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CHAPTER 13 PROBLEMS AND EXERCISES 
 
Problem 1: What is the most important phenomenon that enables the successful use of PWAS 
phased arrays in conjunction with multi-modal guided waves in thin wall structures? 
Solution 

The answer to this question can be found in the textbook Section 13.3. The single most important 
phenomenon that enables the use of PWAS phased arrays in conjunction with multi-modal 
guided waves in thin wall structures is the PWAS-Lamb wave tuning, as described in Chapter 11 
of this book. The PWAS-Lamb wave tuning principle allows one to find convenient 
combinations of PWAS dimensions and excitation frequency that permit the preferential 
excitation of just one Lamb-wave mode, preferably one of minimal dispersion. In the following 
developments, we will assume that such tuning is possible and that a minimally dispersive Lamb 
wave can be tuned into. In this way, the situation depicted in textbook Figure 13.4 can be 
achieved in spite of the generally multi-modal character of the Lamb waves. 

---------------- 

 

Problem 2: (i) Using the straight-wavefront assumption, calculate the optimum phased-array 
pitch for a PWAS phased-array made up of 10-mm PWAS ideally bonded to a 1-mm thick 

aluminum plate ( 72.4 GPaE  , 22780 kg/m  , 0.33  ). (ii) At what frequency would this 
PWAS array would operated? 
 

Solution 

(i) As indicated in the textbook Section 13.5.3.2, the ideal pitch for any phased array is half the 
wavelength, i.e., 0.5d  . However, the wavelength is dictated by the tuning principles 
developed in the textbook Section 11.4.5, Eq. (11.108), i.e., 
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One could code Eq. (1) or could use the software programs posted on the LAMSS website 
http://www.me.sc.edu/research/lamss/html/software.html . In particular, download and activate 
the following program: 

 

 

After activating the program, one obtains the chart below.  
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The problem at hand is to find the first tuning frequency for the S0 mode, which is a low 
dispersive mode ideally suited for phased array processing. In the chart above, the S0 mode is 
presented in solid line (‘symmetric”), whereas the A0 mode is presented in dashed line (“anti-
symmetric”). Examination of this tuning chart indicates that the A0 mode goes through a 
minimum (mode rejection) at 92 kHz . When one mode is rejected, the other becomes dominant. 
Hence, the frequency at which the S0 mode is dominant is 0 92 kHzSf  . At this tuning 
frequency, the S0 mode is indeed very little dispersive, as shown by the chart below.  

 

As indicated on the chart, the actual value of the S0 wavespeed is 

0

0

92 kHz
5405 m/s  5.4 mm/ s

S

S

f
c 


  . The associated wavelength is / 60 mmc f   . Hence, 

the optimum phased array pitch is /2 30 mmd   .  

(ii) The PWAS phased array will operate at the tuning frequency, 0 92 kHzSf  . 

----------------  
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d 29 mm 59 mm
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Units

PROBLEM 13.2 SOLUTION
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Problem 3: Outline the main advantages and disadvantages of the usage of 1-D and 2-D PWAS 
phased arrays 
Solution 

The 1-D PWAS phased arrays are discussed in the textbook Section 13.3 through 13.5. The 2-D 
PWAS phased arrays are discussed in the textbook Sections 13.7 and 13.8. The reader is 
expected to read these sections and extract the advantages and disadvantages of the usage of 1-D 
and 2-D PWAS phased arrays from this reading. 

---------------- 

Problem 4: Assume a PWAS phased array tuned to a 300-kHz S0 Lamb wave in a 1-mm thick 

aluminum plate  ( 72.4 GPaE  , 22780 kg/m  , 0.33  ). The array contains eight PWAS 
elements placed linearly at 7-mm pitch. The PWAS phased array is used to detect far-field 
damage. Calculate the array delay times required to steer the array beam in the 40-deg direction 
 

Solution 

The PWAS elements of the array are placed linearly, hence the 1-D array principles apply.  The 
number of elements in the array is 8M  . The elements are placed at 7 mmd   pitch. The array 
is used to detect far-field damage; hence the simplified analysis of the textbook Section 13.3 
applies. Under these assumptions, the beamforming delay is calculated with the textbook Eq. 
(13.11), i.e.,   
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d
m

c

    (13.11) (2) 

where 1,2,...m M  and c is the wave speed. To calculate the wave speed, we need to analyze the 
S0 Lamb wave in the plate. U sing again the Wavescope program from the LAMSS website 
http://www.me.sc.edu/research/lamss/html/software.html , we  get the chart below from which 

we read 
0

0

300 kHz
5399 m/s  5.4 mm/ s
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f
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
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Upon calculation, we get:  

  


T
0 0.992 1.984 2.976 3.968 4.96 5.951 6.943( ) s  

4



 
T

0 0.992 1.984 2.976 3.968 4.96 5.951 6.943( ) s

 im

0.000

0.992

1.984

2.976

3.968

4.960

5.951

6.943

s

 im im
d

c
 cos 0 

0 40 deg

im 0 M 1M 8d 7 mm

c 5406
m

s
c

E

 1 
2

 

Axial wave speed in aluminum strip

d
1

2
mm 0.33 2780

kg

m
3

E 72.4 GPaAluminum plate 

Units

PROBLEM 13.4 SOLUTION

5



 4

Problem 5: What are grating lobes and how do they appear? 
 

Solution 

The appearance and cause of the grating lobes is discussed in the textbook Section 13.10.2.6. 
The reader is encouraged to study this section and compose an answer showing understanding of 
the subject.  

---------------- 

 

Problem 6: Describe the effect of spatial aliasing and give a numerical example. 
Solution 

The effect of spatial aliasing is discussed in the textbook Section 13.10.2. The reader is 
encouraged to study this section and compose an answer showing understanding of the subject. 
A numerical example of spatial aliasing is offered in the textbook Figure 13.68, which is 
reproduced below, i.e., 

 F(k, t0) 

π/d 2π/d -π/d -2π/d k 

NO 
aliasing 

Aliasing 
F(k, t0) 

π/d 2π/d -π/d -2π/d k  
 
Figure 13.68 Aliasing occurs if the spatial signal is not spatially bandlimited below kNQ 

As a numerical example, consider first the situation discussed in Problem 13.1 above in which a 
phased array of 10-mm PWAS is bonded a 1-mm aluminum plate. The tuning frequency for S0 

mode was found to be 0 92 kHzSf   with a corresponding frequency 
0

0

92 kHz
 5.4 mm/ s

S

S

f
c 


 . 

The associated S0 wavelength is / 60 mmc f   . The array pitch is /2 30 mmd   . The 

spatial sampling frequency is 2 / 209/msk d  . The Nyquist spatial frequency is 

/ 107/mNQk d  . Therefore, the space-time signal to be sampled with this phased-array 

should have wavenumber bandwidth B NQk k  i.e., 107/mBk  .  

In the limit, let’s take Bk  at it maximum permissible value, i.e., 107/mBk  . For this value, we 

calculate the maximum permissible frequency  
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B
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c k
f


  (3) 

Upon numerical calculations, we get 92 kHzBf  , which is the tuning frequency. This is not 

surprising, since we chose on purpose the phased array pitch to be at its optimal value, i.e., half 
wavelength, /2=30 mmd  . This fact highlights a shortcoming of using optimally designed 
phased arrays: the design is not robust, and is producing aliasing at slightly higher frequencies.  

However, we can make the phased array less optimal, by taking, say, * 0.4 =23 mmd  . In this 
case, the Nyquist frequency becomes * */ 134/mNQk d  . Subsequently, the permissible 

frequency bandwidth becomes 
*

* 115 kHz
2

B
B

c k
f


  . Thus, the aliasing frequency has been 

pushed up and the problem has been become more robust.  

Another example to consider is that of using a phased array which was constructed around a 
certain wave type to detect other wave types. For example, the phase array discussed at the 
beginning was constructed for S0 waves at 92 kHz and had a wavenumber Nyquist frequency 

107/mNQk  . However, the same phased array would be sensitive to A0 waves. The question is: 

what is the frequency bandwidth limitation on A0 waves to avoid aliasing?. To address this 
question, we have to calculate the maximum frequency that would produce a wavenumber NQk . 

Since A0 waves are dispersive, the wavespeed depends on the frequency. At this relatively low 

frequencies, the A0 mode is very dispersive and varies approximately like f ; hence we will 

take a   approximation of its variation over the frequency range of interest using as reference 

the A0 wavespeed at 100 kHz, i.e., 
0

0

100 kHz
955 m/s

A

A

f
c


 , i.e., 

 0 ( ) 955 m/s
100 kHzA

f
c f

 
   
 

                   0 100 kHzf   (4) 

Substituting Eq. (4) into Eq.  (3) we get 

 0 ( )
2

B
B A B

k
f c f


  (5) 

Upon solution, we find 0 2.65 kHzA
Bf  , which is much lower than the S0 frequency 

0 92 kHzS
Bf  . It is apparent that, if a phased array designed for S0 waves at 90 kHz  were to be 

used with A0 waves, than its operating frequency would have to be limited to no more than 
0 2.65 kHzA

Bf   in order to avoid spatial aliasing. 
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m
 kNQ 107

1

m


In the limit, kB is kNQ:

kB kNQ B
2 

kB
 B 59 mm

If we consider the axial (S0) waves only, then the upper frequency at which this may work with 
axial waves is:

fB
c kB

2 
 fB 92 kHz

It is apparent that this upper frequency for the S0 waves is the same as the tuning frequency, which 
is not surprising since the phased array was designed for S0 waves tuned at 90 kHz. 

This aspect highlights an inherent shortcomings of building an optimal array, i.e. taking the optimal 
half wavelength value for the array pitch d. If one selects the optimum pitch equal to half the tuning 
wavelength, then one is limited by the fact that frequencies above the tuning frequency will be 
aliased. To overcome this effect, it would be more prudent to keep the pitch below the optimum 
pitch (sacrifizing some aperture in the process), and thus obtain a higher sampling and hence 
Nyquist frequency.  For example, if we take the pitch to be 0.4 , then we get:

d' 0.4  kNQ'


d'
 kB' kNQ' fB'

c kB'

2 


d' 23 mm kNQ' 134
1

m
 fB' 115 kHz

PROBLEM 13.6 SOLUTION

Units

Aluminum plate E 72.4 GPa  2780
kg

m
3

  0.33 d1
1

2
mm

S0 wave speed in aluminum strip at 
A0 rejection frequency of 92 kHz is

c 5.4
mm

s
 c 5.4

mm

s


fS0 92 kHz f fS0 
c

f
 d



2


 59 mm d 29 mm

ks
2 

d
 kNQ



d

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However, the same phased array will also sense other waves, e.g., A0 waves. 

cA0_100kHz 955
m

s


cA0 f( ) cA0_100kHz
f

100 kHz


Solving the wavenumber equation for f, one gets:

fB_A0 f( )
kB

2 
cA0 f( ) fB_A0 2.65 kHz( ) 2.65 kHz
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