comment on how well the partial sum
with one term approximates the function.

f = x2 − x ≈ −0.258012 sin (πx)

Here is the graph, constructed with Excel:
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Exercise 11.8. Find the Fourier transform of the function
f (x) = e−|x |. Since this is an even function, you can use
the one-sided cosine transform.

F(k) =
√

2

π

∫ ∞

0
e−x cos (kx)dx

This integral is found in the table of definite integrals:

F(k) =
√

2

π

∫ ∞

0
e−x cos (kx)dx =

√
2

π

1

1 + k2

Exercise 11.9. Repeat the calculation of the previous
example with a = 0.500 s−1, b = 5.00 s−1 Show that
a narrower line width occurs.

The Fourier transform is:

F(ω) = 2√
π

2abω

[a2 + (b − ω)2][a2 + (b + ω)2]

F(ω) = 2√
π

(5.00 s−2)ω

[0.250 s−2 + (5.00 s−1 − ω)2][0.250 s−2 + (5.00 s−1 + ω)2]
Here is the graph of the transform, ignoring a constant
factor:

Exercise 11.10. Find the Laplace transform of the function
f (t) = eat where a is a constant.

F(s) =
∫ ∞

0
eat e−st dt =

∫ ∞

0
e(a−s)t dt

= 1

a − s
e(a−s)t

∣∣∣∣
∞

0

If a − s ≺ 0,

F(s) = 1

a − s
(0 − 1) = 1

s − a

as shown in Table 11.1. If a − s � 0, the integral diverges
and the Laplace transform is not defined.

Exercise 11.11. Derive the version of Eq. (11.49) for
n = 2. Apply the derivative theorem to the first derivative

L{d2 f /dt2} = L{ f (2)} = sL{ f (1)} − f (1)(0)

= s[sL{ f } − f ′(0)] − f (1)(0)

= s2L{ f } − s f ′(0)− f (1)(0)

Exercise 11.12. Find the Laplace transform of the function

f (t) = tneat .

where n is an integer.

F(s) =
∫ ∞

0
tne(a−s)t dt =

∫ ∞

0
tne−bt

dt = 1

bn+1

∫ ∞

0
uneudu = n!

bn+1 = n!
(s − a)n+1

where b = s − a and where u = bt and where we have
used Eq. (1) of Appendix F.

Exercise 11.13. Find the inverse Laplace transform of

1

s(s2 + k2)
.

We recognize k/(s2 + k2) as the Laplace transform of
cos (kt), so that

1

s2 + k2 = L
{

cos (kt)

k

}

From the integral theorem

L
{

1

k

∫ t

0
cos (ku)du

}
= L

{
1

k2 sin (kt)

}

= 1

s
L
{

cos (kt)

k

}
= 1

ks(s2 + k2)

L
{

1

k
sin (kt)

}
= 1

s(s2 + k2)

L−1
{

1

s(s2 + k2)

}
= 1

k
sin (kt)



e66 Mathematics for Physical Chemistry

PROBLEMS

1. Find the Fourier series that represents the square wave

A(t) =
{

−A0 −T < t < 0

A0 0 < t < T ,

where A0 is a constant and T is the period. Make graphs
of the first two partial sums. This is an odd function,
so we will have a sine series:

an = 0

bn = 1

T

∫ T

−T
f (t) sin

(
nπ t

T

)
dt = − A0

T

×
∫ 0

−T
sin

(
nπ t

T

)
dt + A0

T

∫ T

0
sin

(
nπ t

T

)
dt

= − A0

T

(
T

nπ

)∫ 0

−nπ
sin (u)du + A0

T

(
T

nπ

)

×
∫ nπ

0
sin (u)du

= A0

nπ
[cos (0)− cos (− nπ)] − A0

nπ
×[cos (nπ)− cos (0)]

= 2A0

nπ
[cos (0)−cos (nπ)] = 2A0

nπ
[1 − (−1)n]

A(t) =
∞∑

n=1

2A0

nπ
[1 − (− 1)n] sin

(
nπ t

T

)

= 4A0

π
sin

(
π t

T

)
+ 4A0

3π
sin

(
3π t

T

)
+ · · ·

where we have let u = nπ t/T and dt = (T /nπ)du
and have used the fact that the cosine is an even
function. Here is a graph that shows the first term (the
first partial sum), the second term, and the sum of these
two terms (the second partial sum):

For the graph, we have let A0 equal unity.

3. Find the Fourier series to represent the function

A(t) =
{

e−|x/L| −L < t < L

0 elsewhere

Your series will be periodic and will represent the
function only in the region −L < t < L . Since the
function is even, the series will be a cosine series.

a0 = 1

2L

∫ L

−L
f (x)dx = 1

L

∫ L

0
e−x/L dx

= − e−x/L
∣∣∣L
0

= −(e−1 − 1) = (1 − e−1)

= 0.6321206

an = 1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx

= 2

L

∫ L

0
e−x/L cos

(nπx

L

)
dx

u = nπx

L
; x = Lu

nπ
; dx =

(
L

nπ
du

)

an = 2

L

(
L

nπ

)∫ nπ

0
exp

(
− u

nπ

)
cos (u)du

=
(

2

nπ

)[
exp (−u/nπ)( 1

nπ

)2 + 1

×
[(−1

nπ

)
cos (u)+ sin (u)

]]∣∣∣∣∣
nπ

0

where we have used Eq. (50) of Appendix E.

an =
(

2

nπ

)[
exp (−1)( 1
nπ

)2 + 1

[(
1

nπ

)
cos (nπ)

+ sin (nπ)

]]

−
(

2

nπ

)[
exp (−0)( 1
nπ

)2 + 1

[(−1

nπ

)
cos (0)

+ sin (0)

]]

=
(

2

n2π2

)[
exp (−1)( 1
nπ

)2 + 1

[(−1

nπ

)
− (−1)n

]]

+
(

2

nπ

)[
1( 1

nπ

)2 + 1

(
1

nπ

)]
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=
(

2

n2π2

)[
(−1)n+1e−1 + 1( 1

nπ

)2 + 1

]

a1 =
(

1

π2

)[
e−1 + 1

1
π2 + 1

]
= 0.1258445

a2 =
(

1

4π2

)[−e−1 + 1
1
π2 + 1

]
= 0.1115872

f (x) = (1 − e−L)+
∞∑

n=1

(
2

n2π2

)

×
[
(−1)n+1e−1 − 1( 1

nπ

)2 + 1

]
cos

(nπx

L

)

= 0.6321206 +
(

2

π2

)[−e−1 − 1( 1
π

)2 + 1

]
cos

(πx

L

)

+
(

2

π2

)[
e−1 − 1( 1
2π

)2 + 1

]
cos

(
2πx

L

)
+ · · ·

= 0.6321206 + 0.1258445 cos
(πx

L

)

+ 0.1115872 cos (2πx)+ · · ·

For purposes of a graph, we let L = 1. The following
graph shows the function and the third partial sum. It
appears that a larger partial sum would be needed for
adequate accuracy.

5. Find the one-sided Fourier sine transform of the
function f (x) = e−ax

x .

F(k) = 2√
2π

∫ ∞

0

e−ax

x
sin (kx)

dx =
√

2

π
arctan

( k
a

)

where have used Eq. (33) of Appendix F.
7. Find the one-sided Fourier sine transform of the

function ae−bx

F(k) =
√

2

π
a
∫ ∞

0
e−bx sin (kx)dx

=
√

2

π
a

(
k2

b2 + k2

)

where we have used Eq. (26) of Appendix F.
9. Find the one-sided Fourier sine transform of the

function f (x) = xe−a2x2
.

F(k) =
√

2

π

∫ ∞

0
xe−a2x2

sin (kx)dx

=
√

2

π

m
√
π

4a3 e−k2/(4a2) = k
√

2

4a3 e−k2/(4a2)

where we have used Eq. (42) of Appendix F.
11. Find the Laplace transform of cos2 (at).

∫ ∞

0
e−st cos2 (ax)dx = s2 + 2a2

s(s2 + 2a2)

where we have used Eq. (43) of Appendix F
13. Use the derivative theorem to derive the Laplace

transform of cos (at) from the Laplace transform of
sin (at).

d sin (ax)

dx
= a cos (ax)

L
{

d

dt
sin (at)

}
= L{a cos (at)}
= sL{sin (at)} − sin (0)

= as

s2 + a2

L{cos (at)} = s

s2 + a2
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Differential Equations

EXERCISES

Exercise 12.1. An object falling in a vacuum near the
surface of the earth experiences a gravitational force in the
z direction given by

Fz = −mg

where g is called the acceleration due to gravity, and is equal
to 9.80 m s−2. This corresponds to a constant acceleration

az = −g

Find the expression for the position of the particle as a
function of time. Find the position of the particle at time
t = 1.00 s if its initial position is z(0) = 10.00 m and its
initial velocity is vz(0) = 0.00 m s−1

vz(t1)− vz(0) =
∫ t1

0
az(t)dt = −

∫ t1

0
gdt = −gt1

vz(t1) = −gt1

zz(t2)− z(0) =
∫ t2

0
vz(t1)dt1 = −

∫ t2

0
gt1dt1 = −1

2
gt2

2

z(t2) = z(0)− 1

2
gt2

2

z(10.00 s) = 10.00 m −
(

1

2

)
(9.80 m s−2)(1.00 s)2

= 10.00 m − 4.90 m = 5.10 m

Exercise 12.2. Find the general solution to the differential
equation

d2 y

dx2 − 3
dy

dx
+ 2y = 0

Substitution of the trial solution y = eλx gives the
equation

λ2eλx − 3λeλx + 2eλx = 0

Division by eλx gives the characteristic equation.

λ2 − 3λ+ 2 = 0

This quadratic equation can be factored:

(λ− 1)(λ− 2) = 0

The solutions to this equation are

λ = 1, λ = 2.

The general solution to the differential equation is

y(x) = c1ex + c2e2x

Exercise 12.3. Show that the function of Eq. (12.21)
satisfies Eq. (12.9).

z = b1 cos (ωt)+ b2 sin (ωt)
∂z

∂t
= −ωb1 sin (ωt)+ ωb2 cos (ωt)

∂2z

∂t2 = −ω2b1 cos (ωt)− ω2b2 sin (ωt)

m
d2z

dt2 = −ω2m
[
b1 cos (ωt)+ b2 sin (ωt)

]
= −kz

Exercise 12.4. The frequency of vibration of the H2

molecule is 1.3194 × 1014 s−1. Find the value of the force
constant.

μNAv = (1.0078 g mol−1)2

2(1.0078 g mol−1)

(
1 kg

1000 g

)

= 5.039 × 10−4 kg mol−1

μ = 5.039 × 10−4 kg mol−1

6.02214 × 1023 mol−1 = 8.367 × 10−28 kg

k = (2πν)2μ = [
2π(1.3194 × 1014 s−1)

]2
(8.367 × 10−28 kg) = 575.1 N m−1

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00058-6
© 2013 Elsevier Inc. All rights reserved. e69
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Exercise 12.5. According to quantum mechanics, the
energy of a harmonic oscillator is quantized. That is, it can
take on only one of a certain set of values, given by

E = hν

(
v + 1

2

)

where h is Planck’s constant, equal to 6.62608 × 10−34J s,
ν is the frequency and v is a quantum number, which can
equal 0,1,2, . . . The frequency of oscillation of a hydrogen
molecule is 1.319 × 1014 s−1. If a classical harmonic
oscillator having this frequency happens to have an energy
equal to the v = 1 quantum energy, find this energy. What
is the maximum value that its kinetic energy can have in this
state? What is the maximum value that its potential energy
can have? What is the value of the kinetic energy when the
potential energy has its maximum value?

E = hν
( 3

2

) = 3
2 (6.62608×10−34 J s)(1.319×1014 s−1)

= 1.311 × 10−19 J

This is the maximum value of the kinetic energy and also the
maximum value of the potential energy. When the potential
energy is equal to this value, the kinetic energy vanishes.

Exercise 12.6. Show that eλ1t does satisfy the differential
equation.

−ζ dz

dt
− kz = m

(
d2z

dt2

)

−ζλ1eλ1t − keλ1t = mλ2
1eλ1t

Divide by eλ1t and substitute the expression for λ1 into the
equation

−ζ
⎛
⎝− ζ

2m
+
√(
ζ/m

)2 − 4k/m

2

⎞
⎠− k

= m

⎛
⎝− ζ

2m
+
√(
ζ/m

)2 − 4k/m

2

⎞
⎠

2

ζ 2

2m
− ζ

√(
ζ/m

)2 − 4k/m

2
− k

= m

[(
ζ

2m

)2

− ζ
√
(ζ/m)2 − 4k/m

2m

+1

4

((
ζ/m

)2 − 4k/m
)]

ζ 2

2m
− k = m

(
ζ

2m

)2

+ m

4

[(
ζ/m

)2 − 4k/m
]

= ζ 2

4m
+ ζ 2

4m
− k

= ζ 2

2m
− k

Exercise 12.7. If z(0) = z0 and if vz(0) = 0, express the
constants b1 and b2 in terms of z0.

z(t) = [
b1 cos (ωt)+ b2 sin (ωt)

]
e−ζ t/2m

z(0) = b1 = z0

v(t) = [
b1 cos (ωt)+ b2 sin (ωt)

] (−ζ
2m

)
e−ζ t/2m

+ [−b1ω sin (ωt)+ b2ω cos (ωt)
]

e−ζ t/2m

v(0) = b1

(−ζ
2m

)
+ b2ω = 0

b2 = b1ζ

2mω
= z0ζ

2mω

Exercise 12.8. Substitute this trial solution into Eq.
(12.39), using the condition of Eq. (12.40), and show that
the equation is satisfied.

The trial solution is

z(t) = teλt

We substitute the trial solution into this equation and show
that it is a valid equation.

−ζ dz

dt
− kz = m

(
d2z

dt2

)

−ζ [eλt + λteλt ]− kteλt = m
[
λeλt + λeλt + λ2teλt

]

Divide by meλt

− ζ

m

[
1 + tλ

]− k

m
t = 2λ+ tλ2

Replace k/m by (ζ/2m)2

− ζ

m
[1 + tλ] −

(
ζ

2m

)2

t = 2λ+ tλ2

− ζ

2m
[2 + 2tλ] −

(
ζ

2m

)2

t = 2λ+ tλ2

Let ζ/2m = u

u2t + [2 + 2tλ]u + 2λ+ tλ2 = 0

tλ2 + (2tu + 2)λ+ u2t + 2u = 0

Exercise 12.9. Locate the time at which z attains its
maximum value and find the maximum value. The
maximum occurs where dz/dt = 0.

c2eλt + c2tλeλt = 0

Divide by eλt

1.00 m s−1 + (1.00 m s−1)(−1.00 s−1)t = 0
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At the maximum
t = 1.00 s

z(1.00 s) = (1.00 m s−1)
[
(1.00 s−1)(t = 1.00 s)

]

exp
[
−(1.00 s−1)(t = 1.00 s)

]

= (1.00 m)e−1.00 = 0.3679 m

Exercise 12.10. If zc(t) is a general solution to the
complementary equation and z p(t) is a particular solution to
the inhomogeneous equation, show that zc +z p is a solution
to the inhomogeneous equation of Eq. (12.1).

Since zc satisfies the complementary equation

f3(t)
d3zc

dt3 + f2(t)
d2zc

dt2 + f1(t)
dzc

dt
= 0

Since z p satisfies the inhomogeneous equation

f3(t)
d3z p

dt3 + f2(t)
d2z p

dt2 + f1(t)
dz p

dt
= g(t)

Add these two equations

f3(t)
d3

dt3 (zc + z p)+ f2(t)
d2

dt2 (zc + z p)

+ f1(t)
d

dt
(zc + z p) = g(t)

Exercise 12.11. Find an expression for the initial velocity.

vz(t) = dz

dt
= d

dt

[
b2 sin (ωt)+ F0

m(ω2 − α2)
sin (αt)

]

= b2ω cos (ωt)+ F0α

m(ω2 − α2)
cos (αt)

vz(0) = b2ω + F0α

m(ω2 − α2)

Exercise 12.12. In a second-order chemical reaction
involving one reactant and having no back reaction,

−dc

dt
= kc2.

Solve this differential equation by separation of variables.
Do a definite integration from t = 0 to t = t1.

− 1

c2 dc = k dt

−
∫ c(t1)

c(0)

1

c2 dc = 1

c(t1)
− 1

c(t0)
= k

∫ t1

0
dt = kt1

1

c(t1)
= 1

c(t0)
+ kt1

Exercise 12.13. Solve the equation (4x+y)dx+x dy = 0.
Check for exactness

d

dy
(4x + y) = 1

d

dx
(x) = 1

The Pfaffian form is the differential of a function f =
f (x,y)

f (x1,y1)− f (x0,y0) =
∫ x1

x0

(4x + y0)dx +
∫ y1

y0

x1 dy

=
[
2x2 + y0x

]∣∣∣x1

x0
+ x1 y|y1

y0

2x2
1 + y0x1 − 2x2

0 − y0x0 + x1 y1 − x1 y0 = 0

2x2
1 − 2x2

0 − y0x0 + x1 y1 = 0

We regard x0 and y0 as constants

2x2
1 + x1 y1 + k = 0

We drop the subscripts and solve for y as a function of x.

xy = −k − 2x2

y = − k

x
− 2x

This is a solution, but an additional condition would be
required to evaluate k. Verify that this is a solution:

dy

dx
= k

x2 − 2

From the original equation

dy

dx
= −4x + y

x
= −4 − y

x
= −4 −

(
1

x

)(
k

x
− 2x

)

= −4 + k

x2 + 2 = k

x2 − 2

Exercise 12.14. Show that 1/y2 is an integrating factors
for the equation in the previous example and show that it
leads to the same solution.

After multiplication by 1/y2 the Pfaffian form is

1

y
dx − x

y2 dy = 0

This is an exact differential of a function f = f (x,y), since

[
∂(1/y)

∂ y

]
x

= − 1

y2[
∂(−x/y2)

∂x

]
y

= − 1

y2
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f (x1,y1)− f (x0,y0) =
∫ x1

x0

1

y0
dx −

∫ y1

y0

x1

y2 dy = 0

= x1

y0
− x0

y0
+ x1

y1
− x1

y0
= 0

= − y0

x0
+ y1

x1
= 0

We regard x0 and y0 as constants, so that

y

x
= y0

x0
= k

where k is a constant. We solve for y in terms of x to obtain
the same solution as in the example:

y = kx

Exercise 12.15. A certain violin string has a mass per unit
length of 20.00 mg cm−1 and a length of 55.0 cm. Find the
tension force necessary to make it produce a fundamental
tone of A above middle C (440 oscillations per second =
440 s−1 = 440 Hz).

ν = nc

2L
=
( n

2L

)(T

ρ

)1/2

T = ρ

(
2Lν

n

)2

= (20.00 mg cm−1)

(
1 kg

106 mg

)(
100 cm

1 m

)

(
2(0.550 m)(440 s−1)

1

)2

= 468.5 kg m s−2

≈ 469 N

Exercise 12.16. Find the speed of propagation of a
traveling wave in an infinite string with the same mass per
unit length and the same tension force as the violin string
in the previous exercise.

c =
√

T
ρ

=
[(

469 N
20.00 mg cm−1

) (
106 mg

1 kg

)]1/2

= 4843 m s−1 ≈ 4840 m s−1

Exercise 12.17. Obtain the solution of Eq. (12.1) in the
case of critical damping, using Laplace transforms.

The equation is

−ζ dz

dt
− kz = m

(
d2z

dt2

)

with the condition.
(
ζ

2m

)2

= k

m
.

From the example in Chapter 11 we have the Laplace
transform

Z = z(0)(s + 2a)

(s + a)2 + ω2 + z(1)(0)

(s2 + a)2 + ω2

= z(0)(s + a)

(s + a)2 + ω2 + az(0)+ z(1)(0)

(s + a)2 + ω2 .

where

a = ζ

2m
and ω2 = k

m
− a2

We now apply the critical damping condition

a2 = k

m

so that

ω = 0

Z = z(0)(s + a)

(s + a)2
+ z(1)(0)+ az(0)

(s + a)2

From Table 11.1 we have

L−1
{

1

s

}
= 1

L−1
{

1

s2

}
= t

From the shifting theorem

L {e−at f (t)
} = F(s + a)

so that

z(t) = z(0)e−at + z(1)(0)+ az(0)

(s + a)2
te−at

Except for the symbols for the constants, this is the same
as the solution in the text.

Exercise 12.18. The differential equation for a second-
order chemical reaction without back reaction is

dc

dt
= −kc2,

where c is the concentration of the single reactant and k
is the rate constant. Set up an Excel spreadsheet to carry
out Euler’s method for this differential equation. Carry out
the calculation for the initial concentration 1.000 mol l−1,
k = 1.000 l mol−1s−1 for a time of 2.000 s and for 
t =
0.100 s. Compare your result with the correct answer.

Here are the numbers from the spreadsheet
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time/s concentration/mol l−1

0.0 1

0.1 0.9

0.2 0.819

0.3 0.7519239

0.4 0.695384945

0.5 0.647028923

0.6 0.60516428

0.7 0.568541899

0.8 0.53621791

0.9 0.507464946

1.0 0.481712878

1.1 0.458508149

1.2 0.437485176

1.3 0.418345849

1.4 0.400844524

1.5 0.38477689

1.6 0.369971565

1.7 0.356283669

1.8 0.343589864

1.9 0.331784464

2.0 0.320776371

The result of the spreadsheet calculation is

c(t) ≈ 0.3208 mol l−1

Solving the differential equation by separation of variables:

dc

c2 = −k dt

− 1

c

∣∣∣∣
c(t)

c(0)
= − 1

c(t)
+ 1

c(t)
= −kt

1

c(t)
= 1

1.000 mol l−1 +
(

1.000 l mol−1 s−1
)
(2.000 s)

= 3.000 l mol−1

c(t) = 0.3333 mol l−1

PROBLEMS

1. An object moves through a fluid in the x direction. The
only force acting on the object is a frictional force that
is proportional to the negative of the velocity:

Fx = −ζυx = −ζ
(

dx

dt

)
.

Write the equation of motion of the object. Find the
general solution to this equation, and obtain the par-
ticular solution that applies if x(0) = 0 and vx (0) =
v0 = constant. Construct a graph of the position as a
function of time. The equation of motion is

(
d2x

dt2

)
= − ζ

m

(
dx

dt

)

The trial solution is

x = eλt

λ2eλt = − ζ

m
λeλt

The characteristic equation is

λ2 + ζ

m
λ = 0

The solution is

λ =
{

0

− ζ
m

The general solution is

x = c1 + c2 exp

(
−ζ t

m

)

The velocity is

v = −c2

(
ζ

m

)
exp

(
−ζ t

m

)

v0 = −c2

(
ζ

m

)

c2 = −mv0

ζ

The initial position is

x(0) = 0 = c1 + c2

c1 = mv0

ζ

The particular solution is

x = mv0

ζ

[
1 − exp

(
−ζ t

m

)]

For the graph, we let mv0/ζ = 1,ζ/m = 1.



e74 Mathematics for Physical Chemistry

3. An object sliding on a solid surface experiences a
frictional force that is constant and in the opposite
direction to the velocity if the particle is moving, and is
zero it is not moving. Find the position of the particle as
a function of time if it moves only in the x direction and
the initial position is x(0) = 0 and the initial velocity
is vx (0) = v0 = constant. Proceed as though the
constant force were present at all times and then cut the
solution off at the point at which the velocity vanishes.
That is, just say that the particle is fixed after this time.
Construct a graph of x as a function of time for the case
that v0 = 10.00 m s−1. The equation of motion is

d2x

dt2 = − F0

m

Except for the symbols used, this is the same as
the equation of motion for a free-falling object. The
solution is

v(t1)− v(0) = ∫ t1
0 az(t)dt = − ∫ t1

0

(
F0
m

)
dt

= −
(

F0
m

)
t1

x(t2)− x(0) =
∫ t2

0
v(t1)dt1

=
∫ t2

0

(
v(0)−

(
F0

m

)
t1

)
dt1

= v(0)t2 −
∫ t2

0

(
F0

m

)
t1dt1

= v(0)t2 − 1

2

(
F0

m

)
t2
2

For the case that x(0) = 0,

x(t) = −1

2

(
F0

m

)
t2

The time at which the velocity vanishes is given by

0 = v0 −
(

F0

m

)
tstop

tstop = mv0

F0

For a graph, we assume that

vo = 10.00 m s−1; m = 1.000 kg; F0 = 5.00 N

tstop = mv0

F0
= (1.000 kg)

(
10.00 m s−1

)
5.00 kg m s−2 = 2.00 s

For this case

x = (10.00 m s−1)t − 1
2

(
5.00 kg m s−2

1.000 kg

)
t2 = (

10.00 m s−1
)

t − (2.500 m s−2)t2

5. A less than critically damped harmonic oscillator
has a mass m = 0.3000 kg, a force constant
k = 98.00 N m−1 and a friction constant
ζ = 1.000 kg s−1 .

a. Find the circular frequency of oscillation ω and
compare it with the frequency that would occur if
there were no damping.

ω =
√

k

m
−
(
ζ

2m

)2

=
⎡
⎣98.00 N m−1

0.3000 kg
−
(

1.000 kg s−1

2
(
0.3000 kg

)
)2
⎤
⎦

1/2

= 18.00 s−1

Without damping

ω =
√

k

m
=
[

98.00 N m−1

0.3000 kg

]1/2

= 18.07 s−1

b. Find the time required for the real exponential
factor in the solution to drop to one-half of its
value at t = 0 .

e−ζ t/2m = 1

2
ζ t

2m
= − ln (0.5000) = ln (2.000)

t = 2m ln (2.000)

ζ

= 2
(
0.300 kg

)
ln (2.000)

1.000 kg s−1 = 0.4159 s
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7. A forced harmonic oscillator with mass m = 0.200 kg
and a circular frequency ω = 6.283 s−1 (frequency
ν = 1.000 s−1) is exposed to an external force
F0 exp (−αt)with α = 0.7540 s−1 . Find the solution
to its equation of motion. Construct a graph of the
motion for several values of F0. The solution to the
complementary equation is

zc = b1 cos (ωt)+ b2 sin (ωt)

Table 12.1 gives the trial particular solution

z p = Ae−αt

We need to substitute this into the differential equation

d2z

dt2 + k

m
z = d2z

dt2 + ω2z = F0 exp (−αt)

m

Aα2e−αt + ω2 Ae−αt = F0e−αt

m

Divide by e−αt .

Aα2 + ω2 A = F0

m

Solve for A

A = F0

m(a2 + ω2)

The solution to the differential equation is

z = b1 cos (ωt)+ b2 sin (ωt)+ F0e−αt

m(a2 + ω2)

For our first graph, we take the case that b1 = 1.000 m,
b2 = 0, and F0 = 10.000 N

z = cos
[
(6.283)t

]

+ (10.000 N) exp
[
(0.7540 s−1)t

]
(0.300 kg)

[
(0.7540 s−1)2 + (6.283 s−1)2

]
= cos[(6.283)t] + 0.8324 exp[−(0.7540)t]

Other graphs will be similar.

9. An nth-order chemical reaction with one reactant
obeys the differential equation

dc

dt
= −kcn

where c is the concentration of the reactant and k
is a constant. Solve this differential equation by
separation of variables. If the initial concentration
is c0 moles per liter, find an expression for the time
required for half of the reactant to react.∫ c(t1)

c(0)

1

cn
dc = −k

∫ t1

0
dt

− 1

n − 1

1

cn−1

∣∣∣∣
c(t1)

c(0)
= −kt1

1

(n − 1) c(t1)n+1 − 1

(n − 1) c(0)n+1 = kt

1

c(t1)n−1 = 1

c(0)n−1 + (n − 1)kt

For half of the original amount to react

2n−1

c(0)n−1 − 1

c(0)n−1 = (n − 1)kt1/2

2n−1 − 1

c(0)n−1 = (n − 1)kt1/2

t1/2 = 2n−1 − 1

(n − 1)kc(0)n+1

11. Test the following equations for exactness, and solve
the exact equations:

a. (x2 + xy + y2)dx + (4x2 − 2xy + 3y2)dy = 0

d

dy
(x2 + xy + y2) = x + 2y

d

dx
(4x2 − 2xy + 3y2) = 8x − y

Not exact
b.

yex dx + ex dy = 0

d

dy
yex = ex

d

dx
ex = ex

This is exact. the Pfaffian form is the differential
of a function, f = f (x,y). Do a line integral as
in the example∫

c
d f = 0 =

∫ x2

x1

y1ex dx +
∫ y2

y1

ex2 dy

= y1(e
x2 − ex1)+ ex2(y2 − y1) = 0

= y1(−ex1)+ ex2(y2)
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We regard x1 and y1 as constants, and drop the
subscripts on x2 and y2

yex = C

y = Cex

where C is a constant
c.

[2xy − cos (x)]dx + (x2 − 1)dy = 0

dy

dx
= 2xy − cos (x)

x2 − 1

d

dy
[2xy − cos (x)] = 2x

d

dy
(x2 − 1) = 2x

This is exact. the Pfaffian form is the differential
of a function, f = f (x,y). Do a line integral as in
the example

∫
c

d f = 0 =
∫ x2

x1

[2xy1 − cos (x)]dx +
∫ y2

y1

(x2
2 − 1)dy

= y1(x
2
2 − x2

1 )− sin (x2)+ sin (x1)+ (x2
2 − 1)

(y2 − y1)

= y1(−x2
1 )− sin (x2)+ sin (x1)+ (x2

2 − 1)(y2)

We regard x1and y1as constants, and drop the
subscripts on x2 and y2

y(x2 − 1)− sin (x) = C

where C is a constant.

y = C + sin (x)

x2 − 1

13. Use Mathematica to obtain a numerical solution to
the differential equation in the previous problem for
the range 0 < x < 10 and for the initial condition
y(0) = 1. Evaluate the interpolating function for
several values of x and make a plot of the interpolating
function for the range 0 < x < 10.

dy

dx
+ y cos (x) = e− sin (x)

dy
dx

+ y cos (x) = e− sin (x)

y(0) = 1

Here are the values for integer values of x from x = 0
to x = 10

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0

0.86215

1.2084

3.4735

10.657

15.653

9.2565

4.1473

3.3463

6.6225

18.952

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here is a graph of the values

15. Radioactive nuclei decay according to the same
differential equation that governs first-order chemical
reactions. In living matter, the isotope 14C is
continually replaced as it decays, but it decays without
replacement beginning with the death of the organism.
The half-life of the isotope (the time required for half
of an initial sample to decay) is 5730 years. If a sample
of charcoal from an archaeological specimen exhibits
1.27 disintegrations of 14C per gram of carbon per
minute and wood recently taken from a living tree
exhibits 15.3 disintegrations of 14C per gram of
carbon per minute, estimate the age of the charcoal.

N (t) = N (0)e−kt

1

2
= e−kt1/2

−kt1/2 = ln (1/2 = − ln (2)

k = ln (2)

t1/2
= ln (2)

5739 y
= 1.210 × 10−4 y−1

The rate of disintegrations is proportional to the
number of atoms present:

N (t)

N (0)
= 1.27

15.3
= 0.0830 = e−kt

−kt = ln (0.0830)
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t = − ln (0.0830)

1.210 × 10−4 y−1 = 2.06 × 104y

= 20600 y

17. Use Mathematica to obtain a numerical solution to the
pendulum equation in the previous problem without
approximation for the case that L = 1.000 m with
the initial conditions φ(0) = 0.350 rad (about 20◦)
and dφ/dt = 0. Evaluate the solution for t = 0.500 s,
1.000 s, and 1.500 s. Make a graph of your solution
for 0 < t < 4.00 s. Repeat your solution for φ(0) =
0.050 rad (about 2.9◦) and dφ/dt = 0. Determine
the period and the frequency from your graphs.
How do they compare with the solution from the
previous problem?

L

(
d2φ

dt2

)
= −g sin (φ)

d2φ

dt2 = −9.80 sin (φ)

φ(0) = 0.350

φ′′ = −9.80 sin (φ)

φ′(0) = 0

φ(0) = 0.350

φ

⎡
⎢⎣

0.5

1

1.5

⎤
⎥⎦ =

⎡
⎢⎣

6.1493 × 10−3

−0.34979

−0.01844

⎤
⎥⎦

φ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.35

0.24996

6.1493 × 10−3

−0.24122

−0.34979

−0.25839

−0.01844

0.23219

0.34914

0.2665

3.0708 × 10−2

−0.22286

−0.34808

−0.27429

−4.2938 × 10−2

0.21326

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From the graph, the period appears to be about
2.1 s. From the method of the pervious problem

τ = 2π

√
L

g
= 2π

(
1.000 m

9.80 m s−2

)1/2

= 2.007 s

For the second case

φ′′ = −9.80 sin (φ)

φ′(0) = 0

φ(0) = 0.050

Here are the values for plotting:

φ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0.25

0.5

0.75

1.00

1.25

1.50

1.5

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.05

3.5459 × 10−2

2.8968 × 10−4

−3.5048 × 10−2

−4.9997 × 10−2

−3.5865 × 10−2

−8.6900 × 10−4

−8.6900 × 10−4

3.4632 × 10−2

4.9987 × 10−2

3.6266 × 10−2

1.4482 × 10−3

−3.4212 × 10−2

−4.9970 × 10−2

−3.6662 × 10−2

−2.0272 × 10−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The period appears again to be near 2.1 s.
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19. An object of mass m is subjected to an oscillating
force in the x direction given by F0 sin (bt) where F0
and b are constants. Find the solution to the equation
of motion of the particle. Find the particular solution
for the case that x(0) = 0 and dx/dt = 0 at t = 0.

m
d2x

dt2 = m
dv

dt
= F0a sin (bt)

dv

dt
= F0

m
sin (bt)

v(t1) = v(0)+ F0

m

∫ t1

0
sin (bt)dt

= v(0)− F0

bm
cos (bt1)|t10

= v(0)− F0

bm

[
cos (bt1)− 1

]

x(t1) = x(0)+
∫ t1

0

[
v(0)− F0

bm
cos (bt)+ F0

bm

]
dt

= x(0)+ v(0)t1− F0

b2m
sin (bt)

∣∣∣∣
t1

0
+ F0

bm
t1

= x(0)+ v(0)t1 − F0

b2m
sin (bt1)+ F0

bm
t1

x(t) = x(0)+
[
v(0)+ F0

bm

]
t − F0

b2m
sin (bt)

For the case that x(0) = 0 and dx/dt = 0 at t = 0.

x(t) = F0

bm
t − F0

b2m
sin (bt) = F0

bm

[
t − 1

b
sin (bt)

]
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Operators, Matrices, and Group Theory

EXERCISES

Exercise 13.1. Find the eigenfunctions and eigenvalues of

the operator i
d

dx
, where i = √−1.

i
d f

dx
= a f

Separate the variables:

d f

dx
dx = d f

f
= a

i
= −ia

ln ( f ) = −iax + C

f = eC e−iax = Ae−iax

d f

dx
= −ia Ae−iax = −ia f

The single eigenfunction is Ae−iax and the eigenvalue is
−ia. Since no boundary conditions were specified, the
constants A and a can take on any values.

Exercise 13.2. Find the operator equal to the operator

product
d2

dx2 x .

d2

dx2 x f = d

dx

[
x

d f

dx
+ f

]
= x

d2 f

dx2 + d f

dx
+ d f

dx

= x
d2 f

dx2 + 2
d f

dx

The operator equation is

d2

dx2 x = x
d2

dx2 + 2
d

dx

Exercise 13.3. Find the commutator [x2,
d2

dx2 ].

[x2,
d2

dx2 ] f = x2 d2

dx2 f − d2

dx2 (x
2 f )

= x2 d2 f

dx2 − d

dx

(
2x f + x2 d f

dx

)

= x2 d2 f

dx2 − 2 f − 2x
d f

dx
− x2 d2 f

dx2

= −2 f − 2x
d f

dx[
x2,

d2

dx2

]
= −2 − 2x

d

dx

Exercise 13.4. If Â = x + d

dx
, find Â3.

Â 3 =
(

x + d

dx

)(
x + d

dx

)(
x + d

dx

)

=
(

x + d

dx

)(
x2 + d

dx
x + x

d

dx
+ d2

dx2

)

= x3 + x
d

dx
x + x2 d

dx
+ x

d2

dx2 + d

dx
x2 + d2

dx2 x

+ d

dx
x

d

dx
+ d3

dx3 .

Exercise 13.5. Find an expression for B̂2 if B̂ = x(d/dx)
and find B̂2 f if f = bx4.

B̂2 f =
(

x
d

dx

)2

f = x
d

dx

(
x

d f

dx

)

= x

(
d f

dx
+ x

d2 f

dx2

)
= x

d f

dx
+ x2 d2 f

dx2

B̂2(bx4) =
(

x
d f

dx
+ x2 d2 f

dx2

)
bx4

= 4bx4 + x2(4)(3)bx2 = 16bx4

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00059-8
© 2013 Elsevier Inc. All rights reserved. e79
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Exercise 13.6. Show that the solution in the previous
example satisfies the original equation.

d2 y

dx2 − 3
dy

dx
+ 2y = 0

d2

dx2

(
c1e2x + c2ex

)
− 3

d

dx

(
c1e2x + c2ex

)

+2
(

c1e2x + c2ex
)

= 4c1e2x + c2ex − 3
(

2c1e2x + c2ex
)

+ 2
(

c1e2x + c2ex
)

= 0

Exercise 13.7. Find the eigenfunction of the Hamiltonian
operator for motion in the x direction if V(x) = E0 =
constant. [

− �

2m

∂2

∂x2 + Ė0

]
ψ = Eψ

∂2ψ

∂x2 = −2m

�

(
E − E0

)
ψ = −κ2ψ

where we let

κ2 = 2m

�
(E − E0)

If E � E0 the real solution is

ψreal = c1 sin (κx)+ c2 cos (κx)

In order for ψreal to be an eigenfunction, either c1 or c2 has
to vanish. Another version of the solution is

ψcomplex = b1eiκx + b2e−iκx

In order for ψcomplex to be an eigenfunction, either b1 or b2
has to vanish.

Exercise 13.8. Show that the operator for the momentum
in Eq. (13.19) is hermitian.

We integrate by parts

�

i

∫ ∞

−∞
χ∗ dψ

dx
dx = �

i
χ∗ψ

∣∣∞−∞ − �

i

∫ ∞

−∞
dχ∗

dx
ψdx

= −�

i

∫ ∞

−∞
dχ∗

dx
ψdx

The other side of the equation is, after taking the complex
conjugate of the operator

−�

i

∫ ∞

−∞
dχ∗

dx
ψdx

which is the same expression.

Exercise 13.9. Write an equation similar to Eq. (13.20) for
the σ̂v operator whose symmetry element is the y-z plane.

σ̂v(yz)(x1,y1,z1) = (− x1,y1,z1)

Exercise 13.10. Find Ĉ2(x)(1,2,− 3).

Ĉ2(z)(1,2,− 3) = (− 1,− 2,− 3)

Exercise 13.11. Find Ŝ2(y)(3,4,5).

Ŝ2(y)(3,4,5) = (− 3.− 4,− 5)

Exercise 13.12. List the symmetry elements of a uniform
cube centered at the origin with its faces perpendicular to
the coordinate axes.

The inversion center at the origin.
Three C4 axes coinciding with the coordinate axes.
Four C3 axes passing through opposite corners of the cube.
Four S6 axes coinciding with the C3 axes.
Six C2 axes connecting the midpoints of opposite edges.
Three mirror planes in the coordinate planes.
Six mirror planes passing through opposite edges.

Exercise 13.13. List the symmetry elements for

a. H2O (bent)
E,C2(z),σxz,σyz

b. CO2 (linear)
E,i,σh,C∞(z),∞C2,σh,∞σv

Exercise 13.14. Find îψ2px where î is the inversion
operator. Show that ψ2px is an eigenfunction of the
inversion operator, and find its eigenvalue.

îψ2px = î

{
x exp

[−(x2 + y2 + z2)1/2

2a0

]}

= −x exp

[−(x2 + y2 + z2)1/2

2a0

]
= −ψ2px

The eigenvalue is equal to −1.

Exercise 13.15. The potential energy of two charges Q1
and Q2 in a vacuum is

V = Q1 Q2

4πε0r12

where r12 is the distance between the charges and ε0
is a constant called the permittivity of a vacuum, equal
to 8.854187817 × 10−12 Fm−1 = 8.854187817 ×
10−12 C2N−1m−2. The potential energy of a hydrogen
molecules is given by

V = e2

4πε0rAB
− e2

4πε0r1A
− e2

4πε0r1B
− e2

4πε0r2A

− e2

4πε0r2B
+ e2

4πε0r12

where A and B represent the nuclei and 1 and 2 represent
the electrons, and where the two indexes indicate the
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two particles whose interparticle distance is denoted. If a
hydrogen molecule is placed so that the origin is midway
between the two nuclei and the nuclei are on the z axis, show
that the inversion operator ı̂ and the reflection operator σ̂h

do not change the potential energy if applied to the electrons
but not to the nuclei.

We use the fact that the origin is midway between the
nuclei. Under the inversion operation, electron 1 is now the
same distance from nucleus A as it was originally from
nucleus B, and the same is true of electron 2. Under the σ̂h

operation, the same is true. The potential energy function
is unchanged under each of these operations.

Exercise 13.16. Find the product

⎡
⎢⎣

1 0 2

0 −1 1

0 0 1

⎤
⎥⎦

⎡
⎢⎣

0

3

1

⎤
⎥⎦ =

⎡
⎢⎣

2

−2

1

⎤
⎥⎦

Exercise 13.17. Find the two matrix products

⎡
⎢⎣

1 2 3

3 2 1

1 −1 2

⎤
⎥⎦

⎡
⎢⎣

1 3 2

2 2 −1

−2 1 −1

⎤
⎥⎦ and

⎡
⎢⎣

1 3 2

2 2 −1

−2 −1 −1

⎤
⎥⎦

×
⎡
⎢⎣

1 2 3

3 2 1

1 −1 2

⎤
⎥⎦

The left factor in one product is equal to the right factor
in the other product, and vice versa. Are the two products
equal to each other?

⎡
⎢⎣

1 2 3

3 2 1

1 −1 2

⎤
⎥⎦

⎡
⎢⎣

1 3 2

2 2 −1

−2 1 −1

⎤
⎥⎦ =

⎡
⎢⎣

−1 10 −3

5 14 3

−5 3 1

⎤
⎥⎦

⎡
⎢⎣

1 3 2

2 2 −1

−2 −1 −1

⎤
⎥⎦

⎡
⎢⎣

1 2 3

3 2 1

1 −1 2

⎤
⎥⎦ =

⎡
⎢⎣

12 6 10

7 9 6

−6 −5 −9

⎤
⎥⎦ .

The two products are not equal to each other.

Exercise 13.18. Show that the properties of Eqs. (13.45)
and (13.46) are obeyed by the particular matrices

A =
⎡
⎢⎣

1 2 3

4 5 6

7 8 9

⎤
⎥⎦ B =

⎡
⎢⎣

0 2 2

−3 1 2

1 −2 −3

⎤
⎥⎦

× C =
⎡
⎢⎣

1 0 1

0 3 −2

2 7 −7

⎤
⎥⎦

BC =
⎡
⎢⎣

0 2 2

−3 1 2

1 −2 −3

⎤
⎥⎦

⎡
⎢⎣

1 0 1

0 3 −2

2 7 −7

⎤
⎥⎦

=
⎡
⎢⎣

4 20 −18

1 17 −19

−5 −27 26

⎤
⎥⎦

A(BC) =
⎡
⎢⎣

1 2 3

4 5 6

7 8 9

⎤
⎥⎦

⎡
⎢⎣

4 20 −18

1 17 −19

−5 −27 26

⎤
⎥⎦

=
⎡
⎢⎣

−9 −27 22

−9 3 −11

−9 33 −44

⎤
⎥⎦

AB =
⎡
⎢⎣

1 2 3

4 5 6

7 8 9

⎤
⎥⎦

⎡
⎢⎣

0 2 2

−3 1 2

1 −2 −3

⎤
⎥⎦ =

⎡
⎢⎣

−3 −2 −3

−9 1 0

−15 4 3

⎤
⎥⎦

(AB)C =
⎡
⎢⎣

−3 −2 −3

−9 1 0

−15 4 3

⎤
⎥⎦

⎡
⎢⎣

1 0 1

0 3 −2

2 7 −7

⎤
⎥⎦

=
⎡
⎢⎣

−9 −27 22

−9 3 −11

−9 33 −44

⎤
⎥⎦ .

⎡
⎢⎣

1 2 3

4 5 6

7 8 9

⎤
⎥⎦

⎛
⎜⎝

⎡
⎢⎣

0 2 2

−3 1 2

1 −2 −3

⎤
⎥⎦ +

⎡
⎢⎣

1 0 1

0 3 −2

2 7 −7

⎤
⎥⎦
⎞
⎟⎠

=
⎡
⎢⎣

4 25 −27

7 58 −48

10 91 −69

⎤
⎥⎦

⎡
⎢⎣

1 2 3

4 5 6

7 8 9

⎤
⎥⎦

⎡
⎢⎣

0 2 2

−3 1 2

1 −2 −3

⎤
⎥⎦ +

⎡
⎢⎣

1 2 3

4 5 6

7 8 9

⎤
⎥⎦

⎡
⎢⎣

1 0 1

0 3 −2

2 7 −7

⎤
⎥⎦

=
⎡
⎢⎣

−3 −2 −3

−9 1 0

−15 4 3

⎤
⎥⎦ +

⎡
⎢⎣

7 27 −24

16 57 −48

25 87 −72

⎤
⎥⎦ =

⎡
⎢⎣

4 25 −27

7 58 −48

10 91 −69

⎤
⎥⎦
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Exercise 13.19. Show by explicit matrix multiplication
that⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a11 a12 a13 a14

a21 a22 a31 a41

a31 a31 a31 a41

a41 a41 a31 a41

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11 a12 a13 a14

a21 a21 a31 a41

a31 a31 a31 a41

a41 a41 a31 a41

⎤
⎥⎥⎥⎦ .

:Each element is produces as a single term since the other
terms in the same contain a factor zero.

Exercise 13.20. Show that AA−1 = E and that A−1A = E
for the matrices of the preceding example.

Mathematica and other software packages can find a
matrix product with a single command. Using the Scientific
Work Place software

AA−1 =
⎡
⎢⎣

2 1 0

1 2 1

0 1 2

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

3

4
−1

2

1

4

−1

2
1 −1

2
1

4
−1

2

3

4

⎤
⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦

A−1A =

⎡
⎢⎢⎢⎢⎢⎢⎣

3

4
−1

2

1

4

−1

2
1 −1

2
1

4
−1

2

3

4

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

2 1 0

1 2 1

0 1 2

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦

Exercise 13.21. Use Mathematica or another software
package to verify the inverse found in the preceding
example. Using the Scientific Work Place software

⎡
⎢⎣

2 1 0

1 2 1

0 1 2

⎤
⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

3

4
−1

2

1

4

−1

2
1 −1

2
1

4
−1

2

3

4

⎤
⎥⎥⎥⎥⎥⎥⎦

Exercise 13.22. Find the inverse of the matrix

A =
[

1 2

3 4

]

Using the Scientific Work Place software,

A−1 =
[

1 2

3 4

]−1

=
⎡
⎣ −2 1

3

2
−1

2

⎤
⎦

Check this
[

1 2

3 4

]⎡
⎣ −2 1

3

2
−1

2

⎤
⎦ =

[
1 0

0 1

]

Exercise 13.23. Expand the following determinant by
minors:∣∣∣∣∣∣∣

3 2 0

7 −1 5

2 3 4

∣∣∣∣∣∣∣
= 3

∣∣∣∣∣
−1 5

3 4

∣∣∣∣∣ − 2

∣∣∣∣∣
7 5

2 4

∣∣∣∣∣
= 3(− 4 − 15)− 2(28 − 10) = −93

Exercise 13.24. a. Find the value of the determinant

∣∣∣∣∣∣∣
3 4 5

2 1 6

3 −5 10

∣∣∣∣∣∣∣
= 47

b. Interchange the first and second columns and find the
value of the resulting determinant.

∣∣∣∣∣∣∣
4 3 5

1 2 6

−5 3 10

∣∣∣∣∣∣∣
= −47

c. Replace the second column by the sum of the first
and second columns and find the value of the resulting
determinant. ∣∣∣∣∣∣∣

7 4 5

3 1 6

−2 −5 10

∣∣∣∣∣∣∣
= 47

d. Replace the second column by the first, thus making
two identical columns, and find the value of the
resulting determinant.

∣∣∣∣∣∣∣
3 3 5

2 2 6

3 3 10

∣∣∣∣∣∣∣
= 0

Exercise 13.25. Obtain the inverse of the following matrix
by hand. Then use Mathematica to verify your answer.

⎡
⎢⎣

1 3 0

3 0 4

1 2 0

⎤
⎥⎦

−1

=

⎡
⎢⎢⎣

−2 0 3

1 0 −1
3

2

1

4
−9

4

⎤
⎥⎥⎦

⎡
⎢⎣

1 3 0

3 0 4

1 2 0

⎤
⎥⎦

⎡
⎢⎢⎣

−2 0 3

1 0 −1
3

2

1

4
−9

4

⎤
⎥⎥⎦ =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦

Exercise 13.26. Obtain the multiplication table for the C2v
point group and show that it satisfies the conditions to be a
group.
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Think of the H2 O molecule, which possesses all of the
symmetry operators in this group. Place the molecule in
the y − z plane with the rotation axis on the z axis. Note
that in this group, each element is its own inverse. For the
other operators, one inspects the action of the right-most
operator, followed by the action of the left-most operator.
If the result is ambiguous, you need to use the fact that a
reflection changes a right-handed system to a left-handed
system while the rotation does not. For example, σ̂v(yz)

followed by σ̂v(xz) exchanges the hydrogens, but changes
the handedness of a coordinate system, so the result is the
same as σ̂v(xz).

�

�

�

	

Ê Ĉ2 σ̂v(yz) σ̂v(xz)

Ê Ê Ĉ2 σ̂v(yz) σ̂v(xz)

Ĉ2 Ĉ2 Ê σ̂v(xz) σ̂v(yz)

σ̂v(yz) σ̂v(yz) σ̂v(xz) Ê Ĉ2

σ̂v(xz) σ̂v(xz) σ̂v(xz) Ĉ2 Ê

These operators form a group because (1) each product
is a member of the group; (2) the group does include the
identity operator; (3) because each of the members is its
own inverse; and (4) multiplication is associative.

Exercise 13.27.

a. Find the matrix equivalent to Ĉ2(z).

x ′ = −x

y′ = −y

z′ = z

Ĉ2(z) ↔
−1 0 0

0 −1 0

0 0 1

b. Find the matrix equivalent to Ŝ3(z).

x ′ = cos (2π/3)x − sin (2π/3)y = −1

2
x

−
(

1

2

√
3

)
y

y′ = sin (2π/3)x + cos (2π/3)y =
(

1

2

√
3

)
x − 1

2
y

z′ = z.

Ŝ3(z) ↔
⎡
⎢⎣

−1/2 −√
3/2 0√

3/2 −1/2 0

0 0 1

⎤
⎥⎦

c. Find the matrix equivalent to σ̂h .

x ′ = x

y′ = y

z′ = −z

σ̂h ↔
1 0 0

0 1 0

0 0 −1

Exercise 13.28. By transcribing Table 13.1 with appropri-
ate changes in symbols, generate the multiplication table for
the matrices in Eq. (13.65).

E A B C D F

E E A B C D F

A A B E F C D

B B E A D F C

C C D F E A B

D D D F C E A

F F C D A B E

Exercise 13.29. Verify several of the entries in the
multiplication table by matrix multiplication of the matrices
in Eq. (13.65).

AB =
⎡
⎢⎣

−1/2 −√
3/2 0√

3/2 −1/2 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

−1/2
√

3/2 0

−√
3/2 −1/2 0

0 0 1

⎤
⎥⎦

=
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ = E

AD =
⎡
⎢⎣

−1/2 −√
3/2 0√

3/2 −1/2 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

1/2 −√
3/2 0

−√
3/2 −1/2 0

0 0 1

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1

2

1

2

√
3 0

1

2

√
3 −1

2
0

0 0 1

⎤
⎥⎥⎥⎥⎦ = C

CD =
⎡
⎢⎣

1/2
√

3/2 0√
3/2 −1/2 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

1/2 −√
3/2 0

−√
3/2 −1/2 0

0 0 1

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎣

−1

2
−1

2

√
3 0

1

2

√
3 −1

2
0

0 0 1

⎤
⎥⎥⎥⎥⎦ = A
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Exercise 13.30. Show by matrix multiplication that two
matrices with a 2 by 2 block and two 1 by 1 blocks produce
another matrix with a 2 by 2 block and two 1 by 1 blocks
when multiplied together.⎡
⎢⎢⎢⎣

a b 0 0

c d 0 0

0 0 e 0

0 0 0 f

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
α β 0 0

γ δ 0 0

0 0 ε 0

0 0 0 φ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

aα + bγ aβ + bδ 0 0

cα + dγ cβ + dδ 0 0

0 0 εe 0

0 0 0 f φ

⎤
⎥⎥⎥⎦

Exercise 13.31. Pick a few pairs of 2 by 2 submatrices
from Eq. (13.65) and show that they multiply in the same
way as the 3 by 3 matrices.[
−1/2 −√

3/2√
3/2 −1/2

][
−1/2

√
3/2

−√
3/2 −1/2

]
=

[
1 0

0 1

]

[
1/2

√
3/2√

3/2 −1/2

][
1/2 −√

3/2

−√
3/2 −1/2

]
=

⎡
⎢⎣

−1

2
−1

2

√
3

1

2

√
3 −1

2

⎤
⎥⎦

[
−1/2 −√

3/2√
3/2 −1/2

][
1/2 −√

3/2

−√
3/2 −1/2

]
=

⎡
⎢⎣

1

2

1

2

√
3

1

2

√
3 −1

2

⎤
⎥⎦ .

Exercise 13.32. Show that the 1 by 1 matrices (scalars) in
Eq. (13.67) obey the same multiplication table as does the
group of symmetry operators.

Since the elements Ê ↔ 1 Ĉ3 ↔ 1 Ĉ2
3 ↔ 1,

the product of any two of these will yield +1. Since
σ̂a ↔ −1 σ̂b ↔ −1 σ̂c ↔ −1, the product of any two of
these will yield 1. The product of any of the first three with
any of the second three will yield −1. the multiplication
table is�

�

�

	

Ê Ĉ3 Ĉ2
3 σ̂a σ̂b σ̂c

Ê 1 1 1 −1 −1 −1

Ĉ3 1 1 1 −1 −1 −1

Ĉ2
3 1 1 1 −1 −1 −1

σ̂a −1 −1 −1 1 1 1

σ̂b −1 −1 −1 1 1 1

σ̂c −1 −1 −1 1 1 1

PROBLEMS

1. Find the following commutators, where Dx = d/dx :

a.
[

d
dx
, sin (x)

]
;

[
d

dx
, sin (x)

]
f = d

dx
[sin (x) f ] − sin (x)

d f

dx

= cos (x) f + sin (x)
d f

dx

− sin (x)
d f

dx
= cos (x) f[

d

dx
, sin (x)

]
= cos (x)

b.
[

d2

dx2 ,x

]
;

[
d2

dx2 ,x

]
f = d2

dx2 [x f ] − x
d2

dx2 f

= d

dx

[
x

d f

dx
+ f

]
− x

d2

dx2 f

= d f

dx
+ x

d2

dx2 f + d f

dx
− x

d2

dx2 f

= 2
d f

dx[
d2

dx2 ,x

]
= 2

d

dx

3. The components of the angular momentum correspond
to the quantum mechanical operators:

L̂ x = �

i

(
y
∂

∂z
− z

∂

∂ y

)
, L̂ y = �

i

(
z
∂

∂x
− x

∂

∂z

)
,

L̂ z = �

i

(
x
∂

∂ y
− y

∂

∂x

)
.

These operators do not commute with each other. Find
the commutator

[
L̂ x ,L̂ y

]
.

[
L̂ x ,L̂ y

]
f

= �

i

(
y
∂

∂z
− z

∂

∂ y

)
�

i

(
z
∂

∂x
− x

∂

∂z

)
f

−�

i

(
z
∂

∂x
− x

∂

∂z

)
�

i

(
y
∂

∂z
− z

∂

∂ y

)
f

= − �
2
[

y
∂

∂z
z
∂ f

∂x
− y

∂

∂z
x
∂ f

∂z
− z

∂

∂ y
z
∂ f

∂x

+ z
∂

∂ y
x
∂ f

∂z
− z

∂

∂x
y
∂ f

∂z
+ z

∂

∂x
z
∂ f

∂ y

− x
∂

∂z
z
∂ f

∂ y
+ x

∂

∂z
y
∂ f

∂z

]

= − �
2
[

yz
∂2 f

∂z∂x
+ y

∂ f

∂z
− xy

∂2 f

∂z2 − z2 ∂
2 f

∂ y∂x

+ zx
∂2 f

∂ y∂z
− zy

∂2 f

∂x∂z
+ z2 ∂

2 f

∂x∂ y

+zy
∂2 f

∂z2 − x
∂ f

∂ y
− xz

∂2 f

∂z∂ y

]
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We can now apply Euler’s reciprocity relation to cancel
all of the terms but two:

[
L̂ x ,L̂ y

]
f = −�

2
[

y
∂ f

∂z
− x

∂ f

∂ y

]

= �
2
[

x
∂ f

∂ y
− y

∂ f

∂z

]
= i�L̂ z

5. In quantum mechanics, the expectation value of a
mechanical quantity is given by

〈A〉 =
∫
ψ∗ Âψ dx∫
ψ∗ψ dx

,

where Â is the operator for the mechanical quantity
and ψ is the wave function for the state of the system.
The integrals are over all permitted values of the
coordinates of the system. The expectation value is
defined as the prediction of the mean of a large number
of measurements of the mechanical quantity, given that
the system is in the state corresponding to ψ prior to
each measurement.

For a particle moving in the x direction only and
confined to a region on the x axis from x = 0 to x = a,
the integrals are single integrals from 0 to a and p̂x is
given by (�/i)∂/∂x . The normalized wave function is

ψ =
√

2

a
sin

(πx

a

)

Normalization means that the integral in the
denominator of the expectation value expression is
equal to unity.

a. Show that this wave function is normalized. We
let u = πx/a

2

a

∫ a

0
sin2

(πx

a

)
dx = 2

a

a

π

∫ π

0
sin2 (

u
)

du

= 2

π

[
x

2
− sin

(
2x

)
4

]∣∣∣∣∣
π

0

= 2

π

π

2
= 1

b. Find the expectation value of x.

〈x〉 = 2

a

∫ a

0
sin

(πx

a

)
x sin

(πx

a

)
dx

= 2

a

∫ a

0
x sin2

(πx

a

)
dx

= 2

a

( a

π

)2
∫ π

0
u sin2 (

u
)

du

= 2a

π2

[
x2

4
− x sin (2x)

4
− cos

(
2x

)
8

]∣∣∣∣∣
π

0

= 2a

π2

[
π2

4
− 1

8
+ 1

8

]
= a

2

c. The operator corresponding to px is
(

�

i

)
d
dx

.

Find the expectation value of px .

〈px 〉 =
(

�

i

)
2

a

∫ a

0
sin

(πx

a

) d

dx
sin

(πx

a

)
dx

= 2�

ia

π

a

∫ a

0
sin

(πx

a

)
cos

(πx

a

)
dx

= 2�

ia

π

a

a

π

∫ π

0
sin (u) cos (u)du

= 2�

ia

sin (u)

2

∣∣∣∣
π

0
= 0

d. Find the expectation value of p2
x .

〈p2
x 〉 = −�

2 2

a

∫ a

0
sin

(πx

a

) d2

dx2 sin
(πx

a

)
dx

= −�
2

a

π

a

∫ a

0
sin

(πx

a

) d

dx
cos

(πx

a

)
dx

= �
2 2

a

(π
a

)2
∫ a

0
sin2

(πx

a

)
dx

= �
2 2

a

(π
a

)2 ( a

π

) ∫ π

0
sin2 (u)du

= �
2 2π

a2

[
x

2
− sin

(
2x

)
4

]∣∣∣∣∣
π

0

= �
2 2π

a2

[π
2

]
= �

2π2

a2 = h2

4a2

7. If x is an ordinary variable, the Maclaurin series for
1/(1 − x) is

1

1 − x
= 1 + x2 + x3 + x4 + · · · .

If X̂ is some operator, show that the series

1 + X̂ + X̂2 + X̂3 + X̂4 + · · ·
is the inverse of the operator 1 − X̂ .

(
1 − X̂

) (
1 + X̂ + X̂2 + X̂3 + X̂4 + · · ·

)

= 1 + X̂ + X̂2 + X̂3 + X̂4 + · · ·
−

(
X̂ + X̂2 + X̂3 + X̂4 + · · ·

)
= 1

9. Find the result of each operation on the given point
(represented by Cartesian coordinates):

a. Ĉ3(z)(1,1,1) =
(
−1

2
,
1

2

√
3.1

)

b. Ŝ4(z)(1,1,1) = (1,− 1,− 1)

11. Find the result of each operation on the given point
(represented by Cartesian coordinates):

a. Ĉ2(z) ı̂(1,1,1) = Ĉ2(z)(− 1,− 1,− 1)
= (1,− 1,− 1)

b. ı̂ Ĉ2(z)(1,1,1) = ı̂(− 1,− 1,1) = (1,1,− 1)
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13. Find the 3 by 3 matrix that is equivalent in its action
to each of the symmetry operators:

a. Ĉ8(x): Let α = π/8 ↔ 45◦

x ′ = x

y′ = cos (α)y + sin (α)z = 1√
2
(y + z)

z′ = sin (α)y + cos (α)z = 1√
2
(y + z)

Ĉ8(x) ↔
1 0 0

0
1√
2

0

0 0
1√
2

b. Ŝ6(x): Let α = π/3 ↔ 60◦

x ′ = cos (α)x − sin (α)y = 1

2
x −

√
3

2
y

y′ = sin (α)x + cos (α)y =
√

3

2
x + 1

2
y

z′ = −z.

Ĉ8(x) ↔

1

2
−

√
3

2
0√

3

2

1

2
0

0 0 −1

15. Give the function that results if the given symmetry
operator operates on the given function for each of the
following:

a. ı̂(x + y + z2
) = (− x − y + z2)

b. Ŝ4(x)(x + y + z) = x + z − y

17. Find the matrix products. Use Mathematica to check
your result.

a.
[

3 2 1 4
]
⎡
⎢⎢⎢⎣

1 2 3

0 3 −4

1 −2 1

3 1 0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 2 3

0 3 −4

1 −2 1

3 1 0

⎤
⎥⎥⎥⎦

b.

⎡
⎢⎢⎢⎣

1 2 3

0 3 −4

1 −2 1

3 1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎣

2

3

3

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

17

−3

−1

9

⎤
⎥⎥⎥⎦

c.

[
6 3 −1

7 4 −2

]⎡
⎢⎣

1 4 −7 3

2 5 8 −2

3 6 −9 1

⎤
⎥⎦

=
[

9 33 −9 11

9 36 1 11

]

19. Show that A(B + C) = AB + AC for the example
matrices in the previous problem.

B + C =
⎡
⎢⎣

3 1 4

−2 0 1

3 2 1

⎤
⎥⎦+

⎡
⎢⎣

0 3 1

−4 2 3

3 1 −2

⎤
⎥⎦

=
⎡
⎢⎣

3 4 5

−6 2 4

6 3 −1

⎤
⎥⎦

A(B + C) =
⎡
⎢⎣

0 1 2

3 1 −4

2 3 1

⎤
⎥⎦

⎡
⎢⎣

3 4 5

−6 2 4

6 3 −1

⎤
⎥⎦

=
⎡
⎢⎣

6 8 2

−21 2 23

−6 17 21

⎤
⎥⎦

AB =
⎡
⎢⎣

0 1 2

3 1 −4

2 3 1

⎤
⎥⎦

⎡
⎢⎣

3 1 4

−2 0 1

3 2 1

⎤
⎥⎦

=
⎡
⎢⎣

4 4 3

−5 −5 9

3 4 12

⎤
⎥⎦

AC =
⎡
⎢⎣

0 1 2

3 1 −4

2 3 1

⎤
⎥⎦

⎡
⎢⎣

0 3 1

−4 2 3

3 1 −2

⎤
⎥⎦

=
⎡
⎢⎣

2 4 −1

−16 7 14

−9 13 9

⎤
⎥⎦

AB + AC =
⎡
⎢⎣

4 4 3

−5 −5 9

3 4 12

⎤
⎥⎦

+
⎡
⎢⎣

2 4 −1

−16 7 14

−9 13 9

⎤
⎥⎦ =

⎡
⎢⎣

6 8 2

−21 2 23

−6 17 21

⎤
⎥⎦

21. Test the following matrices for singularity. Find the
inverses of any that are nonsingular. Multiply the
original matrix by its inverse to check your work. Use
Mathematica to check your work.

a.

⎡
⎢⎣

3 2 −1

−4 6 3

7 2 −1

⎤
⎥⎦

∣∣∣∣∣∣∣
3 2 −1

−4 6 3

7 2 −1

∣∣∣∣∣∣∣
= 48
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Not singular

⎡
⎢⎣

3 2 −1

−4 6 3

7 2 −1

⎤
⎥⎦

−1

⎡
⎢⎢⎢⎢⎢⎣

−1

4
0

1

4
17

48

1

12
− 5

48

−25

24

1

6

13

24

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

3 2 −1

−4 6 3

7 2 −1

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

−1

4
0

1

4
17

48

1

12
− 5

48

−25

24

1

6

13

24

⎤
⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ .

b.

⎡
⎢⎣

0 2 3

1 0 1

2 0 1

⎤
⎥⎦

∣∣∣∣∣∣∣
0 2 3

1 0 1

2 0 1

∣∣∣∣∣∣∣
= 2

Not singular

⎡
⎢⎣

0 2 3

1 0 1

2 0 1

⎤
⎥⎦

−1

=

⎡
⎢⎢⎣

0 −1 1
1

2
−3

3

2
0 2 −1

⎤
⎥⎥⎦

Check:

⎡
⎢⎣

0 2 3

1 0 1

2 0 1

⎤
⎥⎦

⎡
⎢⎢⎣

0 −1 1
1

2
−3

3

2
0 2 −1

⎤
⎥⎥⎦ =

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ .

23. The H2O molecule belongs to the point group C2v ,
which contains the symmetry operators Ê , Ĉ2, σ̂a ,
and σ̂b, where the C2 axis passes through the oxygen
nucleus and midway between the two hydrogen nuclei,
and where the σa mirror plane contains the three nuclei
and the σb mirror plane is perpendicular to the σa

mirror plane.

a. Find the 3 by 3 matrix that is equivalent to each
symmetry operator.

Ê ↔
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦

Ĉ2 ↔
⎡
⎢⎣

−1 0 0

0 −1 0

0 0 1

⎤
⎥⎦

σ̂a ↔
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦

σ̂b ↔
⎡
⎢⎣

−1 0 0

0 −1 0

0 0 1

⎤
⎥⎦

b. Show that the matrices obtained in part (a)
have the same multiplication table as the
symmetry operators, and that they form a group.
The multiplication table for the group was to
be obtained in an exercise. The multiplication
table is

Ê Ĉ2 σ̂v(yz) σ̂v(xz)

Ê Ê Ĉ2 σ̂v(yz) σ̂v(xz)

Ĉ2 Ĉ2 Ê σ̂v(xz) σ̂v(yz)

σ̂v(yz) σ̂v(yz) σ̂v(xz) Ê Ĉ2

σ̂v(xz) σ̂v(xz) σ̂v(yz) Ĉ2 Ê

where σ̂v(yz) = σ̂a and σ̂v(xz) =σ̂b. We perform
a few of the multiplications.

σ̂a σ̂b ↔
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

−1 0 0

0 −1 0

0 0 1

⎤
⎥⎦

=
⎡
⎢⎣

−1 0 0

0 −1 0

0 0 1

⎤
⎥⎦ ↔ Ĉ2

(
Ĉ2

)2 ↔
⎡
⎢⎣

−1 0 0

0 −1 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

−1 0 0

0 −1 0

0 0 1

⎤
⎥⎦

=
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ ↔ Ê

Ĉ2σ̂v(xz) ↔
⎡
⎢⎣

−1 0 0

0 −1 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

−1 0 0

0 −1 0

0 0 1

⎤
⎥⎦

=
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ ↔ σ̂v(yz)
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The Solution of Simultaneous
Algebraic Equations with More
Than Two Unknowns

EXERCISES

Exercise 14.1. Use the rules of matrix multiplication to
show that Eq. (14.3) is identical with Eqs. (14.1) and (14.2).

[
a11 a12

a21 a22

][
x1

x2

]
=

⎡
⎢⎢⎢⎣

c1

c2

⎤
⎥⎥⎥⎦

a11x1 + a12x2 = c1

a21x1 + a22x2 = c2

Exercise 14.2. Use Cramer’s rule to solve the simultane-
ous equations

4x + 3y = 17

2x − 3y = −5

x =

∣∣∣∣∣
17 3

−5 −3

∣∣∣∣∣∣∣∣∣∣
4 3

2 −3

∣∣∣∣∣
= −51 + 15

−12 − 6
= 36

18
= 2

y =

∣∣∣∣∣
4 17

2 −5

∣∣∣∣∣∣∣∣∣∣
4 3

2 −3

∣∣∣∣∣
= −20 − 34

−12 − 6
= 54

18
= 3

Exercise 14.3. Find the values of x2 and x3 for the previous
example.

x2 =

∣∣∣∣∣∣∣
2 21 1

1 4 1

1 10 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 4 1

1 −1 1

1 1 1

∣∣∣∣∣∣∣

=
2

∣∣∣∣∣
4 1

10 1

∣∣∣∣∣− 21

∣∣∣∣∣
1 1

1 1

∣∣∣∣∣+ 1

∣∣∣∣∣
1 4

1 10

∣∣∣∣∣
2

∣∣∣∣∣
−1 1

1 1

∣∣∣∣∣− 1

∣∣∣∣∣
4 ]
1 1

∣∣∣∣∣+ 1

∣∣∣∣∣
4 ]

−1 1

∣∣∣∣∣

= 2(4 − 10)− 21(0)+ 10 − 4

2(− 1 − 1)− (4 − 1)+ (4 + 1)
= −6

−2
= 3

x3 =

∣∣∣∣∣∣∣
2 4 21

1 −1 4

1 1 10

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 4 1

1 −1 1

1 1 1

∣∣∣∣∣∣∣

=
2

∣∣∣∣∣
−1 4

1 10

∣∣∣∣∣− 1

∣∣∣∣∣
4 21

1 10

∣∣∣∣∣+ 1

∣∣∣∣∣
4 21

−1 4

∣∣∣∣∣
2

∣∣∣∣∣
−1 1

1 1

∣∣∣∣∣− 1

∣∣∣∣∣
4 ]
1 1

∣∣∣∣∣+ 1

∣∣∣∣∣
4 ]

−1 1

∣∣∣∣∣

= 2(− 10 − 4)− 1(40 − 21)+ 1(16 + 21)

2(− 1 − 1)− (4 − 1)+ (4 + 1)

= −10

−2
= 5

Exercise 14.4. Find the value of x1 that satisfies the set of
equations ⎡

⎢⎢⎢⎣
1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

10

6

4

1

⎤
⎥⎥⎥⎦
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∣∣∣∣∣∣∣∣∣

1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

∣∣∣∣∣∣∣∣∣
= −8

∣∣∣∣∣∣∣∣∣

10 1 1 1

6 −1 1 1

4 1 −1 1

1 1 1 −1

∣∣∣∣∣∣∣∣∣
= −4

x1 = −4

−8
= 1

2

The complete solution is

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2
2

3

9

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Exercise 14.5. Determine whether the set of four
equations in three unknowns can be solved:

x1 + x2 + x3 = 12

4x1 + 2x2 + 8x3 = 52

3x1 + 3x2 + x3 = 25

2x1 + x2 + 4x3 = 26

We first disregard the first equation. The determinant of the
coefficients of the last three equations vanishes:

∣∣∣∣∣∣∣
4 2 8

3 3 1

2 1 4

∣∣∣∣∣∣∣
= 0

These three equations are apparently linearly dependent.
We disregard the fourth equation and solve the first three
equations. The result is:

x1 = −5

2
, x2 = 9, x3 = 11

2

Exercise 14.6. Solve the simultaneous equations by
matrix inversion

2x1 + x2 = 4

x1 + 2x2 + x3 = 7

x2 + 2x3 = 8

⎡
⎢⎣

2 1 0

1 2 1

0 1 2

⎤
⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

3

4
−1

2

1

4

−1

2
1 −1

2
1

4
−1

2

3

4

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

3

4
−1

2

1

4

−1

2
1 −1

2
1

4
−1

2

3

4

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

4

7

8

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

3

2
1
7

2

⎤
⎥⎥⎥⎦

The solution is

x1 = 3

2
, x2 = 1, x3 = 7

2

Exercise 14.7. Use Gauss–Jordan elimination to solve the
set of simultaneous equations in the previous exercise. The
same row operations will be required that were used in
Example 13.16.

2x1 + x2 = 1

x1 + 2x2 + x3 = 2

x2 + 2x3 = 3

In matrix notation
AX = C⎡

⎢⎣
2 1 0

1 2 1

0 1 2

⎤
⎥⎦
⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣

1

2

3

⎤
⎥⎦

The augmented matrix is⎡
⎢⎢⎢⎣

2 1 0
... 1

1 2 1
... 2

0 1 2
... 3

⎤
⎥⎥⎥⎦

We multiply the first row by
1

2
, obtaining

⎡
⎢⎢⎢⎢⎣

1
1

2
0
...

1

2

1 2 1
... 2

0 1 2
... 3

⎤
⎥⎥⎥⎥⎦ .

We subtract the first row from the second and replace the
second row by this difference. The result is⎡

⎢⎢⎢⎢⎢⎣

1
1

2
0
...

1

2

0
3

2
1
...

3

2

0 1 2
... 3

⎤
⎥⎥⎥⎥⎥⎦
.
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We multiply the second row by
1

3⎡
⎢⎢⎢⎢⎢⎢⎣

1
1

2
0
...

1

2

0
1

2

1

3

...
1

2

0 1 2
... 3

⎤
⎥⎥⎥⎥⎥⎥⎦
.

We replace the first row by the difference of the first row
and the second to obtain⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 −1

3

... 0

0
1

2

1

3

...
1

2

0 1 2
... 3

⎤
⎥⎥⎥⎥⎥⎥⎦
.

We multiply the second row by 2,
⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 −1

3

... 0

0 1
2

3

... 1

0 1 2
... 3

⎤
⎥⎥⎥⎥⎥⎥⎦
.

We subtract the second row from the third row, and replace
the third row by the difference. The result is⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1

3

... 0

0 1
2

3

... 1

0 0
4

3

... 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

We now multiply the third row by
1

2
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1

3

... 0

0 1
2

3

... 1

0 0
2

3

... 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

We subtract the third row from the second and replace the
second row by the difference, obtaining

⎡
⎢⎢⎢⎢⎣

1 0 −1

3

... 0

0 1 0
... 0

0 0
2

3

... 1

⎤
⎥⎥⎥⎥⎦ .

We now multiply the third row by
1

2
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1

3

...
1

2

0 1 0
... 0

0 0
1

3

...
1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

We add the third row to the first row, and replace the first
row by the sum. The result is⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
...

1

2

0 1 0
... 0

0 0
1

3

...
1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

We multiply of the third row by 3 to obtain⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
...

1

2

0 1 0
... 0

0 0 1
...

3

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

We now reconstitute the matrix equation. The left-hand side
of the equation is EX and the right-hand side of the equation
is equal to X.

AX = C

EX = C′ = X

EX = X =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

2

0

3

2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The solution is

x1 = 1

2
, x2 = 0, x3 = 3

2

Exercise 14.8. Find expressions for x and y in terms of z
for the set of equations

2x + 3y − 12z = 0

x − y − z = 0

3x + 2y − 13z = 0

The determinant of the coefficients is∣∣∣∣∣∣∣
2 3 −12

1 −1 −1

3 2 −13

∣∣∣∣∣∣∣
= 0
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Since the determinant vanishes, this system of equations can
have a nontrivial solution. We multiply the second equation
by 3 and add the first two equations:

5x − 15z = 0

x = 3z

We multiply the second equation by 2 and subtract the
second equation from the first:

5y − 10z = 0

y = 2z

Exercise 14.9. Show that the second eigenvector in the
previous example is an eigenvector.⎡

⎢⎣
√

2 1 0

1
√

2 1

0 1
√

2

⎤
⎥⎦
⎡
⎢⎣

1/2

−1/
√

2

1/2

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦

Exercise 14.10. Find the third eigenvector for the previous
example.

−√
2x1 + x2 + 0 = 0

x1 − √
2x2 + x3 = 0

0 + x2 − √
2x3 = 0

The solution is:

x1 = x3, x2 = x3
√

2

With the normalization condition

x2
3 + 2x2

3 + x2
3 = 4x2

3

x1 = x3 = 1

2

x2 =
√

2

2
=
√

1

2

X =
⎡
⎢⎣

1/2

1/
√

2

1/2

⎤
⎥⎦

Exercise 14.11. The Hückel secular equation for the
hydrogen molecule is∣∣∣∣∣

α − W β

β α − W

∣∣∣∣∣ = 0

Determine the two orbital energies in terms of α and β.

x 1

1 x
= 0 = x2 − 1

x = ±1

W =
{
α − β

α + β

PROBLEMS

1. Solve the set of simultaneous equations:

3x + y + 2z = 17

x − 3y + z = −3

x + 2y − 3z = −4

Find the inverse matrix

⎡
⎢⎣

3 1 2

1 −3 1

1 2 −3

⎤
⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

5

1

5

1

5
4

35
−11

35
− 1

35
1

7
−1

7
−2

7

⎤
⎥⎥⎥⎥⎥⎥⎦

: ⎡
⎢⎢⎢⎢⎢⎢⎣

1

5

1

5

1

5
4

35
−11

35
− 1

35
1

7
−1

7
−2

7

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

17

−3

−4

⎤
⎥⎦ =

⎡
⎢⎣

2

3

4

⎤
⎥⎦

x = 2, y = 3, z = 4

:
3. Solve the set of equations, using Cramer’s rule:

3x1 + x2 + x3 = 19

x1 − 2x2 + 3x3 = 13

x1 + 2x2 + 2x3 = 23

x1 =

∣∣∣∣∣∣∣
19 1 1

13 −2 3

23 2 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
3 1 1

1 −2 3

1 2 2

∣∣∣∣∣∣∣

= −75

−25
= 3

x2 =

∣∣∣∣∣∣∣
3 19 1

1 13 3

1 23 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
3 1 1

1 −2 3

1 2 2

∣∣∣∣∣∣∣

= −100

−25
= 4

x3 =

∣∣∣∣∣∣∣
3 1 19

1 −2 13

1 2 23

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
3 1 1

1 −2 3

1 2 2

∣∣∣∣∣∣∣

= −150

−25
= 6
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Verify your result using Mathematica.

⎡
⎢⎣

3 1 1

1 −2 3

1 2 2

⎤
⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

2

5
0 −1

5

− 1

25
−1

5

8

25

− 4

25

1

5

7

25

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

2

5
0 −1

5

− 1

25
−1

5

8

25

− 4

25

1

5

7

25

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

19

13

23

⎤
⎥⎦ =

⎡
⎢⎣

3

4

6

⎤
⎥⎦

5. Solve the equations:

3x1 + 4x2 + 5x3 = 25

4x1 + 3x2 − 6x3 = −7

x1 + x2 + x3 = 6

In matrix notation
⎡
⎢⎣

3 4 5

4 3 −6

1 1 1

⎤
⎥⎦
⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣

25

−7

6

⎤
⎥⎦

The inverse matrix is

⎡
⎢⎣

3 4 5

4 3 −6

1 1 1

⎤
⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−9

8
−1

8

39

8
5

4

1

4
−19

4

−1

8
−1

8

7

8

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

−9

8
−1

8

39

8
5

4

1

4
−19

4

−1

8
−1

8

7

8

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

25

−7

6

⎤
⎥⎦ =

⎡
⎢⎣

2

1

3

⎤
⎥⎦

The solution is

x1 = 2, x2 = 1, x3 = 3

7. Decide whether the following set of equations has a
solution. Solve the equations if it does.

3x + 4y + z = 13

4x + 3y + 2z = 10

7x + 7y + 3z = 23

The determinant of the coefficients is∣∣∣∣∣∣∣
3 4 1

4 3 2

7 7 3

∣∣∣∣∣∣∣
= 0

A solution of x and y in terms of z is possible. Solve
the first two equations[

3 4

4 3

][
x

y

]
=
[

13 − z

10 − 2z

]

Use Gauss-Jordan elimination. Construct the aug-
mented matrix ⎡

⎣ 3 4
... 13 − z

4 3
... 10 − 2z

⎤
⎦

Multiply the first equation by 3 and the second
equation by 4:

⎡
⎣ 9 12

... 39 − 3z

16 12
... 40 − 8z

⎤
⎦

Subtract the first line from the second line and replace
the first line by the difference

⎡
⎣ 7 0

... 1 − 5z

16 12
... 40 − 8z

⎤
⎦

Multiply the first line by 16 and the second line by 7
⎡
⎣ 112 0

... 16 − 80z

112 84
... 280 − 56z

⎤
⎦

Subtract the first line from the second line and replace
the second line by the difference

⎡
⎣ 112 0

... 16 − 80z

0 84
... 264 + 24z

⎤
⎦

Divide the first equation by 112 and the second
equation by 84:

⎡
⎢⎢⎣

1 0
...

16

112
− 80

112
z

0 1
...

264

84
+ 24

84
z

⎤
⎥⎥⎦

x = 16

112
− 80

112
z = 1

7
− 5

7
z

y = 264

84
+ 24

84
z = 22

7
+ 2

7
z
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9. Find the eigenvalues and eigenvectors of the matrix
⎡
⎢⎣

1 1 1

1 1 1

1 1 1

⎤
⎥⎦

The eigenvalues are 0,3. The eigenvectors are, for
eigenvalue 0:

⎡
⎢⎣

−1

0

1

⎤
⎥⎦ and

⎡
⎢⎣

−1

1

0

⎤
⎥⎦

Check the first eigenvalue:
⎡
⎢⎣

1 1 1

1 1 1

1 1 1

⎤
⎥⎦
⎡
⎢⎣

−1

0

1

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦

For the eigenvalue 3, the eigenvector is
⎡
⎢⎣

1

1

1

⎤
⎥⎦

Check this ⎡
⎢⎣

1 1 1

1 1 1

1 1 1

⎤
⎥⎦
⎡
⎢⎣

1

1

1

⎤
⎥⎦ =

⎡
⎢⎣

3

3

3

⎤
⎥⎦

The eigenvalue is equal to 3.

11. Find the eigenvalues and eigenvectors of the matrix
⎡
⎢⎣

1 0 1

1 0 1

1 0 1

⎤
⎥⎦

Does this matrix have an inverse? The eigenvalues are
0 and 2. The eigenvectors are

⎧⎪⎨
⎪⎩

⎡
⎢⎣

0

1

0

⎤
⎥⎦ ,

⎡
⎢⎣

−1

0

1

⎤
⎥⎦
⎫⎪⎬
⎪⎭ ↔ 0,

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1

1

1

⎤
⎥⎦
⎫⎪⎬
⎪⎭ ↔ 2

Check the last case:⎡
⎢⎣

1 0 1

1 0 1

1 0 1

⎤
⎥⎦
⎡
⎢⎣

1

1

1

⎤
⎥⎦ =

⎡
⎢⎣

2

2

2

⎤
⎥⎦ D

The determinant is ∣∣∣∣∣∣∣
1 0 1

1 0 1

1 0 1

∣∣∣∣∣∣∣
= 0

There is no inverse matrix.
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�Chapter 15

Probability, Statistics, and Experimental
Errors

EXERCISES

Exercise 15.1. List as many sources of error as you can for
some of the following measurements. Classify each one as
systematic or random and estimate the magnitude of each
source of error.

a. The measurement of the diameter of a copper wire
using a micrometer caliper.

Systematic : faulty calibration of the caliper 0.1 mm

Random : parallax and other errors in reading the

caliper 0.1 mm

b. The measurement of the mass of a silver chloride
precipitate in a porcelain crucible using a digital
balance.

Systematic : faulty calibration of the balance 1 mg

Random : impurities in the sample

lack of proper drying of the sample

air currents

c. The measurement of the resistance of an electrical
heater using an electronic meter.

Systematic : faulty calibration of the meter 2 �

Random : parallax error and other error in

reading the meter 1 �

d. The measurement of the time required for an
automobile to travel the distance between two highway
markers nominally 1 km apart, using a stopwatch.

Systematic : faulty calibration of the stopwatch 0.2 s

incorrect spacing of the markers 0.5 s

Random : reaction time difference in pressing the

start and stop buttons 0.3 s

The reader should be able to find additional error
sources.

Exercise 15.2. Calculate the probability that “heads” will
come up 60 times if an unbiased coin is tossed 100 times.

probability = 100!
60!40!

(
1

2

)100

= 9.3326 × 10157

(8.32099 × 1081)(8.15915 × 1047)

× 7.8886 × 10−31 = 0.01084

Exercise 15.3. Find the mean and the standard deviation
for the distribution of “heads” coins in the case of 10 throws
of an unbiased coin. Find the probability that a single toss
will give a value within one standard deviation of the mean.

The probabilities are as follows:

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00061-6
© 2013 Elsevier Inc. All rights reserved. e95
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�

�

�

	

no. of heads binomial probability
= n coefficient = pn

0 1 0.0009766

1 10 0.009766

2 45 0.043947

3 120 0.117192

4 210 0.205086

5 252 0.2461032

6 210 0.205086

7 120 0.117192

8 45 0.043947

9 10 0.009766

10 1 0.0009766

〈n〉 =
10∑

n=1

pnn = 5.000

〈n2〉 =
10∑

n=1

pnn2 = 27.501

σ 2
n = 〈n2〉 − 〈n〉2 = 27.501 − 25.000 = 2.501

σn = √
2.501 = 1.581

The probability that n lies within one standard deviation of
the mean is

probability = 0.205086+0.2461032 +0.205086 = 0.656

This is close to the rule of thumb that roughly two-thirds
of the probability lies within one standard deviation of the
mean.

Exercise 15.4. If x ranges from 0.00 to 10.00 and if f (x) =
cx2, find the value of c so that f (x) is normalized. Find the
mean value of x, the root-mean-square value of x and the
standard deviation.

1 = c
∫ 10.00

0.00
x2 dx = c

1

3
x3
∣∣∣∣
10.00

0.00
= c

3
(1000.0)

c = 3

1000.0
= 0.003000

〈x〉 = c
∫ 10.00

0.00
x3 dx = c

1

4
x4
∣∣∣∣
10.00

0.00

= 0.003000

4
(10000) = 7.50

〈x2〉 = c
∫ 10.00

0.00
x4 dx = c

1

5
x5
∣∣∣∣
10.00

0.00

= 0.003000

5
(100000) = 60.0

xrms = 〈x2〉1/2 = (60.0)1/2 = 7.75

σ 2
x = 〈x2〉 − 〈x〉2 = 60.0 − (7.50)2 = 3.75

σx = √
3.75 = 1.94

Exercise 15.5. Calculate the mean and standard deviation
of the Gaussian distribution, showing that μ is the mean
and that σ is the standard deviation.

〈x〉 = 1√
2πσ

∫ ∞

−∞
xe−(x−μ)2/2σ 2

dx

= 1√
2πσ

∫ ∞

−∞
(y + μ)e−y2/2σ 2

dx

= 1√
2πσ

∫ ∞

−∞
ye−y2/2σ 2

dx

+ 1√
2πσ

∫ ∞

−∞
μe−y2/2σ 2

dy = 0 + μ = μ

〈x2〉 = 1√
2πσ

∫ ∞

−∞
x2e−(x−μ)2/2σ 2

dx

= 1√
2πσ

∫ ∞

−∞
(y + μ)2e−y2/2σ 2

dy

= 1√
2πσ

∫ ∞

−∞
(y2 + 2y + μ2)e−y2/2σ 2

dy

= 1√
2πσ

∫ ∞

−∞
y2e−y2/2σ 2

dy

+ 2√
2πσ

∫ ∞

−∞
ye−y2/2σ 2

dy

+ 1√
2πσ

∫ ∞

−∞
μ2e−y2/2σ 2

dy

= 1√
2πσ

(√
π

2
(2σ 2)3/2

)
+ 0 + μ2 = σ 2 + μ2

σ 2
x = 〈x2〉 = μ2 = σ 2

σx = σ

Exercise 15.6. Show that the fraction of a population lying
between μ−1.96σ and μ+1.96σ is equal to 0.950 for the
Gaussian distribution.

fraction = 1√
2πσ

∫ μ+1.96σ

μ−1.96σ
e−(x−μ)2/2σ 2

dx

= 1√
2πσ

∫ 1.96σ

−1.96σ
e−y2/2σ 2

dy

= 1√
2πσ

∫ 1.96σ

0
e−y2/2σ 2

dy

Let u = y√
2σ

y = 1.96σ ↔ u = 1.96σ√
2σ

= 1.386
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fraction =
√

2σ√
2πσ

∫ 1.386

0
e−u2

du

= 1√
π

∫ 1.386

0
e−u2

du = erf(1.386) = 0.950

Exercise 15.7. For the lowest-energy state of a particle in
a box of length L, find the probability that the particle will
be found between L/4 and 3L/4. The probability is

(probability) = 2

L

∫ 0.7500L

0.2500L
sin2 (πx/L)dx

=
(

2

L

)(
L

π

)∫ 2.3562

0.7854
sin2 (y)dy

= 2

π

[
y

2
− sin (y) cos (y)

2

]2.3562

0.7854

= 2

π

[
2.3562

2
− sin (2.3562) cos (2.3562)

2

−0.7854

2
+ sin (0.7854) cos (0.7854)

2

]

= 2

π
(1.1781 + 0.2500 − 0.39270 + 0.2500)

= 0.8183

Exercise 15.8. Find the expectation values for px and p2
x

for our particle in a box in its lowest-energy state. Find the
standard deviation.

〈px 〉 = �

i

2

L

∫ L

0
sin (πx/L)

[
d

dx
sin (πx/L)

]
dx

= �

i

2

L

π

L

∫ L

0
sin (πx/L) cos (πx/L)dx

= �

i

2

L

π

L

L

π

∫ π

0
sin (u) cos (u)du

= �

i

2

L

sin2 (u)

2

∣∣∣∣
π

0
= 0

This vanishing value of the momentum corresponds to the
fact that the particle might be traveling in either direction
with the same probability. The expectation value of the
square of the momentum does not vanish:

〈p2
x 〉 = −�

2 2

L

∫ L

0
sin (πx/L)

d2

dx2 sin (πx/L)

=
(π

L

)2
�

2 2

L

∫ L

0
sin2 (πx/L)dx

=
(π

L

)2
�

2 2

L

L

π

∫ π

0
sin2 (u)du

=
(π

L

)2
�

2 2

L

L

π

[
u

2
− sin (2u)

4

]∣∣∣∣
π

0

=
(π

L

)2
�

2 2

L

L

π

π

2
= π2

�
2

L2 = h2

4L2

σ 2
px

= 〈p2
x 〉 − 〈px 〉 = h2

4L2

σpx = h

2L

Exercise 15.9. Find the expression for 〈v2
x 〉1/2, the root-

mean-square value of vx , and the expression for the standard
deviation of vx .

〈v2
x 〉 =

(
m

2πkBT

)1/2 ∫ ∞

−∞
v2

x exp

(
− mv2

x

2kBT

)
dvx

= 2

(
m

2πkBT

)1/2 ∫ ∞

0
v2

x exp

(
− mv2

x

2kBT

)
dvx

= 2

(
m

2πkBT

)1/2 (2kBT

m

)3/2 ∫ ∞

0
u2

× exp (− u2) du

= 2

(
m

2πkBT

)1/2 (2kBT

m

)3/2 √
π

4
= kBT

m

σ 2
vx

= 〈v2
x 〉 − 0 = 〈v2

x 〉 = kBT

m

σvx =
√

kBT

m

Exercise 15.10. Evaluate of 〈v〉 for N2 gas at 298.15 K.

〈v〉 =
(

8RT

πM

)1/2

=
(

8(8.3145 J K−1 mol−1)(298.15 K)

π(0.028013 kg mol−1)

)1/2

= 474.7 m s−1

Exercise 15.11. Evaluate vrms for N2 gas at 298.15 K.

vrms =
(

3RT

M

)1/2

=
(

3(8.3145 J K−1 mol−1)(298.15 K)

(0.028013 kg mol−1)

)1/2

= 515.2 m s−1

Exercise 15.12. Evaluate the most probable speed for
nitrogen molecules at 298.15 K.

vmp =
(

2RT

M

)1/2

=
(

2(8.3145 J K−1 mol=1)(298.15 K)

(0.028013 kg mol−1)

)1/2

= 420.7 m s−1
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Exercise 15.13. Find the value of the z coordinate after
1.00 s and find the time-average value of the z coordinate
of the particle in the previous example for the first 1.00 s of
fall if the initial position is z = 0.00 m.

zz(t)− z(0) = vz(0)t − 1

2
gt2

= −1

2
(9.80 m s−2)t2 = −4.90 m

z = − 1

2(1.00 s)

∫ 1.00

0
gt2 dt

= −
(
(9.80 m s−2)

2(1.00 s)

)[
t3

3

]1.00

0

= −
(

9.80 m s−2

2.00 s

)(
(1.00 s)3

3

)

= −1.633 m

Exercise 15.14. A sample of 7 individuals has the
following set of annual incomes: $40000, $41,000, $41,000,
$62,000, $65,000, $125,000, and $650,000. Find the mean
income, the median income, and the mode of this sample.

mean = 1

7
($40,000 + $41,000 + $41,000 + $62,000

+ $65,000 + $125,000 + $650,000)

= $146,300

median = $62,000

mode = $41,000

Notice how the presence of two high-income members of
the set cause the mean to exceed the median. Some persons
might try to mislead you by announcing a number as an
“average” without specifying whether it is a median or a
mean.

Exercise 15.15. Find the mean, 〈x〉, and the sample
standard deviation, sx , for the following set of values:
x = 2.876 m, 2.881 m, 2.864 m, 2.879 m, 2.872 m,
2.889 m, 2.869 m. Determine how many values lie below
〈x〉 − sx and how many lie above 〈x〉 + sx .

〈x〉 = 2.876

s2
x = 1

6
[(0.000)2 + (− 0.005)2 + (− 0.012)2

+ (0.003)2 + (− 0.004)2

+ (0.013)2 + (− 0.007)2]
= 0.0000687

sx = √
0.0000687 = 0.008

〈x〉 − sx = 2.868,〈x〉 + sx = 2.884

There is one value smaller than 2.868, and one value
greater than 2.884. Five of the seven values, or 71%, lie in
the range between 〈x〉 − sx and 〈x〉 + sx .

Exercise 15.16. Assume that the H–O–H bond angles
in various crystalline hydrates have been measured to be
108◦,109◦,110◦,103◦,111◦, and 107◦. Give your estimate
of the correct bond angle and its 95% confidence interval.

Bond angle = 〈α〉 = 1

6
(108◦ + 109◦ + 110◦ + 103◦

+ 111
◦ + 107◦) = 108◦

s = 2.8◦

ε = (2.571)(2.8◦)√
6

= 3.3◦

Exercise 15.17. Apply the Q test to the 39.75 ◦C data
point appended to the data set of the previous example.

Q = |(outlying value)− (value nearest the outlying value)|
(highest value)− (lowest value)

= 42.58 − 39.75

42.83 − 39.75
= 2.83

3.08
= 0.919

By interpolation in Table 15.2 for N = 11, the critical Q
value is 0.46. Our value exceeds this, so the data point can
safely be neglected.

PROBLEMS

1. Assume the following discrete probability distribu-
tion:�

�

�

	

x 0 1 2 3 4 5

px 0.00193 0.01832 0.1054 0.3679 0.7788 1.0000

6 7 8 9 10

0.7788 0.3679 0.1054 0.01832 0.00193

Find the mean and the standard deviation. Find the
probability that x lies between 〈x〉 − σx and 〈x〉 − σx .

〈n〉 =
∑10

n=0 npn∑10
n=0 pn

10∑
n=0

pn = 2(0.00193)+ 2(0.01832)+ 2(0.1054)

+ 2(0.3679)+ 2(0.7788)+ 1.000

= 3.5447
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10∑
n=0

npn = (0 + 10)2(0.00193)+ (1 + 9)2(0.01832)

+ (2 + 8)2(0.1054)+ (3 + 7)2(0.3679)

+ (4 + 6)2(0.7788)+ 1.000

= 17.723

〈n〉 = 17.723

3.5447
= 5.00

〈n2〉 =
∑10

n=0 n2 pn∑10
n=0 pn

10∑
n=0

n2 pn = 95.697

〈n2〉 = 95.697

3.5447
= 26.997

σ 2
n = 〈n2〉 − 〈n〉2 = 26.997 − 25.00 = 1.0799

σn = √
1.0799 = 1.039

probability that x lies between 〈x〉 − σx and 〈x〉 − σx

= 1.000 + 2(0.7788)

3.5447
= 0.722

3. Calculate the mean and the standard deviation of all of
the possible cases of ten throws for the biased coin in
the previous problem. Let n be the number of “heads”
in a given set of ten throws. Using Excel, we calculated
the following:

�

�

�

	

n bin. (0.510)n pn npn n2pn
coeff. (0.490)10−n

0 1 0.000797923 0.000797923 0 0

1 10 0.000830491 0.008304909 0.008304909 0.008304909

2 45 0.000864389 0.038897484 0.077794967 0.155589934

3 120 0.000899670 0.107960363 0.323881088 0.971643263

4 210 0.000936391 0.196642089 0.786568356 3.146273424

5 252 0.000974611 0.245601956 1.228009780 6.140048902

6 210 0.001014391 0.213022105 1.278132629 7.668795772

7 120 0.001055795 0.126695363 0.886867538 6.208072768

8 45 0.001098888 0.049449976 0.395599806 3.164798446

9 10 0.001143741 0.011437409 0.102936684 0.926430157

10 1 0.001190424 0.001190424 0.011904242 0.119042424

〈n〉 =
10∑

n=0

npn = 5.100

〈n2〉 =
10∑

n=0

n2 pn = 28.509

σ 2
n = 〈n2〉 − 〈n〉2 = 28.509 − 26.010 = 2.499

σn = √
2.499 = 1.580

The three values n = 4, n = 5, and n = 6 lie
within one standard deviation of the mean, so that the
probability that n lies within one standard deviation of
the mean is equal to

probability = 0.196642 + 0.245602 + 0.213022

= 0.655266 = 65.53%

This is close to the rule of thumb value of 2/3.
5. Assume that a random variable, x, is governed by the

probability distribution

f (x) = c

x

where x ranges from 1.00 to 10.00.

a. Find the mean value of x and its variance and
standard deviation. We first find the value of c so
that the distribution is normalized:

∫ 10.00

1.00

c

x
dx = c ln (x)|10.00

1.00

= c[ln (10.00)− ln (1.000)]
= c ln (10.00)

c = 1

ln (10.00)
= 0.43429

〈x〉 =
∫ 10.00

1.00
x

c

x
dx

= c
∫ 10.00

1.00
dx = c(9.00)

= 9.00

ln (10.00)
= 3.909

〈x2〉 =
∫ 10.00

1.00
x2 c

x
dx

= c
∫ 10.00

1.00
x dx = c

2
x2
∣∣∣10.00

1.00

= c

2
(100.0 − 1.00)

= 99.0

2 ln (10.00)
= 21.50

σ 2
x = 〈x2〉 − 〈x〉2 = 21.50 − (3.909)2 = 6.220

σx = √
6.220 = 2.494

b. Find the probability that x lies between 〈x〉 − σx

and 〈x〉 − σx .
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probability =
∫ 6.403

1.415

c

x
dx

= c ln (x)|6.403
1.415

= 1

ln (10.00)
[ln (6.403)− ln (1.415)]

= ln (6.403/1.415)

ln (10.00)
= 0.6556

This close to the rule of thumb value of 2/3.

7. Assume that a random variable, x, is governed by the
probability distribution (a version of the Lorentzian
function)

f (x) = c

x2 + 4

where x ranges from −10.000 to 10.000. Here is a
graph of the unnormalized function:

a. Find the mean value of x and its variance
and standard deviation. We first normalize the
distribution:

1 = c
∫ 10.00

−10.00

1

x2 + 4
dx

= 2c
∫ 10.00

0

1

x2 + 4
dx

= 2c
arctan (x/2)

2

∣∣∣∣
10.00

0
= c[1.3734]

c = 1

1.3734
= 0.72812

where we have used Eq. (11) of Appendix E.

〈x〉 = c
∫ 10.00

−10.00

x

x2 + 1
dx = 0

where have used the fact that the integrand is an
odd function.

〈x2〉 = c
∫ 10.00

−10.00

x2

x2 + 1
dx = 2c

∫ 10.00

0

x2

x2 + 1
dx

= 2c

[
x − arctan (x/2)

2

]∣∣∣∣
10.000

0

= 2c

[
10.000 − arctan (5.000)

2
− 0

]

= 2(0.72812)[10.000 − 0.68670] = 13.5624

where we have used Eq. (13) of Appendix E.

σ 2
x = [〈x2〉 − 0] = 13.562

σx = √
13.562 = 3.6827

b. Find the probability that x lies between 〈x〉 − σx

and 〈x〉 + σx .

probability = c
∫ 3.6827

−3.6827

1

x2 + 4
dx

= 2c
∫ 3.6827

0

1

x2 + 1
dx

= 2c
arctan (x/2)

2

∣∣∣∣
3.6827

0

= c[1.07328]
= (0.72812)(1.07328) = 0.7815

9. The nth moment of a probability distribution is
defined by

Mn =
∫
(x − μ)n f (x)dx .

The second moment is the variance, or square of
the standard deviation. Show that for the Gaussian
distribution, M3 = 0, and find the value of M4, the
fourth moment. Find the value of the fourth root of M4.

M3 =
∫ ∞

−∞
(x − μ)3

1√
2πσ

e−(x−μ)2/2σ 2
dx

=
∫ ∞

−∞
y3 1√

2πσ
e−y2/2σ 2

dx = 0

where we have let y = x−μ, and where we set the inte-
gral equal to zero since its integrand is an odd function.

M4 =
∫ ∞

−∞
(x − μ)4

1√
2πσ

e−(x−μ)2/2σ 2
dx

=
∫ ∞

−∞
y4 1√

2πσ
e−y2/2σ 2

dx

= 2√
2πσ

∫ ∞

0
y4e−y2/2σ 2

dx
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where have recognized that the integrand is an even
function. From Eq. (23) of Appendix F,
∫ ∞

0
x2ne−r2x2

dx = (1)(3)(5) · · · (2n − 1)

2n+1r2n+1

√
π

so that ∫ ∞

0
x4e−r2x2

dx = (1)(3)

23r5

√
π

M4 = 2√
2πσ

3

8
(2σ 2)5/2

√
π = 3σ 4

M1/4
4 = 4

√
3σ = 1.316σ

11. A sample of 10 sheets of paper has been selected
randomly from a ream (500 sheets) of paper. The
width and length of each sheet of the sample were
measured, with the following results:

�

�

�

	

Sheet number Width/in Length/in

1 8.50 11.03

2 8.48 10.99

3 8.51 10.98

4 8.49 11.00

5 8.50 11.01

6 8.48 11.02

7 8.52 10.98

8 8.47 11.04

9 8.53 10.97

10 8.51 11.00

a. Calculate the sample mean width and its sample
standard deviation, and the sample mean length
and its sample standard deviation.

〈w〉 = 1

10
(8.50 in + 8.48 in + 8.51 in + 8.49 in

+ 8.50 in + 8.48 in + 8.52 in + 8.47 in

+ 8.53 in + 8.51 in) = 8.499 in

sw =
{

1

9

[
(0.00 in)2 + (0.02 in)2 + (0.01 in)2

+ (0.01 in)2 + (0.00 in)2 + (0.02 in)2

+ (0.02 in)2 + (0.03 in)2

+(0.03 in)2 + (0.01 in)2
]}1/2

= 0.019 in

〈l〉 = 1

10
(11.03 in + 10.99 in + 10.98 in

+ 11.00 in + 11.01 in + 11.02 in

+ 10.98 in + 11.04 in

+ 10.97 in + 11.00 in) = 11.002 in

sl =
{

1

9

[
(0.03 in)2 + (0.01 in)2 + (0.02 in)2

+ (0.00 in)2 + (0.01 in)2 + (0.02 in)2

+ (0.02 in)2 + (0.04 in)2 + (0.03 in)2

+(0.00 in)2
]}1/2 = 0.023 in

b. Give the expected error in the width and length
at the 95% confidence level.

εw = (2.262)(0.019 in)√
10

= 0.014 in

εl = (2.262)(0.023 in)√
10

= 0.016 in

w = 8.50 in ± 0.02 in

l = 11.01 in ± 0.02 in

c. Calculate the expected real mean area from the
width and length.

A = (8.499 in)(11.002 in) = 93.506 in2

d. Calculate the area of each sheet in the sample.
Calculate from these areas the sample mean area
and the standard deviation in the area.

�

�

�

	

Sheet Width/in Length/in Area/in2

number

1 8.50 11.03 93.755

2 8.48 10.99 93.1952

3 8.51 10.98 93.4398

4 8.49 11.00 93.39

5 8.50 11.01 93.585

6 8.48 11.02 93.4496

7 8.52 10.98 93.5496

8 8.47 11.04 93.5088

9 8.53 10.97 93.5741

10 8.51 11.00 93.61

〈A〉 = 93.506 in2

sA = 0.150 in2

e. Give the expected error in the area from the
results of part d.

εA = (2.262)(0.159 in)√
10

= 0.114 in2

13. A certain harmonic oscillator has a position given by

z = (0.150 m)[sin (ωt)]
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where

ω =
√

k

m
.

The value of the force constant k is 0.455 N m−1

and the mass of the oscillator m is 0.544 kg. Find
time average of the kinetic energy of the oscillator
over 1.00 period of the oscillator. How does the time
average compare with the maximum value of the
kinetic energy?A certain harmonic oscillator has a
position given by

z = (0.150 m)[sin (ωt)]
where

ω =
√

k

m
.

The value of the force constant k is 0.455 N m−1

and the mass of the oscillator m is 0.544 kg. Find
time average of the kinetic energy of the oscillator
over 1.00 period of the oscillator. How does the time
average compare with the maximum value of the
kinetic energy?

ω =
(

0.455 N m−1

0.544 kg

)
= 0.915 s−1

v = dz

dt
= (0.150 m)ω[cos (ωt)]

= (0.150 m)(0.915 s−1)[cos (ωt)]
= (0.1372 m s−1) cos[(0.915 s−1)t]

τ = 1

ν
= 2π

ω
= 6.87 s

K = 1

2
mv2

K =
(

1

6.87 s

)
1

2
(0.544 kg)(0.1372 m s−1)2

×
∫ 6.87 s

0
cos2

[
(0.915 s−1)t

]
dt

Let u = (0.915 s−1)t .

K =
(

1

6.87 s

)
1

2
(0.544 kg)(0.1372 m s−1)2

×
(

1

0.915 s−1

)∫ 2π

0
cos2 (u)dt

= (0.0008143 kg m2s−2)

[
u

2
+ sin (2u)

4

]∣∣∣∣
2π

0

= (0.0008143 kg m2 s−2)π = 0.00256 J

The time average is equal to 1
2 of the maximum value

of the kinetic energy:

Vmax = 1

2
kz2

max = 1

2
(0.544 kg)(0.1372 m s−1)2

= 0.00512 J

15. The following measurements of a given variable
have been obtained: 68.25, 68.36, 68.12, 68.40,
69.20, 68.53, 68.18, 68.32. Apply the Q test to see if
one of the data points can be disregarded.

The suspect data point is equal to 69.20. The
closest value to it is equal to 68.53 and the range from
the highest to the lowest is equal to 1.08.

Q = 0.67

1.08
= 0.62

The critical value of Q for a set of 8 members is
equal to 0.53. The fifth value, 69.20, can safely be
disregarded. The mean of the remaining values is

mean = 1

7
(68.25 + 68.36 + 68.12,68.40

+ 68.53 + 68.18 + 68.32)

= 68.31
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�Chapter 16

Data Reduction and the Propagation
of Errors

EXERCISES

Exercise 16.1. Two time intervals have been clocked as
t1 = 6.57 s ± 0.13 s and t2 = 75.12 s ± 0.17 s. Find
the probable value of their sum and its probable error. Let
t = t1 + t2.

t = 56.57 s + 75.12 s = 131.69 s

εt = [(0.13 s)2 + (0.17 s)2]1/2 = 0.21 s

t = 131.69 s ± 0.21 s

Exercise 16.2. Assume that you estimate the total system-
atic error in a melting temperature measurement as 0.20 ◦C
at the 95% confidence level and that the random error has
been determined to be 0.06 ◦C at the same confidence level.
Find the total expected error.

εt = [(0.06 ◦C)2 + (0.20 ◦C)2]1/2 = 0.21 ◦C.

Notice that the random error, which is 30% as large as the
systematic error, makes only a 5% contribution to the total
error.

Exercise 16.3. In the cryoscopic determination of molar
mass,1 the molar mass in kg mol−1 is given by

M = wK f

W�Tf
(1 − k f �Tf),

where W is the mass of the solvent in kilograms, w is the
mass of the unknown solute in kilograms, �Tf is the amount

1 Carl W. Garland, Joseph W. Nibler, and David P. Shoemaker, Experi-
ments in Physical Chemistry, 7th ed., p. 182, McGraw-Hill, New York,
2003.

by which the freezing point of the solution is less than that of
the pure solvent, and K f and k f are constants characteristic
of the solvent. Assume that in a given experiment, a sample
of an unknown substance was dissolved in benzene, for
which K f = 5.12 K kg mol−1 and k f = 0.011 K−1. For
the following data, calculate M and its probable error:

W = 13.185 ± 0.003 g

w = 0.423 ± 0.002 g

�Tf = 1.263 ± 0.020 K.

M = wK f

W�Tf
(1 − k f �Tf)

= (0.423 g)(5.12 K kg mol−1)

(13.185 g)(1.263 K)

×[1 − (0.011 K−1)(1.263 K)]
= (0.13005 kg mol−1)[1 − 0.01389]
= 0.12825 kg mol−1 = 128.25 g mol−1

We assume that errors in K f and k f are negligible.

∂M

∂w
= K f

W�Tf
(1 − k f �Tf)

= (5.12 K kg mol−1)

(13.185 g)(1.263 K)

×[1 − (0.011 K−1)(1.263 K)]
= 0.30319 kg mol−1 g−1

∂M

∂W
= − wK f

W 2�Tf
(1 − k f �Tf)

= (0.423 g)(5.12 K kg mol−1)

(13.185 g)2(1.263 K)

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00062-8
© 2013 Elsevier Inc. All rights reserved. e103
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×[1 − (0.011 K−1)(1.263 K)]
= 0.00973 kg mol−1 g−1

∂M

∂�Tf
= − wK f

W (1Tf)2
(1 − k f �Tf)− wK f

W�Tf
(k f )

= (0.423 g)(5.12 K kg mol−1)

(13.185 g)(1.263 K)2

×[1 − (0.011 K−1)(1.263 K)]
− (0.423 g)(5.12 K kg mol−1)(0.011 K−1)

(13.185 g)(1.263 K)

= 0.10154 kg mol−1 K−1 − 0.00143 kg mol−1 K−1

= 0.10011 kg mol−1 K−1

εM = [(0.30319 kg mol−1 g−1)20.002 g)2

+(0.00973 kg mol−1 g−1)2(0.003 g)2

+(0.10011 kg mol−1 K−1)2(0.020 K)2]1/2

= [3.68 × 10−7 kg2 mol−2

+8.52 × 10−10 kg2 mol−2

+4.008 × 10−6 kg2 mol−2]1/2

= 0.00209 kg mol−1

M = 0.128 kg mol−1 ± 0.002 kg mol−1

= 128 g mol−1 ± 2 g mol−1

The principal source of error was in the measurement of
�Tf.

Exercise 16.4. The following data give the vapor pressure
of water at various temperatures.2 Transform the data,
using ln (P) for the dependent variable and 1/T for the
independent variable. Carry out the least squares fit by hand,
calculating the four sums. Find the molar enthalpy change
of vaporization.

�

�

�

	

Temperature/◦C Vapor pressure/torr

0 4.579

5 6.543

10 9.209

15 12.788

20 17.535

25 23.756

2 R. Weast, Ed., Handbook of Chemistry and Physics, 51st ed., p. D-143,
CRC Press, Boca Raton, FL, 1971–1972.

�

�

�

	

1/(T/K) ln (P/torr)

0.003354 3.167835

0.003411 2.864199

0.003470 2.548507

0.003532 2.220181

0.003595 1.878396

0.003661 1.521481

Sx = 0.02102

Sy = 14.200

Sxy = 0.04940

Sx2 = 7.373 × 10−5

D = N Sx2 − S2
x = 6(7.373 × 10−5)− (0.02102)2

= 3.9575 × 10−7

m = N Sxy − Sx Sy

D

= [6(0.049404)− (0.021024)(14.2006)]
3.95751 × 10−7 = −5362 K

b = Sx2 Sy − Sx Sxy

D

= (7.46607 × 10−5)(14.2006)− (0.021024)(0.049404)

3.95751 × 10−7

= 21.156

Our value for the molar enthalpy change of vaporization is

�Hm = −m R = −(−5362 K)(8.3145 J K−1 mol−1)

= 44.6 × 103 J mol−1 = 44.6 kJ mol−1

Exercise 16.5. Calculate the covariance for the following
ordered pairs:

�

�

�

	

y x

−1.00 0.00

0 1.00

1.00 0.00

0.00 −1.00

〈x〉 = 0.00

〈y〉 = 0.00

sx,y = 1

3
(0.00 + 0.00 + 0.00 + 0.00) = 0
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Exercise 16.6. Assume that the expected error in the
logarithm of each concentration in Example 16.5 is equal to
0.010. Find the expected error in the rate constant, assuming
the reaction to be first order.

D = N Sx2 − S2
x = 9(7125)− (225)2 = 13500 min2

εm =
(

9

13500 min

)1/2

(0.010) = 2.6 × 10−4 min−1

m = −0.03504 min−1 ± 0.0003 min−1

k = 0.0350 min−1 ± 0.0003 min−1

Exercise 16.7. Sum the residuals in Example 16.5 and
show that this sum vanishes in each of the three least-square
fits. For the first-order fit

r1 = −0.00109 r6 = 0.00634

r2 = 0.00207 r7 = −0.00480

r3 = −0.00639 r8 = 0.01891

r4 = −0.00994 r9 = −0.01859.

r5 = 0.01348

sum = −0.00001 ≈ 0

For the second-order fit

r1 = 0.3882 r6 = −0.3062

r2 = 0.1249 r7 = −0.1492

r3 = −0.0660 r8 = −0.0182

r4 = −0.2012 r9 = 0.5634.

r5 = −0.3359

sum = −0.00020 ≈ 0

For the third-order fit

r1 = 2.2589 r6 = −2.0285

r2 = 0.8876 r5 = −1.2927

r3 = −0.2631 r8 = −0.2121

r4 = −1.1901 r9 = 3.8031.

r5 = −1.9531

sum = 0.0101 ≈ 0

There is apparently some round-off error.

Exercise 16.8. Assuming that the reaction in Example
16.5 is first order, find the expected error in the rate constant,
using the residuals as estimates of the errors. Here are

the residuals, obtained by a least-squares fit in an Excel
worksheet.

r1 = −0.00109 r6 = 0.00634

r2 = 0.00207 r7 = −0.00480

r3 = −0.00639 r8 = 0.01891

r4 = −0.00994 r9 = −0.01859.

r5 = 0.01348

The standard deviation of the residuals is

s2
r = 1

7

9∑
i=1

r2
1 = 1

7
(0.001093)

sr = 0.033064

D = N Sx2 − S2
x = 9(7125)− (225)2 = 13500 min2

εm =
(

N

D

)1/2

t(ν,0.05)sr

=
(

9

13500 min2

)1/2

(2.365)(0.033064)

= 0.0020 min−1

k = 0.0350 min−1 ± 0.002 min−1

Exercise 16.9. The following is a set of data for the
following reaction at 25 ◦C.3

(CH3)3CBr + H2O → (CH3)3COH + HBr

�

�

�

	

Time/h [(CH3)3CBr]/mol l−1

0 0.1051

5 0.0803

10 0.0614

15 0.0470

20 0.0359

25 0.0274

30 0.0210

35 0.0160

40 0.0123

3 L. C. Bateman, E. D. Hughes, and C. K. Ingold, “Mechanism
of Substitution at a Saturated Carbon Atom. Pm XIX. A Kinetic
Demonstration of the Unimolecular Solvolysis of Alkyl Halides,” J. Chem.
Soc. 960 (1940).
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Using linear least squares, determine whether the
reaction obeys first-order, second-order, or third-order
kinetics and find the value of the rate constant.
To test for first order, we create a spreadsheet with the time
in one column and the natural logarithm of the concentration
in the next column. A linear fit on the graph gives the
following:

ln (conc) = −(0.0537)t − 2.2533

with a correlation coefficient equal to 1.00. The fit gives a
value of the rate constant

k = 0.0537 h−1

To test for second order, we create a spreadsheet with the
time in one column and the reciprocal of the concentration
in the next column. This yielded a set of points with an
obvious curvature and a correlation coefficient squared
for the linear fit equal to 0.9198. The first order fit is
better. To test for third order, we created a spreadsheet with
the time in one column and the reciprocal of the square
of the concentration in the next column. This yielded a
set of points with an obvious curvature and a correlation
coefficient squared for the linear fit equal to 0.7647. The
first order fit is the best fit.

Exercise 16.10. Take the data from the previous exercise
and test for first order by carrying out an exponential fit
using Excel. Find the value of the rate constant. Here is the
graph

The function fit to the data is

c = (0.1051 mol l−1)e−0.0537t

so that the rate constant is

k = 0.0537 h−1

which agrees with the result of the previous exercise.

Exercise 16.11. Change the data set of Table 16.1
by adding a value of the vapor pressure at 70 ◦C of
421 torr ± 40 torr. Find the least-squares line using both
the unweighted and weighted procedures. After the point
was added, the results were as follows: For the unweighted
procedure,

m = slope = −4752 K

b = intercept = 19.95;
For the weighted procedure,

m = slope = −4855 K

b = intercept = 20.28.

Compare these values with those obtained in the earlier
example: m = slope = −4854 K, and b = intercept =
20.28. The spurious data point has done less damage in the
weighted procedure than in the unweighted procedure.

Exercise 16.12. Carry out a linear least squares fit on the
following data, once with the intercept fixed at zero and one
without specifying the intercept:

�
�

�
�

x 0 1 2 3 4 5

y 2.10 2.99 4.01 4.99 6.01 6.98

Compare your slopes and your correlation coefficients for
the two fits. With the intercept set equal to 2.00, the fit is

y = 0.9985x + 2.00

r2 = 0.9994

Without specifying the intercept, the fit is

y = 0.984x + 2.0533

r2 = 0.9997
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Exercise 16.13. Fit the data of the previous example to a
quadratic function (polynomial of degree 2) and repeat the
calculation. Here is the fit to a graph, obtained with Excel

P = 0.1627t2 − 6.7771t + 126.82

where we omit the units.

dP

dt
= 0.3254t − 6.7771

This gives a value of 7.8659 torr ◦C−1 for dP/dt at 45 ◦C.

�Hm = (T�Vm)

(
dP

dT

)
= (318.15 K)(0.1287 m3 mol−1)

×(7.8659 torr K−1)

(
101325 J m−3

760 torr

)

= 4.294 × 104 J mol−1 = 42.94 kJ mol−1

This is less accurate than the fit to a fourth-degree
polynomial in the example.

PROBLEMS

1. In order to determine the intrinsic viscosity [η] of a
solution of polyvinyl alcohol, the viscosities of several
solutions with different concentrations are measured.

The intrinsic viscosity is defined as the limit4

lim
c→0

(
1

c
ln

(
η

η0

))

where c is the concentration of the polymer measured
in grams per deciliter, η is the viscosity of a solution
of concentration c, and η0 is the viscosity of the pure
solvent (water in this case). The intrinsic viscosity and
the viscosity-average molar mass are related by the
formula

[η] = (2.00 × 10−4 dl g−1)

(
M

M0

)0.76

where M is the molar mass and M0 = 1 g mol−1

(1 dalton). Find the molar mass if [η] = 0.86 dl g−1.
Find the expected error in the molar mass if the
expected error in [η] is 0.03 dl g−1.

[η]
(2.00 × 10−4 dl g−1)

=
(

M

M0

)0.76

(
M

M0

)
=
( [η]
(2.00 × 10−4 dl g−1)

)1/0.76

=
( [η]
(2.00 × 10−4 dl g−1)

)1.32

M = (1 g mol−1)

(
0.86 dl g−1

(2.00 × 10−4 dl g−1)

)1.32

= 6.25 × 104 g mol−1

εM =
∣∣∣∣ ∂M

∂[η]
∣∣∣∣ ε[η]

= 1.32M0(5.00 × 103 g dl−1)1.32[η]0.32ε[η]
= (1.32)(1 g mol−1)(5.00 × 103 g dl−1)1.32

×(0.86 dl g−1)0.32(0.03 dl g−1)

= 2.2 × 103 g mol−1

Assume that the error in the constants M0 and 2.00 ×
10−4 dl g−1 is negligible.

3. The van der Waals equation of state is
(

P + n2a

V 2

)
(V − nb) = n RT

For carbon dioxide, a = 0.3640 Pa m6 mol−1 and
b = 4.267 × 10−5 m3 mol−1. Find the pressure of

4 Carl W. Garland, Joseph W. Nibler, and David P. Shoemaker,
Experiments in Physical Chemistry, 7th ed., McGraw-Hill, New York,
2003, pp. 321–323.
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0.7500 mol of carbon dioxide if V = 0.0242 m3

and T = 298.15 K. Find the uncertainty in the
pressure if the uncertainty in the volume is 0.00004 m3

and the uncertainty in the temperature is 0.4 K.
Assume that the uncertainty in n is negligible. Find
the pressure predicted by the ideal gas equation
of state. Compare the difference between the two
pressures you calculated and the expected error in the
pressure.

P = n RT

V − nb
− n2a

V 2

= (0.7500 mol)(8.3145 J K−1 mol−1)(298.1 K)

0.0242 m3 − (0.7500 mol)(4.267 × 10−5 m3 mol−1)

− (0.7500 mol)2(0.3640 Pa m6 mol−1)

(0.0242 m3)2

= 7.6916 × 104 Pa − 3.496 × 102 Pa = 7.657 × 104 Pa(
∂P

∂V

)
n,T

= n RT

(V − nb)2
+ 2n2a

V 3

= (0.7500 mol)(8.3145 J K−1 mol−1)(298.1 K)

[0.0242 m3 − (0.7500 mol)(4.267 × 10−5 m3 mol−1)]2

+ 2(0.7500 mol)2(0.3640 Pa m6 mol−1)

(0.0242 m3)3

= 3.1836 × 106 Pa m−3 + 2.889 × 104 Pa m−3

= 3.212 × 106 Pa m−3

(
∂P

∂T

)
n,V

= n R

V − nb

= (0.7500 mol)(8.3145 J K−1 mol−1)

0.0242 m3 − (0.7500 mol)(4.267 × 10−5 m3 mol−1)

= 2.580 × 102 Pa K−1

εP =
[(

∂P

∂V

)2
ε2

V +
(
∂P

∂T

)2
ε2

T

]1/2

=
[
(3.212 × 106 Pa m−3)2(0.00004 m3)2

+(2.580 × 102 Pa K−1)2(0.4 K)2
]1/2

=
[
1.651 × 104 Pa2 + 1.065 × 104 Pa2

]1/2 = 1.65 × 102 Pa

P = 7.657 × 104 Pa ± 1.65 × 102 Pa

= 7.66 × 104 Pa ± 0.02 × 104 Pa

From the ideal gas equation of state

P = n RT

V

= (0.7500 mol)(8.3145 J K−1 mol−1)(298.1 K)

0.0242 m3

= 7.681 × 104 Pa

The difference between the value from the van der
Waals equation of state and the ideal gas equation of

state is

difference = 7.657 × 104 Pa − 7.681 × 104 Pa

= −2.4 × 102 Pa = −0.024 × 104 Pa

This is roughly the same magnitude as the estimated
error.

5. The vibrational contribution to the molar heat capacity
of a gas of nonlinear molecules is given in statistical
mechanics by the formula

Cm(vib) = R
3n−6∑
i=1

u2
i e−ui

(1 − e−ui )2

where ui = hvi/kBT . Here νi is the frequency of
the i th normal mode of vibration, of which there are
3n −6 if n is the number of nuclei in the molecule, h is
Planck’s constant, kB is Boltzmann’s constant, R is the
ideal gas constant, and T is the absolute temperature.
The H2O molecule has three normal modes. The
frequencies are given by

v1 = 4.78 × 1013 s−1 ± 0.02 × 1013 s−1

v2 = 1.095 × 1014 s−1 ± 0.004 × 1014 s−1

v3 = 1.126 × 1014 s−1 ± 0.005 × 1014 s−1

Calculate the vibrational contribution to the heat
capacity of H2O vapor at 500.0 K and find the 95%
confidence interval. Assume the temperature to be
fixed without error.

u1 = hν1

kBT

= (6.6260755 × 10−34 J s)(4.78 × 1013 s−1)

(1.3806568 × 10−23 J K−1)(500.0 K)
= 4.588

u2 = hν2

kBT

= (6.6260755 × 10−34 J s)(1.095 × 1014 s−1)

(1.3806568 × 10−23 J K−1)(500.0 K)
= 10.510

u3 = hν3

kBT

= (6.6260755 × 10−34 J s)(1.126 × 1014 s−1)

(1.3806568 × 10−23 J K−1)(500.0 K)
= 10.580

Cm (mode 1) = (8.3145 J K−1 mol−1)
(4.588)2e−4.588

(1 − e−4.588)2

= 1.817 J K−1 mol−1

Cm (mode 2) = (8.3145 J K−1 mol−1)
(10.51)e−10.51

(1 − e−10.51)2

= 0.00238 J K−1 mol−1

Cm (mode 3) = (8.3145 J K−1 mol−1)
(10.58)e−10.58

(1 − e−10.58)2
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= 0.00224 J K−1 mol−1

Cm (vib) = 1.1863 J K−1 mol−1

ε1 = hεν1

kBT

= (6.6260755 × 10−34 J s)(0.02 × 1013 s−1)

(1.3806568 × 10−23 J K−1)(500.0 K)

= 1.92 × 10−2

ε2 = hεν2

kBT

= (6.6260755 × 10−34 J s)(0.004 × 1014 s−1)

(1.3806568 × 10−23 J K−1)(500.0 K)

= 3.84 × 10−2

ε3 = hεν3

kBT
= (6.6260755 × 10−34 J s)(0.005 × 1014 s−1)

(1.3806568 × 10−23 J K−1)(500.0 K)

= 4.80 × 10−2

∂Cm

∂u1

= R

[
2u1e−u1

(1 − e−u1 )2
− u2

1e−u1

(1 − e−u1 )2
− 2

u2
1e−u1

(1 − e−u1 )3
e−u1

]

= (8.3145 J K−1 mol−1)

×
[

2(4.588)e−4.588

(1 − e−4.588)2
− (4.588)2e−4.588

(1 − e−4.588)2
− 2(4.588)2e−2(4.588)

(1 − e−4.588)3

]

= (8.3145 J K−1 mol−1)

×[0.09528 − 0.21857 − 0.00449] = −1.025 J K−1 mol−1

∂Cm

∂u2

= R

[
2u2e−ui2

(1 − e−u2 )2
− u2

i e−u2

(1 − e−u2 )2
− 2

u2
2e−u2

(1 − e−u2 )3
e−u2

]

= (8.3145 J K−1 mol−1)

×
[

2(10.51)e−10.51

(1 − e−10.51)2
− (10.51)2e−10.51

(1 − e−10.51)2
− 2(10.51)2e−2(10.51)

(1 − e−10.51)3

]

= (8.3145 J K−1 mol−1)

×[0.000573 − 0.00301 − 0.000000164]
= −0.02026 J K−1 mol−1]
∂Cm

∂u3

= R

[
2u2e−ui3

(1 − e−u3 )2
− u2

3e−u3

(1 − e−u3 )2
− 2

u2
3e−u3

(1 − e−u3 )3
e−u3

]

= (8.3145 J K−1 mol−1)

×
[

2(10.58)e−10.58

(1 − e−10.58)2
− (10.58)2e−10.58

(1 − e−10.58)2
− 2(10.58)2e−2(10.58)

(1 − e−10.58)3

]

= (8.3145 J K−1 mol−1)[0.0005379 − 0.0028455

−0.000000145] = −0.01918 J K−1 mol−1

εCm =
[(

∂Cm

∂u1

)2
ε2

1 +
(
∂Cm

∂u2

)2
ε2

2 +
(
∂Cm

∂u3

)2
ε2

3

]1/2

= [(− 1.025 J K−1 mol−1)2(1.92 × 10−2)2

+(− 0.02026 J K−1 mol−1)2(3.84 × 10−2)2

+(− 0.01918 J K−1 mol−1)2(4.80 × 10−2)2]1/2
= [3.87 × 10−4 J2 K−2 mol−2 + 6.05 × 10−7 J2 K−2 mol−2

+8.48 × 10−7 J2 K−2 mol−2]1/2
= 0.0197 J K−1 mol−1

Cm (vib) = 1.1863 J K−1 mol−1

±0.0197 J K−1 mol−1

7. Vaughan obtained the following data for the
dimerization of butadiene at 326 ◦C.

�

�

�

	

Time/min Partial pressure of butadiene/ atm

0 to be deduced

3.25 0.7961

8.02 0.7457

12.18 0.7057

17.30 0.6657

24.55 0.6073

33.00 0.5573

42.50 0.5087

55.08 0.4585

68.05 0.4173

90.05 0.3613

119.00 0.3073

259.50 0.1711

373.00 0.1081

Determine whether the reaction is first, second, or third
order. Find the rate constant and its 95% confidence
interval, ignoring systematic errors. Find the initial
pressure of butadiene. A linear fit of the logarithm of
the partial pressure against time shows considerable
curvature, with a correlation coefficient squared equal
to 0.9609. This is a poor fit. Here is the fit of the
reciprocal of the partial pressure against time:
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This is a better fit than the first order fit. A fit of
the reciprocal of the square of the partial pressure is
significantly worse. The reaction is second order. The
rate constant is

k = slope = 0.0206 atm−1 min−1

P(0) = 1

b
= 1

1.0664 atm−1 = 0.938 atm

The last two points do not lie close to the line. If one
or more of these points were deleted, the fit would be
better. If the last point is deleted, a closer fit is obtained,
with a correlation coefficient squared equal to 0.9997,
a slope equal to 0.0178, and an initial partial pressure
equal to 0.837 atm.

9. The following are (contrived) data for a chemical
reaction of one substances.

�

�

�

	

Time/min Concentration/mol l−1

0 1.000

2 0.832

4 0.714

6 0.626

8 0.555

10 0.501

12 0.454

14 0.417

16 0.384

18 0.357

20 0.334

a. Assume that there is no appreciable back reaction
and determine the order of the reaction and
the value of the rate constant. A linear fit of the
natural logarithm of the concentrationagainst the

time showed a general curvature and a correlation
coefficient squared equal to 0.977. A linear fit
of the reciprocal of the concentration against the
time gave the following fit:

This close fit indicates that the reaction is second
order. The slope is equal to the rate constant, so
that

k = 0.0999 l mol−1 min−1

b. Find the expected error in the rate constant at the
95% confidence level. The sum of the squares of
the residuals is equal to 9.08 × 10−5. The square
of the standard deviation of the residuals is

s2
r = 1

9
(9.08 × 10−5) = 1.009 × 10−5

D = N Sx2 − S2
x = 11(1540)− (110)2

= 1.694 × 104 − 1.21 × 104 = 4.84 × 103

εm =
(

N

D

)1/2

t(ν,0.05)sr =
(

11

4.84 × 103

)1/2

×(2.262)(1.009 × 10−5)

= 3.4 × 10−4 l mol−1 min−1

k = 0.0999 l mol−1 min−1

±0.0003 l mol−1 min−1

c. Fit the raw data to a third-degree polynomial and
determine the value of the rate constant from the
slope at t = 10.00 min. Here is the fit:
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c = −8.86 × 10−5t3 + 4.32 × 10−3t2

−8.41 × 10−2t + 0.993
dc

dt
= −2.66 × 10−4t2 + 8.64 × 10−3t

−8.41 × 10−2

At time t = 10.00 min

dc

dt
= −0.0243

dc

dt
= −kc2

k = −dc/dt

c2 = 0.0243 mol l−1 min−1

(0.501 mol l−1)2

= 0.0968 l mol−1 min−1

The value from the least-squares fit is probably
more reliable.

11. The Bouguer–Beer law (sometimes called the
Lambert–Beer law or Beer’s law) states that A =
abc, where A is the of a solution, defined as
log10 (I0/I ) where I0 is the incident intensity of light
at the appropriate wavelength and I is the transmitted
intensity; b is the length of the cell through which
the light passes; and c is the concentration of the
absorbing substance. The coefficient a is called the
molar absorptivity if the concentration is in moles per
liter. The following is a set of data for the absorbance of
a set of solutions of disodium fumarate at a wavelength
of 250 nm.

�

�

�

	
A 0.1425 0.2865 0.4280 0.5725 0.7160 0.8575

c (mol l−1) 1.00 × 10−4 2.00 × 10−4 3.00 × 10−4 4.00 × 10−4 5.00 × 10−4 6.00 × 10−4

Using a linear least-squares fit with intercept set
equal to zero, find the value of the absorptivity a if b =
1.000 cm. For comparison, carry out the fit without
specifying zero intercept.

Here is the fit with zero intercept specified:

A = abc

slope = m = ab = 1436.8 l mol−1

a = m

b
= 1436.8

1.000 cm
= 1437 l mol−1 cm−1

Here is the fit with no intercept value specified:

a = m

b
= 1445.1

1.000 cm
= 1445 l mol−1 cm−1

The value from the fit with zero intercept specified is
probably more reliable.

a = 1437 l mol−1 cm−1
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