

FIGURE 7.1 (a) and (b) A simple $L-R-C$ circuit.

FIGURE 7.2 From left to right, (a)-(c).

FIGURE 7.3 (a) and (b) A two-loop circuit.

FIGURE 7.4 (a) $Q(t)$ (dark red; dark gray in print versions) and $I_{2}(t)$. (b) $I(t)$ (dark red; dark gray in print versions) and $I_{1}(t)$. (c) Parametric plots of solutions that satisfy other initial conditions.

FIGURE 7.5 Graphs associated with Example 7.1.3 (a)-(c).

FIGURE 7.6 Two solutions separated by a permeable membrane.

FIGURE 7.7 Illustrating a mixture problem for two interconnected tanks.

FIGURE 7.8 (a) Identify $x(t)$ and $y(t)$.(b) Various solutions of the system.

FIGURE 7.9 Identify $x(t), y(t)$, and $z(t)$.

FIGURE 7.10 (a) Typical solutions of the Lotka-Volterra system- x versus y. (b) A typical solution to the Lotka-Volterra system, x (in dark red; dark gray in print versions) and y as functions of t.

FIGURE 7.11 From left to right, (a) $\mu=1 / 2$, (b) $\mu=1$, (c) $\mu=3 / 2$, (d) $\mu=3$.

(a)

(c)

(e)
(b)

(d)

(f)

FIGURE 7.12 From left to right, (a) $\mu=1 / 4$, (b) $\mu=1 / 2$, (c) $\mu=1$, (d) $\mu=3 / 2$, (e) $\mu=2$, (f) $\mu=3$.

Flow rate q
Concentration $c_{\text {in }}$
Temperature $T_{\text {in }}$

Tank \rightarrow Volume $V \rightarrow$| Flow rate q |
| :--- |
| Concentration c |
| Temperature T |

FIGURE 7.13 Continuous-flow stirred tank reactor.

TABLE 7.1 Circuit Elements and Corresponding Voltage Drops

Circuit Element	Voltage Drop
Inductor	$L \frac{\mathrm{~d} I}{\mathrm{~d} t}$
Resistor	$R I$
Capacitor	$\frac{1}{\mathrm{C}} Q$
Voltage source	$-E(t)$

