CHAPTER 3 -- PROBLEMS AND EXERCISES

Problem 1: Prove that $u(t)=A \cos \omega_{n} t+B \sin \omega_{n} t$ can be also expressed as $u(t)=C \cos \left(\omega_{n} t+\psi\right)$, and find the relationship between A, B, C, and ψ

Solution

Expand $u(t)=C \cos \left(\omega_{n} t+\psi\right)$ to get
$u(t)=C \cos \left(\omega_{n} t+\psi\right)=C \cos \omega_{n} t \cos \psi-C \sin \omega_{n} t \sin \psi$
Group coefficients to get
$u(t)=(C \cos \psi) \cos \omega_{n} t+(-C \sin \psi) \sin \omega_{n} t$
Identify the coefficients of $\cos \omega_{n} t$ and $\sin \omega_{n} t$ to obtain:
$A=C \cos \psi$ and $B=-C \sin \psi$
Resolve to obtain
$C=\sqrt{A^{2}+B^{2}}$
$\psi=\operatorname{angle}(A,-B)$ or $\psi=\arg (A-i B)$

PROBLEM 3.1 SOLUTION

Here are some examples of using the absolute value and angle or arg functions:
A := 3
B := 4
$\arg (\mathrm{A}+-\mathrm{i} \cdot \mathrm{B})=-53.13 \mathrm{deg}$
$|A+-i \cdot B|=5$
angle $(A,-B)=306.87 \mathrm{deg}$
$A:=3 \quad B:=-4$
$\arg (\mathrm{A}+-\mathrm{i} \cdot \mathrm{B})=53.13 \mathrm{deg}$
$|A+-i \cdot B|=5$
angle $(\mathrm{A},-\mathrm{B})=53.13 \mathrm{deg}$
$\mathrm{A}:=-3 \quad \mathrm{~B}:=4 \quad \arg (\mathrm{~A}+-\mathrm{i} \cdot \mathrm{B})=-126.87 \operatorname{deg} \quad|\mathrm{~A}+-\mathrm{i} \cdot \mathrm{B}|=5$
angle $(A,-B)=233.13 \mathrm{deg}$
$A:=-3 \quad B:=-4 \quad \arg (A+-i \cdot B)=126.87 \operatorname{deg} \quad|A+-\mathrm{i} \cdot \mathrm{B}|=5$
angle $(A,-B)=126.87 \mathrm{deg}$

Problem 2: Prove that $m \ddot{u}(t)+c \dot{u}(t)+k u(t)=0$ can be also expressed as $\ddot{u}(t)+2 \zeta \omega_{n} \dot{u}(t)+\omega_{n}^{2} u(t)=0$ and derive the relations between the constants in the two equations Solution
Start with

$$
m \ddot{u}(t)+c \dot{u}(t)+k u(t)=0
$$

Divide by m to get
$\ddot{u}(t)+\frac{c}{m} \dot{u}(t)+\frac{k}{m} u(t)=0$
Recall Eq. (3.31), i.e., $c_{c r}=2 \omega_{n} m=2 \sqrt{m k}$ and $\zeta=c / c_{c r}$. express c as $c=\zeta c_{c r}=\zeta 2 \omega_{n} m$. Then, recall Eq. (3.15), i.e., $\omega_{n}^{2}=\frac{k}{m}$. Upon substitution, get
$\ddot{u}(t)+\frac{2 \zeta \omega_{n} m}{m} \dot{u}(t)+\frac{k}{m} u(t)=0$
and finally,
$\ddot{u}(t)+2 \zeta \omega_{n} \dot{u}(t)+\omega_{n}^{2} u(t)=0$

Problem 3: Prove that $u(t)=C_{1} e^{\left(-\zeta \omega_{n}+i \omega_{d}\right) t}+C_{2} e^{\left(-\zeta \omega_{n}-i \omega_{d}\right) t}$ can be rewritten as $u(t)=C e^{-\zeta \omega_{n} t} \cos \left(\omega_{d} t+\psi\right)$ and derive the relations between the constants in the two equations

Solution

Expand and group $u(t)=C_{1} e^{\left(-\zeta \omega_{n}+i \omega_{d}\right) t}+C_{2} e^{\left(-\zeta \omega_{n}-i \omega_{d}\right) t}$ to get
$u(t)=C_{1} e^{\left(-\zeta \omega_{n}+i \omega_{d}\right) t}+C_{2} e^{\left(-\zeta \omega_{n}-i \omega_{d}\right) t}=e^{-\zeta \omega_{n} t}\left(C_{1} e^{i \omega_{d} t}+C_{2} e^{-i \omega_{d} t}\right)$
Use Euler identity $e^{i \alpha}=\cos \alpha+i \sin \alpha$ to write

$$
\begin{aligned}
C_{1} e^{i \omega_{d} t}+C_{2} e^{-i \omega_{d} t} & =C_{1}\left(\cos \omega_{d} t+\sin \omega_{d} t\right)+C_{2}\left(\cos \omega_{d} t-\sin \omega_{d} t\right) \\
& =\left(C_{1}+C_{2}\right) \cos \omega_{d} t+\left(C_{1}-C_{2}\right) \sin \omega_{d} t
\end{aligned}
$$

Now, consider $u(t)=C e^{-\zeta \omega_{n} t} \cos \left(\omega_{d} t+\psi\right)$ and expand it to get

$$
\begin{aligned}
u(t) & =C e^{-\zeta \omega_{n} t} \cos \left(\omega_{d} t+\psi\right)=C e^{-\zeta \omega_{n} t}\left(\cos \omega_{d} t \cos \psi-\sin \omega_{d} t \sin \psi\right) \\
& =e^{-\zeta \omega_{n} t}\left[(C \cos \psi) \cos \omega_{d} t+(-C \sin \psi) \sin \omega_{d} t\right]
\end{aligned}
$$

Identifying coefficients between the two expressions, we establish

$$
\begin{aligned}
& C_{1}+C_{2}=C \cos \psi \\
& C_{1}-C_{2}=-C \sin \psi
\end{aligned}
$$

Upon solution,

$$
\begin{aligned}
& C_{1}=\frac{1}{2} C(\cos \psi-\sin \psi) \\
& C_{2}=\frac{1}{2} C(\cos \psi+\sin \psi)
\end{aligned}
$$

Conversely,

$$
\begin{aligned}
& C=\sqrt{\left(C_{1}+C_{2}\right)^{2}+\left(C_{1}-C_{2}\right)^{2}} \\
& \psi=\text { angle }\left[\left(C_{1}+C_{2}\right),\left(-C_{1}+C_{2}\right)\right] \text { or } \psi=\arg \left[\left(C_{1}+C_{2}\right)+i\left(-C_{1}+C_{2}\right)\right]
\end{aligned}
$$

Problem 4: Prove that when damping equals critical damping $(\zeta=1)$, the solution of $\ddot{u}(t)+2 \zeta \omega_{n} \dot{u}(t)+\omega_{n}^{2} u(t)=0$ is $u(t)=\left(C_{1}+C_{2} t\right) e^{-\omega_{n} t}$

Solution

Recall Eq. (3.30), $\ddot{u}(t)+2 \zeta \omega_{n} \dot{u}(t)+\omega_{n}^{2} u(t)=0$, and the characteristic equation (3.32), $\lambda^{2}+2 \zeta \omega_{n} \lambda+\omega_{n}^{2}=0$. If $\zeta=1$, then these two equations become

$$
\begin{gathered}
\ddot{u}(t)+2 \omega_{n} \dot{u}(t)+\omega_{n}^{2} u(t)=0 \\
\lambda^{2}+2 \omega_{n} \lambda+\omega_{n}^{2}=0
\end{gathered}
$$

The characteristic equation has the double root, $\lambda_{1}=\lambda_{2}=-\omega_{n}$.
The general ODE theory shows that if the characteristic equation has a double root, say a, then both $e^{a t}$ and $t e^{a t}$ are solutions of the ODE. Indeed, assume the ODE is $\ddot{u}(t)-2 a \dot{u}(t)+a^{2} u(t)=0$, which has the characteristic equation $\lambda^{2}-2 a \lambda+a^{2}=0$ with the double root $\lambda_{1}=\lambda_{2}=a$. Let's verify that both $u_{1}=e^{a t}$ and $u_{2}=t e^{a t}$ are solutions. The proof for u_{1} is easily obtained through direct substitution and will not be elaborated here. The proof for u_{2} is obtained by substitution as follows:
$u_{2}=t e^{a t}$
$u_{2}^{\prime}=\left(t e^{a t}\right)^{\prime}=e^{a t}+t a e^{a t}$
$u_{2}^{\prime \prime}=\left(e^{a t}+t a e^{a t}\right)^{\prime}=a e^{a t}+a e^{a t}+t a^{2} e^{a t}=2 a e^{a t}+t a^{2} e^{a t}$
The notations ()$^{\prime}$ and ()$^{\prime \prime}$ were used to signify first and second derivatives. Upon substitution into the differential equation, we get
$\left(2 a e^{a t}+t a^{2} e^{a t}\right)-2 a\left(e^{a t}+t a e^{a t}\right)+a^{2} t e^{a t}$
$=2 a e^{a t}+t^{2} e^{a t}-2 a e^{a t}-2 a t a e^{a t}+a^{2} t e^{a t}=0$
Thus we have proved that both $u_{1}=e^{a t}$ and $u_{2}=t e^{a t}$ are solutions. Hence, the general solution is a linear combination of these two solutions, i.e.,
$u(t)=\left(C_{1}+C_{2} t\right) e^{a t}$
To finalize the proof of the exercise, simply observer that $a=-\omega_{n}$. Hence, the general solution is
$u(t)=\left(C_{1}+C_{2} t\right) e^{-\omega_{n} t}$

Problem 5: Prove that the particular solution of $\ddot{u}(t)+\omega_{n}^{2} u(t)=\hat{f} \cos \omega t \quad$ is $u_{p}(t)=\frac{1}{-\omega^{2}+\omega_{n}^{2}} \hat{f} \cos \omega t$

Solution

By ODE theory, a particular solution is any solution that satisfies the inhomogeneous equation. One usually seeks particular solutions of the same for as the right hand side of the inhomogeneous equation. In our case, we seek a particular solution made up of trigonometric functions, i.e., of the form
$u_{p}(t)=A \cos \omega t+B \sin \omega t$
Upon substitution in the differential equation, we write
$-\omega^{2} A \cos \omega t-\omega^{2} B \sin \omega t+\omega_{n}^{2} A \cos \omega t+\omega_{n}^{2} B \sin \omega t=\hat{f} \cos \omega t$
Identifying coefficients of $\cos \omega t$ and $\sin \omega t$ we can solve for A, B to get

$$
A=\frac{\hat{f}}{-\omega^{2}+\omega_{n}^{2}} \quad B=0 \quad\left(\omega \neq \omega_{n}\right)
$$

Substitution of A, B gives the particular solution in the desired form, $u_{p}(t)=\frac{1}{-\omega^{2}+\omega_{n}^{2}} \hat{f} \cos \omega t$

Problem 6: Prove that using Eq. (3.106) in conjunction with Eqs. (3.15), (3.31), (3.97), (3.98), (3.100) yields the response amplitude at the quadrature point as $\left|\hat{u}_{90}\right|=\hat{F} / c \omega_{n}$

Solution

Recall
$\omega_{n}=\sqrt{\frac{k}{m}} \quad$ or $\quad \omega_{n}^{2}=\frac{k}{m}$
$\zeta=c / c_{c r} \quad c_{c r}=2 \omega_{n} m=2 \sqrt{m k}$
$u_{s t}=\frac{\hat{F}}{k}$
$p=\frac{\omega}{\omega_{n}}$
$\hat{u}(p)=u_{s t} H(p)$
$|H(1)|=M_{90}=\frac{1}{2 \zeta}$
Evaluating the magnitude of Eq. (3.100) at the quadrature point, $p=1$, yields
$\left|\hat{u}_{90}\right|=|\hat{u}(1)|=u_{\text {st }}|H(1)|$
Using Eq. (3.106) gives
$\left|\hat{u}_{90}\right|=|\hat{u}(1)|=u_{s t} \frac{1}{2 \zeta}$
Substituting into Eq. (3.97) yields
$\left|\hat{u}_{90}\right|=\frac{\hat{F}}{k} \frac{1}{2 \zeta}$
Using Eq. (3.31) gives
$2 \zeta k=2 \frac{c}{c_{c r}} k=2 \frac{c}{2 \sqrt{m k}} k=c \sqrt{\frac{k}{m}}=c \omega_{n}$
Upon substitution, we obtain the desired expression
$\left|\hat{u}_{90}\right|=\frac{\hat{F}}{c \omega_{n}}$

Problem 7: Prove that, for lightly damped systems, the bandwidth of the frequency response function $H(p)=\frac{1}{-p^{2}+i 2 \zeta p+1}$ takes the simple expression $\Delta \omega=\omega_{U}-\omega_{L} \cong 2 \zeta \omega_{n}$.

Solution

Recall the bandwidth expression of Eq. (3.112), i.e., $\Delta \omega=\omega_{U}-\omega_{L}$ where ω_{U} and ω_{L} are the lower and upper half-power frequencies (3 dB points) located to the left and right of the resonance frequency. The half-power points correspond to points where the amplitude has decreased by 3 dB i.e., by a factor $\sqrt{2}$. The amplitude of the frequency response function $H(p)=\frac{1}{-p^{2}+i 2 \zeta p+1}$ is given by Eq. (3.101), i.e., $|H(p)|=\frac{1}{\sqrt{\left(1-p^{2}\right)^{2}+4 \zeta^{2} p^{2}}}$.

For lightly damped systems, the amplitude at resonance is well approximated by the amplitude at $p=1$, which is $|H(1)|=1 / 2 \zeta$. At the half-power points, the amplitude is decreased by a factor of $\sqrt{2}$, i.e., $\left|H\left(p_{1}\right)\right|=\left|H\left(p_{2}\right)\right|=\frac{1}{2 \sqrt{2} \zeta}$
Imposing this condition, yields the equation
$\sqrt{\left(1-p^{2}\right)^{2}+4 \zeta^{2} p^{2}}=2 \sqrt{2} \zeta$
Hence, we have to solve the equation
$\left(1-p^{2}\right)^{2}+4 \zeta^{2} p^{2}=8 \zeta^{2}$
Upon expansion, we get
$\left(1-p^{2}\right)^{2}+4 \zeta^{2} p^{2}-8 \zeta^{2}=0$
or
$1-2 p^{2}+p^{4}+4 \zeta^{2} p^{2}-8 \zeta^{2}=0$
or
$p^{4}-2\left(1-2 \zeta^{2}\right) p^{2}+1-8 \zeta^{2}=0$
We solve this quadratic equation in p^{2}, i.e.,

$$
\left(p^{2}\right)_{1,2}=\left(1-2 \zeta^{2}\right) \pm \sqrt{\left(1-2 \zeta^{2}\right)^{2}-\left(1-8 \zeta^{2}\right)}
$$

Hence,

$$
p_{2}^{2}-p_{1}^{2}=2 \sqrt{\left(1-2 \zeta^{2}\right)^{2}-\left(1-8 \zeta^{2}\right)}
$$

Upon expansion

$$
\begin{aligned}
p_{2}^{2}-p_{1}^{2} & =2 \sqrt{\not}-4 \zeta^{2}+4 \zeta^{4}-\neq 8 \zeta^{2} \\
& =2 \sqrt{4 \zeta^{2}+4 \zeta^{4}}
\end{aligned}
$$

Using the light damping approximation ($\zeta \ll 1$) we ignore the term in ζ^{4} and write $p_{2}^{2}-p_{1}^{2}=2 \sqrt{4 \zeta^{2}+4 \zeta^{4}} \cong 2 \sqrt{4 \zeta^{2}}$
The left hand side can be expanded into sum and difference product, i.e.,
$\left(p_{2}+p_{1}\right)\left(p_{2}-p_{1}\right) \cong 2 \sqrt{4 \zeta^{2}}$
For light damping, the p_{1} and p_{2} values are approximately balanced about the resonance point $p=1$, and thus $p_{1}+p_{2} \cong 2$. Hence, the above expression becomes
$\left(p_{2}-p_{1}\right) \cong \sqrt{4 \zeta^{2}}=2 \zeta$
In terms of physical frequencies, the above expression is written as

$$
\Delta \omega=\omega_{U}-\omega_{L} \cong 2 \zeta \omega_{n}
$$

The proof is complete.

PROBLEM 3.7 SOLUTION

Here is an example of plotting the H function for various damping ratios

$$
\begin{aligned}
& \mathrm{I}:=3 \quad \mathrm{~N}:=100 \quad \text { emin }:=-2 \quad \text { emax }:=- \text { emin } \quad \text { de }:=\frac{\mathrm{emax}-\mathrm{emin}}{\mathrm{~N} \cdot \mathrm{I}} \\
& \mathrm{j}:=0 . .3 \quad \zeta_{0}:=0.1 \quad \zeta_{1}:=0.2 \quad \zeta_{2}:=0.5 \quad \zeta_{3}:=0.7_{\zeta}=\left(\begin{array}{c}
0.2 \\
0.5 \\
0.7
\end{array}\right) \\
& i:=0 \text {..I.N } \quad e_{i}:=\operatorname{emin}+i \cdot d e \quad p_{i}:=10^{e_{i}} \\
& \text { create a power of } 10 \text { range } \\
& \text { of } p \text { values to get sufficient } \\
& \text { points around the peak } \\
& H_{i, j}:=\frac{1}{-\left(p_{i}\right)^{2}+i \cdot 2 \cdot \zeta_{j} \cdot p_{i}+1}
\end{aligned}
$$

Problem 8: Prove that the power at resonance of a lightly-damped 1-dof system is given by $P_{\text {max }}=\frac{1}{2} \hat{F}^{2} / c$

Solution

Recall Eq. (3.156) which gives the power at resonance as

$$
P_{\max }=\frac{1}{2} c \omega_{r}^{2}\left|\hat{u}_{r}\right|^{2}
$$

For lightly damped systems, the resonance point can be sufficiently well approximated by the quadrature point, i.e., $\omega_{r} \cong \omega_{90}=\omega_{n}, \hat{u}_{r} \cong \hat{u}_{90}$. Hence,
$P_{\text {max }} \cong \frac{1}{2} c \omega_{n}^{2}\left|\hat{u}_{90}\right|^{2}$
The response at quadrature point, as proven in Problem 6 above, is given by
$\left|\hat{u}_{90}\right|=\frac{\hat{F}}{c \omega_{n}}$
Upon substitution, we get
$P_{\max } \cong \frac{1}{2} c \omega_{n}^{2}\left(\frac{\hat{F}}{c \omega_{n}}\right)^{2}=\frac{1}{2} c \omega_{n}^{2} \frac{\hat{F}^{2}}{c^{2} \omega_{n}^{2}}=\frac{1}{2} \frac{\hat{F}^{2}}{c}$

Problem 9: Find the first, second, and third natural frequencies of in-plane axial vibration of a steel beam of thickness $h_{1}=2.6 \mathrm{~mm}$, width $b_{1}=8 \mathrm{~mm}$, length $l=100 \mathrm{~mm}$, modulus $E=200$ GPa, and density $\rho=7.750 \mathrm{~g} / \mathrm{cm}^{3}$. The beam is in free-free boundary conditions. Then, consider double the thickness ($h_{2}=5.2 \mathrm{~mm}$), wider width ($b_{2}=19.6 \mathrm{~mm}$), and then both. Recalculate the three frequencies for these other combinations of thickness and width. Discuss your results

Solution
Recall Eq. (3.192), i.e., $f_{j}=j \frac{1}{2 l} \sqrt{\frac{E A}{m}}, \quad j=1,2,3$.
Use geometric dimensions and material properties to calculate
$A=20.8 \mathrm{~mm}^{2} ; E A=4.16 \mathrm{MN} ; m=0.161 \mathrm{~kg} / \mathrm{m}$
Substitute in the frequency equation to get

$$
f_{1}=25.4 \mathrm{kHz} ; f_{2}=50.8 \mathrm{kHz} ; f_{3}=76.2 \mathrm{kHz}
$$

Double the thickness

$$
A=41.6 \mathrm{~mm}^{2} ; E A=8.32 \mathrm{MN} ; m=0.322 \mathrm{~kg} / \mathrm{m}
$$

Substitute in the frequency equation to get

$$
f_{1}=25.4 \mathrm{kHz} ; f_{2}=50.8 \mathrm{kHz} ; f_{3}=76.2 \mathrm{kHz}
$$

The frequencies do not change because the changes in $E A$ are compensated by the changes in m.
Double the width

$$
A=41.6 \mathrm{~mm}^{2} ; E A=8.32 \mathrm{MN} ; m=0.322 \mathrm{~kg} / \mathrm{m}
$$

Substitute in the frequency equation to get

$$
f_{1}=25.4 \mathrm{kHz} ; f_{2}=50.8 \mathrm{kHz} ; f_{3}=76.2 \mathrm{kHz}
$$

The frequencies do not change because the changes in EA are compensated by the changes in m.
Double the thickness and the width
$A=83.2 \mathrm{~mm}^{2} ; E A=16.64 \mathrm{MN} ; m=0.645 \mathrm{~kg} / \mathrm{m}$
Substitute in the frequency equation to get
$f_{1}=25.4 \mathrm{kHz} ; f_{2}=50.8 \mathrm{kHz} ; f_{3}=76.2 \mathrm{kHz}$
The frequencies do not change because the changes in EA are compensated by the changes in m.

$$
\begin{array}{ll}
& \mathrm{h} 1:=2.6 \cdot 10^{-3} \quad \mathrm{~b} 1:=8 \cdot 10^{-3} \quad \mathrm{~L}:=100 \cdot 10^{-3} \quad \mathrm{E}:=200 \cdot 10^{9} \quad \rho:=7750 \\
\mathrm{~h}:=\mathrm{h} 1 \quad \mathrm{~b}:=\mathrm{b} 1 & \mathrm{EA}:=\mathrm{E} \cdot \mathrm{~A} \\
\mathrm{~A}:=\mathrm{b} \cdot \mathrm{~h} & \mathrm{~m}:=\rho \cdot \mathrm{A} \\
\mathrm{~A}=20.80010^{-6} & \mathrm{EA}=4.160 \times 10^{6} \quad \mathrm{~m}=0.161 \\
\mathrm{j}:=1 . .3 & \\
\mathrm{f}_{\mathrm{j}}:=\mathrm{j} \cdot \frac{1}{2 \cdot \mathrm{~L}} \cdot \sqrt{\frac{\mathrm{EA}}{\mathrm{~m}}} \quad \mathrm{f}=\left(\begin{array}{l}
25.4 \\
50.8 \\
76.2
\end{array}\right) 10^{3}
\end{array}
$$

$$
\begin{array}{lll}
\mathrm{h}:=2 \cdot \mathrm{~h} 1 \quad \mathrm{~b}:=\mathrm{b} 1 & & \\
\mathrm{~A}:=\mathrm{b} \cdot \mathrm{~h} & \mathrm{EA}:=\mathrm{E} \cdot \mathrm{~A} & \mathrm{~m}:=\rho \cdot \mathrm{A} \\
\mathrm{~A}=41.60010^{-6} & \mathrm{EA}=8.320 \times 10^{6} & \mathrm{~m}=0.322 \\
\mathrm{j}:=1 . .3 & &
\end{array}
$$

$$
\mathrm{f}_{\mathrm{j}}:=\mathrm{j} \cdot \frac{1}{2 \cdot \mathrm{~L}} \cdot \sqrt{\frac{\mathrm{EA}}{\mathrm{~m}}}
$$

$$
\mathrm{f}=\left(\begin{array}{l}
25.4 \\
50.8 \\
76.2
\end{array}\right) 10^{3}
$$

$$
\mathrm{h}:=\mathrm{h} 1 \quad \mathrm{~b}:=2 \cdot \mathrm{~b} 1
$$

$$
\begin{array}{lll}
\mathrm{A}:=\mathrm{b} \cdot \mathrm{~h} & \mathrm{EA}:=\mathrm{E} \cdot \mathrm{~A} & \mathrm{~m}:=\rho \cdot \mathrm{A} \\
\mathrm{~A}=41.60010^{-6} & \mathrm{EA}=8.320 \times 10^{6} & \mathrm{~m}=0.322 \\
\mathrm{j}:=1 . .3 & &
\end{array}
$$

$$
\mathrm{f}_{\mathrm{j}}:=\mathrm{j} \cdot \frac{1}{2 \cdot L} \cdot \sqrt{\frac{E A}{m}} \quad \mathrm{f}=\left(\begin{array}{c}
25.4 \\
50.8 \\
76.2
\end{array}\right) 10^{3}
$$

$$
\mathrm{h}:=2 \cdot \mathrm{~h} 1 \quad \mathrm{~b}:=2 \cdot \mathrm{~b} 1
$$

$$
\mathrm{A}:=\mathrm{b} \cdot \mathrm{~h} \quad \mathrm{EA}:=\mathrm{E} \cdot \mathrm{~A} \quad \mathrm{~m}:=\rho \cdot \mathrm{A}
$$

$$
\mathrm{A}=83.20010^{-6}
$$

$$
\mathrm{EA}=1.664 \times 10^{7} \quad \mathrm{~m}=0.645
$$

$$
\mathrm{j}:=1 . .3
$$

$$
\mathrm{f}_{\mathrm{j}}:=\mathrm{j} \cdot \frac{1}{2 \cdot L} \cdot \sqrt{\frac{E A}{m}} \quad \mathrm{f}=\left(\begin{array}{c}
25.4 \\
50.8 \\
76.2
\end{array}\right) 10^{3}
$$

Problem 10: Find all the natural frequencies in the interval 1 kHz to 30 kHz of in-plane axial vibration of a steel beam of thickness $h_{1}=2.6 \mathrm{~mm}$, width $b_{1}=8 \mathrm{~mm}$, length $l=100 \mathrm{~mm}$, modulus $E=200 \mathrm{GPa}$, and density $\rho=7.750 \mathrm{~g} / \mathrm{cm}^{3}$. The beam is in free-free boundary conditions. Then, consider double the thickness ($h_{2}=5.2 \mathrm{~mm}$), wider width ($b_{2}=19.6 \mathrm{~mm}$), and then both. Recalculate the frequencies for these other combinations of thickness and width. Discuss your results

Solution

In view of problem 10, the only axial frequency in the interval 1 kHz to 30 kHz is $f_{1}=25.4 \mathrm{kHz}$. Since the axial frequencies are not affected by changes in thickness and width, this frequency is going to be the same whether one doubles the thickness, the width, or both.

Problem 11: Find the first, second, and third natural frequencies of out-of-plane flexural vibration of a steel beam of thickness $h_{1}=2.6 \mathrm{~mm}$, width $b_{1}=8 \mathrm{~mm}$, length $l=100 \mathrm{~mm}$, modulus $E=200 \mathrm{GPa}$, and density $\rho=7.750 \mathrm{~g} / \mathrm{cm}^{3}$. The beam is in free-free boundary conditions. Then, consider double the thickness ($h_{2}=5.2 \mathrm{~mm}$), wider width ($b_{2}=19.6 \mathrm{~mm}$), and then both. Recalculate the three frequencies for these other combinations of thickness and width. Discuss your results

Solution

Recall Eq. (3.408), i.e., $f_{j}=\frac{1}{2 \pi} z_{j}^{2} \sqrt{\frac{E I}{m l^{4}}} \quad j=1,2,3$
Use geometric dimensions and material properties to calculate

$$
A=20.8 \mathrm{~mm}^{2} ; I=11.717 \mathrm{~mm}^{4} ; E I=2.343 \mathrm{Nm}^{2} ; m=0.161 \mathrm{~kg} / \mathrm{m}
$$

Get the values of γl from Table 3.5. Substitute in the frequency equation to get
$f_{1}=1.358 \mathrm{kHz} ; f_{2}=3.742 \mathrm{kHz} ; f_{3}=7.337 \mathrm{kHz}$

Double the thickness

$A=41.6 \mathrm{~mm}^{2} ; I=93.74 \mathrm{~mm}^{4} ; E I=18.748 \mathrm{Nm}^{2} ; m=0.322 \mathrm{~kg} / \mathrm{m}$
Get the values of γl from Table 3.5. Substitute in the frequency equation to get

$$
f_{1}=2.715 \mathrm{kHz} ; f_{2}=7.485 \mathrm{kHz} ; f_{3}=14.674 \mathrm{kHz}
$$

The frequencies have increased because EI increases as h^{3} whereas m increases only as h. The faster increase in $E I$ has produced increase in frequency.

Double the width

$$
A=41.6 \mathrm{~mm}^{2} ; I=23.43 \mathrm{~mm}^{4} ; E I=4.687 \mathrm{Nm}^{2} ; m=0.322 \mathrm{~kg} / \mathrm{m}
$$

Get the values of γl from Table 3.5. Substitute in the frequency equation to get

$$
f_{1}=1.358 \mathrm{kHz} ; f_{2}=3.742 \mathrm{kHz} ; f_{3}=7.337 \mathrm{kHz}
$$

The frequencies have not increased because both $E I$ and m increase as b.

Double the thickness and the width

$$
A=83.2 \mathrm{~mm}^{2} ; I=187.48 \mathrm{~mm}^{4} ; E I=37.495 \mathrm{Nm}^{2} ; m=0.645 \mathrm{~kg} / \mathrm{m}
$$

Get the values of γl from Table 3.5. Substitute in the frequency equation to get

$$
f_{1}=2.715 \mathrm{kHz} ; f_{2}=7.485 \mathrm{kHz} ; f_{3}=14.674 \mathrm{kHz}
$$

The frequencies have increased in the same amount as for just double the thickness h. This is because $E I$ increases as $b h^{3}$ whereas m increases as $b h$, indicating that thickness increase affects the flexural frequencies but width increase does not.

$$
\mathrm{h} 1:=2.6 \cdot 10^{-3} \quad \mathrm{~b} 1:=8 \cdot 10^{-3} \quad \mathrm{~L}:=100 \cdot 10^{-3} \quad \mathrm{E}:=200 \cdot 10^{9} \quad \rho:=7750
$$

$$
\mathrm{h}:=\mathrm{h} 1 \quad \mathrm{~b}:=\mathrm{b} 1
$$

$$
\mathrm{A}:=\mathrm{b} \cdot \mathrm{~h} \quad \mathrm{I}:=\frac{\mathrm{b} \cdot \mathrm{~h}^{3}}{12} \quad \mathrm{EI}:=\mathrm{E} \cdot \mathrm{I} \quad \mathrm{~m}:=\rho \cdot \mathrm{A}
$$

$$
\mathrm{A}=20.80010^{-6} \quad \mathrm{I}=11.71710^{-12} \quad \mathrm{EI}=2.343 \quad \mathrm{~m}=0.161
$$

$$
\mathrm{j}:=1 . .3 \quad \gamma \mathrm{~L}_{1}:=4.73004074 \quad \gamma \mathrm{~L}_{2}:=7.85320462 \quad \gamma \mathrm{~L}_{3}:=10.9956078
$$

natural frequencies

$$
\mathrm{f}_{\mathrm{j}}:=\frac{1}{2 \cdot \pi} \cdot\left(\gamma \mathrm{~L}_{\mathrm{j}}\right)^{2} \cdot \sqrt{\frac{\mathrm{EI}}{\mathrm{~m} \cdot \mathrm{~L}^{4}}} \quad \mathrm{f}=\left(\begin{array}{c}
1.358 \\
3.742 \\
7.337
\end{array}\right) 10^{3}
$$

$$
\begin{aligned}
& \begin{array}{l}
h:=2 \cdot h 1 \quad b:=b 1 \\
\\
\mathrm{~A}:=\mathrm{b} \cdot \mathrm{~h} \quad \mathrm{I}:=\frac{\mathrm{b} \cdot \mathrm{~h}^{3}}{12} \quad \mathrm{EI}:=\mathrm{E} \cdot \mathrm{I} \\
\mathrm{~A}=41.60010^{-6} \quad \mathrm{I}=93.7410^{-12} \quad \mathrm{EI}=18.748 \\
\mathrm{j}:=1 . .3 \quad \gamma \mathrm{~L}_{1}:=4.73004074 \quad \gamma \mathrm{~L}_{2}:=7.85320462 \quad \mathrm{~m}:=\rho \cdot \mathrm{A} \\
\mathrm{f}_{\mathrm{j}}:=\frac{1}{2 \cdot \pi} \cdot\left(\gamma \mathrm{~L}_{\mathrm{j}}\right)^{2} \cdot \sqrt{\frac{\mathrm{EI}}{\mathrm{~m} \cdot \mathrm{~L}^{4}}} \quad \mathrm{f}=\left(\begin{array}{c}
2.715 \\
7.485 \\
14.674
\end{array}\right) 10^{3}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{h}:=\mathrm{h} 1 \quad \mathrm{~b}:=\mathrm{2} \cdot \mathrm{~b} 1 \\
& \mathrm{~A}:=\mathrm{b} \cdot \mathrm{~h} \quad \mathrm{I}:=\frac{\mathrm{b} \cdot \mathrm{~h}^{3}}{12} \quad \mathrm{EI}:=\mathrm{E} \cdot \mathrm{I} \quad \mathrm{~m}:=\rho \cdot \mathrm{A} \\
& \mathrm{~A}=41.60010^{-6} \quad \mathrm{I}=23.4310^{-12} \quad \mathrm{EI}=4.687 \quad \mathrm{~m}=0.322 \\
& \mathrm{j}:=1 . .3 \quad \gamma \mathrm{~L}_{1}:=4.73004074 \quad \gamma \mathrm{~L}_{2}:=7.85320462 \quad \gamma \mathrm{~L}_{3}:=10.9956078 \\
& \mathrm{f}_{\mathrm{j}}:=\frac{1}{2 \cdot \pi} \cdot\left(\gamma \mathrm{~L}_{\mathrm{j}}\right)^{2} \cdot \sqrt{\frac{\text { EI }}{\mathrm{m} \cdot \mathrm{~L}^{4}}} \quad \mathrm{f}=\left(\begin{array}{l}
1.358 \\
3.742 \\
7.337
\end{array}\right) 10^{3} \\
& \mathrm{~h}:=2 \cdot \mathrm{~h} 1 \quad \mathrm{~b}:=2 \cdot \mathrm{~b} 1 \\
& \mathrm{~A}:=\mathrm{b} \cdot \mathrm{~h} \quad \mathrm{I}:=\frac{\mathrm{b} \cdot \mathrm{~h}^{3}}{12} \quad \mathrm{EI}:=\mathrm{E} \cdot \mathrm{I} \quad \mathrm{~m}:=\rho \cdot \mathrm{A} \\
& A=83.20010^{-6} \quad I=187.4810^{-12} \quad E I=37.495 \quad \mathrm{~m}=0.645 \\
& \mathrm{j}:=1 . .3 \quad \gamma \mathrm{~L}_{1}:=4.73004074 \quad \gamma \mathrm{~L}_{2}:=7.85320462 \quad \gamma \mathrm{~L}_{3}:=10.9956078 \\
& f_{j}:=\frac{1}{2 \cdot \pi} \cdot\left(\gamma L_{j}\right)^{2} \cdot \sqrt{\frac{E I}{m \cdot L^{4}}} \quad f=\left(\begin{array}{c}
2.715 \\
7.485 \\
14.674
\end{array}\right) 10^{3}
\end{aligned}
$$

Problem 12: Find all the natural frequencies in the interval 1 KHz to 30 kHz of out-of-plane flexural vibration of a steel beam of thickness $h_{1}=2.6 \mathrm{~mm}$, width $b_{1}=8 \mathrm{~mm}$, length $l=100 \mathrm{~mm}$, modulus $E=200 \mathrm{GPa}$, and density $\rho=7.750 \mathrm{~g} / \mathrm{cm}^{3}$. The beam is in free-free boundary conditions. Then, consider double the thickness ($h_{2}=5.2 \mathrm{~mm}$), wider width ($b_{2}=19.6 \mathrm{~mm}$), and then both. Recalculate the three frequencies for these other combinations of thickness and width. Discuss your results

Solution

Recall Eq. (3.408), i.e., $f_{j}=\frac{1}{2 \pi} z_{j}^{2} \sqrt{\frac{E I}{m l^{4}}} \quad j=1,2,3 \ldots$
Use geometric dimensions and material properties to calculate
$A=20.8 \mathrm{~mm}^{2} ; I=11.717 \mathrm{~mm}^{4} ; E I=2.343 \mathrm{Nm}^{2} ; m=0.161 \mathrm{~kg} / \mathrm{m}$
Get the values of γl from Table 3.5. Substitute in the frequency equation to get
$f_{1}=1.358 \mathrm{kHz} ; f_{2}=3.742 \mathrm{kHz} ; f_{3}=7.337 \mathrm{kHz}$
$f_{4}=12.128 \mathrm{kHz} ; f_{5}=18.117 \mathrm{kHz} ; f_{6}=25.304 \mathrm{kHz}$
Only the first six frequencies are in the bandwidth of interest ($1-30 \mathrm{kHz}$). The next frequency, $f_{7}=33.689 \mathrm{kHz}$, is outside the bandwidth of interest.

Double the thickness

$A=41.6 \mathrm{~mm}^{2} ; I=93.74 \mathrm{~mm}^{4} ; E I=18.748 \mathrm{Nm}^{2} ; m=0.322 \mathrm{~kg} / \mathrm{m}$
Get the values of γl from Table 3.5. Substitute in the frequency equation to get
$f_{1}=2.715 \mathrm{kHz} ; f_{2}=7.485 \mathrm{kHz} ; f_{3}=14.674 \mathrm{kHz}$
$f_{4}=24.256 \mathrm{kHz}$
Only the first four frequencies are in the bandwidth of interest ($1-30 \mathrm{kHz}$). The next frequency, $f_{5}=36.234 \mathrm{kHz}$, is outside the bandwidth of interest.

Double the width

$$
A=41.60 \mathrm{~mm}^{2} ; I=23.43 \mathrm{~mm}^{4} ; E I=4.687 \mathrm{Nm}^{2} ; m=0.322 \mathrm{~kg} / \mathrm{m}
$$

Get the values of γl from Table 3.5. Substitute in the frequency equation to get

$$
\begin{aligned}
& f_{1}=1.358 \mathrm{kHz} ; f_{2}=3.742 \mathrm{kHz} ; f_{3}=7.337 \mathrm{kHz} \\
& f_{4}=12.128 \mathrm{kHz} ; f_{5}=18.117 \mathrm{kHz} ; f_{6}=25.304 \mathrm{kHz}
\end{aligned}
$$

Only the first six frequencies are in the bandwidth of interest ($1-30 \mathrm{kHz}$). The next frequency, $f_{7}=33.689 \mathrm{kHz}$, is outside the bandwidth of interest. Note that the situation is similar with the original situation since doubling the width does not change the frequencies, as shown in problem 11.

Double the thickness and the with
$A=83.2 \mathrm{~mm}^{2} ; I=187.48 \mathrm{~mm}^{4} ; E I=37.495 \mathrm{Nm}^{2} ; m=0.645 \mathrm{~kg} / \mathrm{m}$
Get the values of γl from Table 3.5. Substitute in the frequency equation to get
$f_{1}=2.715 \mathrm{kHz} ; f_{2}=7.485 \mathrm{kHz} ; f_{3}=14.674 \mathrm{kHz}$
$f_{4}=24.256 \mathrm{kHz}$
Only the first four frequencies are in the bandwidth of interest ($1-30 \mathrm{kHz}$). The next frequency, $f_{5}=36.234 \mathrm{kHz}$, is outside the bandwidth of interest. Note that the situation is similar with the double the thickness situation since only the thickness influences the frequencies, as shown in Problem 11.

$$
\begin{aligned}
& \mathrm{h} 1:=2.6 \cdot 10^{-3} \quad \text { b1 }:=8 \cdot 10^{-3} \quad \mathrm{~L}:=100 \cdot 10^{-3} \quad \mathrm{E}:=200 \cdot 10^{9} \quad \rho:=7750 \\
& \mathrm{~h}:=\mathrm{h} 1 \quad \mathrm{~b}:=\mathrm{b} 1 \\
& \mathrm{~A}:=\mathrm{b} \cdot \mathrm{~h} \quad \mathrm{I}:=\frac{\mathrm{b} \cdot \mathrm{~h}^{3}}{12} \quad \mathrm{EI}:=\mathrm{E} \cdot \mathrm{I} \quad \mathrm{~m}:=\rho \cdot \mathrm{A} \\
& A=20.80010^{-6} \quad \mathrm{I}=11.71710^{-12} \quad \mathrm{EI}=2.343 \quad \mathrm{~m}=0.161 \\
& \mathrm{j}:=1 . .7 \quad \gamma \mathrm{LL}(\mathrm{j}):=(2 \cdot \mathrm{j}+1) \cdot \frac{\pi}{2} \\
& \gamma \mathrm{~L}_{1}:=4.73004074 \quad \gamma \mathrm{~L}_{2}:=7.85320462 \quad \gamma \mathrm{~L}_{3}:=10.9956078 \\
& \gamma \mathrm{~L}_{4}:=14.1371655 \quad \gamma \mathrm{~L}_{5}:=17.2787597 \quad \gamma \mathrm{~L}_{6}:=\gamma \mathrm{LL}(6) \quad \gamma \mathrm{L}_{7}:=\gamma \mathrm{LL}(7) \\
& \mathrm{f}_{\mathrm{j}}:=\frac{1}{2 \cdot \pi} \cdot\left(\gamma \mathrm{~L}_{\mathrm{j}}\right)^{2} \cdot \sqrt{\frac{E I}{\mathrm{~m} \cdot \mathrm{~L}^{4}}} \quad \quad \mathrm{f}_{\mathrm{j}}= \\
& \begin{array}{|r|}
\hline 1.358 \\
\hline 3.742 \\
\hline 7.337 \\
\hline 12.128 \\
\hline 18.117 \\
\hline 25.304 \\
\hline 33.689 \\
\hline
\end{array} \\
& \mathrm{~h}:=2 \cdot \mathrm{~h} 1 \quad \mathrm{~b}:=\mathrm{b} 1 \\
& \begin{array}{ll}
2 \cdot \mathrm{~h} 1 \mathrm{~b}:=\mathrm{b} 1 & \mathrm{EI}:=\mathrm{E} \cdot \mathrm{I} \quad \mathrm{~b} \cdot \mathrm{~h}^{3} \\
\mathrm{~A}:=\mathrm{b} \cdot \mathrm{~h} & \mathrm{I}:=\rho \cdot \mathrm{A}
\end{array} \\
& \mathrm{~A}=41.60010^{-6} \quad \mathrm{I}=93.7410^{-12} \quad \mathrm{EI}=18.748 \quad \mathrm{~m}=0.322 \\
& f_{j}:=\frac{1}{2 \cdot \pi} \cdot\left(\gamma L_{j}\right)^{2} \cdot \sqrt{\frac{E I}{m} \cdot L^{4}} \quad \mathrm{f}=\left(\begin{array}{c}
2.715 \\
7.485 \\
14.674 \\
24.256 \\
36.234 \\
50.608 \\
67.378
\end{array}\right) 10^{3}
\end{aligned}
$$

$$
\mathrm{f}_{\mathrm{j}}:=\frac{1}{2 \cdot \pi} \cdot\left(\gamma \mathrm{~L}_{\mathrm{j}}\right)^{2} \cdot \sqrt{\frac{\mathrm{EI}}{\mathrm{~m} \cdot \mathrm{~L}^{4}}} \quad \mathrm{f}=\left(\begin{array}{c}
2.715 \\
7.485 \\
14.674 \\
24.256 \\
36.234 \\
50.608 \\
67.378
\end{array}\right) 10^{3}
$$

$$
\begin{aligned}
& \text { h := h1 } \\
& \text { b := 2•b1 } \\
& \mathrm{A}:=\mathrm{b} \cdot \mathrm{~h} \\
& \mathrm{I}:=\frac{\mathrm{b} \cdot \mathrm{~h}^{3}}{12} \\
& \text { EI := E•I } \\
& m:=\rho \cdot A \\
& \mathrm{~A}=41.60010^{-6} \quad \mathrm{I}=23.4310^{-12} \\
& \mathrm{EI}=4.687 \\
& \mathrm{~m}=0.322 \\
& \mathrm{f}_{\mathrm{j}}:=\frac{1}{2 \cdot \pi} \cdot\left(\gamma \mathrm{~L}_{\mathrm{j}}\right)^{2} \cdot \sqrt{\frac{\mathrm{EI}}{\mathrm{~m} \cdot \mathrm{~L}^{4}}} \quad \mathrm{f}=\left(\begin{array}{c}
1.358 \\
3.742 \\
7.337 \\
12.128 \\
18.117 \\
25.304 \\
33.689
\end{array}\right) 10^{3} \\
& \mathrm{~h}:=2 \cdot \mathrm{~h} 1 \quad \mathrm{~b}:=2 \cdot \mathrm{~b} 1 \\
& \mathrm{~A}:=\mathrm{b} \cdot \mathrm{~h} \quad \mathrm{I}:=\frac{\mathrm{b} \cdot \mathrm{~h}^{3}}{12} \quad \mathrm{EI}:=\mathrm{E} \cdot \mathrm{I} \quad \mathrm{~m}:=\rho \cdot \mathrm{A} \\
& A=83.20010^{-6} \quad I=187.4810^{-12} \quad E I=37.495 \quad \mathrm{~m}=0.645
\end{aligned}
$$

Problem 13: Consider SH vibration of a steel strip of thickness $h_{1}=2.6 \mathrm{~mm}$, width $b_{1}=8 \mathrm{~mm}$, length $l=100 \mathrm{~mm}$, elastic modulus $E=200 \mathrm{GPa}$, Poisson ratio $v=0.29$, mass density $\rho=7,750 \mathrm{~kg} / \mathrm{m}^{3}$. The strip is in free-free boundary conditions. Find the first, second, and third natural frequencies of SH vibration. Sketch the modeshapes. Next, consider double the thickness ($h_{2}=5.2 \mathrm{~mm}$), wider width ($b_{2}=19.6 \mathrm{~mm}$), and then both. Recalculate the frequencies for these other combinations of thickness and width. Discuss your results

Solution

Recall Eq. (3.509), i.e., $f_{j}=j \frac{1}{2 l} \sqrt{\frac{G A}{m}}, j=1,2,3$.
Use geometric dimensions and material properties to calculate

$$
A=20.8 \mathrm{~mm}^{2} ; G A=1.612 \mathrm{MN} ; m=0.161 \mathrm{~kg} / \mathrm{m}
$$

Substitute in the frequency equation to get

$$
f_{1}=15.8 \mathrm{kHz} ; f_{2}=31.6 \mathrm{kHz} ; f_{3}=47.4 \mathrm{kHz}
$$

Double the thickness

$$
A=41.6 \mathrm{~mm}^{2} ; G A=3.225 \mathrm{MN} ; m=0.322 \mathrm{~kg} / \mathrm{m}
$$

Substitute in the frequency equation to get

$$
f_{1}=15.8 \mathrm{kHz} ; f_{2}=31.6 \mathrm{kHz} ; f_{3}=47.4 \mathrm{kHz}
$$

The frequencies do not change because the changes in EA are compensated by the changes in m. Double the width

$$
A=41.6 \mathrm{~mm}^{2} ; G A=3.225 \mathrm{MN} ; m=0.322 \mathrm{~kg} / \mathrm{m}
$$

Substitute in the frequency equation to get
$f_{1}=15.8 \mathrm{kHz} ; f_{2}=31.6 \mathrm{kHz} ; f_{3}=47.4 \mathrm{kHz}$
The frequencies do not change because the changes in EA are compensated by the changes in m.

Double the thickness and the width

$$
A=83.2 \mathrm{~mm}^{2} ; G A=6.450 \mathrm{MN} ; m=0.645 \mathrm{~kg} / \mathrm{m}
$$

Substitute in the frequency equation to get

$$
f_{1}=15.8 \mathrm{kHz} ; f_{2}=31.6 \mathrm{kHz} ; f_{3}=47.4 \mathrm{kHz}
$$

The frequencies do not change because the changes in EA are compensated by the changes in m.

The modeshapes are given by Eq. (3.515), i.e.,

$$
\begin{equation*}
V_{j}(x)=\sqrt{\frac{2}{m l}} \cos \gamma_{j} x, \quad j=1,2,3, \ldots \tag{3.515}
\end{equation*}
$$

The first, second, and third modeshapes are sketched below.

1st modeshape for $f_{1}=15.8 \mathrm{kHz}$

2nd modeshape for $f_{2}=31.6 \mathrm{kHz}$

3rd modeshape for $f_{3}=47.4 \mathrm{kHz}$

PROBLEM 3.13

$$
\text { ORIGIN }:=1
$$

SH VIBRATION
$\mathrm{h} 1:=2.6 \cdot 10^{-3} \quad$ b1 $:=8 \cdot 10^{-3} \mathrm{~L}:=100 \cdot 10^{-3} \mathrm{E}:=200 \cdot 10^{9} \quad v:=0.29 \quad \rho:=7750$

$$
G:=\frac{E}{2 \cdot(1+v)} \quad G=7.752 \times 10^{10} \quad c S:=\sqrt{\frac{G}{\rho}} \quad c S=3.163 \times 10^{3}
$$

$$
\mathrm{h}:=\mathrm{h} 1 \quad \mathrm{~b}:=\mathrm{b} 1
$$

$$
\begin{array}{lll}
\mathrm{A}:=\mathrm{b} \cdot \mathrm{~h} & \mathrm{GA}:=\mathrm{G} \cdot \mathrm{~A} & \mathrm{~m}:=\rho \cdot \mathrm{A} \\
\mathrm{~A}=20.80010^{-6} & \mathrm{GA}=1.612 \times 10^{6} & \mathrm{~m}=0.161 \\
\mathrm{j}:=1 . .3 & &
\end{array}
$$

$$
f_{j}:=j \cdot \frac{1}{2 \cdot L} \cdot \sqrt{\frac{G A}{m}} \quad f=\left(\begin{array}{c}
15.8 \\
31.6 \\
47.4
\end{array}\right) 10^{3} \quad \omega_{j}:=2 \cdot \pi \cdot f_{j} \quad \gamma_{j}:=\frac{\omega_{j}}{c S}
$$

$$
\mathrm{h}:=2 \cdot \mathrm{~h} 1 \quad \mathrm{~b}:=\mathrm{b} 1
$$

$$
\begin{aligned}
& \mathrm{A}:=\mathrm{b} \cdot \mathrm{~h} \\
& \mathrm{GA}:=\mathrm{G} \cdot \mathrm{~A} \quad \mathrm{~m}:=\rho \cdot \mathrm{A} \\
& A=41.60010^{-6} \\
& G A=3.225 \times 10^{6} \mathrm{~m}=0.322 \\
& \mathrm{j}:=1 . .3 \\
& f_{j}:=j \cdot \frac{1}{2 \cdot L} \cdot \sqrt{\frac{G A}{m}} \quad f=\left(\begin{array}{l}
15.8 \\
31.6 \\
47.4
\end{array}\right) 10^{3}
\end{aligned}
$$

$$
\mathrm{h}:=\mathrm{h} 1 \quad \mathrm{~b}:=2 \cdot \mathrm{~b} 1
$$

$$
\begin{array}{lll}
\mathrm{A}:=\mathrm{b} \cdot \mathrm{~h} & \mathrm{GA}:=\mathrm{G} \cdot \mathrm{~A} & \mathrm{~m}:=\rho \cdot \mathrm{A} \\
\mathrm{~A}=41.60010^{-6} & \mathrm{GA}=3.225 \times 10^{6} & \mathrm{~m}=0.322 \\
\mathrm{j}:=1 . .3 & &
\end{array}
$$

$$
\mathrm{f}_{\mathrm{j}}:=\mathrm{j} \cdot \frac{1}{2 \cdot \mathrm{~L}} \cdot \sqrt{\frac{G A}{m}} \quad \mathrm{f}=\left(\begin{array}{l}
15.8 \\
31.6 \\
47.4
\end{array}\right) 10^{3}
$$

$$
\mathrm{h}:=2 \cdot \mathrm{~h} 1 \quad \mathrm{~b}:=2 \cdot \mathrm{~b} 1
$$

$$
\begin{array}{lll}
A:=b \cdot h & G A:=G \cdot A & m:=\rho \cdot A \\
A=83.20010^{-6} & G A=6.450 \times 10^{6} & m=0.645 \\
j:=1 . .3 & \\
f_{j}:=j \cdot \frac{1}{2 \cdot L} \cdot \sqrt{\frac{G A}{m}} & f=\left(\begin{array}{c}
15.8 \\
31.6 \\
47.4
\end{array}\right) 10^{3}
\end{array}
$$

$$
\mathrm{Nx}:=100 \quad \mathrm{nx}:=1 . . \mathrm{Nx}
$$

$$
\mathrm{xStart}:=0 \quad \mathrm{xEnd}:=\mathrm{L} \quad \mathrm{dx}:=\frac{\mathrm{xEnd}-\mathrm{xStart}}{\mathrm{Nx}-1} \quad \mathrm{x}_{\mathrm{nx}}:=\mathrm{xStart}+\mathrm{nx} \cdot \mathrm{dx}
$$

$$
\mathrm{V}_{\mathrm{j}, \mathrm{nx}}:=\cos \left(\gamma_{\mathrm{j}} \cdot \mathrm{x}_{\mathrm{nx}}\right)
$$

Problem 14: Consider a steel bar of thickness $h=2.6 \mathrm{~mm}$, width $b=8 \mathrm{~mm}$, length $l=100 \mathrm{~mm}$, elastic modulus $E=200 \mathrm{GPa}$, mass density $\rho=7,750 \mathrm{~kg} / \mathrm{m}^{3}$. The bar is excited by a pair of self-equilibrating harmonic forces of amplitude $\hat{F}=100 \mathrm{~N}$ placed at $x_{\mathrm{A}}=40 \mathrm{~mm}$ and $x_{\mathrm{B}}=47 \mathrm{~mm}$; the forces act on the neutral axis, as shown in Figure 3.22. The excitation frequency varies in the range $f=0 \ldots 100 \mathrm{kHz}$ (consider 401 equally spaced values). Consider 1% modal damping in all modes. Find the index N_{u} of the axial frequency that brackets the frequency range of interest. Find and plot the response amplitudes of the displacements at x_{A} and x_{B}, i.e., $u_{A}(\omega), u_{B}(\omega)$ as well as the difference $\Delta u(\omega)=u_{B}(\omega)-u_{A}(\omega)$. Use the fourquads plotting format of Figure 3.8 on page 70.

Figure 3.22 Bar undergoing axial vibration under the excitation of a pair of self-equilibrating axial forces

SOLUTION

The excitation forces acting upon the bar neutral axis are $F_{A}(t)=-\hat{F} e^{i \omega t}, F_{B}(t)=\hat{F} e^{i \omega t}$ (Figure 3.22). The corresponding distributed excitation axial force is expressed as

$$
\begin{equation*}
f_{e}(x, t)=\hat{f}_{e}(x) e^{i \omega t}=\hat{F}\left[-\delta\left(x-x_{A}\right)+\delta\left(x-x_{B}\right)\right] e^{i \omega t} \quad \text { (axial force excitation) } \tag{1}
\end{equation*}
$$

where δ is Dirac's delta function. Recall from Chapter 3, Section 3.3.3 the equation of motion for forced axial vibration

$$
\begin{equation*}
\rho A \ddot{u}(x, t)-E A u^{\prime \prime}(x, t)=f_{e}(x, t) \tag{2}
\end{equation*}
$$

Following the modal expansion method of Chapter 3, Section 3.3.3, we assume

$$
\begin{equation*}
u(x, t)=\sum_{j=1}^{N_{u}} \eta_{j} U_{j}(x) e^{i \omega t} \tag{3}
\end{equation*}
$$

where N_{u} is the number of modes needed to bracket the frequency range of interest $f=0 \ldots 100 \mathrm{kHz}$. The coefficients η_{j} are the modal participation factors and the functions $U_{j}(x)$ are length-normalized orthonormal axial modes that satisfy the relation

$$
\begin{equation*}
\int_{0}^{l} U_{p} U_{q} d x=\delta_{p q} \tag{4}
\end{equation*}
$$

with $\delta_{p q}$ being the Kronecker delta with the property $\delta_{p q}=1$ for $p=q$, and 0 otherwise.
For free-free beams, the length-normalized axial modeshapes can be calculated with the formulae given in Chapter 3, Section 3.3.2.1, Eqs. (3.256), (3.259), i.e.,

$$
\begin{equation*}
U_{j}(x)=A_{j} \cos \left(\gamma_{j} x\right), \quad A_{j}=\sqrt{\frac{2}{l}}, \quad \gamma_{j}=\frac{j \pi}{l}, \quad \omega_{j}=\gamma_{j} \sqrt{\frac{E}{\rho}}, \quad j=1,2,3, \ldots \tag{5}
\end{equation*}
$$

According to Chapter 3, Section 3.3.3.3, Eq. (3.295), the response by modal expansion is

$$
\begin{equation*}
u(x, t)=\frac{1}{\rho A} \sum_{j=1}^{N_{u}} \frac{f_{j}}{-\omega^{2}+2 i \zeta_{j} \omega_{j} \omega+\omega_{j}^{2}} U_{j}(x) e^{\mathrm{i} \omega t} \tag{6}
\end{equation*}
$$

where f_{j} is the modal excitation calculated as

$$
\begin{equation*}
f_{j}=\int_{0}^{l} \hat{f}(x) U_{j}(x) d x, \quad n=1,2,3, \ldots \tag{7}
\end{equation*}
$$

Substitution of Eq. (1) into Eq. (7) yields

$$
\begin{equation*}
f_{j}=\int_{0}^{l} \hat{F}_{P W A S}\left[-\delta\left(x-x_{A}\right)+\delta\left(x-x_{B}\right)\right] U_{j}(x) d x=\hat{F}_{P W A S}\left[-U_{j}\left(x_{A}\right)+U_{j}\left(x_{B}\right)\right] \tag{8}
\end{equation*}
$$

In resolving Eq. (8), the localization property of the Dirac delta function was used, i.e.,

$$
\begin{equation*}
\int \delta\left(x-x_{0}\right) f(x) d x=f\left(x_{0}\right) \tag{9}
\end{equation*}
$$

Substitution of Eq. (7) into Eq. (6) yields the modal participation factor as

$$
\begin{equation*}
\eta_{j}=\frac{\hat{F}}{\rho A} \frac{U_{j}\left(x_{B}\right)-U_{j}\left(x_{A}\right)}{-\omega^{2}+2 i \zeta_{j} \omega_{j} \omega+\omega_{j}^{2}}, \quad j=1,2,3, \ldots N \tag{10}
\end{equation*}
$$

Substitution of Eq. (10) into Eq. (3) followed by evaluation at x_{A} and x_{B} gives the amplitudes

$$
\begin{gather*}
u_{A}(\omega)=\hat{u}\left(x_{A} ; \omega\right)=\sum_{j=1}^{N_{u}} \eta_{j} U_{j}\left(x_{A}\right) \tag{11}\\
\hat{u}_{B}(\omega)=u\left(x_{B} ; \omega\right)=\sum_{j=1}^{N_{u}} \eta_{j} U_{j}\left(x_{B}\right) \tag{12}\\
\Delta u(\omega)=u_{B}(\omega)-u_{A}(\omega) \tag{13}
\end{gather*}
$$

Note that substitution of Eqs. (10), (11), (12) into Eq. (13) and rearrangement yields

$$
\begin{align*}
\Delta u(\omega) & =u_{B}(\omega)-u_{A}(\omega)=\frac{\hat{F}}{\rho A} \sum_{j=1}^{N_{u}} \frac{U_{j}\left(x_{B}\right)-U_{j}\left(x_{A}\right)}{-\omega^{2}+2 i \zeta_{j} \omega_{j} \omega+\omega_{j}^{2}}\left[U_{j}\left(x_{B}\right)-U_{j}\left(x_{A}\right)\right] \tag{14}\\
& =\frac{\hat{F}}{\rho A} \sum_{j=1}^{N_{u}} \frac{\left[-U_{j}\left(x_{A}\right)+U_{j}\left(x_{B}\right)\right]^{2}}{-\omega^{2}+2 i \zeta_{j} \omega_{j} \omega+\omega_{j}^{2}}
\end{align*}
$$

The numerical results are as follows:
The index N_{u} of the axial frequency that brackets the frequency range of interest is $N_{u}=4$. The four axial frequencies that bracket the range $f=0 \ldots 100 \mathrm{kHz}$ are $25.4,50.8,76.2,101.6 \mathrm{kHz}$.

The four axial modes are shown below

The response amplitudes of the displacements at x_{A} and x_{B}, i.e., $u_{\mathrm{A}}(\omega), u_{\mathrm{B}}(\omega)$ as well as the difference $\Delta u(\omega)=u_{\mathrm{B}}(\omega)-u_{\mathrm{A}}(\omega)$ are given in the next three plots.


```
% Ch.3 Problems 14, 15, 16
% Copyright Victor Giurgiutiu: SHM with PWAS book
clc
clear
%% DEFINE PROPERTIES
L=100e-3; b=8e-3; h=2.6e-3; E=200e9; I=(b*h^3)/12; A=b*h; p=7750;
zeta=1e-2; % structural damping
xA=40e-3; xB=47e-3; % location of self-equilibrating forces and moments
F=100; % N, excitation force
M=100; %Nm, excitation moment
Nf=401; % number of frequencies in the spectrum
f_start=0e3; f_end=100e3; df=(f_end-f_start)/(Nf-1); f=f_start:df:f_end;
%% CALCULATE NATURAL FREQUENCIES AND MODESHAPES
Nx=1e3; dx=L/(Nx-1); x=0:dx:L; % discretize beam length
%% Axial frequencies and modeshapes: Eqs.(3.255), (3.259) on pp. 95,96
ffU=0;jU=0;
while ffU<=f_end % identify the required number of axial modes
        jU=jU+1;
        wU(jU)=jU*pi*sqrt(E/p)/L; % axial angular frequencies in rad/s
        ffU=wU(jU)/(2*pi); % axial frequency in Hz
        CU=sqrt(2/L); % length normalized axial modeshape amplitude
        U(:,jU)=CU*Cos(jU*pi*x/L); % axial modeshapes
end
NU=jU; % number of required axial modes
fU=wU/(2*pi)*1e-3; % kHz axial frequencies
figure(1); plot(x,U);grid; title ('Axial modes')
%% Flexural frequencies and modeshapes (pp 119)
% calculate flexural eigenvalues: solve Eq. (3.406), pp 119
% Calculate flexural frequencies
D=@(x) (cos(x)-1/\operatorname{cosh(x)); % characteristic eq-n for free-free flexural freq.}
% f=@(x) (cos(x)* cosh(x)-1); this equation is less accurate - do not use
ffW=0; jW=0;
while ffW<=f_end % identified the required number of flexural modes
        jW=jW+1;
        ag(jW)=(2*jW+1)*pi/2; z=fzero(D,ag(jW));
        a(jW)=z/L; % flexural wave number
        wW(jW)=(a(jW))^2*sqrt(E*I/(p*A)); % flexural angular frequency in rad/s
        ffW=wW/(2*pi); % flexural frequency in Hz
        beta(jW)=(\operatorname{sinh}(z)+\operatorname{sin}(z))/(\operatorname{cosh(z)-\operatorname{cos}(z));}
end
NW=jW; % number of required flexural modeshapes
% Calculate modeshapes: Eqs. (3.411), (3.413), (3.431)
W=zeros(Nx,NW); AW=zeros(NW,1);
for jW=1:NW
AW(jW)=1/sqrt(L); % length-normalized modeshape amplitude Eq. (3.413)
W(:,jW)=AW (jW)* ((cos(a(jW)*x)-beta(jW)*sin(a(jW)*x)...
    +(1-beta(jW))/2*exp(a(jW)*x) +(1+beta(jW))/2*exp(-a(jW)*x))); % Eq.(4.431)
end
```

```
fW=wW/(2*pi)*le-3; % kHz flexural frequencies
figure(2); plot(x,W); grid; title('Flexural modes')
% =========================================
%% START FREQUENCY LOOP TO CALCULUATE DISPLACEMENTS
ff=f/le3; % freq in kHz
%% AXIAL RESPONSE FOR PROBLEM 3.14
for nf=1:Nf % frequency loop
    w=f(nf)*2*pi;
    % axial modes loop
        sum_UA=0; sum_UB=0; sum_dU=0;
        for jU=1:NU
        U_xA=CU*}\operatorname{cos(jU*pi*xA/L);
        U_xB=CU*}\operatorname{cos}(jU*pi*xB/L)
        etaU=F/(p*A)*(U_xB-U_xA)/(wU(jU)^2+2*1i*zeta*wU(jU)*w-w^2);
        sum_UA=sum_UA+etaU*U_xA;
        sum_UB=sum_UB+etaU*U_xB;
        end
    UA(nf)=sum_UA; UB(nf)=sum_UB; dU(nf)=UB(nf)-UA(nf);
end
    %% PLOT AXIAL RESPONSE FOR PROBLEM 3.14
    figure(3) % UA plot
    subplot(2,2,1); plot(ff,abs(UA)); title('abs UA'); set(gca,'Yscale','log');...
        xlabel('f, kHz')
    subplot(2,2,2); plot(ff,real(UA));title('real UA'); xlabel('f, kHz')
    subplot(2,2,3); plot(ff,180/pi*angle(UA));title('angle UA'); xlabel('f, kHz')
    subplot(2,2,4); plot(ff,-imag(UA));title('-imag UA'); xlabel('f, kHz')
    figure(4) % UB plot
    subplot(2,2,1); plot(ff,abs(UB)); title('abs UB');set(gca,'Yscale','log');...
        xlabel('f, kHz')
subplot(2,2,2); plot(ff,real(UB));title('real UB'); xlabel('f, kHz')
subplot(2,2,3); plot(ff,180/pi*angle(UB));title('angle UB'); xlabel('f, kHz')
subplot(2,2,4); plot(ff,-imag(UB));title('-imag UB'); xlabel('f, kHz')
figure(5) % dU plot
subplot(2,2,1); plot(ff,abs(dU)); title('abs dU');set(gca,'Yscale','log')...
    ; xlabel('f, kHz')
subplot(2,2,2); plot(ff,real(dU));title('real dU'); xlabel('f, kHz')
subplot(2,2,3); plot(ff,180/pi*angle(dU));title('angle dU'); xlabel('f, kHz')
subplot(2,2,4); plot(ff,-imag(dU));title('-imag dU'); xlabel('f, kHz')
%% FLEXURAL RESPONSE FOR PROBLEM 3.15
for nf=1:Nf % frequency loop
    w=f(nf)*2*pi;
    % flexural modes loop
    sum_WA=0; sum_WB=0; sum_W1A=0; sum_W1B=0;
    for jW=1:NW
    % calculate the derivative (slope) of the flexural modes
    W_xA=AW(jW)* ((cos(a(jW)*xA) -beta(jW)*sin(a(jW)*xA)...
    +(1-beta(jW))/2*exp(a(jW)*xA)+(1+beta(jW))/2*exp(-a(jW)*xA)));
    W_xB=AW(jW)* ((cos (a(jW)*xB) -beta(jW)*sin(a (jW)*xB)...
    +(1-beta(jW))/2*exp(a(jW)*xB)+(1+beta(jW))/2*exp(-a(jW)*xB)));
    W1_xA=AW(jW)*a(jW)*((-sin(a(jW)*xA)-beta(jW)*cos(a(jW)*xA)...
```

```
103
104
105
106
107
108
109
110
111
112
1 1 3
114
115
116
117
145 subplot(2,2,2); plot(ff,real(W1B));title('real W1B'); xlabel('f, kHz')
146 subplot(2,2,3); plot(ff,180/pi*angle(W1B));title('angle W1B'); xlabel('f, kHz')
153 subplot(2,2,4); plot(ff,imag(dW1));title('imag dW1'); xlabel('f, kHz')
```

```
154
155%% COMBINEa AXIAL AND FLEXURAL RESPONSES FOR PROBLEM 3.16
156 UUA=UA-h/2*(F*h/2/M)*W1A;
157 figure(12) % UUA plot
158 subplot(2,2,1); plot(ff,abs(UUA)); title('abs UUA');set(gca,'Yscale','log')...
159 ; xlabel('f, kHz')
160 subplot(2,2,2); plot(ff,real(UUA));title('real UUA'); xlabel('f, kHz')
161 subplot(2,2,3); plot(ff,180/pi*angle(UUA));title('angle UUA'); xlabel('f, kHz')
162 subplot(2,2,4); plot(ff,-imag(UUA));title('-imag UUA'); xlabel('f, kHz')
163 UUB=UB-h/2*(F*h/2/M)*W1B;
164 figure(13) % UUB plot
165 subplot(2,2,1); plot(ff,abs(UUB)); title('abs UUB');set(gca,'Yscale','log')...
166 ; xlabel('f, kHz')
167 subplot(2,2,2); plot(ff,real(UUB));title('real UUB'); xlabel('f, kHz')
168 subplot(2,2,3); plot(ff,180/pi*angle(UUB));title('angle UUB'); xlabel('f, kHz')
169 subplot(2,2,4); plot(ff,-imag(UUB));title('-imag UUB'); xlabel('f, kHz')
170 UUA=UA-h/2*(F*h/2/M)*W1A;
1 7 1 ~ d U U = U U B - U U A ;
172 figure(14) % dUU plot
1 7 3 ~ s u b p l o t ( 2 , 2 , 1 ) ; ~ p l o t ( f f , a b s ( d U U ) ) ; ~ t i t l e ( ' a b s ~ d U U ' ) ; s e t ( g c a , ' Y s c a l e ' , ' l o g ' ) . . . ~
174 ; xlabel('f, kHz')
175 subplot(2,2,2); plot(ff,real(dUU));title('real dUU'); xlabel('f, kHz')
176 subplot(2,2,3); plot(ff,180/pi*angle(dUU));title('angle dUU'); xlabel('f, kHz')
177 subplot(2,2,4); plot(ff,-imag(dUU));title('-imag dUU'); xlabel('f, kHz')
```

Problem 15: Consider a steel beam of thickness $h=2.6 \mathrm{~mm}$, width $b=8 \mathrm{~mm}$, length $l=100 \mathrm{~mm}$, elastic modulus $E=200 \mathrm{GPa}$, mass density $\rho=7,750 \mathrm{~kg} / \mathrm{m}^{3}$. The beam is excited by a pair of self-equilibrating harmonic moments of amplitude $\hat{M}=100 \mathrm{~N} \cdot \mathrm{~m}$ placed at $x_{\mathrm{A}}=40 \mathrm{~mm}$ and $x_{\mathrm{B}}=47 \mathrm{~mm}$, as shown in Figure 3.23. The excitation frequency varies in the range $f=0 \ldots 40 \mathrm{kHz}$ (consider 401 equally spaced values). Consider 1% modal damping in all modes. Find the index N_{w} of the flexural frequency that brackets the frequency range of interest. Find and plot the response amplitudes for displacements and slopes at x_{A} and x_{B}, i.e., $w_{\mathrm{A}}(\omega)$, $w_{\mathrm{A}}^{\prime}(\omega) ; \quad w_{\mathrm{B}}(\omega), \quad w_{\mathrm{B}}^{\prime}(\omega) ; \quad$ as \quad well \quad as the differences $\quad \Delta w(\omega)=w_{\mathrm{B}}(\omega)-w_{\mathrm{A}}(\omega)$, $\Delta w^{\prime}(\omega)=w_{\mathrm{B}}^{\prime}(\omega)-w_{\mathrm{A}}^{\prime}(\omega)$. Use the four-quads plotting format of Figure 3.8 on page 70.

Figure 3.23 Beam undergoing flexural vibration under the excitation of a pair of selfequilibrating bending moments

SOLUTION

The excitation moments acting upon the beam are $M_{A}(t)=\hat{M} e^{i \omega t}, M_{B}(t)=-\hat{M} e^{i \omega t}$ (Figure 3.23). The corresponding distributed excitation moment is expressed as

$$
\begin{equation*}
m_{e}(x, t)=\hat{m}_{e}(x) e^{i \omega t}=\hat{M}\left[\delta\left(x-x_{A}\right)-\delta\left(x-x_{B}\right)\right] e^{i \omega t} \quad \text { (moment excitation) } \tag{15}
\end{equation*}
$$

Recall from Chapter 3, Section 3.4.3.4, Eq. (3.461) the equation of motion for forced flexural vibration of a beam under distributed moment excitation, i.e.,

$$
\begin{equation*}
\rho A \ddot{w}(x, t)+E I w^{\prime \prime \prime \prime}(x, t)=-m_{e}^{\prime}(x, t) \tag{16}
\end{equation*}
$$

Assume the modal expansion

$$
\begin{equation*}
w(x, t)=\sum_{j=1}^{N_{\mathrm{w}}} \eta_{j} W_{j}(x) e^{i \omega t} \tag{17}
\end{equation*}
$$

where N is the number of modes needed to bracket the frequency range of interest $f=0 \ldots 100 \mathrm{kHz}$. The coefficients η_{j} are the modal participation factors and the functions $W_{j}(x)$ are length-normalized orthonormal flexural modes that satisfy the relation

$$
\begin{equation*}
\int_{0}^{l} W_{p} W_{q} d x=\delta_{p q} \tag{18}
\end{equation*}
$$

For free-free beams, the length-normalized flexural modeshapes can be calculated with the formulae given in Chapter 3, Section 3.4.2.1, Eqs. (3.409), (3.410) that dealt with vibration analysis, i.e.,

$$
\begin{gather*}
W_{j}(x)=\frac{1}{\sqrt{l}}\left[\left(\cosh \gamma_{j} x+\cos \gamma_{j} x\right)-\beta_{j}\left(\sinh \gamma_{j} x+\sin \gamma_{j} x\right)\right] \tag{19}\\
\gamma_{j}=\frac{z_{j}}{l}, \quad \omega_{j}=\gamma_{j}^{2} \sqrt{\frac{E I}{\rho A}}, \quad j=1,2,3, \ldots \tag{20}
\end{gather*}
$$

with the eigenvalues z_{j} and the modeshape factors β_{j} being given in Chapter 3, Table 3.5. According to Chapter 3, Section 3.4.3.4, Eqs. (3.463), (3.464), the response by modal expansion is

$$
\begin{equation*}
w(x, t)=\frac{1}{\rho A} \sum_{j=1}^{\infty} \frac{f_{j}}{-\omega^{2}+2 i \zeta_{j} \omega_{j} \omega+\omega_{j}^{2}} W_{j}(x) e^{\mathrm{i} \omega t} \tag{21}
\end{equation*}
$$

where the modal excitation f_{j} is given by

$$
\begin{equation*}
f_{j}=\int_{0}^{l}-\hat{m}_{e}^{\prime}(x) W_{j}(x) d x, \quad j=1,2,3, \ldots \tag{22}
\end{equation*}
$$

Substitution of Eq. (15) into (22) gives

$$
\begin{equation*}
f_{j}=\int_{0}^{l}-\hat{m}_{e}^{\prime}(x) W_{j}(x) d x=-\hat{M} \int_{0}^{l}\left[\delta^{\prime}\left(x-x_{A}\right)-\delta^{\prime}\left(x-x_{B}\right)\right] W_{j}(x) d x \tag{23}
\end{equation*}
$$

The r.h.s. of Eq. (23) can be simplified through integration by parts, i.e.,

$$
\begin{equation*}
\int_{0}^{l} \delta^{\prime}\left(x-x_{0}\right) W_{j} d x=\left[\delta\left(x-x_{0}\right) W_{j}\right]_{0}^{l}-\int_{0}^{l} \delta\left(x-x_{0}\right) W_{j}^{\prime} d x=-W_{j}^{\prime}\left(x_{0}\right) \tag{24}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\int_{0}^{l}\left[\delta^{\prime}\left(x-x_{A}\right)-\delta^{\prime}\left(x-x_{B}\right)\right] W_{j} d x=-W_{j}^{\prime}\left(x_{A}\right)+W_{j}^{\prime}\left(x_{B}\right) \tag{25}
\end{equation*}
$$

Substitution of Eq. (25) into Eq. (23) yields

$$
\begin{equation*}
f_{j}=-\hat{M}\left[-W_{j}^{\prime}\left(x_{A}\right)+W_{j}^{\prime}\left(x_{B}\right)\right] \tag{26}
\end{equation*}
$$

Substitution of Eq. (26) into Eq. (21) yields the modal participation factor as

$$
\begin{equation*}
\eta_{j}=-\frac{\hat{M}}{\rho A} \frac{W_{j}^{\prime}\left(x_{B}\right)-W_{j}^{\prime}\left(x_{A}\right)}{-\omega^{2}+2 i \zeta_{j} \omega_{j} \omega+\omega_{j}^{2}} \tag{27}
\end{equation*}
$$

Substitution of Eq. (27) into Eq. (17) followed by evaluation at x_{A} and x_{B} gives the amplitudes

$$
\begin{gather*}
w_{A}(\omega)=\hat{w}\left(x_{A} ; \omega\right)=\sum_{j=1}^{N_{w}} \eta_{j} W_{j}\left(x_{A}\right) \tag{28}\\
w_{B}(\omega)=\hat{w}\left(x_{B} ; \omega\right)=\sum_{j=1}^{N_{w}} \eta_{j} W_{j}\left(x_{B}\right) \tag{29}\\
\Delta w(\omega)=w_{B}(\omega)-w_{A}(\omega) \tag{30}
\end{gather*}
$$

Differentiation of Eq. (17) w.r.t. x gives the amplitude $\hat{w}^{\prime}(x)$ as

$$
\begin{equation*}
\hat{w}^{\prime}(x)=\sum_{j=1}^{N_{w}} \eta_{j} W_{j}^{\prime}(x) \tag{31}
\end{equation*}
$$

Evaluation of Eq. (31) at x_{A} and x_{B} yields

$$
\begin{gather*}
w_{A}^{\prime}(\omega)=\hat{w}^{\prime}\left(x_{A} ; \omega\right)=\sum_{j=1}^{N_{w}} \eta_{j} W_{j}^{\prime}\left(x_{A}\right) \tag{32}\\
w_{B}^{\prime}(\omega)=\hat{w}^{\prime}\left(x_{B} ; \omega\right)=\sum_{j=1}^{N_{w}} \eta_{j} W_{j}^{\prime}\left(x_{B}\right) \tag{33}\\
\Delta w^{\prime}(\omega)=w_{B}^{\prime}(\omega)-w_{A}^{\prime}(\omega) \tag{34}
\end{gather*}
$$

Note that substitution of Eqs. (27), (32), (33) into Eq. (34) and rearrangement yields

$$
\begin{align*}
\Delta w^{\prime}(\omega) & =w_{B}^{\prime}(\omega)-w_{A}^{\prime}(\omega)=-\frac{\hat{M}}{\rho A} \sum_{j=1}^{N_{w}} \frac{W_{j}^{\prime}\left(x_{B}\right)-W_{j}^{\prime}\left(x_{A}\right)}{2 i \zeta_{j} \omega_{j} \omega+\omega_{j}^{2}}\left[W_{j}^{\prime}\left(x_{B}\right)-W_{j}^{\prime}\left(x_{A}\right)\right] \\
& =-\frac{\hat{M}}{\rho A} \sum_{j=1}^{N_{w}} \frac{\left[W_{j}^{\prime}\left(x_{B}\right)-W_{j}^{\prime}\left(x_{A}\right)\right]^{2}+2 i \zeta_{j} \omega_{j} \omega+\omega_{j}^{2}}{} \tag{35}
\end{align*}
$$

The numerical results are as follows:
The index N_{w} of the axial frequency that brackets the frequency range of interest is $N_{w}=13$. The 13 flexural frequencies that bracket the range $f=0 \ldots 100 \mathrm{kHz}$ are $1.358,3.75,7.34,12.13,18.12$, 25.3, 33.7, 43.3, 54.1, 66.0, 79.2, $93.6,109.2 \mathrm{kHz}$.

The thirteen flexural modes are shown below

Flexural modes

The response amplitudes for displacements and slopes at x_{A} and x_{B}, i.e., $w_{\mathrm{A}}(\omega), w_{\mathrm{A}}^{\prime}(\omega)$; $w_{\mathrm{B}}(\omega), w_{\mathrm{B}}^{\prime}(\omega)$; as well as the differences $\Delta w(\omega)=w_{\mathrm{B}}(\omega)-w_{\mathrm{A}}(\omega), \Delta w^{\prime}(\omega)=w_{\mathrm{B}}^{\prime}(\omega)-w_{\mathrm{A}}^{\prime}(\omega)$ are given in the next six plots.

Problem 16: Consider a steel beam of thickness $h=2.6 \mathrm{~mm}$, width $b=8 \mathrm{~mm}$, length $l=100 \mathrm{~mm}$, elastic modulus $E=200 \mathrm{GPa}$, mass density $\rho=7,750 \mathrm{~kg} / \mathrm{m}^{3}$. The beam is excited by a pair of self-equilibrating harmonic forces of amplitude $\hat{F}=100 \mathrm{~N}$ placed at $x_{\mathrm{A}}=40 \mathrm{~mm}$ and $x_{\mathrm{B}}=47 \mathrm{~mm}$. The forces act on the beam surface as shown in Figure 3.24. The excitation frequency varies in the range $f=0 \ldots 100 \mathrm{kHz}$ (consider 401 equally spaced values). Consider 1% modal damping in all modes. Find the index N_{u} of the axial frequency and the index N_{w} of the flexural frequency that bracket the frequency range of interest. Find and plot the surface response displacements $u_{\mathrm{A}}(\omega)$ at $x_{\mathrm{A}} ; u_{\mathrm{B}}(\omega)$ at x_{B}, and $\Delta u(\omega)=u_{\mathrm{B}}(\omega)-u_{\mathrm{A}}(\omega)$. Use the fourquads plotting format of Figure 3.8 on page 70 . Hint: surface displacement u is calculated kinematically using the axial displacement u_{0} and the flexural slope w^{\prime} of the neutral axis, i.e., $u=u_{0}-\frac{h}{2} w^{\prime}$.

(a)

$$
u_{A}=u\left(x_{A}\right)-\frac{h}{2} w^{\prime}\left(x_{A}\right) \quad u_{B}=u\left(x_{B}\right)-\frac{h}{2} w^{\prime}\left(x_{B}\right)
$$

(b)

Figure 3.24 Beam undergoing combined axial and flexural vibration under the excitation of a pair of self-equilibrating forces place on the beam surface. The combined axial and flexural effect is created by the fact that the forces are offset from the neutral axis: (a) loading diagram; (b) surface displacements diagram

SOLUTION

The excitation forces acting upon the beam surface can be reduced at the neutral axis into a pair of axial forces $F_{A}(t)=-\hat{F} e^{i \omega t}, F_{B}(t)=\hat{F} e^{i \omega t}$ and a pair of bending moments $M_{A}(t)=\hat{M} e^{i \omega t}$, $M_{B}(t)=-\hat{M} e^{i \omega t}$ where

$$
\begin{equation*}
\hat{M}=\hat{F} \frac{h}{2} \tag{36}
\end{equation*}
$$

The corresponding distributed excitation axial force and bending moment are expressed as

$$
\begin{align*}
f_{e}(x, t)= & \hat{f}_{e}(x) e^{i \omega t}=\hat{F}_{P W A S}\left[-\delta\left(x-x_{A}\right)+\delta\left(x-x_{B}\right)\right] e^{i \omega t} \quad \text { (axial force excitation) } \tag{37}\\
& m_{e}(x, t)=\hat{m}_{e}(x) e^{i \omega t}=\hat{M}\left[\delta\left(x-x_{A}\right)-\delta\left(x-x_{B}\right)\right] e^{i \omega t} \quad \text { (moment excitation) } \tag{38}
\end{align*}
$$

where δ is Dirac's delta function. As shown in Figure 3.24b, the neutral axis displacements $\hat{u}\left(x_{A}\right), \hat{u}\left(x_{B}\right)$ and $\hat{w}\left(x_{A}\right), \hat{w}\left(x_{B}\right)$ combine to give the surface displacements u_{A}, u_{B} according to the kinematic formula

$$
\begin{align*}
& u_{A}=\hat{u}\left(x_{A}\right)-\frac{h}{2} \hat{w}^{\prime}\left(x_{A}\right) \tag{39}\\
& u_{B}=\hat{u}\left(x_{B}\right)-\frac{h}{2} \hat{w}^{\prime}\left(x_{B}\right)
\end{align*}
$$

The modal participation factors for axial and flexural motions are calculated by substituting Eqs. (36), (37), (38) into Eqs. (10), (27) to get

$$
\begin{gather*}
\eta_{j_{u}}=\frac{\hat{F}}{\rho A} \frac{U_{j_{u}}\left(x_{B}\right)-U_{j_{u}}\left(x_{A}\right)}{-\omega^{2}+2 i \zeta_{j_{u}} \omega_{j_{u}} \omega+\omega_{j_{u}}^{2}}, \quad j_{u}=1,2,3, \ldots N_{u} \tag{40}\\
\eta_{j_{w}}=-\frac{h}{2} \frac{\hat{F}}{\rho A} \frac{W_{j_{w}}^{\prime}\left(x_{B}\right)-W_{j_{w}}^{\prime}\left(x_{A}\right)}{-\omega^{2}+2 i \zeta_{j_{w}} \omega_{j_{w}} \omega+\omega_{j_{w}}^{2}}, \quad j_{w}=1,2,3, \ldots N_{w} \tag{41}
\end{gather*}
$$

where the subscripts u and w signify axial and flexural modes, respectively. Substitution of Eqs. (40), (41) into Eq. (39) gives

$$
\begin{align*}
& u_{A}=\sum_{j_{u}=1}^{N_{u}} \eta_{j_{u}} U_{j_{u}}\left(x_{A}\right)-\frac{h}{2} \sum_{j_{w}=1}^{N_{w}} \eta_{j_{w}} W_{j_{w}}^{\prime}\left(x_{A}\right) \tag{42}\\
& u_{B}=\sum_{j_{u}=1}^{N_{u}} \eta_{j_{u}} U_{j_{u}}\left(x_{B}\right)-\frac{h}{2} \sum_{j_{w}=1}^{N_{w}} \eta_{j_{w}} W_{j_{w}}^{\prime}\left(x_{B}\right) \tag{43}
\end{align*}
$$

Substitution of Eqs. (11), (12),(32), (33) into Eqs. (42), (43) yields

$$
\begin{equation*}
u_{A}=\frac{\hat{F}}{\rho A} \sum_{j_{u}=1}^{N_{u}} \frac{U_{j_{u}}\left(x_{B}\right)-U_{j_{u}}\left(x_{A}\right)}{-\omega^{2}+2 i \zeta_{j_{u}} \omega_{j_{u}} \omega+\omega_{j_{u}}^{2}} U_{j_{u}}\left(x_{A}\right)+\left(\frac{h}{2}\right)^{2} \frac{\hat{F}}{\rho A} \sum_{j_{w}=1}^{N_{w}} \frac{-W_{j_{w}}^{\prime}\left(x_{A}\right)+W_{j_{w}}^{\prime}\left(x_{B}\right)}{-\omega^{2}+2 i \zeta_{j_{w}} \omega_{j_{w}} \omega+\omega_{j_{w}}^{2}} W_{j_{w}}^{\prime}\left(x_{A}\right) \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
u_{B}=\frac{\hat{F}}{\rho A} \sum_{j_{u}=1}^{N_{u}} \frac{U_{j_{u}}\left(x_{B}\right)-U_{j_{u}}\left(x_{A}\right)}{-\omega^{2}+2 i \zeta_{j_{u}} \omega_{j_{u}} \omega+\omega_{j_{u}}^{2}} U_{j_{u}}\left(x_{B}\right)+\left(\frac{h}{2}\right)^{2} \frac{\hat{F}}{\rho A} \sum_{j_{w}=1}^{N_{w}} \frac{-W_{j_{w}}^{\prime}\left(x_{A}\right)+W_{j_{w}}^{\prime}\left(x_{B}\right)}{-\omega^{2}+2 i \zeta_{j_{w}} \omega_{j_{w}} \omega+\omega_{j_{w}}^{2}} W_{j_{w}}^{\prime}\left(x_{B}\right) \tag{45}
\end{equation*}
$$

Subtraction of Eq. (44) from Eq. (45) yields

$$
\begin{align*}
\Delta u=u_{B}-u_{A}=\frac{\hat{F}}{\rho A} & \sum_{j_{u}=1}^{N_{u}} \frac{-U_{j_{u}}\left(x_{A}\right)+U_{j_{u}}\left(x_{B}\right)}{-\omega^{2}+2 i \zeta_{j_{u}} \omega_{j_{u}} \omega+\omega_{j_{u}}^{2}}\left[U_{j_{u}}\left(x_{B}\right)-U_{j_{u}}\left(x_{A}\right)\right] \\
& +\left(\frac{h}{2}\right)^{2} \frac{\hat{F}}{\rho A} \sum_{j_{w}=1}^{N_{w}} \frac{-W_{j_{w}}^{\prime}\left(x_{A}\right)+W_{j_{w}}^{\prime}\left(x_{B}\right)}{-2 i \zeta_{j_{w}} \omega_{j_{w}} \omega+\omega_{j_{w}}^{2}}\left[W_{j_{w}}^{\prime}\left(x_{B}\right)-W_{j_{w}}^{\prime}\left(x_{A}\right)\right] \tag{46}
\end{align*}
$$

Upon rearrangement, Eq. (46) yields

$$
\begin{equation*}
\Delta u(\omega)=\frac{\hat{F}}{\rho A}\left\{\sum_{j_{u}=1}^{N_{u}} \frac{\left[U_{j_{u}}\left(x_{B}\right)-U_{j_{u}}\left(x_{A}\right)\right]^{2}}{-\omega^{2}+2 i \zeta_{j_{u}} \omega_{j_{u}} \omega+\omega_{j_{u}}^{2}}+\left(\frac{h}{2}\right)^{2} \sum_{j_{w}=1}^{N_{w}} \frac{\left[W_{j_{w}}^{\prime}\left(x_{B}\right)-W_{j_{w}}^{\prime}\left(x_{A}\right)\right]^{2}}{-2 i \zeta_{j_{w}} \omega_{j_{w}} \omega+\omega_{j_{w}}^{2}}\right\} \tag{47}
\end{equation*}
$$

The numerical results are as follows:
The indices N_{u} of the axial frequency and N_{w} of the flexural frequency that bracket the frequency range of interest are $N_{u}=4$ and $N_{w}=13$.

The surface response displacements $u_{\mathrm{A}}(\omega)$ at $x_{\mathrm{A}} ; u_{\mathrm{B}}(\omega)$ at x_{B}, and $\Delta u(\omega)=u_{\mathrm{B}}(\omega)-u_{\mathrm{A}}(\omega)$ are given in the next three plots.

