

FIGURE 3.1 A population with limited resources cannot grow exponentially forever.

FIGURE~3.2~~With these parameter values, the upper limit on the population of the United States is approximately 300 million.

FIGURE 3.3 (a) Phase line for dy/dt = -r(1 - (1/A)y) (1 – (1/B)y)y. (b) Several solutions together with the slope field for dy/dt = -0.25(1 - y)(1 - y/3)y. The phase portrait shows that all nontrivial solutions other than if $y_0 = 1$, y(t) = 1. If $y_0 < 1$, then $\lim_{t \to \infty} y(t) = 0$. If $y_0 > 1$, then $\lim_{t \to \infty} y(t) = 3$.

FIGURE 3.4 Graph of $T(t) = 17(7/17)^{t/2} + 65$.

 $FIGURE \ 3.5 \quad \text{Modeling the temperature in a building over the course of a 24-h day}.$

FIGURE 3.6 Force diagram.

FIGURE 3.7 Graph of $s(t) = 32t + 30e^{-t} - 30$.

 $FIGURE~3.8~~ \label{eq:FIGURE 3.8} The \ velocity \ functions \ from \ Example~\ref{eq:Continuous} \ (dashed) \ and \ Example~\ref{eq:Continuous}. Notice \ how \ the \ different \ forces \ due \ to \ air \ resistance \ affect \ the \ velocity \ of \ the \ object.$

FIGURE 3.9 By drawing a force diagram, we see that g and F_R are in the negative direction.

FIGURE 3.10 (a) Graph of $v(t) = 88e^{-4t/5} - 40$. (b) Graph of v(t) together with $s(t) = 110 - 40t - 110e^{-4t/5}$ (dashed).

FIGURE 3.11 (a) Graph of $s(t) = 32e^{-t} + 32t - 32$. (b) Graph of $s(t) = 3.99722 - 3.9972e^{-6t} + \frac{16}{3}t$.

 $FIGURE\ 3.12 \quad \hbox{(a) Calculating the angle of intersection of two non-parallel lines. (b) Drawing\ the\ parallel\ can help\ compute the\ angle.}$

FIGURE 3.13 Diagram of a kidney dialysis machine.

TABLE 3.1 Half-Lives of Various Nuclides

Element	Nuclide	Half-Life	Element	Nuclide	Half-Life
Aluminum	²⁶ Al	7.4×10^5 years	Polonium	²⁰⁹ Po	100 years
Beryllium	¹⁰ Be	1.51×10^6 years	Polonium	²¹⁰ Po	138 days
Carbon	¹⁴ C	5730 years	Radon	²²² Rn	3.82 days
Chlorine	³⁶ Cl	$3.01 \times 10^5 \text{ years}$	Radium	²²⁶ Ra	1700 years
Iodine	^{131}I	8.05 days	Thorium	²³⁰ Th	75,000 years
Potassium	$^{40}\mathrm{K}$	1.2×10^9 years	Uranium	²³⁸ U	4.51×10^9 years

TABLE 3.2 U.S. Population and Values of y(t)

Year (t)	Actual Population (in millions)	Value of $y(t) = 5.3 e^{0.03t}$	Year (t)	Actual Population (in millions)	Value of $y(t) = 5.3 e^{0.03t}$
1800 (0)	5.30	5.30	1870 (70)	38.56	43.28
1810 (10)	7.24	7.15	1880 (80)	50.19	58.42
1820 (20)	9.64	9.66	1890 (90)	62.98	78.86
1830 (30)	12.68	13.04	1900 (100)	76.21	106.45
1840 (40)	17.06	17.60	1910 (110)	92.23	143.70
1850 (50)	23.19	23.75	1920 (120)	106.02	193.97
1860 (60)	31.44	32.06	1930 (130)	123.20	261.83

TABLE 3.3 U.S. Population and Values of y(t)

N (1)	Actual Population	X1 (()	3/ //)	Actual Population	XX 1 ((1)
Year (t)	(in millions)	Value of <i>y</i> (<i>t</i>)	Year (t)	(in millions)	Value of y(t)
1800 (0)	5.30	5.30	1900 (100)	76.21	79.61
1810 (10)	7.24	7.11	1910 (110)	92.23	98.33
1820 (20)	9.64	9.52	1920 (120)	106.02	119.08
1830 (30)	12.68	12.71	1930 (130)	123.20	141.14
1840 (40)	17.06	16.90	1940 (140)	132.16	163.59
1850 (50)	23.19	22.38	1950 (150)	151.33	185.45
1860 (60)	31.44	29.44	1960 (160)	179.32	205.82
1870 (70)	38.56	38.42	1970 (170)	203.30	224.05
1880 (80)	50.19	49.63	1980 (180)	226.54	239.78
1890 (90)	62.98	63.33	1990 (190)	248.71	252.94

TABLE 3.4 Units Useful in Solving Problems Associated with Newton's Second Law of Motion

	English	International
Mass	Slug $(1b s^2/ft.)$	Kilogram (kg)
Force	Pound (1b)	Newton $(m kg/s^2)$
Distance	Foot (ft.)	Meter (m)
Time	Second (s)	Second (s)

Painting	²¹⁰ Po Concentration (dpm/g of Pb)	²²⁶ Ra Concentration (dpm/g of Pb)	1–Ra Po
Washing of Feet	12.6	0.26	0.98
Woman Reading Music	10.3		0.97
O		0.30	
Woman Playing Mandolin	8.2	0.17	0.98
Woman Drinking	8.3	0.1	0.99
Disciples of Emmaus		0.8	0.91
Boy Smoking	4.8	0.31	0.94
Lace Maker	1.5	1.4	0.07
Laughing Girl	5.2	6.0	-0.15