

FIGURE 4.1 A spring-mass system.

FIGURE 4.2 (a) Graph of general solution for various values of c_{1} and c_{2}. (b) Graph of the solution $x(t)=\mathrm{e}^{-2 t}-\mathrm{e}^{-t}$ to the IVP.

FIGURE 4.3 Graph of $y=\mathrm{e}^{-2 t}\left(3 \cos 4 t+\frac{5}{4} \sin 4 t\right)$. Note that y is not identically the zero function but converges to the zero function quickly so it appears that y and the zero function are identical in the plot as t increases, even though the function oscillates forever.

FIGURE 4.4 (a) Plots of some solutions satisfying $y^{\prime}(0)=1$. (b) Plots of some solutions satisfying $y(0)=0$. (c) Plot of the solution satisfying $y(0)=0$ and $y^{\prime}(0)=1$.

FIGURE 4.5 From left to right, $\omega=0,1 / 4,1 / 2,3 / 4,1,5 / 4,3 / 2,7 / 4$, and 2. Notice that the solution is bounded unless $\omega=1$.

FIGURE 4.6 Plots of $y^{\prime \prime}+4 y=\sec 2 t, y(0)=1, y^{\prime}(0)=c$ for various values of c. Which is the plot of the solution satisfying $y^{\prime}(0)=1$?

FIGURE 4.7 (a) Various solutions satisfying $y^{\prime}(0)=1$. (b) Various solutions satisfying $y(0)=0$.

FIGURE 4.8 (a) Various solutions of the differential equation satisfying $y(0)=0$. (b) Various solutions of the differential equation satisfying $y(0)=0$ and $y^{\prime}(0)=-2$. (c) The solution of the differential equation satisfying $y(0)=0, y^{\prime}(0)=-2$, and $y^{\prime \prime}(0)=2$.

FIGURE 4.9 (a)-(d) in row 1, (e)-(h) in row 2, (i)-(l) in row 3, and (m)-(p) in row 4.

FIGURE 4.10 (a) Plots of various solutions of $t^{3} y^{\prime \prime \prime}+t y^{\prime}-y=3-\ln t$. (b) Plot of the solution of $t^{3} y^{\prime \prime \prime}+t y^{\prime}-y=3-\ln t$ that satisfies the initial conditions $y(1)=0, y^{\prime}(1)=0$, and $y^{\prime \prime}(1)=1$.

FIGURE 4.11 (a) Various solutions of the nonhomogeneous equation. (b) The solution of the nonhomogeneous equation that satisfies the initial conditions $y(0)=4 / 3, y^{\prime}(0)=-5 / 2$, and $y^{\prime \prime}(0)=-173 / 12$.

FIGURE 4.12 (From left to right) (a) Various solutions of the nonhomogeneous equation that satisfy $y(0)=0$. (b) Various solutions that satisfy $y(0)=0$ and $y^{\prime}(0)=1$. (c) Various solutions that satisfy $y(0)=0, y^{\prime}(0)=1$, and $y^{\prime \prime}(0)=0$. (d) The solution that satisfies $y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=0$, and $y^{\prime \prime \prime}(0)=-3$.

FIGURE 4.13 Plots of various solutions of $x^{2} y^{\prime \prime}-x y^{\prime}+y=0, x>0$.

FIGURE 4.14 (a) Plots of various solutions of $x^{2} y^{\prime \prime}-5 x y^{\prime}+10 y=0, x>0$. (b) Plot of the solution of the IVP.

FIGURE 4.15 (a) Plots of various solutions of the nonhomogeneous equation. (b) Plot of the solution of the nonhomogeneous equation that satisfies the initial conditions.

FIGURE 4.16 (a) Plots of various solutions of the differential equation that satisfy $y(1)=y(4)=0$. (b) Plot of the solution of the differential equation that satisfies $y(1)=y(4)=0$ and $y^{\prime}(1)=2$.

FIGURE 4.17 Comparison of exact (black) and approximate (gray) solutions to the initial-value problem $\left(4-x^{2}\right) y^{\prime}+y=0$, $y(0)=1$.

FIGURE 4.18 Although we have only defined $\Gamma(x)$ for $x>0, \Gamma(x)$ can be defined for all real numbers except $x=0, x=-1$, $x=-2, \ldots$. (This topic is discussed in most complex analysis texts such as Functions of One Complex Variable, Second Edition, by John B. Conway, Springer-Verlag (1978), pp. 176-185.)

FIGURE 4.19 In the top row, from left to right, plots of $J_{0}(x), J_{1}(x)$, and $J_{2}(x)$; in the second row, from left to right, plots of $J_{3}(x), J_{4}(x)$, and $J_{5}(x)$; and in the third row, from left to right, plots of $J_{6}(x), J_{7}(x)$, and $J_{8}(x)$.

FIGURE 4.20 In the top row, from left to right, plots of $Y_{0}(x), Y_{1}(x)$, and $Y_{2}(x)$; in the second row, from left to right, plots of $Y_{3}(x), Y_{4}(x)$, and $Y_{5}(x)$; and in the third row, from left to right, plots of $Y_{6}(x), Y_{7}(x)$, and $Y_{8}(x)$.

FIGURE 4.21 (a) $y=c_{1} J_{4}(x)+c_{2} \Upsilon_{4}(x)$, (b) $y=c_{1} J_{1 / 5}(x)+c_{2} \Upsilon_{1 / 5}(x)$, and (c) $y=c_{1} J_{2}(3 x)+c_{2} \Upsilon_{2}(3 x)$.

Differential Equation	Characteristic Equation	Roots of Characteristic Equation	
$y^{(n)}=0$			
	$(r-k)^{n}$		
		$r_{1,2}=\alpha \pm \mathrm{i} \beta$,	
		$\beta \neq 0$	
			$y=\mathrm{e}^{\alpha t}\left[\left(c_{1,1}+c_{1,2} t+\cdots c_{1, n-1} t^{n-1}\right) \cos \beta t\right.$ $\left.+\left(c_{2,1}+c_{2,2} t+\cdots c_{2, n-1} t^{n-1}\right) \sin \beta t\right]$

TABLE 4.1 Linearly Independent Solutions of $2 y^{(6)}-7 y^{(5)}-4 y^{(4)}=0$

Root	Multiplicity	Corresponding Solution(s)
$r=0$	$k=4$	$y_{1}=1, y_{2}=t, y_{3}=t^{2}, y_{4}=t^{3}$
$r=-1 / 2$	$k=1$	$y_{5}=\mathrm{e}^{-t / 2}$
$r=4$	$k=1$	$y_{6}=\mathrm{e}^{4 t}$

TABLE 4.2 Linearly Independent Solutions of $y^{(4)}-y=0$

Root	Multiplicity	Corresponding Solution(s)
$r_{1}=1$	$k=1$	$y_{1}=\mathrm{e}^{t}$
$r_{2}=-1$	$k=1$	$y_{2}=\mathrm{e}^{-t}$
$r_{3,4}= \pm \mathrm{i}$	$k=1, k=1$	$y_{3}=\cos t, y_{4}=\sin t$

TABLE $4.3 a_{n}$ Values for $n=0,1,2,3, \ldots, 10$

\boldsymbol{n}	$\boldsymbol{a}_{\boldsymbol{n}}$	\boldsymbol{n}	$\boldsymbol{a}_{\boldsymbol{n}}$	\boldsymbol{n}	$\boldsymbol{a}_{\boldsymbol{n}}$	\boldsymbol{n}	$\boldsymbol{a}_{\boldsymbol{n}}$
0	a_{0}	3	$-\frac{3}{128} a_{0}$	6	$\frac{69}{65536} a_{0}$	9	$-\frac{4859}{33554432} a_{0}$
1	$-\frac{1}{4} a_{0}$	4	$\frac{11}{2048} a_{0}$	7	$-\frac{187}{262144} a_{0}$	10	$\frac{12767}{268435456} a_{0}$
2	$\frac{1}{32} a_{0}$	5	$-\frac{31}{8192} a_{0}$	8	$\frac{1843}{8388608} a_{0}$		

TABLE 4.4 Coefficients for $n=0, \ldots, 7$

n	a_{n}	n	a_{n}	n	a_{n}
0	a_{0}	3	$\frac{1}{6}\left(a_{0}-a_{1}\right)$	6	$\frac{1}{720}\left(18 a_{1}-7 a_{0}\right)$
1	a_{1}	4	$\frac{1}{24}\left(2 a_{1}-a_{0}\right)$	7	$\frac{1}{5040}\left(33 a_{0}-85 a_{1}\right)$
2	$-\frac{1}{2} a_{0}$	5	$\frac{1}{120}\left(2 a_{0}-5 a_{1}\right)$		

TABLE 4.5 $\quad P_{n}(x)$ for $n=0$,
$1, \ldots, 5$

n	$P_{n}(x)$
0	$P_{0}(x)=1$
1	$P_{1}(x)=x$
2	$P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$
3	$P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$
4	$P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$
5	$P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)$

