

FIGURE 3.1 A population with limited resources cannot grow exponentially forever.


FIGURE 3.2 With these parameter values, the upper limit on the population of the United States is approximately 300 million.


FIGURE 3.3 (a) Phase line for $\mathrm{d} y / \mathrm{d} t \quad=\quad-r(1 \quad-\quad(1 / A) y)$ $(1-(1 / B) y) y$. (b) Several solutions together with the slope field for $\mathrm{d} y / \mathrm{d} t=-0.25(1-y)(1-y / 3) y$. The phase portrait shows that all nontrivial solutions other than if $y_{0}=1, y(t)=1$. If $y_{0}<1$, then $\lim _{t \rightarrow \infty} y(t)=0$. If $y_{0}>1$, then $\lim _{t \rightarrow \infty} y(t)=3$.


FIGURE 3.4 Graph of $T(t)=17(7 / 17)^{t / 2}+65$.


FIGURE 3.5 Modeling the temperature in a building over the course of a 24-h day.


FIGURE 3.6 Force diagram.


FIGURE 3.7 Graph of $s(t)=32 t+30 \mathrm{e}^{-t}-30$.


FIGURE 3.8 The velocity functions from Example ?? (dashed) and Example ??. Notice how the different forces due to air resistance affect the velocity of the object.


FIGURE 3.9 By drawing a force diagram, we see that $g$ and $F_{R}$ are in the negative direction.


FIGURE 3.10 (a) Graph of $v(t)=88 \mathrm{e}^{-4 t / 5}-40$. (b) Graph of $v(t)$ together with $s(t)=110-40 t-110 \mathrm{e}^{-4 t / 5}$ (dashed).

(a)
(b)

FIGURE 3.11 (a) Graph of $s(t)=32 \mathrm{e}^{-t}+32 t-32$. (b) Graph of $s(t)=3.99722-3.9972 \mathrm{e}^{-6 t}+\frac{16}{3} t$.


FIGURE 3.12 (a) Calculating the angle of intersection of two non-parallel lines. (b) Drawing the parallel can help compute the angle.


FIGURE 3.13 Diagram of a kidney dialysis machine.

TABLE 3.1 Half-Lives of Various Nuclides

| Element | Nuclide | Half-Life | Element | Nuclide | Half-Life |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Aluminum | ${ }^{26} \mathrm{Al}$ | $7.4 \times 10^{5}$ years | Polonium | ${ }^{209} \mathrm{Po}$ | 100 years |
| Beryllium | ${ }^{10} \mathrm{Be}$ | $1.51 \times 10^{6}$ years | Polonium | ${ }^{210} \mathrm{Po}$ | 138 days |
| Carbon | ${ }^{14} \mathrm{C}$ | 5730 years | Radon | ${ }^{222} \mathrm{Rn}$ | 3.82 days |
| Chlorine | ${ }^{36} \mathrm{Cl}$ | $3.01 \times 10^{5}$ years | Radium | ${ }^{226} \mathrm{Ra}$ | 1700 years |
| Iodine | ${ }^{131} \mathrm{I}$ | 8.05 days | Thorium | ${ }^{230} \mathrm{Th}$ | 75,000 years |
| Potassium | ${ }^{40} \mathrm{~K}$ | $1.2 \times 10^{9}$ years | Uranium | ${ }^{238} \mathrm{U}$ | $4.51 \times 10^{9}$ years |

TABLE 3.2 U.S. Population and Values of $y(t)$

|  | Actual Population <br> (in millions) | Value of $y(t)=$ <br> $5.3 \mathrm{e}^{0.03 t}$ | Year $(t)$ | Actual Population <br> (in millions) |
| :--- | :--- | :--- | :--- | :--- |
| $1800(0)$ | 5.30 | 5.30 | $1870(70)$ | 38.56 |
| $1810(10)$ | 7.24 | 7.15 | $1880(80)$ | 50.19 |
| $1820(20)$ | 9.64 | 9.66 | $1890(90)$ | 62.98 |
| $1830(30)$ | 12.68 | 13.04 | $1900(100)$ | 76.21 |
| $1840(40)$ | 17.06 | 17.60 | $1910(110)$ | 92.23 |
| $1850(50)$ | 23.19 | 23.75 | $1920(120)$ | 106.02 |
| $1860(60)$ | 31.44 | 32.06 | $1930(130)$ | 123.20 |

TABLE 3.3 U.S. Population and Values of $y(t)$

| Year $(t)$ | Actual Population <br> (in millions) | Value of $y(t)$ | Year $(t)$ | Actual Population <br> (in millions) | Value of $y(t)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | | $1800(0)$ | 5.30 | 5.30 | $1900(100)$ | 76.21 |
| :--- | :--- | :--- | :--- | :--- |
| $1810(10)$ | 7.24 | 7.11 | $1910(110)$ | 92.23 |
| $1820(20)$ | 9.64 | 9.52 | $1920(120)$ | 106.02 |
| $1830(30)$ | 12.68 | 12.71 | $1930(130)$ | 123.20 |
| $1840(40)$ | 17.06 | 16.90 | $1940(140)$ | 132.16 |
| $1850(50)$ | 23.19 | 22.38 | $1950(150)$ | 151.33 |
| $1860(60)$ | 31.44 | 29.44 | $1960(160)$ | 179.32 |
| $1870(70)$ | 38.56 | 38.42 | $1970(170)$ | 203.30 |
| $1880(80)$ | 50.19 | 49.63 | $1980(180)$ | 226.54 |
| $1890(90)$ | 62.98 | 63.33 | $1990(190)$ | 248.71 |

TABLE 3.4 Units Useful in Solving Problems Associated with Newton's Second Law of Motion

|  | English | International |
| :--- | :--- | :--- |
| Mass | Slug (1b s $\left.{ }^{2} / \mathrm{ft}.\right)$ | Kilogram (kg) |
| Force | Pound (1b) | Newton $\left(\mathrm{m} \mathrm{kg} / \mathrm{s}^{2}\right)$ |
| Distance | Foot (ft.) | Meter (m) |
| Time | Second (s) | Second (s) |


|  | ${ }^{210} \mathbf{P o}$ Concentration <br> $(\mathbf{d p m} / \mathbf{g}$ of $\mathbf{P b})$ | ${ }^{226} \mathbf{R a}$ Concentration <br> $(\mathbf{d p m} / \mathbf{g}$ of $\mathbf{P b})$ | $\frac{\mathbf{1 - R a} \mathbf{\mathbf { R a }}}{\mathbf{P}}$ <br> Painting |
| :--- | :--- | :--- | ---: |
| Washing of Feet | 12.6 | 0.26 | 0.98 |
| Woman Reading Music | 10.3 | 0.30 | 0.97 |
|  |  | 0.17 | 0.98 |
| Woman Playing Mandolin | 8.2 | 0.1 | 0.99 |
| Woman Drinking | 8.3 | 0.8 | 0.91 |
| Disciples of Emmaus |  | 0.31 | 0.94 |
| Boy Smoking | 4.8 | 1.4 | 0.07 |
| Lace Maker | 1.5 | 6.0 | -0.15 |
| Laughing Girl | 5.2 |  |  |

