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Discussion on Green Design

Importance of Green Design

Demand for Energy and Increase in CO2 Emission
With the continual increase of dependence on electrical
systems in our daily lives, the consumption of electrical
energy is increasing at a rapid pace.
Information and communication technology (ICT) industry
sector is responsible for a significant portion (6%) of total
global CO2 emission and global warming.
To save mother earth from green house gas, it is therefore
crucial to optimize and schedule energy consumption in
every use in our daily life.
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Discussion on Green Design

Importance of Green Wireless Design

Wireless devices communicate over air medium whose
gain is randomly varying with time, space and frequency.
Sometime, the channel gain is too low, which causes
erroneous reception at the receiver and requires higher
transmitter power for a given QoS requirement.
Other time, the gain of the channel is very high, which
permits use of lower power or permits using higher order
modulation and higher error control rate.
Therefore, the intelligent and efficient techniques are
specially crucial for transmission over the wireless channel
to minimize power usage for delay tolerant data services.
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Discussion on Green Design

Importance of Cross-layer Green Wireless Design

In order to achieve reliable and energy-efficient
transmission over wireless channel, a plethora of

adaptation
scheduling and
radio resource management (RRM) schemes

have been proposed and utilized in different layers.
However, in a traditional network, the optimization is
usually carried out considering respective layer’s objectives
based on only local information ignoring other layers’
design parameters or information.
This fact gives locally optimal, but globally suboptimal
solution.
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Discussion on Green Design

Importance of Cross-layer Green Wireless Design

In the recent years, significant attention has been received
from the wireless research community on cross-layer
optimization due to the promising system level
performance improvements.
These techniques exploit

inter-dependency and interaction among PHY, MAC and
higher layers in an integrated manner.

In cross-layer techniques, a layer interacts and exchanges
information with other layers to set up its own strategy.
A brief discussion on the energy-efficient green design of
cross-layer techniques are presented in the chapter.
In sequel, we discuss a green cross-layer scheduling
technique.
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Traffic, Channel and Buffer Models

Diagram of the State Transitions, Observations and Policy
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Traffic, Channel and Buffer Models

General Description

We consider a communication system over a time-slotted
Gilbert-Elliot channel.
A transmitter terminal with finite buffering capacity of B
packets is communicating with its receiver terminal. The
buffer maintains FIFO service strategy.
Let Ts denotes the length of a time-slot in second. One
radio frame has Nf time-slots.
Packets are coming from the upper-layer application and
are consisting of Np bits/packet.
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Traffic, Channel and Buffer Models

Traffic Model

A Markov model is usually used to capture both the
memory and burstiness of the network traffic.
Let F = {f1, f2, · · · , fF} denote the state space of the traffic,
where fi , i = 1,2, · · · ,F denotes the i th state.
The states of the traffic states are governed by an
underlying Markov chain Pf , where Pfi ,fj represents the
transition probability.
Incoming packet arrival may follow uniform, Poisson,
Bernoulli, etc distribution.
Hidden Markov model is usually used for the situations
when states are hidden.
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Traffic, Channel and Buffer Models

Channel Model

The randomly varying gains are correlated and is usually
captured using FSMC model.
Gilbert-Elliot Markov channel model has two states
C = {c1, c2}) with Pci ,cj denotes the transition probability.
The channel gains are partitioned so that the channels are
equally probable.
Pci ,cj can be approximated by the ratio of the expected
number of level crossings at the received SNR γk and the
steady state probability of channel state ci .
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Traffic, Channel and Buffer Models

Buffer Model

For a particular action ui and traffic state fj , the probability
of occupying buffer state bn+1 = bz from state bn = bl is
given by,

Pbl ,bz =
x=A∑
x=0

δ(bz − bl − ax + Ψ(ui))P(ax |fj), ∀ck ∈ C (1)

where function δ(x) returns 1 when x = 0 and returns 0
otherwise, and P(ax |fj) is the probability of ax arrivals in
state fj .
Superscript n denote the value of a variable at time-slot n.
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POMDP Formulation Ingredients

POMDP

POMDP is a generalized framework for formulating
problems where a controller takes dynamic decision based
on the belief of the hidden state.
POMDP formulations have been used to solve various
wireless networking decision making problems.
Our challenge is to find a policy given the state information
of buffer and observations of the traffic and channel.
A POMDP problem can be defined by a tuple
(S,U ,Ps,G,O,Po).
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POMDP Formulation Ingredients

States

The state of the system is composite and consists of
traffic
channel and
buffer states.

We can write the system state space as
S = F × C × B = {s1, s2, · · · , sS} with total number of
states being S = F ×C× (B + 1), where sl , l = 1,2, · · · ,S.
The system state at time-slot n can be given by
sn = C(B + 1)(f n − 1) + (B + 1)(cn − 1) + bn
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POMDP Formulation Ingredients

Actions

Actions describe the task of the scheduler to be performed
at a particular state.
The scheduler may have different choices and also the
choices may be different in different state.
We denote the set of all actions by U = {u1, u2, · · · ,uU},
where U is the total number of possible actions available.
Let X = {X1, X2, · · · ,XU} denote the set of transmission
rate in bits/symbol, where rate Xi corresponds to action ui .
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POMDP Formulation Ingredients

Transitions Probabilities

The transitions among the system states are governed by
the system state transition probabilities.
It depends on the individual transition probabilities for traffic
arrivals, channel transition and buffer transition as follows,

Ps(ui) = Pa(ui)⊗ Pc(ui)⊗ Pb(ui) (2)

=


Ps1,s1(ui) Ps1,s2(ui) · · · Ps1,sS (ui)
Ps2,s1(ui) Ps2,s2(ui) · · · Ps2,sS (ui)

...
...

. . .
...

PsS ,s1(ui) PsS ,s2(ui) · · · PsS ,sS (ui)


where the transition probability Psq ,sr for action un = ui can
be given by,

Psq ,sr (ui) = Paj ,ax Pck ,cy Pbl ,bz (3)
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POMDP Formulation Ingredients

Costs

The choice for an action in state is driven by associated
costs. The scheduler chooses the action that incurs lowest
cost.
The transmitter power in a particular slot determines the
power cost, GP(si ,uj) = Pt

Delay cost can be written as GD(si ,uj) = bk−1
Āl

, where bk is

the corresponding buffer state and Āl is the average packet
arrival rate.
The overflow cost is equal to the number of packets
dropped from the buffer as a result of insufficient storage,
GO(sn,un) = bn − wn + an.
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POMDP Formulation Ingredients

Observations

The observation for the problem consists of traffic
observation an and channel feedback observation ωn.
The observation probability for an action uk can be written
as Po = P(al |fi)× P(ωm|cj ,uk ).
The packet arrivals can be uniformly, Bernoulli, Poisson,
etc distributed. For uniformly distributed traffic,
P(al |fi) = 1/Āi .
The positive acknowledgement (ACK) probability for
channel state-action pair (ci ,uj) can be written as,

PA(ci ,uj) = (1− P̄b(ci ,uj))Xj Nf (4)
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Working Principle of Two Policies

Fully Observable Optimal Policy (FOOP)

We formulate the problem as an infinite horizon average
cost UMDP problem and solved using dynamic
programming algorithm (e.g., policy iteration).
Our objective is to minimize a weighted sum of the three
discussed cost functions,
GT (sn,un) = GP(sn,un) + β1GD(sn,un) + β2GO(sn,un).
The Bellman equation for the dynamic programming
algorithm can be written as,

λ+ h(si) = min
u∈Usi

GT (si ,u) +
∑
sj∈S

Psi ,sj (u)h(sj)

 (5)

where λ is the optimal average cost, h(si) is the differential
cost for state si ∈ S w.r.t. a reference state sr .
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Working Principle of Two Policies

Maximum-Likelihood Heuristic Policy (MLHP)

Let Z = {z1, z2, · · · , zS} denote the belief of the states,
where zn = zi = I(si) = P(si) is the probability of a
physical system state sn = si ∈ S.
In MLHP, the policy can be represented as

µML(zn) = µ∗MDP(arg max
sn∈S

I(sn)) (6)

where, µ∗MDP(si) is the optimal policy for state si of the
system as computed for FOOP.
The new belief, I(sn+1) for state sn+1 = sj is updated using
the following filtering formula,

I(sn+1) = αP(on|sn+1,un)
∑
sn

Psn,sn+1(un)I(sn), ∀sn+1 ∈ S (7)

where α is a normalizing constant that makes the belief
sum to 1.
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Performance Results for Two Policies

Data for Monte-Carlo Simulations

We use following data for the Monte-Carlo simulations:
Horizon H = 105, Number of Channel, Buffer and Traffic
States, C = 2, B = 50 and F = 2
Poisson distributed traffic with average arrival rate,
Ā1 = Ā2 = 1.0. The traffic states are equally likely.
Number of transmitter and receiver antennas, nT = 2 and
nR = 1, normalized Doppler frequency, fmTs = 0.1,
normalized average channel gain, γ̄ = 1, Nakagami-m
parameter, m = 1, average BER, P̄b = 10−4,
Number of action, U = 4, Transmission rate set,
X = {0, 2, 4, 6} bits/symbol, Number of symbols/block,
Nf = 1000, the packet size in bits/packet, Np = 1000
Information code rate of STBC, Rc = 1
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Performance Results for Two Policies

Monte-Carlo Simulations

For simulations, without loss of generality, we assume that
channel states are hidden, but traffic and buffer states are
known.
The optimal policies of the underlying fully observable
MDP are found using weighting factors, β1 varied from 0.1
to 100, and β2 = 0.
For each combinations, of the weighting factors, we get an
unique policy using policy iteration algorithm.
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Performance Results for Two Policies

Monte-Carlo Simulations: FOOP

For FOOP Monte-Carlo simulations, the samples of the
traffic state and the channel state for the whole horizon are
generated using their respective transition matrix and
uniform initial state probabilities.
Initial buffer state is assumed to be b0 and it is updated in
each time-slot using the packet arrival and packet
transmission information.
The optimal policy for the system state is applied.
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Performance Results for Two Policies

Monte-Carlo Simulations: MLHP

For MLHP Monte-Carlo simulations, the channel state is
assumed to be unknown and it is estimated and updated
using belief update formula (7).
The packets received in error are dropped and not
retransmitted, however ACK/NAK feedback is sent to the
transmitter to update belief on the channel.
The channel state with maximum probability in a given
time-slot is assumed to be the underlying channel.
Using the generated traffic state and updated buffer state
as FOOP, and estimated channel state from belief state,
the system state is found and the optimal action for the
system state is applied.
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Performance Results for Two Policies

Power vs. Delay Tradeoff for Different nT and fmTB
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A majority of the high bandwidth wireless traffic is relatively delay
insensitive. When the delay limit is increased, the power consumption
can be decreased.
When the fading rate increases, the fall of power with increased delay
limit is faster.
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Performance Results for Two Policies

Throughput comparison of FOOP vs. MLHP
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The MLHP performs almost the same as the FOOP. Only slight less
throughput is due to suboptimal nature of the heuristic policy.

The throughput remains the same irrespective of fading rate and/or
transmitter antenna diversity.
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Summary

We discussed two packet schedulers over correlated
wireless channels in order to optimize energy using
POMDP framework for future green radio communication.
First scheduler, called FOOP, deals with the situation when
all the states information are known at the transmitter.
To deal with some practical situations, where the exact
traffic and channel states may not be known, second
heuristic policy, namely MLHP, is discussed.
We discussed the problem formulations, solutions and
simulation results. We also presented pertinent literature
review on energy-efficient cross-layer techniques and
future direction on the topic.
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