
CHAPTER 2 -- PROBLEMS AND EXERCISES 
 
 

1. Explain the difference between tensor notations and Voigt matrix notations in the writing 
of the compliance and stiffness matrices 

Solution 

The tensor notations write the compliance and stiffness coefficients as 4th order tensors, i.e., 
indexed coefficients that depend on four independent indices. Each of these indices takes values 
1 through 3, according to the three independent directions of the three-dimensional space. The 
reason for the compliance and stiffness matrices having four independent indices is that the strain 
and stress are shown as 2nd order tensors, i.e., variables that depend on two independent indices 
each. On this argument, one arrives at the tensor equations (2.1) and (2.2). However, through 
symmetry arguments, it can be shown that the strain and stress matrices only have six 
independent variables each. For example, the strain matrix has three direct strains and three shear 
strains. This observation permits simplification of notations, which leads to the Voigt matrix 
notations. The six independent strains and stresses are presented in columns, i.e. single-index 
variables. For example, 1 2 6, , ,S S S . Hence, the 4th order compliance and stiffness tensors 
reduce to 2nd order tensors, i.e., matrices, as illustrated in Equations (2.22) through (2.27).  

 

 

 

2. Explain the following difference in subscripts usage: the (1,3) term in the compliance 
matrix is denoted 13s , whereas the (1,3) term in the piezoelectric coefficient matrix is 
denoted 31d  

Solution 

The difference in subscript usage originates in the definition of the two physical constants. 
Reference is made to Equations (2.22) and (2.23). On one hand, the compliance matrix [ ]s  is 
defined directly by Equation (2.22) as strain columns obtained when a unit stress is applied one 
at a time in each of the six major directions. On the other hand, the piezoelectric coefficient 
matrix [ ]d  is defined by Equation (2.23) as electric displacement columns obtained when a unit 
stress is applied one at a time in each of the six major directions. The piezoelectric coefficient 
matrix that appears in Equation (2.22) is the transpose of the piezoelectric coefficient matrix 
defined in Equation (2.23). This fact is apparent in Equation (2.26), which is the matrix 
equivalent of Equation (2.22); this equation shows the term [ ]td . For these reasons, the (1,3) 
term in Equation (2.22) is denoted 31d . 

 

 

3. Calculate the spontaneous strain, SS, and the spontaneous polarization, PS, for the barium 
titanate lattice shown in Figure 2.10. 
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Figure 2.9 Ionic shifts inducing spontaneous strain and spontaneous polarization in barium 

titanate 

Solution 
(a) Spontaneous strain is the calculating by assuming that the undistorted cell height was a, while 
the distorted cell height is c. Hence, 
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(b) Spontaneous polarization is defined as the polarization per unit volume. The polarization is 
calculated as the sum of the dipole moments of each ion, weighted according to their 
contribution to the unit cell. Thus, 
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where 191.602 10  Ce −= ×  is the value of the unit charge and 121 pm 10  m−= . 
The total polarization is  
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Thus, the spontaneous polarization is 
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This predicted value is not too far off from the experimental value of 20.250 C/m . 
 


