

FIGURE 4.1 A spring-mass system.

FIGURE 4.2 (a) Graph of general solution for various values of c_1 and c_2 . (b) Graph of the solution $x(t) = e^{-2t} - e^{-t}$ to the IVP.

FIGURE 4.3 Graph of $y = e^{-2t} \left(3\cos 4t + \frac{5}{4}\sin 4t \right)$. Note that *y* is not identically the zero function but converges to the zero function quickly so it appears that *y* and the zero function are identical in the plot as *t* increases, even though the function oscillates forever.

FIGURE 4.4 (a) Plots of some solutions satisfying y'(0) = 1. (b) Plots of some solutions satisfying y(0) = 0. (c) Plot of *the* solution satisfying y(0) = 0 and y'(0) = 1.

FIGURE 4.5 From left to right, $\omega = 0, 1/4, 1/2, 3/4, 1, 5/4, 3/2, 7/4$, and 2. Notice that the solution is bounded unless $\omega = 1$.

FIGURE 4.6 Plots of $y'' + 4y = \sec 2t$, y(0) = 1, y'(0) = c for various values of *c*. Which is the plot of the solution satisfying y'(0) = 1?

FIGURE 4.7 (a) Various solutions satisfying y'(0) = 1. (b) Various solutions satisfying y(0) = 0.

FIGURE 4.8 (a) Various solutions of the differential equation satisfying y(0) = 0. (b) Various solutions of the differential equation satisfying y(0) = 0 and y'(0) = -2. (c) The solution of the differential equation satisfying y(0) = 0, y'(0) = -2, and y''(0) = 2.

 $\label{eq:FIGURE 4.9} \textbf{(a)-(d) in row 1, (e)-(h) in row 2, (i)-(l) in row 3, and (m)-(p) in row 4.}$

FIGURE 4.10 (a) Plots of various solutions of $t^3y''' + ty' - y = 3 - \ln t$. (b) Plot of *the* solution of $t^3y''' + ty' - y = 3 - \ln t$ that satisfies the initial conditions y(1) = 0, y'(1) = 0, and y''(1) = 1.

FIGURE 4.11 (a) Various solutions of the nonhomogeneous equation. (b) The solution of the nonhomogeneous equation that satisfies the initial conditions y(0) = 4/3, y'(0) = -5/2, and y''(0) = -173/12.

FIGURE 4.12 (From left to right) (a) Various solutions of the nonhomogeneous equation that satisfy y(0) = 0. (b) Various solutions that satisfy y(0) = 0 and y'(0) = 1. (c) Various solutions that satisfy y(0) = 0, y'(0) = 1, and y''(0) = 0. (d) *The* solution that satisfies y(0) = 0, y'(0) = 1, y''(0) = 0, and y'''(0) = -3.

FIGURE 4.13 Plots of various solutions of $x^2y'' - xy' + y = 0$, x > 0.

FIGURE 4.14 (a) Plots of various solutions of $x^2y'' - 5xy' + 10y = 0$, x > 0. (b) Plot of *the* solution of the IVP.

FIGURE 4.15 (a) Plots of various solutions of the nonhomogeneous equation. (b) Plot of *the* solution of the nonhomogeneous equation that satisfies the initial conditions.

FIGURE 4.16 (a) Plots of various solutions of the differential equation that satisfy y(1) = y(4) = 0. (b) Plot of *the* solution of the differential equation that satisfies y(1) = y(4) = 0 and y'(1) = 2.

FIGURE 4.17 Comparison of exact (black) and approximate (gray) solutions to the initial-value problem $(4 - x^2)y' + y = 0$, y(0) = 1.

FIGURE 4.18 Although we have only defined $\Gamma(x)$ for x > 0, $\Gamma(x)$ can be defined for all real numbers *except* x = 0, x = -1, x = -2, (This topic is discussed in most complex analysis texts such as *Functions of One Complex Variable*, Second Edition, by John B. Conway, Springer-Verlag (1978), pp. 176-185.)

FIGURE 4.19 In the top row, from left to right, plots of $J_0(x)$, $J_1(x)$, and $J_2(x)$; in the second row, from left to right, plots of $J_3(x)$, $J_4(x)$, and $J_5(x)$; and in the third row, from left to right, plots of $J_6(x)$, $J_7(x)$, and $J_8(x)$.

FIGURE 4.20 In the top row, from left to right, plots of $Y_0(x)$, $Y_1(x)$, and $Y_2(x)$; in the second row, from left to right, plots of $Y_3(x)$, $Y_4(x)$, and $Y_5(x)$; and in the third row, from left to right, plots of $Y_6(x)$, $Y_7(x)$, and $Y_8(x)$.

FIGURE 4.21 (a) $y = c_1 J_4(x) + c_2 Y_4(x)$, (b) $y = c_1 J_{1/5}(x) + c_2 Y_{1/5}(x)$, and (c) $y = c_1 J_2(3x) + c_2 Y_2(3x)$.

Differential Equation	Characteristic Equation	Roots of Characteristic Equation	General Solution
$y^{(n)} = 0$			
	$(r-k)^n$		
		$r_{1,2} = \alpha \pm \mathrm{i}\beta,$	
		eta eq 0	
			$y = e^{\alpha t} [(c_{1,1} + c_{1,2}t + \cdots + c_{1,n-1}t^{n-1}) \cos \beta t + (c_{2,1} + c_{2,2}t + \cdots + c_{2,n-1}t^{n-1}) \sin \beta t]$

TABLE 4.1 Linearly Independent Solutions of $2y^{(6)} - 7y^{(5)} - 4y^{(4)} = 0$

Root	Multiplicity	Corresponding Solution(s)
r = 0	k = 4	$y_1 = 1, y_2 = t, y_3 = t^2, y_4 = t^3$
r = -1/2	k = 1	$y_5 = \mathrm{e}^{-t/2}$
r = 4	k = 1	$y_6 = e^{4t}$

TABLE 4.2 Linearly Independent Solutions of $y^{(4)} - y = 0$

Root	Multiplicity	Corresponding Solution(s)
$r_1 = 1$	k = 1	$y_1 = e^t$
$r_2 = -1$	k = 1	$y_2 = e^{-t}$
$r_{3,4} = \pm i$	k = 1, k = 1	$y_3 = \cos t, y_4 = \sin t$

TABLE 4.3 a_n Values for n = 0, 1, 2, 3, ..., 10

n	a _n	n	a _n	п	a _n	n	a _n
0	<i>a</i> ₀	3	$-\frac{3}{128}a_0$	6	$\frac{69}{65536}a_0$	9	$-\frac{4859}{33554432}a_0$
1	$-\frac{1}{4}a_{0}$	4	$\frac{11}{2048}a_0$	7	$-\frac{187}{262144}a_0$	10	$\frac{12767}{268435456}a_0$
2	$\frac{1}{32}a_0$	5	$-\frac{31}{8192}a_0$	8	$\frac{1843}{8388608}a_0$		

n	a _n	n	a _n	n	a _n
0	<i>a</i> ₀	3	$\tfrac{1}{6}(a_0-a_1)$	6	$\frac{1}{720}(18a_1-7a_0)$
1	a_1	4	$\frac{1}{24}(2a_1-a_0)$	7	$\frac{1}{5040}(33a_0 - 85a_1)$
2	$-\frac{1}{2}a_{0}$	5	$\frac{1}{120}(2a_0-5a_1)$		

TABLE 4.4 Coefficients for n = 0, ..., 7

T A 1,	BLE 4.5	$P_n(x)$ for $n = 0$,	
n	$P_n(x)$		
0	$P_0(x) = 1$		

- $P_1(x) = x$ 2 $P_2(x) = \frac{1}{2}(3x^2 - 1)$
- $P_3(x) = \frac{1}{2}(5x^3 3x)$
- $P_4(x) = \frac{1}{8}(35x^4 30x^2 + 3)$
- $P_5(x) = \frac{1}{8}(63x^5 70x^3 + 15x)$