
CHAPTER

e10Code Generation

KEY TOPICS IN THIS CHAPTER:

• Code generation for classes, attributes, and associations

• Code generation for delegated methods and system operations

• Patterns for filtered queries

10.1 Introduction to code generation
The Implementation discipline of UP includes code generation activities for design models. It is

necessary to generate code for the classes from the domain tier, and also for the other technological

tiers of the system. This chapter concentrates on code generation for the domain tier.

Once the communication diagram and the DCD are produced, code generation is an activity

that may be systematized to a point that it can be practically done automatically. Automatic code

generation is feasible for domain classes, which perform all the logical processing specified by the

system operation contracts.

This chapter presents rules for code generation for the DCD and communication diagrams.

Examples are presented in pseudocode, which may be translated to most programming languages

(preferably object-oriented ones).

10.2 Classes and attributes
DCD classes are usually directly converted into programming language classes. Class attributes are

converted into private instance variables in the respective class.

As explained in Chapter 6, attribute types should be alphanumeric (such as Integer, Real,

String, Boolean, etc.), primitive (such as Date, Money, Isbn, etc.), or enumerations (such as

CalendarDay, Gender, PhoneType, etc.).

If other objects can access the attribute then it should be implemented with a getter method. If

the attribute can be updated then it must be implemented with a setter, which can be a straight

setAttribute method or another type such as incrementAttribute if the attribute is numeric, for exam-

ple. Figure e10.1 presents an example of a design class that is used to show how programming

code is generated.

The following code corresponds to the pseudocode implementation of the class shown in

Figure e10.1. First, the attributes of the class are transformed into programming code private

attributes:

e35

CLASS Book
PRIVATE ATTRIBUTE VAR isbn:Isbn
PRIVATE ATTRIBUTE VAR title:String
PRIVATE ATTRIBUTE VAR authorsName:String
PRIVATE ATTRIBUTE VAR price:Money
PRIVATE ATTRIBUTE VAR pageCount:Natural
PRIVATE ATTRIBUTE VAR coverImage:Image
PRIVATE ATTRIBUTE VAR quantityInStock:Natural
. . .

Observe that all attributes, except for publisherName, which is derived, are defined as pseudo-

code attributes. Most languages would not differentiate ATTRIBUTE VAR from ASSOCIATION

VAR. In this book those names are used to make a clear distinction between variables that represent

attributes and variables that implement association roles. However, for most languages any instance

variable would be simply declared as VAR, or an equivalent language specific expression.

On the other hand, most languages differentiate between PRIVATE and PUBLIC variables and

methods. Whenever private variables are allowed, they are the best choice, because this way, attri-

butes are encapsulated into the object, and they may not be changed by objects that have no autho-

rization to do that.

Now, we must consider how the class attributes are going to be updated. Some of them can be

updated virtually at any time, while others should be defined only at creation time and prevented

from changing after that: these are immutable attributes. In Figure e10.1 attributes that must not be

changed after the object is created are stereotyped as {immutablec.

A set of setters and one1constructor may be defined following these recommendations:

• The constructor must receive as parameters the initial values for all attributes that are not

optional, derived or with a defined initial value (if any).

• The implementation of the constructor initializes attributes with initial values with the

respective values (if any).

• The constructor must receive as parameters the objects to fill the mandatory roles (if any) of the

associations (later this will be shown in a more complete example).

Book
<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ /publisherName : String=publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Natural = 0

FIGURE e10.1

A reference class for code generation.

1In some cases, classes may allow more than one constructor, though.

e36 CHAPTER e10 Code Generation

• Only attributes that are not derived and immutable should define one or more setters

(setAttribute, incrementAttribute, etc., depending on the case).

Thus, the following code may be created as a continuation of the definition of the implementa-

tion class that started above:

. . .

CONSTRUCTOR METHOD create(anIsbn:Isbn; aTitle:String,
anAuthorsName:String; aPrice:Money; aPageCount:Natural)
isbn:5anIsbn
title:5aTitle
authorsName:5anAuthorsName
price:5aPrice
pageCount:5aPageCount
quantityInStock:50

END CONSTRUCTOR METHOD

METHOD setPrice(aPrice:Money)
price:5aPrice

END METHOD

METHOD raisePrice(aPercentage:Percent)
price:5aPrice*(11aPercentage)

END METHOD

METHOD setCoverImage(aCoverImage:Image)
coverImage:5aCoverImage

END METHOD

METHOD increaseQuantityInStock(anIncrement:Integer)
quantityInStock:5quantityInStock1anIncrement

END METHOD
. . .

Notice that inside the constructor, each attribute is assigned to the respective argument and that

quantityInStock is assigned 0 (its initial default value).

Only three attributes may be updated. The attribute price has two setters: setPrice, which

defines a brand new price independent from the original one, and raisePrice, which raises the price

by a percentage.

The quantityInStock attribute is updated only by adding an increment to it. As the anIncrement

parameter may be negative, decrements may be done with this method as well.

Let us suppose now that the design produced interaction diagrams that demonstrate that all attri-

butes of this class must be accessed by other objects. In this case, all attributes must implement a

getter method, even the derived attribute. Thus, the following code may be a continuation of the

code started above:

. . .

METHOD getIsbn():Isbn
RETURN isbn

e3710.2 Classes and attributes

END METHOD

METHOD getTitle():String
RETURN title

END METHOD

METHOD getAuthorsName():String
RETURN authorsName

END METHOD

METHOD getPrice():Money
RETURN price

END METHOD

METHOD getPageCount():Natural
RETURN pageCount

END METHOD

METHOD getPublisherName():String
RETURN . . .

2

END METHOD

METHOD getCoverImage():Image
RETURN coverImage

END METHOD

METHOD getQuantityInStock():Natural
RETURN quantityInStock

END METHOD

At this point the reader could be asking why authorsName is still an attribute typed as String

and not a class with a many-to-many association to Book. The reason is that the example is simulat-

ing an ongoing project and not the final version of it. Up to this point, the only use cases examined

did not require authors to be addressed as a complex concept. The authorsName attribute is

perfectly adequate for the functionalities discovered to this point. We may even believe that this

would change as other use cases are examined in the future, but as William of Ockham (1495) said

“Numquam ponenda est pluralitas sine necessitate” (plurality must never be posited without neces-

sity). This also adheres to the agile principle of never implementing functionality before it is neces-

sary just because it would be easy to do so now.

10.3 Unidirectional associations
Unidirectional associations with no multiplicity constraints at the origin and unidirectional associa-

tions from singletons such as the façade controller may be implemented similarly to attributes as

instance variables, and if necessary they should have methods for updating and querying.

2This method involves associations, which are explained in Sections 10.3 and 10.4.

e38 CHAPTER e10 Code Generation

However, if there are multiplicity constraints at the origin role, these associations must be han-

dled as bidirectional, even if they are navigable only in one direction. Figure e10.2 shows an exam-

ple of that situation, where although the association is only navigable from Car to Person, every

car must be linked to a single person. If the association is implemented as an instance variable in

the Person class, it will be hard to assure that a car belongs to a single person.

There are still some considerations we must discuss about the differences between an attribute

and a unidirectional association. First, attributes are always implemented by variables whose types

are alphanumeric, primitive, or enumerations. Associations, on the other hand, are implemented by

variables whose types are domain classes (in the case of associations to one) or data structures (in

the case of associations to many).

In addition, considering different role multiplicities and other features of associations, there are

distinctions to be made regarding the methods to be implemented for each type of association.

Code generated for transient or persistent associations and attributes is the same. The only

difference between these kinds of elements resides in the way they are stored.

In general and if necessary, a class may implement three kinds of methods for each association:

• Methods to add links: Usually referred to as addRole.

• Methods to remove links: Usually referred to as removeRole.

• Methods to get linked objects. Usually getRole would be implemented to return the whole set of

linked objects. This set must be protected in the sense that it may be consulted and its elements

may be iterated, but no element can be added or removed from the original set. Additionally,

methods to get a specific element or subset given a key or other search criterion may be

implemented if necessary.

Usually associations to one may be implemented as a single variable and not as a collection. In

this case, the addRole and removeRole methods do not apply and the class implements instead a

replaceRole method that replaces the current link with a new link.

Associations to 0..1 also require the implementation of the replaceRole method. But, in this

case, addRole and removeRole may be implemented as well. If the addRole and removeRole methods

are implemented for 0..1 roles, then they must check the role bounds.

Derived associations must implement only the get method, in accordance with their definition.

Other methods would still be necessary depending on the kind of the association, such as:

• If the association is qualified, there may be an additional get that receives as an argument the

qualifier key and returns the qualified object or subset. Additionally, if the qualifier is external,

the add method should receive the value for the qualifier; if it is an internal qualifier that

argument must not be passed because it may be obtained from the object itself. A new remove

method also may be added to remove a link to an object based in the value of its qualifier.

Person Car

1 *

FIGURE e10.2

Unidirectional association with multiplicity constraint at the origin role.

e3910.3 Unidirectional associations

• In the case of ordered associations, an additional get method may return an object based on its

position in the collection. Also, the add method could add elements at a given position, which

is indicated as a new parameter for the method, and the remove method may remove a link

from a given position. Ordered associations may also have methods to access, add, and remove

elements from their head or tail.

• Stacks and queues may have special methods such as push and pop that follow specific rules for

those structures.

Table e10.1 presents a summary of the methods that may be implemented for each kind of asso-

ciation in a class, depending on the design needs.

Observe that in Table e10.1, each kind of association has a different set of methods for acces-

sing and changing links. The implementation of these methods follows definitions that are usually

kept the same from class to class. The following subsections show examples of some of those

methods.

10.3.1 Unidirectional association to one
The unidirectional association with role multiplicity 1 may be stored in a single instance variable in

the origin class, and its type should be the destination class. Figure e10.3 shows a unidirectional

association to one from Car to Person with role name owner.

The implementation of the Car class requires an instance variable named owner implemented

with type Person. Regarding the association methods, following Table e10.1, only getOwner and

replaceOwner should be implemented. The pseudocode for the Car class in this case could be

CLASS Car
PRIVATE ASSOCIATION VAR owner:Person
CONSTRUCTOR METHOD Create(anOwner:Person)

owner:5anOnwer
END CONSTRUCTOR METHOD

METHOD getOwner():Person
RETURN owner

END METHOD

METHOD replaceOwner(newOwner:Person)
owner:5newOwner

END METHOD

END CLASS

In the case of a role with multiplicity 0..1, there are two possibilities:

• It may be implemented as a set, that is, similar to the role with multiplicity �. In this case, if

there is no object linked, the get method would return the empty set.

• It may be implemented as a single variable, that is, similar to the roles with multiplicity 1. In this

case, as shown above, if there is no object linked, the get method would return the null object.

The second approach is widely adopted. There is even the possibility of using the null object

design pattern (Woolf, 1998) instead of the language-provided null value. The advantage is that the

e40 CHAPTER e10 Code Generation

Table e10.1 Typical Operations over Associations Depending on their Type

Type To 1 To 0..1 To Many (�)

Get getRole():Object getRole():Object getRole():Set

Add Does not apply addRole(obj) addRole(obj)

Remove Does not apply removeRole() removeRole(obj)

Replace replaceRole(obj) replaceRole(obj) replaceRole(oldObj,newObj)

Type Ordered Set Sequence

Get getRole():OrderedSet getRole():Sequence

getRole(position):Object getRole(position):Object

getFirstRole():Object getFirstRole():Object

getLastRole():Object getLastRole():Object

Add addRole(position,obj) addRole(position,obj)

addFirstRole(obj) addFirstRole(obj)

addLastRole(obj) addLastRole(obj)

Remove removeRole(obj)

removeRole(position) removeRole(position)

removeFirstRole() removeFirstRole()

removeLastRole() removeLastRole()

Replace replaceRole(oldObj,newObj) replaceRole(position,obj)

replaceRole(position,obj) replaceFirstRole(obj)

replaceFirstRole(obj) replaceLastRole(obj)

replaceLastRole(obj)

Type Map (Internal Qualifier) Map (External Qualifier)

Get getRole():Set getRole():Set

getRole(key):Object getRole(key):Object

Add addRole(obj) addRole(key,obj)

Remove removeRole(obj) removeRole(obj)

removeRole(key) removeRole(key)

Replace replaceRole(oldKey,
newObj)

replaceRole(oldObj,newObj) replaceRole(oldObj,
newObj)

Type Partition (Internal Qualifier) Partition (External
Qualifier)

Get getRole():Set getRole():Set

getRole(key):Set getRole(key):Set

Add addRole(obj) addRole(key,obj)

Remove removeRole(obj) removeRole(obj)

Replace replaceRole(oldObj, newObj) replaceRole(oldObj,newObj)

(Continued)

null object is language independent. The null object is an instance of a Null class whose behavior

consists of doing nothing. If there is iteration over a null object it produces nothing, just as with an

empty set. On the other hand, iterating over a null or nil value would produce an exception, which

would not be desired in that case.

If we assume that the role multiplicity in Figure e10.3 is 0..1, there are two possible implemen-

tations. The first one considers the association as a set:

CLASS Car
PRIVATE ASSOCIATION VAR owner:Set,Person.

CONSTRUCTOR METHOD Create()
owner:5Set.new()

END CONSTRUCTOR METHOD

METHOD getOwner():Set,Person.

RETURN owner.protected()
END METHOD

METHOD addOwner(newOwner:Person)
IF owner.size().0 THEN

Table e10.1 (Continued)

Type Set with Association Class Bag Array (Fixed Size)

Get getRole():Set getRole():Bag getRole():Array

getAssociationClass():Set getRole(position):Object

getAssociationClass(obj):Object

Add addRole(obj) addRole(obj) Does not apply

Remove removeRole(obj) removeRole(obj) Does not apply

removeAssociationClass(obj)

Replace replaceRole(oldObj,newObj) Does not apply replaceRole(position,obj)

Type Stack Queue

Get getRole():Object getRole():Object

Add pushRole(obj) queueRole(obj)

Remove popRole() removeRole()

Replace Usually does not apply Usually does not apply

Car Personowner

1
*

FIGURE e10.3

A class with unidirectional association to 1.

e42 CHAPTER e10 Code Generation

Exception.throw(‘Car already has an owner’)
ENDIF
owner.add(newOwner)

END METHOD

METHOD removeOwner()
IF owner.size()50 THEN

Exception.throw(‘Car does not have an owner’)
ENDIF
owner.removeOneElement()

END METHOD

METHOD replaceOwner(newOwner:Person)
IF owner.size()51 THEN

owner.removeOneElement()
ENDIF
owner.add(newOwner)

END METHOD
END CLASS

Every time a method such as getOwner returns a set of objects, the collection must be protected

against change. That is explained in more detail later in this chapter.

The removeOwner method was implemented by calling the removeOneElement method over a

set. That method removes one element (any one) from the set without the need to specify which

one. As the set would have only one element at this point it would not be necessary to know which

element it is in order to remove it from the set. The removeOwner method could also be implemen-

ted as owner:5 Set.new(), with the same final result. However, as most programmers should notice,

that implementation would produce a lot of garbage in memory if objects are often added and

removed from that role, and this could degrade performance.

The second approach considers the association as a single variable, and uses the Null object

design pattern:

CLASS Car
PRIVATE ASSOCIATION VAR owner:Person
CONSTRUCTOR METHOD Create()

owner:=NullObject.instance()
END CONSTRUCTOR METHOD

METHOD getOwner():Person
RETURN owner

END METHOD

METHOD addOwner(newOwner:Person)
IF owner, .NullObject.instance() THEN

Exception.throw(‘Car already has an owner’)
ENDIF
owner:5newOwner

END METHOD

e4310.3 Unidirectional associations

METHOD removeOwner()
IF owner5NullObject.instance() THEN

Exception.raise(‘Car does not have an owner’)
ENDIF
owner:5NullObject.instance()

END METHOD
METHOD replaceOwner(newOwner:Person)

owner:5newOwner
END METHOD

END CLASS

Both implementations of replaceOwner shown above assume that if the owner exists it is

replaced, and that if it does not exist it is defined. No exception is raised if replaceOwner is called

for a car that does not have an owner. In that case, it behaves just like addOwner.

10.3.2 Unidirectional association to many
The unidirectional association to many may be implemented as a data structure. If it is a simple

association with multiplicity � in the destination role, then it may be implemented as a set. Below

is a pseudocode example for the association represented in Figure e10.4:

CLASS Customer
PRIVATE ASSOCIATION VAR wishes:SET,Book.

METHOD getWishes():SET,Book.

RETURN wishes.protected()
END METHOD

METHOD addWish(aBook:Book)
wishes.add(aBook)

END METHOD

METHOD removeWish(aBook:Book)
wishes.remove(aBook)

END METHOD
END CLASS

It is not necessary to implement the replaceWish method here, because wishes usually are only

added and removed from a customer. It is not common to replace a wish with another. Thus, that

method is not considered for implementation.

Customer Bookwish

*
*

FIGURE e10.4

A class with a simple unidirectional association to many.

e44 CHAPTER e10 Code Generation

The protected message sent to a collection produces a noneditable version of that collection, to

avoid elements being removed or added to the original collection by means other than the add and

remove messages that are implemented in the class.

The implementation of that protection may be done in a number of ways; some of them are lan-

guage specific. Examples include making a copy of the original collection (shallow copy or deep

copy depending on the degree of protection intended), or using the protection proxy design pattern

(Gamma, Helm, Johnson, & Vlissides, 1995), which suggests the implementation of a class that

encapsulates the original collection, and implements only a method to iterate over the elements but

not to modify the original collection.

If the association role is labeled with {ordered} or {sequence} the data type of the variable

that represents the role must be replaced by the corresponding data type supported by the

language, and additionally, other specific methods must be implemented, as mentioned in

Table e10.1.

In the case of a role with identical lower and upper bounds, it may be implemented as an

array. For example a multiplicity of 5 could be implemented as an array of 5 positions. The

original add and remove commands are not applicable to the array structure because its size can-

not be changed. However, elements may be replaced based on their position, as shown in

Table e10.1.

Roles whose multiplicity is an interval, such as 3..8, may be implemented just like roles to

many (�). The only difference is that the collection must have its bounds checked when objects are

added or removed from it.

10.3.3 Unidirectional qualified association
The unidirectional qualified association is implemented in a manner similar to the association with

multiplicity to many. However, instead of the data type Set, we use a mapping, or dictionary struc-

ture (MAP) that associates an alphanumeric, primitive, or enumeration type (key) to one object or a

set of objects (values).

As for any other unidirectional associations, we must keep in mind that the unidirectional imple-

mentation is only possible when the association has no multiplicity bounds in its origin, that is, the

origin role must have multiplicity �. If this is not the case, a bidirectional implementation must be

considered.

Figure e10.5 shows the implementation of a qualified association defining a map to 0..1 with an

internal qualifier. The customer wish list is now considered a qualified association. The respective

code is presented below:

BookCustomer
isbn

wish
<<unique>> <<immutable>> +isbn : Isbn0..1

*

FIGURE e10.5

Qualified association with an internal qualifier.

e4510.3 Unidirectional associations

CLASS Customer
PRIVATE ASSOCIATION VAR

wishes:MAP,Isbn,Book.

METHOD getWishes():SET,Book.

RETURN wishes.getValues()
END METHOD

METHOD getWish(anIsbn:Isbn):Book
RETURN wishes.atKey(anIsbn)

END METHOD

METHOD addWish(aBook:Book)
wishes.add(aBook.getIsbn(),aBook)

END METHOD

METHOD removeWish(aBook:Book)
wishes.removeValue(aBook)

END METHOD

METHOD removeWish(anIsbn:Isbn)
wishes.removeKey(anIsbn)

END METHOD

METHOD replaceWish(oldBook,newBook:Book)
-- not implemented

END METHOD

END CLASS

The replace method is not implemented for wishes again because it would not make sense to

replace a book with another.

We note here that the basic map data structure has the usual operations for accessing a value

given its key (atKey), accessing the set of all values (getValues), including a key/value pair (add),

removing a pair given its key (removeKey) or given its value (removeValue), and so on.

It is important to stress that the design of the qualified association with an internal qualifier only

works if the qualifier attribute is immutable. If this was not the case, the attribute could change and

that change would not necessarily propagate to the value that is the key for the association. This

would create an inconsistency. That constraint, however, does not apply to maps with external quali-

fiers, because in that case the qualifier is not an attribute of the qualified class.

Figure e10.6 presents a map with an external qualifier. The corresponding code is shown below:

CLASS Customer
PRIVATE ASSOCIATION VAR phones:MAP,PhoneType,Phone.

METHOD getPhones():SET,Phone.

RETURN phones.getValues()
END METHOD

METHOD getPhone(aType:PhoneType):Phone
RETURN phones.atKey(aType)

END METHOD

e46 CHAPTER e10 Code Generation

METHOD addPhone(aType:PhoneType;aPhone:Phone)
phones.add(aType,aPhone)

END METHOD

METHOD removePhone(aPhone:Phone)
phones.removeValue(aPhone)

END METHOD

METHOD removePhone(aType:PhoneType)
phones.removeKey(aType)

END METHOD
END CLASS

In the case of Figure e10.6 there is an issue to be considered: as the origin of the association

has no multiplicity restriction, and the qualifier is not an attribute of the class, nothing assures that

the same phone is not associated to two or more keys. For example, the following sequence of

commands would produce a phone associated to two different types:

aCustomer.addPhone(“residential”,aPhone)
aCustomer.addPhone(“comercial”,aPhone)

If that is what is expected, nothing else must be said. But if that is not what is meant, the role on the

left side should be 1 and the association should be implemented as a bidirectional association, and con-

trol mechanisms should be implemented to avoid a phone from being associated to more than one type.

For the next example, we consider that different publishers could edit the same book. Thus we

have books and book specifications: a book has one single publisher, but a book specification has a

set of publishers. The ISBN of the book for each publisher may be different, but the book specifica-

tion is the same for different publishers, and so is its genre. Figure e10.7 illustrates that a book

specification has the genre as an attribute, and therefore each book specification has only one genre

that may be associated to different publishers. Figure e10.7 presents a partition, that is, a qualified

association to many, with an internal qualifier. The corresponding code is shown below:

CLASS Publisher
PRIVATE ASSOCIATION VAR bookSpecs:RELATION,BookGenre,BookSpec.

METHOD getBookSpecs():SET,BookSpec.

Customer

<<enumeration>>
PhoneType

type:PhoneType

<<Constant>> +home
<<Constant>> +work
<<Constant>> +mobile
<<Constant>> +fax

Phone

0..1

*

FIGURE e10.6

Qualified association with an external qualifier.

e4710.3 Unidirectional associations

RETURN bookSpecs.getValues()
END METHOD

METHOD getBookSpec(aGenre:BookGenre):SET,BookSpec.

RETURN bookSpec.atKey(aGenre)
END METHOD

METHOD addBookSpec(aBookSpec:BookSpec)
bookSpecs.add(aBookSpec.getGenre(),aBookSpec)

END METHOD

METHOD removeBookSpec(aBookSpec:BookSpec)
bookSpecs.removeValue(aBookSpec)

END METHOD
END CLASS

The implementation above uses a data structure named RELATION, which does not exist in

most programming languages. But it can be easily implemented. It has an interface similar to MAP,

but it allows the same key to be associated to many values and not just one. In the example above,

for each BookGenre the structure associates a set of instances of BookSpec.

There is an issue here too. The qualifier attribute genre in class BookSpec must be immutable

because the qualifier is internal. If this was not the case, problems like the one aforementioned for

the qualified map could jeopardize the design. The attribute is not unique because different book

specifications may have the same genre.

Does the design presented in Figure e10.7 allow a book specification to be linked to a publisher

or different publishers with different genres? The answer is no. As the genre is immutable and the

addBookSpec method takes the key from the BookSpec attribute genre, it is only possible to add a

book specification once to the publisher. As the genre is immutable, the book specification should

never be added again with a different genre.

This would not be the case if the genre were not immutable: the same book specification could

change its genre and be linked again to one or another publisher. In that case, an inconsistent link

to the book specification with the old genre would be left behind.

Publisher

<<enumeration>>
BookGenre

<<Constant>> +mystery
<<Constant>> +romance
<<Constant>> +science fiction
<<Constant>> +historical romance
<<Constant>> +thriller

BookSpec
<<immutable>> +genre : BookGenregenre:BookGenre

*

*

FIGURE e10.7

Qualified association as a partition with an internal qualifier.

e48 CHAPTER e10 Code Generation

10.3.4 Unidirectional association with association class
When the association has an association class, it is necessary to implement the creation and destruc-

tion of instances of that class each time a corresponding link is added or removed.

Association classes may exist in associations with any multiplicity. However, they are more

common and useful in associations that are many to many.

One possible implementation for this kind of association is to create a map associating instances

of the opposite class to instances of the association class.

Figure e10.8 shows an association class, and its implementation is shown below:

CLASS Company
PRIVATE ASSOCIATION VAR employees:MAP,Person,Job.

METHOD getEmployee():SET,Person.
RETURN employees.getKeys()

END METHOD

METHOD getJob():SET,Job.

RETURN employees.getValues()
END METHOD

METHOD getJob(aPerson:Person):Job
RETURN employees.atKey(aPerson)

END METHOD

METHOD addEmployee(aPerson:Person)
employees.add(aPerson,Job.Create())

END METHOD

METHOD removeEmployee(aPerson:Person)
LOCAL VAR aJob:Job
aJob:5employees.atKey(aPerson)
employees.removeKey(aPerson)
aJob.destroy()

END METHOD

METHOD removeJob(aJob:Job)
employees.removeValue(aJob)
aJob.destroy()

END METHOD

employees*

*

Company Person

Job

FIGURE e10.8

Unidirectional association with association class.

e4910.3 Unidirectional associations

METHOD replaceEmployee(oldEmployee,newEmployee:Person)
self.removeEmployee(oldEmployee:Person)
self.addEmployee(newEmployee:Person)

END METHOD
END CLASS

In Figure e10.8 we see that when a new link is created from Company to Person, a new instance

of Job is automatically created.

The operations that explicitly destroy a job when the link is removed are included in the code

to make clear that this is what must be done, as the job cannot exist independently of the link that

created it. In languages with a garbage collector and no explicit disposal of objects, it must be

ensured that after the link is removed, no other references remain to the object.

The replace command only deletes the old link with its job and creates a new one. The instance

of Job is not maintained when the role is replaced. However, in some cases that could be the mean-

ing intended.

10.4 Bidirectional associations
As mentioned before, the unidirectional implementation of associations is only possible when they

are navigable in one direction and there is no multiplicity constraint in the origin role. In other

situations, the bidirectional implementation is necessary.

At least three patterns for implementing bidirectional associations have been proposed (Fowler,

2003):

• Implementing the association as two unidirectional associations (mutual friends pattern).

• Implementing the association as a unidirectional association in just one of the classes.

Navigation would be possible from the opposite direction by means of a query.

• Implementing an intermediary object that represents the association.

In all of the cases above, if the association is navigable in both directions the get method must

be implemented in both participating classes, because navigation must be allowed in both direc-

tions. However, if we have the case of a unidirectional association with a multiplicity restriction at

the origin, then the get method must be implemented only at the origin class.

The add and remove methods, if required, may be implemented only in one of the classes, because

if they exist in both classes they would be redundant as they would do exactly the same thing.

10.4.1 Mutual friends
The option for implementing bidirectional associations in both directions is the most efficient in

terms of time, but it is less efficient in terms of space allocation because each association is imple-

mented twice. It may also require more control overhead, because the implementation of the associ-

ation in both classes must be synchronized.

e50 CHAPTER e10 Code Generation

The implementation of the unidirectional components of the association follows the

recommendations given in Section 10.3. However, three subcases still have to be considered

here:

• Both roles are optional.

• Only one role is mandatory.

• Both roles are mandatory.

10.4.1.1 Both roles optional
If both roles are optional and no other constraints are present, then links may be added and

removed at will. As links must be added and removed from both sides of the association, auxiliary

methods would be needed to add and remove the individual unidirectional links.

These auxiliary methods must not be called in any other place except the add and remove

methods. That is why they must be declared as private, but the opposite class must have access to

them; thus, they are exported exclusively to that class.

Figure e10.9 presents a bidirectional many-to-many association. The corresponding implementa-

tion code is shown below:

CLASS Customer
PRIVATE ASSOCIATION VAR wishes:SET,Book.

METHOD getWishes():SET,Book.

RETURN wishes.protected()
END METHOD

METHOD addWish(aBook:Book)
self.privateAddWish(aBook)
aBook.privateAddWisher(self)

END METHOD

METHOD removeWish(aBook:Book)
self.privateRemoveWish(aBook)
aBook.privateRemoveWisher(self)

END METHOD

PRIVATE METHOD privateAddWish(aBook:Book)
EXPORTED TO: Book

wishes.add(aBook)
END METHOD

Book Customerwisher

wish *

*

FIGURE e10.9

Bidirectional association from many to many.

e5110.4 Bidirectional associations

PRIVATE METHOD privateRemoveWish(aBook:Book)
EXPORTED TO: Book

wishes.remove(aBook)
END METHOD

END CLASS

CLASS Book
PRIVATE ASSOCIATION VAR wishers:SET,Customer.
METHOD getWishers():SET,Customer.

RETURN wishers.protected()
END METHOD

PRIVATE METHOD privateAddWisher(aCustomer:Customer)
EXPORTED TO: Customer

wishers.add(aCustomer)
END METHOD

PRIVATE METHOD privateRemoveCustomer(aCustomer:Customer)
EXPORTED TO: Customer

wishers.remove(aCustomer)
END METHOD

END CLASS

The auxiliary methods in the code above are declared as private but exported to the other

participating class.

As mentioned before, the access (get) methods must be implemented in both classes if the asso-

ciation is navigable in both directions. But the add and remove methods may be implemented in

just one class. In the example above, they are implemented only in Customer class.

10.4.1.2 Only one mandatory role
If one of the roles is mandatory, as for example 1 to �, then the team must ask if the mandatory

role is immutable or not. For example, a payment has one order and cannot change to another order

(it is immutable), but a car has an owner and can change to another owner if it is sold.

Let us first examine the case of an association link that can be updated, as shown in

Figure e10.10.

The code for implementing the classes in Figure e10.10 might be like the following:

CLASS Car
PRIVATE ASSOCIATION VAR owner:Person
CONSTRUCTOR METHOD Create(anOwner:Person)

*

1

Car owner Person

FIGURE e10.10

A bidirectional association with one mandatory role that can be updated.

e52 CHAPTER e10 Code Generation

owner:5anOwner
anOwner.privateAddCar(self)

END CONSTRUCTOR METHOD

METHOD getOwner():Person
RETURN owner

END METHOD

METHOD replaceOwner(anOwner:Person)
owner.privateRemoveCar(self)
anOwner.privateAddCar(self)
owner:5anOwner

END METHOD
END CLASS

CLASS Person
PRIVATE ASSOCIATION VAR cars:SET,Car.

METHOD getCars():SET,Car.

RETURN cars.protected()
END METHOD

PRIVATE METHOD privateAddCar(aCar:Car)
EXPORTED TO: Car

cars.add(aCar)
END METHOD

PRIVATE METHOD privateRemoveCar(aCar:Car)
EXPORTED TO: Car

cars.remove(aCar)
END METHOD

END CLASS

As we can see, the Car class implements the only public updating method, which is

replaceOwner. An ownership link is created every time a new instance of Car is created, as defined

in the car’s constructor. Then, the ownership may only be changed from one person to another. The

Person class only implements the private methods to add and remove a car from its own local

collection.

When a car owner is replaced, it is done in three steps: first the car is removed from the

old owner, then it is added to the new owner, and finally the owner is updated to be the new

owner.

The second case to be considered here is when the role is immutable. This is the case of a 1

to � association from Customer to Order, for example: it is mandatory for Order and an order can

never change its customer. This situation is shown in Figure e10.11, and the corresponding code

follows:

CLASS Order
PRIVATE ASSOCIATION VAR customer:Customer
CONSTRUCTOR METHOD create(aCustomer:Customer)

e5310.4 Bidirectional associations

customer:5aCustomer
aCustomer.privateAddOrder(self)

END CONSTRUCTOR METHOD

METHOD getCustomer():Customer
RETURN customer

END METHOD
END CLASS

CLASS Customer
PRIVATE ASSOCIATION VAR orders:SET,Order.

METHOD getOrders():SET,Order.

RETURN orders.protected()
END METHOD

METHOD removeOrder(anOrder:Order)
orders.remove(anOrder)
anOrder.destroy()

END METHOD

PRIVATE METHOD privateAddOrder(anOrder:Order)
EXPORTED TO: Order

orders.add(anOrder)
END METHOD

END CLASS

In this case, an order is immediately associated to a customer when it is created. If an order is

removed from a customer then it must be destroyed.

10.4.1.3 Two mandatory roles
There are situations when the two roles of an association are mandatory. In this case, no object can

exist without being linked to another. This means that the creation of the links must happen in the

constructor of both classes. Figure e10.12 shows an example of a 1 to 1..� association; it is manda-

tory on both ends.

Once more, the methods that will be implemented depend on deciding if the roles are

immutable or not. The customer role from the point of view of an address is immutable. This

means that an address cannot change from one customer to another.3

Customer 1

*

Order

<<immutable>>

FIGURE e10.11

A bidirectional association with one mandatory immutable role.

3In fact, in real life an address could change from one customer to another if we consider that a customer could move to

the house of another customer whose address is already registered. However, usually systems do not treat addresses in

such a precise way: pragmatically, if a customer moves, it is always a new address that is registered.

e54 CHAPTER e10 Code Generation

When a customer is created it must be created with at least one address. This means that the

creator of a customer should receive all the data needed to instantiate that address (only street and

number in the example, for simplification).

An existing customer may add a new address, but the method that adds an address cannot

simply receive an instance of address as an argument because no address may exist without

being linked to a customer. Thus, the customer should implement a method to add a new address

that receives the data necessary to instantiate such an address. The code for implementing this

situation is shown below:

CLASS Address
PRIVATE ASSOCIATION VAR customer:Customer
PRIVATE ATTRIBUTE VAR street:String
PRIVATE ATTRIBUTE VAR number:Natural

CONSTRUCTOR METHOD Create(aCustomer:Customer;
aStreet:String; aNumber:Natural)
customer:5aCustomer
street:5aStreet
number:5aNumber

END CONSTRUCTOR METHOD

METHOD getCustomer():Customer
RETURN customer

END METHOD
END CLASS

CLASS Customer
PRIVATE ASSOCIATION VAR addresses:SET,Address.

PRIVATE ATTRIBUTE VAR name:String
PRIVATE ATTRIBUTE VAR birthDate:Date

CONSTRUCTOR METHOD create(aName:String; aBirthDate:Date;
aStreet:String; aNumber:Natural)
name:5aName
birthDate:5aBirthDate
addresses:5Set.new()
addresses.add(Address.Create(self,aStreeet,aNumber))

END CONSTRUCTOR METHOD

Customer 1

1..*<<immutable>>+name : String
<<immutable>> +birthDate : Date

Address
<<immutable>> +street : String
<<immutable>> +number : Natural

FIGURE e10.12

A bidirectional association that is mandatory on both ends.

e5510.4 Bidirectional associations

METHOD getAddresses():SET,Address.

RETURN addresses.protected()
END METHOD

METHOD addAddress(aStreet:Street; aNumber:Natural)
addresses.add(Address.create(self,aStreet,aNumber))

END METHOD

METHOD removeAddress(anAddress)
IF address.size()>1 THEN
addresses.remove(anAddress)
anAddress.destroy()

ELSE
Exception.throw(‘Customer must have at least one address’)

ENDIF
END METHOD

METHOD getName():String
RETURN name

END METHOD

METHOD getBirthDate():Date
RETURN birthDate

END METHOD

METHOD setName(aName:String)
name:5aName

END METHOD
END CLASS

If the role from Address to Customer was not immutable, then a replaceCustomer command

could be implemented as well in the Address class. But that is not the case.

10.4.2 Unidirectional implementation
Even if the association is bidirectional, it may be the case that navigation occurs much more

often or is more critical in just one direction. If that happens, an option is to implement

the association physically in only one direction, and implement the get method for the opposite

side as a search query. The advantage is that the code is simpler, faster in one direction, and

space saving. The disadvantage is that the navigation from the opposite direction would be

much slower.

This form of implementation is also only possible when the role on the origin of the implemen-

ted direction has no multiplicity restriction. If there is a restriction, then the unidirectional imple-

mentation is possible only if additional mechanisms to control multiplicity at the origin of the

association are implemented, with loss of performance. Below there is an example of unidirectional

implementation for the association of Figure e10.10, where the association is physically implemen-

ted only in the Car class:

e56 CHAPTER e10 Code Generation

CLASS Car
PRIVATE ASSOCIATION VAR owner:Person
CONSTRUCTOR METHOD Create(anOwner:Person)

owner:5anOwner
END CONSTRUCTOR METHOD
METHOD getOwner():Person

RETURN owner
END METHOD
METHOD replaceOwner(newOwner:Person)

owner:5newOwner
END METHOD

END CLASS
CLASS Person

METHOD getCars():SET,Car.

LOCAL VAR cars:SET,Car.

cars:5Set.new()
FOR EACH car IN Car.getAllInstances() DO

IF car.getOwner()5self THEN
cars.add(car)

END IF
END FOR
RETURN cars

END METHOD
END CLASS

The Car class above is implemented just like if the association was unidirectional from it to

Person. The Person class implements only the getCars method through a search query on the set of

all instances of Car. This implementation only works well if the role multiplicity at the origin has

is unconstrained.

Regarding the time complexity of the get methods, the bidirectional implementation runs in con-

stant time4 in both directions, and the unidirectional implementation has constant time for getOwner

and linear time5 for getCars, that is, the performance of the getCars method depends on the number

of cars registered. This design may be optimized by using hash techniques to index the set of custo-

mers relative to their orders. This way, the complexity of the getCars query may almost become con-

stant in practice with the cost of some extra memory space.

A limitation of this technique is that the programming language must provide a method to

access all instances of a class. Otherwise, the programmer must supply such a mechanism.

Unfortunately, this is a hazardous design that may cause trouble due to the global visibility of those

instances (Cardoso, 2011).

4Time remains the same even if the number of cars increase.
5Time increases as the number of customers increase. Linear time means that time is a function t(x)5 ax1 b, where x is

the size of the set for customers and a and b are constants.

e5710.4 Bidirectional associations

10.4.3 Implementation with an intermediary object
A bidirectional association may also be implemented by means of an intermediary object that repre-

sents the association. The intermediary object consists of a table with pairs of linked instances.

Possible implementation for the bidirectional association from many to one of Figure e10.11 with

an intermediary object follows:

GLOBAL VAR orderXcustomer:MAP,Order,Customer.

VISIBILITY RESTRICTED TO: Order, Customer

CLASS Customer
METHOD getOrders():Set,Order.

RETURN orderXcustomer.getKeysFor(self)
END METHOD

METHOD addOrder(anOrder:Order)
orderXcustomer.add(anOrder,self)

END METHOD

METHOD removeOrder(anOrder:Order)
orderXcustomer.remove(anOrder,self)

END METHOD
END CLASS

CLASS Order
CONSTRUCTOR METHOD Create(aCustomer:Customer)
orderXCustomer.add(self,aCustomer)

END CONSTRUCTOR METHOD
METHOD getCustomer():Customer

RETURN orderXcustomer.atKey(self)
END METHOD

END CLASS

If the programming language allows it, the association should be declared a global variable that

is visible only by the participating classes. Unfortunately, most commercial languages would not

allow such feature and the association would be implemented as a global variable with no visibility

restriction.

If the association was many to many instead of one to many, then the MAP data

type used above should be replaced by RELATION with small adjustments in the getters and

setters.

The intermediary object approach tends to be much simpler and maintainable than the former

ones. It also mimics the structure of a relational database because associations, as seen in

Chapter 13, are implemented as intermediary tables, which correspond to the intermediary object

here.

The disadvantage of this method is that getters are slower in both directions when compared to

the bidirectional approach and the global visibility of the intermediary object may cause design

hazards if not used carefully.

e58 CHAPTER e10 Code Generation

10.5 Delegated methods and system operations
To this point, we have shown how to generate code for classes, attributes, associations, and their

corresponding basic methods that may be considered part of their basic structure. Now it is the

time to explain how to implement delegate methods and system operations. These should be imple-

mented by following the dynamic models explained in Chapter 9.

System operations are implemented as a sequence of messages labeled 1, 2, 3, . . ., n that are

sent by the controller. A delegate method labeled with x in the interaction diagram should be imple-

mented by a sequence of messages labeled x.1, x.2, x.3, x.n that are sent by the object that receives

the message labeled with x.

Let us look again at Figure 9.43, reproduced here as Figure e10.13.

The add2Cart system command should therefore be implemented as a sequence of messages

labeled with 1, 2, and 3. The corresponding pseudocode could be something like the following:

CLASS Livir
ASSOCIATION VAR carts:MAP,CartId,Cart.

ASSOCIATION VAR books:MAP,Isbn,Book.

METHOD add2Cart(aCartId:CartId; anIsbn:Isbn;
aQuantity:Natural)
LOCAL VAR aCart:Cart
LOCAL VAR aBook:Book
aCart:5carts.at(aCartId) -- message 1
aBook:5books.at(anIsbn) -- message 2
aCart.insertItem(aBook,aQuantity) -- message 3

END METHOD
. . .

END CLASS

3.2 [not includeBook(aBook)]: incrementItem(aBook,aQuantity)
3.2.1:anItem:=selectItemFor(aBook)

3.1.1: addBook(aBook)
3.1.2: addCart(aCart)
3.1.3: setQuantity(aQuantity)
3.1.5: setUnitPrice(aPrice)

3.2.2: increaseQuantity(aQuantity)

3.1.4: aPrice:=getPrice()

1: aCart:=getCart(aCartld)
2:aBook:=getBook(anIsbn)add2Cart(aCartld,anlsbn,aQuantity)

3: insertItem(aBook,aQuantity)
3:1 [includeBook(aBooK)]: newItem:=Create(aBook,aCart,aQuantity)

Livir

aCart : Cart

anItem : Item

{new} newItem : Item

aBook:Book

FIGURE e10.13

Reference communication diagram.

e5910.5 Delegated methods and system operations

The implementation of the insertItem delegate method in the Cart class consists of the sequence of

messages 3.1 and 3.2, because insertItem is labeled with 3. These messages are conditional and mutually

exclusive. Thus, their implementation corresponds to an if-then-else-endif structure, as shown below:

CLASS Cart
. . .

METHOD insertItem(aBook:Book,aQuantity:Natural)
LOCAL VAR newItem:Item
IF self.includeBook(aBook) THEN

newItem:5Item.Create(aBook,self,aQuantity) --3.1
ELSE

self.incrementItem(aBook,aQuantity) --3.2
ENDIF

END METHOD
END CLASS

Notice that the variable name aCart is not known in this method and must be replaced here by

self, which stands for the instance of Cart that is performing the method.

The incrementItem delegate method in the Cart class is labeled with 3.2. Therefore, its imple-

mentation is the sequence of messages 3.2.1 and 3.2.2:

CLASS Cart
. . .

METHOD incrementItem(aBook:Book; aQuantity:Natural)
LOCAL VAR anItem:Item
anItem:5self.selectItemFor(aBook) --3.2.1
anItem.increaseQuantity(aQuantity) --3.2.2

END METHOD
END CLASS

The constructor of the Item class is complex and as it is labeled with 3.1, its implementation

consists of the sequence of messages 3.1.1 to 3.1.5. The Item class would look like this:

CLASS Item
CONSTRUCTOR METHOD Create(aBook:Book; aCart:Cart;aQuantity:Natural)

LOCAL VAR aPrice:Money
self.addBook(aBook) --3.1.1
self.addCart(aCart) --3.1.2
self.setQuantity(aQuantity) --3.1.3
aPrice:5aBook.getPrice() --3.1.4
self.setPrice(aPrice) --3.1.5

END CONSTRUCTOR METHOD
END CLASS
. . .

The other methods that appear in Figure e10.13 are basic ones and must be implemented follow-

ing their default definition.

e60 CHAPTER e10 Code Generation

10.6 Patterns for filtered queries
In the examples shown to this point, basically two kinds of get queries were implemented: those

that return all objects linked by a role, and those that return a single object given its identification,

such as a qualifier or position.

However, sometimes it will be necessary to obtain a subset of objects in a given role. That sub-

set is usually obtained by a filter such as “customers older than 30 years old,” “orders between 100

and 200 dollars,” “orders above 100 dollars issued last week,” etc.

There are at least three patterns to deal with this diversity of queries (Fowler, 2003):

• Implement a single query that returns all objects, and let the object that needs the information

apply a filter to that collection.

• Implement specific queries, each one with a different filter, so that the object that needs the

information calls a specific method in each case.

• Implement a generic query that uses a filter object.

The single query and filter object approaches imply the implementation of a single method that

leaves the class that has the responsibility simpler. However, it requires more code to be written in

the classes that need the information.

The specific queries approach has as a consequence a greater number of methods in the class

that holds the responsibility. But the classes that need the information would make simple calls and

receive the information without any need for postfiltering.

The choice of one pattern or another must be made by the designer depending on the number of

possible filters and potential calls. If there are only a few possibilities for filtering and many calls,

the best choice is specific queries. If the quantity of filters is high and there are only a few calls for

each filter, then the single query or filter object approach would be better. Single query is more

straightforward, but produces more work during the coding phase: each time a filter is used, the

respective code must be implemented in the class that calls the query. Filter object requires defin-

ing a class that implements the filter object, but after that investment is done, filter object tends to

be simpler than single query.

A filter object is a parameter that is passed to the general query method. The filter object must

contain attributes and associations to other objects. Those attributes and associations are used by

the query to decide which objects must be returned.

For example, let us revisit the definition of the Book class shown in Figure e10.14.

Suppose now that we need to query books filtered by title, authorsName, or price.

Applying the single query approach, a getBooks() method should be implemented in the Livir

class, which is responsible for returning the set of all books. If another object needs to filter that

set, it must apply the filter to the resulting set.

If the specific queries approach is used, the Livir class should implement three queries that may

be considered variants of the base query:

• getBooksByTitle(aTitle:String).

• getBooksByAuthorsName(anAuthorName:String).

• getBooksByPrice(aRange:Range,Money.).

e6110.6 Patterns for filtered queries

Each of these queries return only the elements that satisfy the respective filters indicated as

arguments. If a combination of criteria is needed, then new queries usually should be created for

the combined criteria.

The filter object approach requires the definition of a class to represent the filter object. For the

example, a BookFilter class could be defined as shown in Figure e10.15.

In this case, the Livir class should implement a single getBooks(aBookFilter:BookFilter):

Set,Book. method for querying the set of all books.

Using this method, a query to return the books written by “Douglas N. Adams” that cost less

than 10 dollars could be written like this:

. . .

myFilter:5BookFilter.Create()
myFilter.setAuthorsName(“Douglas N. Adams”)
myFilter.setPriceRange(Range(US$0,US$10))
cheapAdamsBooks:5self.getBooks(myFilter)
. . .

As a result, the variable cheapAdamsBooks contains the set of all instances of Book whose

author is “Douglas N. Adams” and that cost less than 10 dollars. As the attribute title of BookFilter

was not filled for the query, it is ignored, and any title would qualify for the filter.

<<filter>>
BookFilter

<<optional>> +title : String
<<optional>> +authorsName : String
<<optional>> +priceRange : Range<Money>

FIGURE e10.15

A class for a filter object.

Book
<<immutable>> <<unique>> +isbn
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Natural = 0

Livir

isbn
0..1

FIGURE e10.14

Reference class for queries.

e62 CHAPTER e10 Code Generation

10.7 The process so far

Inception Elaboration

Business
Modeling

Build a general view of the system:

• Build a business use case diagram
and determine the automation scope
for the project.

• Build preliminary activity diagrams for
business use cases.

• Build preliminary state machine
diagrams for key business objects.

Requirements Prepare the system use case diagram
(functional requirements):

Detail requirements by expanding use
cases:

• Identify the system actors from the
business use case model.

• Identify the system use cases from
the business use case model, and
the activity and state machine
diagrams from business modeling.

• Identify the main flow.
• Identify the alternate flows: variants

and exception handlers.

Identify nonfunctional requirements as
use case annotations:

• Identify the main business rules
associated to use cases.

• Identify the main quality issues
associated to use cases.

Identify supplementary requirements.

Analysis and
Design

Prepare the preliminary conceptual model
by observing system use cases and the
concepts needed by them.

Elaborate the system sequence
diagrams:

• Represent the main flow of a use
case as a system sequence diagram.

• Represent the system commands
and queries using stateful or stateless
strategies.

• Complete system sequence
diagrams with alternate flows.

Refine the conceptual model:

• Identify concepts, attributes, and
associations in the text of expanded
use cases.

• Detail attributes and associations with
stereotypes, multiplicity, and
constraints as needed.

• Organize the model by using
inheritance, association classes, and
temporal specifications.

(Continued)

e6310.7 The process so far

(Continued)

Inception Elaboration

• Add invariants as needed.
• Improve the conceptual model with

the application of analysis patterns.

Write system operation contracts for
commands and queries in system
sequence diagrams:

• Identify preconditions and exceptions
based on invalid parameters and
complementary constraints.

• Identify postconditions for commands
and returns for queries.

Design the domain tier:

• Create a sequence or communication
diagram for each system command
contract.

• Use those diagrams to decide which
methods to implement in each class.

• Inspect those diagrams to discover
which associations can be
unidirectional and define them as
such.

• Look at system query contracts and
decide which delegate queries could
be implemented; some of them could
be derived attributes or derived
associations.

• Produce or refine the design class
diagram.

Implementation Generate code:

• Generate code for classes.
• Generate code for attributes.
• Generate code for associations.
• Generate code for necessary

basic methods such as get, set,
add, remove, create, destroy, and
others.

• Generate code for system
operations and delegate methods
using dynamic models as
reference.

(Continued)

e64 CHAPTER e10 Code Generation

(Continued)

Inception Elaboration

Test

Project
Management

Estimate total effort, ideal calendar time,
and average team size for the project.

Estimate the duration and quantity of
iterations for each phase.

Prepare the phase plan and iteration plan
for the first iteration.

10.8 Questions
1. Explain in detail how a delegate message that appears in a communication diagram must be

implemented.

2. What are the basic operations that must be implemented for most kinds of associations? Which

ones must be implemented for specific kinds of associations?

3. Propose a generic implementation for the query getBooks(aBookFilter:BookFilter):

Set,Book.. Try to keep it as general and reusable as possible.

4. Propose an implementation for the system commands and delegate methods presented in

Figures 9.42 and 9.44.

e6510.8 Questions

