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5.2.1




(a) Given we can equate the first sample moment to the first moment of our distribution and solve for the parameter we wish to estimate. However this estimate only holds true if all .

(b) 

5.2.3




(a) Let then we have . Set this equal to the first sample moment .

(b) 

5.2.5


Set this equal to the first sample moment and solve. The solution is .
5.2.7


Set this equal to the first sample moment and solve. The solution is .
5.2.9


Set this equal to the first sample moment and solve. The solution is 
5.2.11


equate these expected values to the first and second sample moments that is Our estimate for sigma hat.
5.2.13


This shows that the expectation of our sample mean is our population mean. See 5.2.11 for 






5.2.15





likelihood function let us use the log likelihood for simplicity take the derivative and set it equal to zero to maximize the function with respect to p. thus our MLE is using theorem 5.2.1 the variance can be estimate as 

5.2.17





use the log likelihood for simplicity we cannot maximize the traditional way however we see that our entire function is negative and we know so in order to maximize the function needs to be as close as possible to x so it equals zero which is our maximum value. Thus 

5.2.19




using the log likelihood for simplicity. Take the first derivative and maximize with respect to a. thus our MLE is 

5.2.21


lets use the log likelihood for simplicity. 

Take the first derivative, set it equal to zero and solve for the parameter a. 

Thus our MLE is 

5.2.23


lets use the log likelihood for simplicity Take the first partial derivatives and maximize with respect to the parameters and solve simultaneously.



In this case since our first derivative is a constant and .



5.2.25


lets use the log likelihood for simplicity 


Take the first derivative with respect to a, set it equal to zero and solve for a to find the MLE. Then 

5.2.27


differentiating we get 





Then for for we cannot find a maxima, in this case is the MLE.

5.2.29






using the log likelihood for simplicity Taking the first partial derivative with respect to and maximizing we can show that the first sample moment is since Then 

5.2.31
results may vary from generations

5.2.33








lets use the log likelihood for simplicity. Maximize with respect to Lets treat   the variance and mean as separate parameters. Mean thus if we estimate the variance parameter we get thus We can see in this case we need the first estimate to solve our second thus the MLE for this parameter is .




Exercises 5.3
5.3.1

Using the substitution , 



Now, .
Since ,   is a biased estimator for .

(b) As seen from part (a), . Hence,   is an unbiased estimator for .

5.3.3 

         

5.3.5  to be an unbiased estimator for , . 
Hence, 
Therefore, in this case  must be satisfied to have an unbiased estimator for  using 
.

5.3.7
(a) First population moment is  and first sample moment is . 
     Hence, . 
(b) . Hence,  is a biased estimator for .
      . Hence,  is an unbiased estimator for  
(c) 

5.3.11 Since for normal distribution  which implies . Hence, both are unbiased estimators for . 
 and . Next, we can see that  . Hence, .

5.3.13   
        
Hence, according to theorem 5.3.6, |X| is a sufficient statistic for 

5.3.15   
(a) According to factorization theorem  is a sufficient statistic for  where  and .
  
According to factorization theorem  is a sufficient statistic for  where      and .
 (b) (i) According to the example 5.3.4,  is an unbiased estimator for . 
     Hence, for this data unbiased estimate is 1.992.
(ii) According to part (a), two sufficient statistic estimates are for  are  and .

5.3.17.  
Hence, X(1) and X(n) are jointly sufficient for  where 
and .

5.3.19. 
                                      
                                       = 
It can be seen that this cannot be written in factorization form. Hence, X(1) is not a sufficient statistic for .

5.3.21. Let X1,…,Xn be a random sample from a distribution with pdf


Show that U = X1,…,Xn is a sufficient statistic for θ.


Hence according to the factorization criterion,  is jointly sufficient for  where  and .


Exercises 5.4
5.4.1
(a) We're 99% confident that the true population parameter is in our confidence interval.
(b) 99% is the wider confidence interval, if everything remains constant e.g. sample size and parameters then increase confidence increases the interval size.
(c) If the population variance is unknown we use a t-distribution, if the population variance is known and the sample size is large satisfying the CLT we using the standard normal distribution.
(d) As the sample size increase the confidence interval becomes narrower.



5.4.3

(a) Z is a standard normal random variable with known variance, thus we simply treat -2.81 and 2.75 as coming from a standard normal distribution. 

(b)
(c) 0.9945

(d) 

5.4.5

(a) The appropriate pivot is this transformation of the function of the random sample has a distribution that doesn't depend on the parameter we wish to estimate allowing us to create a confidence interval on the parameter of interest.

(b) 

5.4.7





Our sufficient statistic is and we can use the pivotal quantity which is a distribution that does not depend on now we can construct our confidence interval. 

5.4.9

(a) 

(b)
5.4.11




Using method of moments to find an estimate first we need to know Then we construct our pivotal quantity Thus our confidence interval is: this assumes CLT and that our sample size is large enough.
Exercise 5.5
5.5.1
a)

 
b)

 
c)

 
d)

For all 3 cases, we assume that .
For case (a), we are 95% confident that the true proportion of people who find political advertising to be untrue lie between (.323, .377).
For case (b), we are 95% confident that the true proportion of voters who will not vote for candidates whose advertisements are considered to be untrue lie between (..572, ..628).
For case (c), we are 95% confident that the true proportion of those who avoid voting for candidates whose advertisements are considered untrue and who have complained to the media or to the candidate about the falsehood in commercials lie between (.323, .377).

5.5.3
a)

 
b)


c)



5.5.5

We assume that 


We are 98% confident that the true proportion of seniors planning to pursue a graduate degree lie between (.202, .518).

5.5.7

We assume that .

 
We are 95% confident that the true mean weight loss through exercise lie between (10.15, 12.65).

5.5.9


We are 95% confident that the true proportion lie between (.255, .345).

5.5.11
a)


We are 90% confident that the true proportion of defective items lie between (.06, .1).
b)

The assumption of normality is valid, based on the sampling distribution of and the central limit theorem.
c)


5.5.12


We are 95% confident that the true proportion for the sediments with detectable DDT lie between (.633, .807).









5.5.13

 

5.5.17


We are 90% confident that the parameter θ lie between (3.42, 4.08).

5.5.19


We are 95% confident that the true proportion of women at least 35 years of age who are pregnant with a fetus affected by Down syndrome who will receive positive test results from this procedure lie between (.781, .953).

5.5.21

 






5.5.29


We are 98% confident that the population mean lie between (-3.03, -1.41).

5.5.31


We are 95% confident that the mean diameter of bearings made lie between (.9014, .9086).

5.5.33


We are 99% confident that the actual average Hb level in children with chronic diarrhea for this city lie between (11.99, 15.41).
[image: ]
[image: ]
In the boxplot, the data seems to be slightly skewed, and when looking at the normal plot the data seems to deviate a bit from the normal line at the ends. This could skewness could be due to the random small sample size.

5.5.35


We are 95% confident that the mean peak CK activity lie between (237.65, 584.21).

5.5.37


We are 99% confident that the population mean lie between (2.40, 3.84).
5.5.39


We are 98% confident that the population mean lie between (2.69, 5.15).
5.5.41
a)
[image: ]
Looking at the normal plot, the point are mostly around the normal line suggesting that the data comes from a normal population.
b)


We are 95% confident that the population mean stopping distance μ lie between (147.193, 149.167).

Exercise 5.6
5.6.1
  
From the   table  and 
Thus 90% confidence interval for 

We are 90% confident that the true variance is in between  and .
5.6.3
  
From the data set we can calculate that 
From the   table  and 
Thus 99% confidence interval for 

We are 95% confident that the true variance of the air pollution index for this city is in between  and .
5.6.5
  
From the   table  and 
Thus 99% confidence interval for 

We are 99% confident that the true variance is in between  and .

5.6.7
  
a) 
b) From the   table  and 
Thus 99% confidence interval for 

c) We are 99% confident that the true variance is in between and .
Assumption : The population is Normal
5.6.9
  
From the data set we can calculate that . 
So the 
From the   table  and 
Thus 95% confidence interval for 

We are 95% confident that the true variance is in between  and .

5.6.11
  
From the data set we can calculate that 
From the   table  and 
Thus 98% confidence interval for 

We are 98% confident that the true variance of the rates of return is in between  and .	
Thus 98% confidence interval for 


Exercise 5.7
5.7.1
  
Assume common variance, So the pooled sample variance is


98% confidence interval for 

We are 98% confident that the true difference in the mean number of components assembled by the two methods is in between and .

5.7.3
  
Since , by large sample approximation
99% confidence interval for 

We are 99% confident that the true difference in mean weight loss by the two methods is in between and .
Assumption: The population is normal and the samples are independent.

5.7.5
  
Assume common variance, So the pooled sample variance is


90% confidence interval for 

We are 90% confident that the true difference in males and females mean salary is in between and .

5.7.7
  
a) Assuming that the two samples are from normal distribution 
Then we have 
So the Joint density function


Log Likelihood function is 

 
b) Since , by large sample approximation
99% confidence interval for 

We are 99% confident that the true difference in mean is in between and .

5.7.9
  
Since , by large sample approximation
98% confidence interval for 

We are 98% confident that the true difference in prices of houses in 2000 and 2001 is in between and . This means that the average prices of houses in 2000 were higher than in 2001.

5.7.11
  
Using the F table, we have  and

90% confidence interval for 

We are 90% confident that the ratio of true variance, is located in the interval  and .

5.7.13
  
a) Assuming unequal variance for small sample


95% confidence interval for 

We are 95% confident that the true difference in scores of the average and gifted students is in between and .
b) Using the F table, we have  and

95% confidence interval for 

We are 95% confident that the ratio of variance in test scores for regular and gifted students, is located in the interval  and .
c) Assumptions: The populations are Normal and the samples are independent.
[image: ]

According to the QQ plots we can see that the normality assumptions of the two samples are satisfied since data points follow a straight line.
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