
CHAPTER

e13Data Persistence

KEY TOPICS IN THIS CHAPTER

• Object-relational mapping (ORM)

• Virtual proxy

• Brokers

• Virtual caches

13.1 Introduction to data persistence
The availability of persistence mechanisms for commercial languages1 has made database design

much easier for many projects. With adequate tools, it is possible to automatically generate the per-

sistence tier for a great number of information systems. For some critical and legacy systems, how-

ever, database adjustments may be still necessary in order to accommodate special features or to

satisfy performance or security requirements.

Usually, object-oriented systems are implemented in object-oriented languages, but persistent2

data storage is accomplished with relational databases. Although other techniques such as object-

oriented databases (Won, 1990) and XML databases (Bourret, 2010) are also options for imple-

menting permanent storage of data, ORM, object-relational mapping, is still the preferred approach.

The goal of this chapter is to explain what happens inside the persistence tier of a system when a

persistence mechanism based on ORM is used. First of all, a good persistence mechanism requires

domain and data storage to be separated into different tiers within the application. Remember that the

interface tier is modeled with essential use cases and the domain tier is designed using the conceptual

model and contracts as the basis. None of the aforementioned tiers addresses data storage or persis-

tence. Persistence should be designed as a separate concern: a background system that will keep data

securely and permanently in its place without interfering on the domain or interface logic.

The persistence mechanism should assure that the objects are saved in a permanent memory

device, and that they are loaded from there when necessary. Domain and interface logic should not

be polluted by persistence concerns.

Object-oriented design provides lots of good concepts such as encapsulation, responsibility, and

delegation that help designers deal with the complexities of the logic for accessing and transforming

1See, for example: http://www.hibernate.org/.
2Persistent in this context is the opposite of transient, that is, persistent information is information that must be kept until

some user explicitly deletes it. Transient information is kept only during a session of use of the system.

e67



information. But when data must be stored in a more permanent way � disks and tapes, for

example � the relational database is a good option because it is very efficient in terms of time perfor-

mance and there are lots of optimization techniques to improve relational database operations. Thus,

if the team wants to work in the best of two worlds (object and relational), the mapping between

them must be understood.

The literature refers to the problem of object-relational impedance mismatch (Ireland, Keynes,

Bowers, Newton, & Waugh, 2009), because most of the good features obtained by object-oriented

design are lost when a flat relational database is used.

The implementation of a persistence mechanism minimizes that problem by using a set of pre-

defined classes not belonging to the domain tier that take care of all logic involving domain objects

being saved and retrieved from a relational database.

13.2 Object-relational mapping (ORM)
A complete and detailed design class diagram (DCD) allow for the automatic generation of a rela-

tional database structure that reflects in secondary memory3 the information that the objects repre-

sent in main memory. The following sections present some equivalence rules that should be

observed when using ORM.

13.2.1 Classes and attributes
The first set of rules addresses classes and their attributes. Each persistent class of the DCD corre-

sponds to a relational table. Each attribute is a column of the table, and each instance is a line or

record of the table.

The stereotypes of some attributes such as {uniquec, {optionalc, and {immutablec
affect the properties of the columns of the relational tables. Some of the features described here

may not be implemented by some commercial database management systems. In that case, adjust-

ments might be necessary in order to provide a safe implementation free from the object-relational

impedance mismatch.

Attributes stereotyped with {uniquec are represented as columns marked as unique or uniq,

which cannot repeat values. However, even objects with no unique attribute have an identity that

distinguishes them from other objects. Even objects with the same value for every single attribute

may be differentiated by their identity. In the case of relational tables, this is accomplished by

defining a primary key to each relational table. A primary key, just like a unique column, may not

repeat elements. An element in a primary key column may also not be null. Primary keys usually

are simply sequential numbers generated automatically by the application in such a way that the

3Secondary memory is usually slower than main memory. However it is also much cheaper, and thus it is widely used to

store large quantities of data that do not fit in the more expensive main memory. Usually secondary memory consists of

media such as magnetic or optical discs or tapes. Data stored in secondary memory usually cannot be processed directly

by the computer unless it is loaded into main memory. Main memory is also known as RAM (random access memory)

and physically it is usually implemented by electronic integrated circuits.

e68 CHAPTER e13 Data Persistence



same number is never generated twice for the same table. Primary keys do not correspond to any

of the attributes of an object: they correspond to the object identity.

Figure e13.1 shows the class that is the basis for the following examples, and Table e13.1 shows

the equivalent relational table with three instances of that class represented.

Although other formats could be used to specify the constraints on the columns here they are

presented as acronyms for quick reference:

• Uniq, or unique, means that the column cannot repeat values.

• Im, or immutable, means that the value in the column cannot be updated.

• NN, or not null, means that the column does not admit the null value. It is exactly the opposite

of the {optionalc stereotype used for design classes. It is used here because not null is a

common constraint implemented in databases.

Book

<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Natural = 0

FIGURE e13.1

Reference class.

Table e13.1 Relational Table Equivalent to the Class of Figure e13.1

Table: Book

PK,Uniq,
Im,NN

Uniq,Im,NN Im,NN Im,NN NN Im,NN NN

pkBook isbn title authorsName price pageCount cover
Image

quantity
InStock

10001 0553286587 Rama II Arthur C. Clarke and
Gentry Lee

6.99 466 2

10002 0553293370 Foundation
and Empire

Isaac Asimov 5.99 282 3

10003 0671742515 The Long Dark
Tea-Time of
the Soul

Douglas N. Adams 6.99 307 21

e6913.2 Object-relational mapping (ORM)



• PK, or primary key, means that the column is the primary key of the table. If a column is PK it

is necessarily immutable and not null. If only a single column is PK then it must be unique as

well. However, if the PK is composite, spreading over more than one column, then each

individual column may or may not be unique.

The first column in Table e13.1 is pkBook. Notice that it does not correspond to any attribute of

the reference class. Its value is artificially generated by a number sequence generator so that it is

unique for the whole application or at least for that table. Some authors (Wieringa & Jonge, 1991)

refer to it as a surrogate key, that is, a value that has no semantic meaning, and is unique system-

wide, never reused, system generated, and not handled by the user or application.

The other columns correspond to the attributes of the reference class:

• isbn is a unique attribute. Therefore the equivalent column is unique, immutable, and not null.

• title, authorsName, and pageCount are normal attributes that are immutable and mandatory.

Therefore the equivalent column is immutable and not null, but not unique.

• price and quantityInStock are normal attributes that may change but cannot be null. Therefore

the equivalent column is not null only.

• coverImage is an optional attribute that may be updated. Therefore, the respective column has

no constraint: it may be updated and may be null.

• publisherName is a derived attribute. Therefore it is not represented in the relational table.

If an attribute of the design class is marked with {transientc then it also should not appear in

the relational table.

13.2.1.1 Number sequence generator
Most database management systems provide number sequence generators that generate numbers

that never repeat. This is necessary to provide values for primary keys, especially when multiple

users are producing new records at the same time. The number sequence generator must assure that

different users would not produce the same number at the same time.

Number sequence generators may be associated directly to the column of the table that contains

primary keys. Every time a new record is inserted in the table, a new number in the sequence is

created.

The database designer may choose an initial value for the sequence as well as an increment. For

example, beginning with 500 with an increment of 5 the sequence generated would be 500, 505,

510, 515, etc.

13.2.1.2 Index selection
By default, a relational table is just a set of records. Finding a given object at a table would require

iterating over all elements until the desired element is found. For example, looking for a book given

its ISBN would require an exhaustive search.

Databases usually provide, however, the possibility of indexing columns. An indexed column

has an auxiliary table that allows specific records to be found in almost constant time. For example,

if the isbn column of the table is indexed, then when a book is searched based on its ISBN, no iter-

ation is performed over the set of all records: the system simply would translate the value of the

ISBN into a position in memory by using a hash function and retrieve the element from that

e70 CHAPTER e13 Data Persistence



position. If that is not the desired element, then it looks for the next, and so on until finding it. If

the hash function is well implemented and the hash table has enough space to avoid collisions (two

values being translated to the same hash value), then usually the desired element is really in the

first place searched, or very close to it at least.

The use of indices improves query speed. However, it slows database updating because every

time a record is updated, inserted, or deleted, the auxiliary table must be updated as well (Choenni,

Blanken, & Chang, 1993). Furthermore, indices also require more storage space for accommodating

the auxiliary tables.

A primary key is indexed by default. Other columns may be indexed if the designer chooses to

do that. Given the restrictions mentioned before, creating other indices may be an advantage in the

case of an attribute that is used as internal qualifier. In that case, finding the objects quickly may

be crucial for the application’s performance. Otherwise, indices should be avoided. For example,

columns that are rarely used for searching purposes (for example, a book’s page count) should not

be indexed.

13.2.2 Associations
Generally, associations between classes (except transient associations that do not persist) corre-

spond to associative tables in the relational model, that is, tables with a primary key composed by

the primary keys values of the tables that represent the participating classes.

In this case, the primary key of the associative table is in fact composed of two (or more)

columns. Each column may repeat values individually depending on the association multiplicity;

but the pair (or tuple) of values that compound the primary key can never be repeated.

Depending on the multiplicity of the association roles, some rules must be observed. Many-to-

many associations will have no individual unique restrictions. However one-to-many and one-to-

one associations require primary keys in which one or both columns are unique. This is explained

in further details in the following subsections.

13.2.2.1 Many-to-many associations
If the association is many to many with both role multiplicities defined as �, then there is no restric-

tion on the columns that compose the primary key of the associative table. Figure e13.2 shows an

example of a many-to-many association.

Book

interested

Customer

<<immutable>> <<unique>> +idNumber : idNumber
+name : String
<<immutable>> +birthDate : StringwishList

*

*

<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Natural = 0

FIGURE e13.2

Many-to-many association.

e7113.2 Object-relational mapping (ORM)



Consider again the three books of Table e13.1 and the three customers shown in Table e13.2.

Notice that in Table e13.2 a customer has two codes: one is its idNumber, for example, a Social

Security number. That value is known outside the information system. It is usually preformatted

and although in normal conditions it does not change, nobody may prevent the government from

changing all citizens’ Social Security numbers if that is necessary. Therefore, though idNumber is

unique for a customer, it does not qualify as a good primary key. The primary key for Table e13.2

is pkCustomer, which is a number created automatically by the number sequence generator; it is

unique and assured never to change, because it has no meaning outside the database.

Table e13.3 shows an associative relational table that represents the links between some customers

and some books desired by them. Notice that the PK spreads over two columns now. Each column

contains a foreign key (FK), that is, a value that corresponds to the primary key of another table.

Table e13.2 Relational Table for the Customer Class

Table: Customer

PK,Uniq,Im,NN Uniq,Im,NN NN Im,NN

pkCustomer idNumber Name birthDate

20001 98726524320 Abe 01/04/1970

20002 98726524329 Beth 02/23/1982

20003 98726524325 Charles 12/05/1979

Table e13.3 Associative

Table Representing a Many-to-

Many Association

Table: interested_wishList

PK

NN NN

fkCustomer fkBook

20001 10001

20002 10001

20001 10003

e72 CHAPTER e13 Data Persistence



In the associative table interested_wishList, the columns fkCustomer and fkBook together form

the composed primary key. Both of them cannot be null, and pairs of fkCustomer/fkBook cannot be

repeated. However, as the association is many to many, each individual column may repeat values,

as seen in the table.

Table e13.3 shows that Abe (customer 20001) desires the books “Rama II” (10001) and “The

Long Dark Tea-Time of the Soul” (10003). Beth (customer 20002) only desires “Rama II” (10001),

and Charles (20003) has no wishes.

Instead of naming the associative table with the names of the classes (Customer_Book), it is

preferable to name it with the names of the roles (interested_wishList), because more than one asso-

ciation may exist between two classes.

If the association is mandatory in one direction or both directions, then special considerations

must be observed:

• If the association is mandatory on one side, then all instances from the other side must appear at

least once in the associative table. If in the example of Figure e13.2, the role interested was

mandatory (1..�), then each book should have at least one associated customer. Then each primary

key value from the Book table should appear in the interested_wishList table at least once.

• If the association is mandatory on both sides, then all instances from both classes should appear

at least once in the associative table. If in the example of Figure e13.2, both roles were

mandatory (1..�), then each book from the Book table and each customer from the Customer

table should appear at least once in the associative table.

More generally, considering that A has an association to B, and that the lower bound of the B

role is n while the upper bound is m (multiplicity is n..m), the number of times that each instance

of A must appear in the associative table is at least n, and no more than m. For example, if the mul-

tiplicity of role B is 2..5, then each instance of A must appear in the associative table at least twice

and no more than five times. Unfortunately that constraint is not usually present in database man-

agement systems.

13.2.2.2 One-to-many associations
When the association is one to many, then the column on the many side must have a unique con-

straint. This means that the column may not repeat elements individually while the other column

may repeat elements. The elements that cannot be repeated in the associative table therefore can be

linked to a single element of the other table; this constraint assures that the association is one to

many. Figure e13.3 shows an example of a one-to-many association.

Table e13.4 shows an associative table for the one-to-many association represented in

Figure e13.3. Notice that the unique constraint in the right column prevents the table from associat-

ing a book to more than one publisher.

As seen in Table e13.4, publisher 30001 has one book (10002) and publisher 30002 has two

books (10001 and 10003). As books cannot be repeated in this table, no book can belong to more

than one publisher.

It is also possible to represent associations from many to one as foreign keys in the table that

represents the class at the many side of the association. For example, as each book may have only

one publisher, then the association between book and publisher could be implemented as in

Table e13.5.

e7313.2 Object-relational mapping (ORM)



The foreign key publisher is a direct reference to the primary key of the Publisher table. If

the association is straight to 1, then the foreign key column must not be null. If the association

is to 0..1, then the foreign key column should not have that constraint.

Although this approach is not as homogeneous as associative tables, it is usually preferred by

designers because it avoids the need to implement a new table. One disadvantage is that in this

case many-to-many associations are implemented as associative tables and many-to-one associa-

tions are implemented inside one of the original tables. Also, if the association is not mandatory

(if its multiplicity is 0..1), and relatively few elements are associated, there would be lots of null

values in the foreign key column, wasting storage space and degrading performance. However,

if the association is straight to 1, this disadvantage does not apply.

Publisher

Book

<<immutable>>
1 *

<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional>> +coverImage : Image
+quantityInStock : Natural = 0

<<immutable>> <<unique>>+name : String
+city : CityName

FIGURE e13.3

Example of a one-to-many association.

Table e13.4 Associative

Table Representing a One-to-

Many Association

Table: publisher_book

PK

Im,NN Uniq,NN

fkPublisher fkBook

30002 10001

30001 10002

30002 10003

e74 CHAPTER e13 Data Persistence



13.2.2.3 One-to-one associations
One-to-one associations, mandatory or optional, require that the associative table have a unique

constraint in both columns of the composed primary key in order to prevent any element on both

sides from appearing more than once in the associative table. Figure e13.4 shows an example of

one-to-one association that is mandatory on one side and optional on the other.

Table e13.6 shows the relational table that implements the one-to-one association of

Figure e13.4.

As the role is mandatory for payments, all instances of Payment must appear in the associative

table, but not all instances of Order must appear, because the role is not mandatory for them.

As in the case of many-to-one associations, one-to-one associations may also be implemented

as foreign keys in one of the original tables. The foreign key column must necessarily be unique in

that case. If the association role is also mandatory, then the foreign key column should not be null.

Table e13.5 Alternative Way to Implement a Many-to-One Association Without an Associative Table

Table: Book

PK,
Uniq,
Im,NN

Uniq,Im,
NN

Im,NN Im,NN NN Im,NN NN Im,NN

pkBook isbn title authors
Name

price page
Count

cover
Image

quantity
InStock

fkpublisher

10001 0553286587 Rama II Arthur
C. Clarke
and
Gentry
Lee

6.99 466 2 30002

10002 0553293370 Foundation
and Empire

Isaac
Asimov

5.99 282 3 30001

10003 0671742515 The Long
Dark Tea-
Time of the
Soul

Douglas
N. Adams

6.99 307 21 30002

Order

<<immutable>> 0..1

1 Payment

FIGURE e13.4

Example of one-to-one association.

e7513.2 Object-relational mapping (ORM)



13.2.2.4 Ordered associations
An association with an ordered role (sequence or ordered set) may be implemented as an associa-

tive table with an extra column to represent the order of the element in the role’s collection of

elements. Figure e13.5 shows an example with two situations: ordered set and sequence (a list in

which elements may be repeated).

The difference between the relational implementation of an ordered set and a sequence is that in

the case of the ordered set the order column must not be included in the composed primary key,

as shown in Table e13.7. However, in the case of a sequence (elements may be repeated), the

order column must be part of the composed primary key, which in this case is composed of three

columns (Table e13.8).

In Table e13.8, the fact that the order column is included in the primary key allows the same

person to reserve the same book more than once (for example, 20001, Abe, has two reservations for

book 10001, Rama II, in the first and fourth positions on the reservation list. A repetition like this

would not be possible in Table e13.7, because the primary key does not include the order column:

the same pair fkBook/fkChapter cannot appear more than once in the table, regardless of its position.

In both cases, to prevent a given position to be occupied more than once, a uniq constraint

spreading over the origin class and the position should be defined. In the case of Table e13.7 and

Table e13.8 the pair fkBook/order should be unique.

Table e13.6 Associative

Table Representing a One-to-One

Association

Table: order_payment

PK

Im,Uniq,NN Uniq,NN

fkOrder fkPayment

50001 60001

50003 60002

50005 60003

50011 60004

50016 60005

50021 60006

50030 60007

e76 CHAPTER e13 Data Persistence



13.2.2.5 Associations representing bags
In the case of bags, in which elements may be repeated but have no position, the usual solution is

to add an extra column to the associative table with a counter for the number of times a given pair

participates in the association. Figure e13.6 shows an example of this kind of association.

Table e13.9 shows the implementation of the associative table for the example in Figure e13.6.

Book Chapter

Customer

reserved

{sequence}*

*

1

<<immutable>>

{ordered}<<immutable>>

FIGURE e13.5

Example of ordered roles.

Table e13.7 Relational

Table Representing an Ordered Set

Table: book_chapter

PK

Im,NN Im,Uniq,NN NN

fkBook fkChapter order

10001 130001 1

10001 130002 2

10001 130003 3

10002 130004 1

10002 130005 2

10003 130006 1

10003 130007 2

e7713.2 Object-relational mapping (ORM)



Table e13.9 specifies that Abe (20001) has viewed the book “Foundation and Empire” (10002)

six times. Beth (20002) viewed “Rama II” (10001) twice, “Foundation and Empire” (10002) once,

and “The Long Dark Tea-Time of the Soul” (10003) once. It is not necessary to represent in the

table any pair whose quantity is zero; this is why Charles (20003) does not appear in the table: he

has never viewed any book.

Table e13.8 Relational

Table Representing a Sequence

Table: book_customer

PK

NN NN NN

fkBook fkCustomer order

10001 20001 1

10001 20003 2

10001 20002 3

10001 20001 4

10002 20003 1

10003 20001 1

10003 20002 2

Book viewer Customer

{bag}*

*

FIGURE e13.6

Example of a bag.

e78 CHAPTER e13 Data Persistence



13.2.2.6 Qualified associations
In the case of a qualified association defined as a map (multiplicity 1 or 0..1) with an internal

qualifier (the qualifier is an attribute of the qualified class), it is sufficient to implement the asso-

ciation as a regular one-to-many or many-to-many association depending on the multiplicity on

the side of the qualifier, as explained in previous sections.

The only special care that the database designer must take in that case is to ensure that the column

of the qualifier attribute is unique and immutable. It may be indexed if quick access to the records is

necessary.

However, when the qualifier is external, it is necessary to add a third column to the associative

table to allow for the representation of the qualifier. Figure e13.7 shows an example of that

situation.

Table e13.10 shows the implementation for the map defined in Figure e13.7. The associative

table has a primary key that is composed only of the origin class key and the qualifier. The destina-

tion class is left out of the primary key. However, it must be marked as unique because, in the

example, each phone has a single type.

Table e13.9 Associative Table Representing a Bag

Table: book_viewer

PK

NN NN NN

fkBook fkCustomer quantity

10002 20002 1

10001 20002 2

10002 20001 6

10003 20002 1

Customer
type

1

0..1

Phone

+areaCode : AreaCodeNumber
+number : PhoneNumber

FIGURE e13.7

Example of a map with an external qualifier.

e7913.2 Object-relational mapping (ORM)



If the external qualifier defines a partition (multiplicity �), as shown in Figure e13.8, it is imple-

mented as shown in Table e13.10. But in the case of a partition with an external qualifier, the primary

key must have three parts, including the origin and destination foreign keys as well as the qualifier.

Also, as the origin role multiplicity is 1, the destination class column must be marked with unique.

In the example shown in Table e13.11, this means that a book may not have more than one genre.

If the role multiplicity at the origin were � (defining a relation where a book could have more

than one genre), the implementation would basically be the same. The only difference is that the

unique constraint in the destination column (fkBook) should not exist.

13.2.2.7 Association classes
An association with an association class is represented in two parts: a relational table for the associ-

ation class with its attributes, and an associative table for the association with a reference to the

association class table.

Figure e13.9 shows an association class, and Tables e13.12 and e13.13 implement its relational

equivalent.

Thus, one way to represent associations with association classes is to use a table to represent

the association class (Table e13.12), and an associative table (Table e13.13) with three columns:

the primary keys of the participating classes (which forms the composite primary key of the

Table e13.10 Associative Table Representing a

Map With an External Qualifier

Table: customer_phone

PK

NN NN Uniq,NN

fkCustomer type fkPhone

20001 Home 70001

20001 Cellphone 70002

20002 Home 70003

Publisher
genre

1

*

Book

FIGURE e13.8

Example of a partition with an external qualifier.

e80 CHAPTER e13 Data Persistence



association) and the primary key of the association class, which is not part of the composite pri-

mary key of the association, but must be immutable and unique in that table.

A further constraint is that all values for pkJob in the Job table must appear in the fkJob column

of the employee_employer table.

13.2.2.8 n-ary associations
In the case of associations among three or more classes (n-ary), an associative table is defined in

which the primary key is formed by the primary keys of all participating classes. Figure e13.10

shows an example of a ternary association and Table e13.14 shows its relational representation.

In Table e13.14, pairs such as fkBudgetItem/fkProject may repeat elements (90001/100001, for

instance). But the triple fkBudgetItem/fkFinancialYear/fkProject may never repeat.

Table e13.11 Associative Table Representing a Partition with

an External Qualifier

Table: publisher_book

PK

NN NN Uniq,NN

fkPublisher genre fkBook

60001 sci-fi 10001

60001 sci-fi 10002

60002 humor 10003

Person employer

*employee

*

Job

Company

+wage : Money
<<immutable>> +hired : Date

FIGURE e13.9

Example of an association class.

e8113.2 Object-relational mapping (ORM)



13.2.2.9 Transient and façade controller associations
Transient associations are not represented in relational tables because, by their own definition, they

exist only in primary memory, and it is not necessary neither desirable to persist them.

Some of the associations from the façade controller also do not need to persist. Associations

from a controller to all instances of a class, which are mandatory for the instances, do not need to

Table e13.12 Relational Representation of an Association

with an Association Class � Part 1: The Association Class

Table: Job

PK,NN,Im,Uniq NN NN,Im

pkJob Wage Hired

80001 1,500.00 02/15/2008

80002 1,200.00 03/01/1999

80003 2,000.00 04/16/2005

80004 900.00 01/17/2001

Table e13.13 Relational Representation of an Association

with Association Class � Part 2: The Association

Table: employee_employer

PK

NN NN NN,Im,Uniq

fkPerson fkCompany fkJob

20001 70001 80001

20001 70005 80002

20002 70001 80003

20003 70002 80004

e82 CHAPTER e13 Data Persistence



be transformed into association tables, because they always repeat the same value for the controller

and have all the elements of the other side. That information is already available in the primary key

column of the table representing the conceptual class, and, therefore, that association table would

be redundant. For example, in Figure e13.11, the association between the controller and Customer

with no explicit role name is mandatory for all customers. Thus, an associative table for represent-

ing that association would contain only the primary keys of all customers. As they are already

represented in the Customer table, repeating them in a different table is unnecessary.

However, this observation is valid only if the association role is strictly 1 on the controller side. If

the controller side has multiplicity 0..1, then the association should be represented separately. In

Figure e13.11 the premium association must be represented because not every customer belongs to it.

Budgetltem

Project
*

* *

FinancialYear

FIGURE e13.10

An example of a ternary association.

Table e13.14 Relational Equivalent of a Ternary Association

Table: budgetItem_financialYear_project

PK

NN NN NN

fkBudgetItem fkFinancialYear fkProject

90001 100001 110001

90001 100002 110002

90002 100001 110003

e8313.2 Object-relational mapping (ORM)



Not every customer is a premium customer,4 and thus they must be listed somewhere. There are at

least two choices for representing premium customers: adding a Boolean field to the Customer

table indicating which customers are premium, or creating a single column table that contains the

primary keys of premium customers.

The premium customer table does not have to include a column that represents the primary key

of the controller (1) because the controller is not an entity (and therefore it has no primary key),

and (2) because the controller is a singleton and even if a primary key is assigned to it, repeating

the same value in all rows of the table would be unnecessary.

Table e13.15 shows a possible implementation for this optional association.

According to Table e13.15 only Abe (20001) and Bea (20002) are premium customers, and

Charles (20003) is not.

13.2.3 Inheritance
Relational databases do not support inheritance directly. Mapping inheritance relations to relational

databases is an issue that demands attention. There are many different approaches and this section

discusses some of them. All examples in the following subsections are based on Figure e13.12.

Customer

premium
0..1

1

Livir

FIGURE e13.11

A mandatory and an optional association to a façade controller.

Table e13.15 Implementation

of an Optional Association

from the Façade Controller

Table: premium

PK

NN

fkCustomer

20001

20002

4Note that this is a normal association and not a derived one.

e84 CHAPTER e13 Data Persistence



13.2.3.1 Implementing the entire hierarchy in a single table
One solution for representing inheritance that sounds straightforward at first glance is to implement

the entire hierarchy in a single table. This table contains all the attributes of all classes in the hier-

archy. It also has to identify which class is being represented in each record; this can be accom-

plished by adding a type column, as in Table e13.16.

Only attributes that belong to the class at the top of the hierarchy may not be null, because all

other attributes could be null when the record belongs to one subclass and the attribute to another

subclass. For example, if the type of the record is promptPayment, then firstDate and

numberOfInstallments must necessarily be null. If it is assumed that an object cannot change its

class after instantiation, then the type type should be immutable.

Payment
{abstract}

PromptPayment

+date : Date

+value : Money

PaymentInInstallments

+firstDate : Date
+numberOfInstallments : Natural

FIGURE e13.12

A situation with inheritance of attributes.

Table e13.16 Implementation of Inheritance in a Single Table with a Type Field

Table: Payment

PK,NN,Uniq,Im NN,Im NN

pkPayment type value date firstDate numberOf
Installments

200001 promptPayment 300.00 04/09/2014

200002 promptPayment 251.00 07/02/2014

200003 paymentIn
Installments

1,890.00 12/09/2013 12

e8513.2 Object-relational mapping (ORM)



If multiple inheritance is used (for example, if a payment could be prompt and installments at

the same time),5 then the type column should be replaced by a set of Boolean columns:

isPromptPayment and isPaymentInInstallments. In this case, a payment could be prompt, in install-

ments, or both (or neither, if they could also be instances of Payment, which in the present example

cannot occur because it is an abstract class).

This approach has some disadvantages. It is hard to manage consistency between subclasses

because all data is stored in the same place. Managing it adequately would require various complex

control mechanisms. Also, lots of fields in the table would be null all the time and the big

table would be a very sparse one, especially if a big and complex hierarchy is being represented.

13.2.3.2 Each concrete class as a single table
Another approach to represent inheritance is to represent each concrete class as a separate table.

Each table would contain the attributes of the concrete class and the attributes of all of its super-

classes. Tables e13.17 and e13.18 show a possible implementation using that approach.

Table e13.17 Implementation of Inheritance Using a

Table for Each Concrete Class: PromptPayment

Table: PromptPayment

PK,NN,Uniq,Im NN NN

pkPromptPayment value date

200001 300.00 04/09/2014

200002 251.00 07/02/2014

5Of course this cannot be true. It’s just a supposition for the sake of the example.

Table e13.18 Implementation of Inheritance Using a Table for Each Concrete Class:

PaymentInInstallments

Table: PaymentInInstallments

PK,NN,Uniq,Im NN NN NN

pkPayment value firstDate numberOfInstallments

200003 1,890.00 12/09/2013 12

e86 CHAPTER e13 Data Persistence



If only attributes are inherited, this approach may work. However if superclasses define their

own associations that must be inherited, then managing this becomes a headache because either an

associative table should fill in data from different tables in a single column, or a single associative

table should be implemented for each subclass that inherits the association.

13.2.3.3 Each class in a single table
A better choice for implementing inheritance given the aforementioned problems is to define one

table for each class of the hierarchy, even the abstract ones. That way, attributes and association

inheritance may be easily implemented. The main disadvantage is that for instantiating an object,

a number of tables equal to the number of its superclasses plus one should be accessed.

Tables e13.19 to e13.21 show how to implement this approach. There must be references from the

subclasses’ tables to each immediate superclass table.

Table e13.19 Implementation of Inheritance

Using a Table for Each Class: Payment

Table: Payment

PK,NN,Uniq,Im NN

pkPayment value

200001 300.00

200002 251.00

200003 1,890,00

Table e13.20 Implementation of Inheritance Using a

Table for Each Class: PromptPayment

Table: PromptPayment

PK,NN,Uniq,Im NN,Uniq,Im NN

pkPromptPayment fkPayment Date

300001 200001 04/09/2014

300002 200002 07/02/2014

e8713.2 Object-relational mapping (ORM)



Ta
bl
e
e1

3
.2
1

Im
p
le
m
en

ta
ti
on

of
In
h
er
it
an

ce
U
si
n
g
a
Ta
b
le

fo
r
E
ac

h
C
la
ss
:
P
ay
m
en

tI
n
In
st
al
lm

en
ts

Ta
bl

e:
Pa

ym
en

tI
nI

ns
ta

ll
me

nt
s

PK
,N

N,
Un

iq
,I

m
NN

,U
ni

q,
Im

NN
NN

pk
Pa

ym
en

tI
nI

ns
ta

ll
me

nt
s

fk
Pa

ym
en

t
fi

rs
tD

at
e

nu
mb

er
Of

In
st

al
lm

en
ts

40
00

01
20

00
03

12
/0

9/
20

13
12



13.3 Saving and loading objects
The equivalence between object-oriented design and the relational database is just part of the com-

patibility issue between these two models. It is necessary also to decide how and when objects will

be loaded and saved to the database. Some designers prefer to determine themselves the moment

when such operations should be performed. However, that handcrafted approach for saving and

loading objects is subject to logic errors, and usually it pollutes the domain-level code.

In addition, if the designer is the one who decides when to save and load objects, sometimes

those operations could be performed unnecessarily (for example, loading objects that are already in

memory and saving objects that were not changed). Controlling these issues case by case, method

by method is not the most productive way to develop software.

It is possible to implement the processes for saving and loading objects with automatic mechan-

isms. In this case, the designer should only decide which classes, attributes, and associations are

persistent, and a whole set of methods and data structures will be automatically created to allow

those elements to be loaded and saved at the appropriate moments. Initially this section presents

the basic or naı̈ve implementation of this mechanism. Later, the limitations of the technique are

explained and possible solutions drafted.

13.3.1 Virtual proxy
In order to implement an automatic mechanism for saving and loading objects, we can use a design

pattern called virtual proxy (Gamma, Helm, Johnson, & Vlissides, 1995). A virtual proxy is a very

simple object that implements only two responsibilities:

• It must know the value of the primary key of the real object it represents.

• It must redirect to the real object all messages it receives in its name.

Below is a draft of the way a virtual proxy works:

Class VirtualProxy
var realObjectPk:PrimaryKey
for any message msg received do

realObject:5BrokerManager.get(realObjectPk)
realObject.msg()

end for
end class

Later, in the following sections, the way the BrokerManager works is gradually explained.

Thus, the design with virtual proxies requires that instead of associating domain objects directly

with other domain objects, they must be associated to their proxies. In this way, it is possible to

bring into memory an instance of Publisher without loading all instances of Book that are linked to

it. The instance of Publisher is associated to the proxies of books, which are very simple objects.

The proxies are created in main memory and require much less space than the instances of the real

class, such as those of Book. An instance of Book is loaded only if necessary, that is, only if a mes-

sage is sent to it through its proxy. This economic way of using memory is called lazy load, and it

is very efficient in terms of time and main memory in some situations.

e8913.3 Saving and loading objects



To prevent the designer from worrying about when the objects must be loaded, the virtual proxy

mechanism must be interposed to all persistent links in main memory. Real objects send messages

to each other as if the proxies did not exist. But proxies intercept every message. The proxies

ensure that the real object will be loaded if it is not in memory.

Figure e13.13 is an example of the lazy load mechanism. Initially (Figure e13.13a), only an

instance of Publisher is in main memory. It is associated to three books. However, instead of hav-

ing the books in memory, only their proxies are there. If the instance of Publisher must send a mes-

sage to one of the books, it simply sends the message through the link; the message is intercepted

by the proxy that calls the BrokerManager, which ensures that the book is loaded into the memory

(Figure e13.13b). As the book is associated to some chapters, only the chapters’ proxies are created

in memory, not the real objects.

If one of the chapters receives a message from the book, then only that chapter would be

brought into memory.

13.3.1.1 Virtual data structures
The implementation of virtual proxies for each object may be very inefficient when an object has

many links; for example, a publisher with 50,000 registered books would demand the instantiation

of 50,000 proxies to be associated to it when it is brought into memory. Fortunately, there is a way

to avoid instantiating large quantities of proxies, which is the implementation of virtual data struc-

tures to physically replace the implementation of the associations in main memory.

:Publisher

:BookProxy

:BookProxy

:BookProxy

pk = 10002

pk = 10003

pk = 10001

(a)

:Publisher

:BookProxy

:BookProxy

:ChapterProxy

pk = 3004

(b)

pk = 3005

:ChapterProxy

:BookProxy

pk = 10002

pk = 10003

pk = 10001

:Book

FIGURE e13.13

(a) Initial state in which only a publisher and book proxies are in main memory. (b) Situation after the

publisher sends a message to one of the books.

e90 CHAPTER e13 Data Persistence



Thus, a publisher would not have 50,000 links to 50,000 proxies of Book, but a single link to a

VirtualSet structure with 50,000 PKs. The VirtualSet implements regular operations to add, remove,

update, and query objects: the same operations a normal set must implement. The only difference

is that it does not store the real objects, but only their primary keys. The virtual set does not bring

objects into memory; it brings only their primary key numbers. The VirtualSet and its counterparts,

VirtualSequence, VirtualOrderedSet, VirtualBag, VirtualMap, etc., use the BrokerManager to load

real objects when necessary instead of holding all the real objects.

A virtual data structure may be implemented with the following principles:

• Instead of a physical representation of a collection of objects, it is a physical representation of a

collection of the primary key values of the real objects.

• The method that adds an object to the collection must only add the primary key of the real

object to the physical representation.

• The method that removes an object from the collection must only remove the primary key of

the real object from the physical representation.

• Any method that performs a query on the data structure to return one or more objects receives

the real object(s), which are requested from the broker manager.

Thus, adding and removing links between objects may be performed without having the real

objects in memory (at least from one side of the link). An object is only brought into memory

when information about it becomes necessary, that is, when it receives a message.

13.3.1.2 Discussion
Lazy load is useful because it only brings into memory objects that are going to receive a message.

For example, if an instance of Publisher is in main memory and one of its books is going to be

updated, then it is not necessary to load all instances of Book linked to the publisher, but only one.

On the other hand, if the instance of Publisher must search its books to find the most expensive

of them, then all instances of Book that are linked to it must be loaded into main memory. This is

the drawback of the technique. Performing all operations on objects in main memory can be an

extraordinary waste of time. Imagine loading 50,000 instances of books to main memory just to dis-

cover which one of them has the highest price.

Virtual proxies work well when relatively few objects are brought into memory for each user

operation. For example, a user searching for books to buy will only view a relatively small quantity

of books in the list. That user would operate over just a single shopping cart and order. Those kinds

of operations over small sets of objects are perfectly handled automatically by virtual proxies.

However, when queries or commands involve iterating over large collections of objects, such as

increasing the price of all books in the store, then using virtual proxies should be avoided, unless

wasting processing time is not a problem; but that usually is not the case.

Thus, for performing queries or commands over large collections of objects, if the query or

command uses just a few attributes of the objects, it would be advisable to consider replacing the

virtual proxy mechanism in that specific case by a query or command directly performed over the

database. Therefore, some messages, when they reach specific objects, would be redirected to a

specific encapsulated implementation that performs the necessary actions in the database and

returns the results as necessary, rather than being redirected to a proxy.

e9113.3 Saving and loading objects



13.3.2 Brokers and materialization
The process of loading an object from the database into main memory is called materialization.

Materialization is usually requested by a proxy from a broker manager, which may in turn delegate

materialization to a specialized broker. The broker manager looks if the requested object is in memory.

If it is not, then the broker manager activates the specialized broker to materialize the object.

Each class may have its own specialized broker. However, a single broker may also be imple-

mented to serve all classes. A specialized broker must implement a method called materialize that

does the following:

1. It creates in main memory an instance of the persistent class.

2. It initializes the values of the attributes of the new instance with values taken from the

respective line and column in the database.

3. It loads and initializes the virtual data structures that implement the associations of the object

with the primary keys of the respective linked objects.

In order to obtain the values for the primary keys of the linked objects, the specialized broker

must know what associations are attached to the object being loaded; then it searches the occurrences

of the primary key of the object in the associative tables that implement those associations. The pri-

mary keys of other objects associated to the primary key of the object being materialized are added

into the virtual data structure, which has the responsibility of holding the respective association.

For example, Broker4Book should materialize instances of Book, as defined in Figure e13.14.

According to this conceptual model, Broker4Book must implement the materialize method by

performing the following operations:

1. Create an instance of Book.

2. Fill in the isbn, title, authorsName, price, pageCount, coverImage, and quantityInStock

attributes of the new instance with the values stored in the respective columns of the Book

column in the database.

3. Search the book_chapter table for occurrences of the primary key of the book in the fkBook

column. For every occurrence, add the corresponding value found in the fkChapter column to

the virtual set chapters of the new instance of Book, which implements the association role for

the book.

Book

1
Chapter

<<immutable>> +number : Natural
<<immutable>> +title : String

<<immutable>> <<unique>> +isbn : ISBN
<<immutable>> +title : String
<<immutable>> +authorsName : String
+price : Money
<<immutable>> +pageCount : Natural
+ / publisherName : String = publisher.name
<<optional +coverImage : Image
+quantityInStock : Natural = 0

1..*

FIGURE e13.14

Reference conceptual model.

e92 CHAPTER e13 Data Persistence



The materialization performed by the specialized broker must not be confused with the creation

of a new instance as defined by the system operation contracts (Chapter 8). In the contracts, the

creation of an instance refers to the insertion of new information in the system, independent of

the physical storage (main memory or secondary memory). The materialization performed by the

broker only refers to the operation of bringing into the main memory an existing object that is not

there physically yet. Materialization is, therefore, an operation that belongs exclusively to the

persistence tier; it has nothing to do with the business tier.

13.3.3 Caches
Objects in main memory may be classified as follows regarding their state related to the database:

• Clean or dirty, depending on whether or not they are consistent with the version stored in the database.

• Old or new, depending on whether or not they already exist in the database.

• Deleted or kept, depending on whether they have been deleted in main memory but not yet

deleted in the database.

A cache is a data structure, similar to a map or dictionary, that associates primary key values to

the real objects it represents.

Although there are eight possible combinations for the features defined above, in practice only

four combinations are sufficient to manage objects in main memory:

• Old clean cache: Keeps objects that are consistent with the database.

• Old dirty cache: Keeps objects that exist in the database but have been updated in main

memory and are, therefore, inconsistent with the database.

• New cache: Keeps objects that have been created in main memory, but which are not yet in the

database.

• Delete cache: Keeps objects that were deleted in memory, but still exist in the database.

The broker manager verifies that an object is in main memory by performing a query on the

existing caches, asking for the primary key of the object being requested. If the broker manager

finds a reference to that object in one of the caches, it returns the reference to the proxy that asked

for it. On the other hand, if the broker manager does not find any reference to the requested object

in any cache, then it asks a specialized broker (as, for example, Broker4Book) to materialize the

object. The object is then materialized and inserted into the old clean cache.

If, by any chance, that object is updated in main memory, that is, if some of its attributes or

links have been changed, it must be moved to the old dirty cache.

The persistence mechanism must have ways to assure that every time the inner state of an object

in the old clean cache is changed it is moved to the old dirty cache. This could be accomplished,

for example, by adding a special command such as BrokerManager.becomeDirty(self) to any

method that changes the object. If the object originally is in the old clean cache, that method will

move it to the old dirty cache.

Objects that were created in memory as a result of a contract postcondition are stored into the

new cache. An object that is in the new cache may not be moved to the old dirty cache, even if its

attributes have been changed. It stays in the new cache until a commit is performed. After the

commit it is moved to an old clean cache.

e9313.3 Saving and loading objects



When an object is deleted from main memory, the result will depend on which cache the object

came from. If it was in the old clean cache or in the old dirty cache, then it is moved to the delete

cache. However, if it was in the new cache, then it may be simply deleted from main memory.

13.3.3.1 Commit and rollback
The commit and rollback operations are usually activated by the interface tier to indicate that a

transaction was successful and confirmed, or that it was cancelled, respectively. These operations

are implemented by the broker manager. In the case of a commit, the broker manager should do the

following:

1. Perform an update in the database for every object in the old dirty cache, and move those

objects to the old clean cache.

2. Perform an insert in the database for every object in the new cache, and move those objects to

the old clean cache.

3. Perform a remove in the database for every object in the delete cache, and delete those objects

from main memory.

In the case of a rollback, the broker manager must simply remove all objects from all caches,

except those in the old clean cache.

As the old clean cache may grow indefinitely, it is necessary to implement some mechanism to

remove the oldest objects from it every time its size reaches some previously established threshold.

The other caches only grow up to the moment a commit or rollback is performed. At that

moment, they are emptied.

13.3.3.2 Cache control in a multiuser server
If more than one user connects to the system, it is necessary to determine how to share objects

among different users. Assuming we have a client/server architecture with interface, domain, and

persistence tiers, at least two approaches are possible:

• The three tiers are executed in the client. There is no main memory share in the server, only the

database. The client is heavy and the server is used only to access or store data after a commit

is performed. In this case, what travels in the network is data in the form of relational

table records and SQL6 instructions. Information travels only when an object must be

materialized or committed. The disadvantage of this design is that the client node is overloaded.

However, client applications have recently become richer and more complex: not depending on

a server to process the logic of the application may be a crucial requirement.

• The domain and persistence tiers are implemented in the server, and the interface tier is

implemented in the client. In this case, the objects will exist in main memory only in the server,

and what travels through the network are the parameters of the system operations and the

returns from queries. The advantage is that clients are lighter, and usually it is cheaper to

upgrade a server than upgrading thousands of clients. However, for some applications that

require fast processing of the data, waiting for the server may not be viable.

6Structured Query Language, the dominant language for defining, accessing, and updating relational databases

(Date, 1982).

e94 CHAPTER e13 Data Persistence



If the objects are physically in the server only, there are still more possibilities. In one case, all

users share the four caches, with the disadvantage that a user could have access to objects that are

being modified but have not yet been committed by another user. This option seems to be unadvisa-

ble for most applications.

The other option is to share only the objects in the old clean cache among the users. There should

be multiple instances of other caches that are private to each user. If an object is in a private cache of

one user, then the other users cannot access it. They must wait for a commit or rollback from the first

user. Thus, the persistence mechanism for multiuser access could be implemented like this:

• An old clean cache is shared by all users.

• Each user has a private old dirty cache, delete cache, and new cache.

By doing this, it is possible to ensure that no user would have access to objects that are being

modified by other users. Therefore, it is possible to use the caches to implement a lock mechanism,

that is, when a user is updating an object, the other users cannot access it. Only when the user that

has the object performs a commit or rollback, and the object is moved to the old clean cache or

cleaned from main memory, can the other users gain access to it again.

An advantage of this method is the optimized usage of server main memory. All users share the

objects in the old clean cache, which is the only one that grows indefinitely. The other four caches,

which are specific for each user, only grow during a transaction. When a commit or rollback hap-

pens, those caches are emptied.

However, this may negatively affect scalability, because some users could be stuck while others

are dealing with some objects. It is possible to implement a more sophisticated control mechanism

based on optimistic merges: two or more users may edit the same object as long as they do not

update the same attribute or association.

This must be used with care, however. Concurrency issues are always complicated concerns and

many decisions may depend on business rules. For example, may the price of a book be updated

while a user is finishing an order?

Some applications could even require a more pessimistic locking strategy: if a user is browsing

an object, no other user may even have access to view it. This is the case for banking applications,

for example, which require maximum data security.

13.4 The whole process

Inception Elaboration

Business
Modeling

Build a general view of the system:
• Build a business use case

diagram and determine the
automation scope for the project.

• Build preliminary activity diagrams
for business use cases.

• Build preliminary state machine
diagrams for key business objects.

(Continued )

e9513.4 The whole process



(Continued)

Inception Elaboration

Requirements Prepare the system use case diagram
(functional requirements):

Detail requirements by expanding use
cases:

• Identify the main flow.
• Identify the alternate flows: variants

and exception handlers.

• Identify the system actors from the
business use case model.

• Identify the system use cases from
the business use case model, and the
activity and state machine diagrams
from business modeling.

Identify nonfunctional requirements as
use case annotations:

• Identify the main business rules
associated to use cases.

• Identify the main quality issues
associated to use cases.

Identify the supplementary requirements.

Analysis and
Design

Prepare the preliminary conceptual model
by observing system use cases and the
concepts needed by them.

Elaborate the system sequence diagrams:

• Represent the main flow of a use
case as a system sequence diagram.

• Represent the system commands
and queries using stateful or stateless
strategies.

• Complete system sequence diagrams
with alternate flows.

Refine the conceptual model:

• Identify concepts, attributes, and
associations in the text of expanded
use cases.

• Detail attributes and associations with
stereotypes, multiplicity, and
constraints as needed.

• Organize the model by using
inheritance, association classes, and
temporal specifications.

• Add invariants as needed.
• Improve the conceptual model

with the application of analysis
patterns.

Write system operation contracts for
commands and queries in system
sequence diagrams:

• Identify preconditions and exceptions
based on invalid parameters and
complementary constraints.

• Identify postconditions for commands
and returns for queries.

(Continued )

e96 CHAPTER e13 Data Persistence



(Continued)

Inception Elaboration

Design the domain tier:

• Create a sequence or communication
diagram for each system command
contract.

• Use those diagrams to decide which
methods to implement in each class.

• Inspect those diagrams to discover
which associations can be
unidirectional and define them
as such.

• Look at system query contracts and
decide which delegate queries could
be implemented; some of them could
be derived attributes or derived
associations.

• Produce or refine the design class
diagram.

Design the interface tier:

• Design the top-level interface
organization based on areas and
pages.

• Refine pages, including view
components for parameters of
system operations and results for
system queries.

• Associate operation activation to
interface events such as buttons and
menus.

Design the persistence mechanism:

• Reuse or build a persistence
mechanism based on ORM, virtual
proxies, caches, and brokers.

• Decide where to apply the default
persistence mechanism and where
to implement direct database
access for performance
optimization.

Implementation Generate code:

• Generate code for classes.
• Generate code for attributes.
• Generate code for associations.
• Generate code for necessary basic

methods such as get, set, add,
remove, create, destroy, and others.

• Generate code for system operations
and delegate methods using dynamic
models as reference.

(Continued )

e9713.4 The whole process



(Continued)

Inception Elaboration

Test Plan and execute tests:

• Perform unit tests for methods and
classes that were not generated
automatically.

• Perform system operation tests based
on system operation contracts.

• Perform use case tests based on use
case scenarios.

Project
Management

Estimate total effort, ideal calendar time,
and average team size for the project.
Estimate the duration and quantity of
iterations for each phase.
Prepare the phase plan and iteration plan
for the first iteration.

13.5 Questions
1. What kind of associative table should be used to represent an association that is ordered in both

directions? How do you represent it in the case of two ordered sets, or two sequences, or one

ordered set and one sequence?

2. What kind of association table should be used to represent an association with an association

class that is marked with {bag} on one side?

e98 CHAPTER e13 Data Persistence


