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CHAPTER 3 -- PROBLEMS AND EXERCISES 

Problem 1: Prove that ( ) cos sinn nu t A t B t    can be also expressed as ( ) cos( )nu t C t  
, and find the relationship between , ,A B C , and   

Solution 

Expand ( ) cos( )nu t C t    to get 

( ) cos( ) cos cos sin sinn n nu t C t C t C t          

Group coefficients to get 

   ( ) cos cos sin sinn nu t C t C t       

Identify the coefficients of cos nt  and sin nt  to obtain: 

cosA C   and sinB C    

Resolve to obtain 

2 2C A B   

angle( , )A B    or arg( )A iB    

 

------------------------------------- 
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angle A B( ) 126.87 deg

A i B 5arg A i B( ) 126.87 degB 4A 3

angle A B( ) 233.13 deg

A i B 5arg A i B( ) 126.87 degB 4A 3

angle A B( ) 53.13 deg

A i B 5arg A i B( ) 53.13 degB 4A 3

angle A B( ) 306.87 deg

A i B 5arg A i B( ) 53.13 degB 4A 3

Here are some examples of using the absolute value and angle or arg functions:

PROBLEM 3.1 SOLUTION
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Problem 2: Prove that ( ) ( ) ( ) 0mu t cu t ku t     can  be also expressed as 
2( ) 2 ( ) ( ) 0n nu t u t u t      and derive the relations between the constants in the two equations 

Solution 

Start with  

( ) ( ) ( ) 0mu t cu t ku t     

Divide by m to get 

( ) ( ) ( ) 0
c k

u t u t u t
m m

     

Recall Eq. (3.31), i.e., 2 2cr nc m mk   and / crc c  . express c as 2cr nc c m    . Then, 

recall Eq. (3.15), i.e., 2
n

k

m
  . Upon substitution, get 

2
( ) ( ) ( ) 0nm k

u t u t u t
m m


     

and finally, 

2( ) 2 ( ) ( ) 0n nu t u t u t      
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Problem 3: Prove that    
1 2( ) n d n di t i tu t C e C e         can be rewritten as 

( ) cos( )nt
du t Ce t     and derive the relations between the constants in the two equations 

Solution 

Expand and group    
1 2( )        n d n di t i tu t C e C e  to get 

     1 2 1 2( ) n d n d n d di t i t t i t i tu t C e C e e C e C e                

Use Euler identity cos sinie i     to write 

   
1 2 1 2

1 2 1 2

(cos sin ) (cos sin )

cos sin

d di t i t
d d d d

d d

C e C e C t t C t t

C C t C C t

     
 

    

   
 

Now, consider ( ) cos( )nt
du t Ce t     and expand it to get 

 
   

( ) cos( ) cos cos sin sin

cos cos sin sin

n n

n

t t
d d d

t
d d

u t Ce t Ce t t

e C t C t

 



     

   

 



   

    
 

Identifying coefficients between the two expressions, we establish 

1 2

1 2

cos

sin

C C C

C C C




 
  

 

Upon solution, 

 
 

1
1 2

1
2 2

cos sin

cos sin

C C

C C

 

 

 

 
 

Conversely, 

   2 2
1 2 1 2C C C C C     

   1 2 1 2angle ,C C C C        or    1 2 1 2arg C C i C C         

------------------------------------- 
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Problem 4: Prove that when damping equals critical damping ( 1  ), the solution of 
2( ) 2 ( ) ( ) 0n nu t u t u t      is  1 2( ) ntu t C C t e    

Solution 

Recall Eq. (3.30), 2( ) 2 ( ) ( ) 0n nu t u t u t     , and the characteristic equation (3.32), 
2 22 0n n      . If 1  , then these two equations become 

2( ) 2 ( ) ( ) 0n nu t u t u t      

2 22 0n n       

The characteristic equation has the double root, 1 2 n     .  

The general ODE theory shows that if the characteristic equation has a double root, say a, then 
both ate  and atte  are solutions of the ODE. Indeed, assume the ODE is 2( ) 2 ( ) ( ) 0u t au t a u t   
, which has the characteristic equation 2 22 0a a     with the double root 1 2 a   . Let’s 

verify that both 1
atu e  and 2

atu te  are solutions. The proof for 1u  is easily obtained through 

direct substitution and will not be elaborated here. The proof for 2u  is obtained by substitution as 

follows: 

2
atu te  

 2
at at atu te e tae     

  2 2
2 2at at at at at at atu e tae ae ae ta e ae ta e         

The notations    and    were used to signify first and second derivatives. Upon substitution 

into the differential equation, we get 

   2 22 2

2

at at at at at

at

ae ta e a e tae a te

ae

   

 2 atta e 2 atae 2 atatae 2 ata te 0
 

Thus we have proved that both 1
atu e  and 2

atu te  are solutions. Hence, the general solution is 

a linear combination of these two solutions, i.e., 

 1 2( ) atu t C C t e   

To finalize the proof of the exercise, simply observer that na   . Hence, the general solution is 

 1 2( ) ntu t C C t e    

------------------------------------- 
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Problem 5: Prove that the particular solution of 2 ˆ( ) ( ) cosnu t u t f t    is 

2 2

1 ˆ( ) cosp
n

u t f t
 


 

 

Solution 

By ODE theory, a particular solution is any solution that satisfies the inhomogeneous equation. 
One usually seeks particular solutions of the same for as the right hand side of the 
inhomogeneous equation. In our case, we seek a particular solution made up of trigonometric 
functions, i.e., of the form 

( ) cos sin  pu t A t B t  

Upon substitution in the differential equation, we write 

2 2 2 2 ˆcos sin cos sin cos            n nA t B t A t B t f t  

Identifying coefficients of cost  and sint  we can solve for ,A B  to get  

2 2

ˆ

n

f
A

 

 

             0B    (  n ) 

Substitution of ,A B  gives the particular solution in the desired form, 
2 2

1 ˆ( ) cosp
n

u t f t
 


 

 

------------------------------------- 
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Problem 6: Prove that using Eq. (3.106) in conjunction with Eqs. (3.15), (3.31), (3.97), (3.98), 
(3.100) yields the response amplitude at the quadrature point as 90

ˆˆ / nu F c  

Solution 

Recall  

n
k

m
      or     2

n

k

m
   (3.15) 

/ crc c          2 2cr nc m mk   (3.31) 

ˆ
st

F
u

k
  (3.97) 

n

p



  (3.98) 

ˆ( ) ( )stu p u H p  (3.100) 

90
1

(1)
2

H M


   (3.106) 

Evaluating the magnitude of Eq. (3.100) at the quadrature point, 1p  , yields 

90ˆ ˆ(1) (1)  stu u u H  

Using Eq. (3.106) gives 

90

1
ˆ ˆ(1)

2
  stu u u  

Substituting into Eq. (3.97) yields 

90

ˆ 1
ˆ

2

F
u

k 
  

Using Eq. (3.31) gives 

2 2 2
2

n
cr

c c k
k k k c c

c mmk
      

Upon substitution, we obtain the desired expression 

90

ˆ
ˆ

n

F
u

c
  

------------------------------------- 
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Problem 7: Prove that, for lightly damped systems, the bandwidth of the frequency response 

function 2

1
( )

2 1
H p

p i p

  

 takes the simple expression 2U L n       . 

Solution 

Recall the bandwidth expression of Eq. (3.112), i.e., U L      where U  and L  are the 

lower and upper half-power frequencies (3 dB points) located to the left and right of the 
resonance frequency. The half-power points correspond to points where the amplitude has 

decreased by 3 dB i.e., by a factor 2 . The amplitude of the frequency response function 

2

1
( )

2 1
H p

p i p

  

 is given by Eq. (3.101), i.e., 

 22 2 2

1
( )

1 4
H p

p p


 
.  

For lightly damped systems, the amplitude at resonance is well approximated by the amplitude at 
1p  , which is (1) 1/ 2H  . At the half-power points, the amplitude is decreased by a factor of 

2 , i.e., 1 2

1
( ) ( )

2 2
H p H p


   

Imposing this condition, yields the equation  

 22 2 21 4 2 2p p     

Hence, we have to solve the equation 

 22 2 2 21 4 8p p     

Upon expansion, we get 

 22 2 2 21 4 8 0p p      

or 

2 4 2 2 21 2 4 8 0p p p       

or 

4 2 2 22(1 2 ) 1 8 0p p       

We solve this quadratic equation in 2p , i.e., 

     22 2 2 2
1,2( ) 1 2 1 2 1 8p          

Hence, 

   22 2 2 2
2 1 2 1 2 1 8p p        

Upon expansion 

8
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2 2
2 1 2 1p p  2 44 4 1    2

2 4

8

2 4 4



 



 
 

Using the light damping approximation ( 1  ) we ignore the term in 4  and write 

2 2 2 4
2 1 2 4 4p p     22 4  

The left hand side can be expanded into sum and difference product, i.e., 

   2
2 1 2 1 2 4p p p p     

For light damping, the 1p  and 2p  values are approximately balanced about the resonance point 

1p  , and thus 1 2 2p p  . Hence, the above expression becomes 

  2
2 1 4 2p p      

In terms of physical frequencies, the above expression is written as 

2U L n        

The proof is complete. 

------------------------------------- 
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Here is an example of plotting the H function for various damping ratios

PROBLEM 3.7 SOLUTION
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Problem 8: Prove that the power at resonance of a lightly-damped 1-dof system is given by 
21

max 2
ˆP F c  

Solution 

Recall Eq. (3.156) which gives the power at resonance as 
221

max 2
ˆr rP c u  

For lightly damped systems, the resonance point can be sufficiently well approximated by the 
quadrature point, i.e., 90r n    , 90ˆ ˆru u . Hence,  

221
max 902

ˆnP c u  

The response at quadrature point, as proven in Problem 6 above, is given by 

90

ˆ
ˆ

n

F
u

c
  

Upon substitution, we get 
2

2 2
2 21 1

max 2 2 2 2

ˆ ˆ ˆ1

2n n
n n

F F F
P c c

c c c
 

 
 

   
 

 

------------------------------------- 
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Problem 9: Find the first, second, and third natural frequencies of in-plane axial vibration of a 
steel beam of thickness h1 = 2.6 mm, width b1 = 8 mm, length l = 100 mm, modulus E = 200 
GPa, and density  = 7.750 g/cm3. The beam is in free-free boundary conditions. Then, consider 
double the thickness (h2 = 5.2 mm), wider width (b2 = 19.6 mm), and then both. Recalculate the 
three frequencies for these other combinations of thickness and width. Discuss your results 

Solution 

Recall Eq. (3.192), i.e., 
1

2j

EA
f j

l m
 ,   j = 1,2,3.  

Use geometric dimensions and material properties to calculate 
220.8 mmA  ; 4.16 MNEA  ; 0.161 kg/mm   

Substitute in the frequency equation to get 

1 25.4 kHzf  ; 2 50.8 kHzf  ; 3 76.2 kHzf   

Double the thickness 
241.6 mmA  ; 8.32 MNEA  ; 0.322 kg/mm   

Substitute in the frequency equation to get 

1 25.4 kHzf  ; 2 50.8 kHzf  ; 3 76.2 kHzf   

The frequencies do not change because the changes in EA are compensated by the changes in m. 

Double the width 
241.6 mmA  ; 8.32 MNEA  ; 0.322 kg/mm   

Substitute in the frequency equation to get 

1 25.4 kHzf  ; 2 50.8 kHzf  ; 3 76.2 kHzf   

The frequencies do not change because the changes in EA are compensated by the changes in m. 

Double the thickness and the width 
283.2 mmA  ; 16.64 MNEA  ; 0.645 kg/mm   

Substitute in the frequency equation to get 

1 25.4 kHzf  ; 2 50.8 kHzf  ; 3 76.2 kHzf   

The frequencies do not change because the changes in EA are compensated by the changes in m. 

------------------------------------- 
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j 1 3
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2 L


EA

m
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25.4

50.8

76.2
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3



-----------------------

h h1 b 2 b1

A b h EA E A m  A

A 41.600 10
6

 EA 8.320 10
6

 m 0.322

j 1 3

f
j

j
1

2 L


EA

m
 f

25.4

50.8

76.2
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-----------------------
h 2 h1 b 2 b1

A b h EA E A m  A

A 83.200 10
6

 EA 1.664 10
7

 m 0.645

j 1 3

f
j

j
1

2 L


EA

m
 f

25.4

50.8

76.2
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PROBLEM 3.9 SOLUTION
AXIAL VIBRATION OF A STEEL BEAM ORIGIN 1

h1 2.6 10
3

 b1 8 10
3

 L 100 10
3

 E 200 10
9

  7750

h h1 b b1
==========

A b h EA E A m  A

A 20.800 10
6

 EA 4.160 10
6

 m 0.161

j 1 3

f
j

j
1

2 L


EA

m
 f

25.4

50.8

76.2
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3



------------------------

h 2 h1 b b1

A b h EA E A m  A

A 41.600 10
6

 EA 8.320 10
6

 m 0.322

13
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Problem 10: Find all the natural frequencies in the interval 1 kHz to 30 kHz of in-plane axial 
vibration of a steel beam of thickness h1 = 2.6 mm, width b1 = 8 mm, length l = 100 mm, 
modulus E = 200 GPa, and density  = 7.750 g/cm3. The beam is in free-free boundary 
conditions. Then, consider double the thickness (h2 = 5.2 mm), wider width (b2 = 19.6 mm), and 
then both. Recalculate the frequencies for these other combinations of thickness and width. 
Discuss your results 

Solution 

In view of problem 10, the only axial frequency in the interval 1 kHz to 30 kHz is 1 25.4 kHzf 
. Since the axial frequencies are not affected by changes in thickness and width, this frequency is 
going to be the same whether one doubles the thickness, the width, or both. 

------------------------------------- 

 

  

14
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Problem 11: Find the first, second, and third natural frequencies of out-of-plane flexural 
vibration of a steel beam of thickness h1 = 2.6 mm, width b1 = 8 mm, length l = 100 mm, 
modulus E = 200 GPa, and density  = 7.750 g/cm3. The beam is in free-free boundary 
conditions. Then, consider double the thickness (h2 = 5.2 mm), wider width (b2 = 19.6 mm), and 
then both. Recalculate the three frequencies for these other combinations of thickness and width. 
Discuss your results 

Solution 

Recall Eq. (3.408), i.e., 2
4

1

2
j j

EI
f z

ml
     j = 1,2,3 

Use geometric dimensions and material properties to calculate 
220.8 mmA  ; 411.717 mmI  ; 22.343 NmEI  ; 0.161 kg/mm   

Get the values of l  from Table 3.5. Substitute in the frequency equation to get 

1 1.358 kHzf  ; 2 3.742 kHzf  ; 3 7.337 kHzf   

Double the thickness 
241.6 mmA  ; 493.74 mmI  ; 218.748 NmEI  ; 0.322 kg/mm   

Get the values of l  from Table 3.5. Substitute in the frequency equation to get 

1 2.715 kHzf  ; 2 7.485 kHzf  ; 3 14.674 kHzf   

The frequencies have increased because EI increases as 3h  whereas m increases only as h. The 
faster increase in EI has produced increase in frequency. 

Double the width 
241.6 mmA  ; 423.43 mmI  ; 24.687 NmEI  ; 0.322 kg/mm   

Get the values of l  from Table 3.5. Substitute in the frequency equation to get 

1 1.358 kHzf  ; 2 3.742 kHzf  ; 3 7.337 kHzf   

The frequencies have not increased because both EI and m increase as b. 

 

Double the thickness and the width 
283.2 mmA  ; 4187.48 mmI  ; 237.495 NmEI  ; 0.645 kg/mm   

Get the values of l  from Table 3.5. Substitute in the frequency equation to get 

1 2.715 kHzf  ; 2 7.485 kHzf  ; 3 14.674 kHzf   

The frequencies have increased in the same amount as for just double the thickness h. This is 
because EI increases as 3bh  whereas m increases as bh , indicating that thickness increase affects 
the flexural frequencies but width increase does not. 

15
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7.337
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3



----------------------------------

h 2 h1 b b1

A b h I
b h

3


12
 EI E I m  A

A 41.600 10
6

 I 93.74 10
12

 EI 18.748 m 0.322

j 1 3 L1 4.73004074 L2 7.85320462 L3 10.9956078

f
j

1

2 
Lj 2

EI

m L
4


 f

2.715

7.485

14.674
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PROBLEM 3.11 SOLUTION
ORIGIN 1

h1 2.6 10
3

 b1 8 10
3

 L 100 10
3

 E 200 10
9

  7750

h h1 b b1

A b h I
b h

3


12
 EI E I m  A

A 20.800 10
6

 I 11.717 10
12

 EI 2.343 m 0.161

j 1 3 L1 4.73004074 L2 7.85320462 L3 10.9956078

16



--------------------------

h 2 h1 b 2 b1

A b h I
b h

3


12
 EI E I m  A

A 83.200 10
6

 I 187.48 10
12

 EI 37.495 m 0.645

j 1 3 L1 4.73004074 L2 7.85320462 L3 10.9956078

f
j

1

2 
Lj 2

EI

m L
4


 f

2.715

7.485

14.674











10
3



h h1 b 2 b1

A b h I
b h

3


12
 EI E I m  A

A 41.600 10
6

 I 23.43 10
12

 EI 4.687 m 0.322

j 1 3 L1 4.73004074 L2 7.85320462 L3 10.9956078

f
j

1

2 
Lj 2

EI

m L
4


 f

1.358

3.742

7.337











10
3
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Problem 12: Find all the natural frequencies in the interval 1 KHz to 30 kHz of out-of-plane 
flexural vibration of a steel beam of thickness h1 = 2.6 mm, width b1 = 8 mm, length l = 100 mm, 
modulus E = 200 GPa, and density  = 7.750 g/cm3. The beam is in free-free boundary 
conditions. Then, consider double the thickness (h2 = 5.2 mm), wider width (b2 = 19.6 mm), and 
then both. Recalculate the three frequencies for these other combinations of thickness and width. 
Discuss your results 

Solution 

Recall Eq. (3.408), i.e., 2
4

1

2
j j

EI
f z

ml
     j = 1,2,3… 

Use geometric dimensions and material properties to calculate 
220.8 mmA  ; 411.717 mmI  ; 22.343 NmEI  ; 0.161 kg/mm   

Get the values of l  from Table 3.5. Substitute in the frequency equation to get 

1 1.358 kHzf  ; 2 3.742 kHzf  ; 3 7.337 kHzf   

4 12.128 kHzf  ; 5 18.117 kHzf  ; 6 25.304 kHzf   

Only the first six frequencies are in the bandwidth of interest (1-30 kHz). The next frequency, 

7 33.689 kHzf  , is outside the bandwidth of interest. 

Double the thickness 
241.6 mmA  ; 493.74 mmI  ; 218.748 NmEI  ; 0.322 kg/mm   

Get the values of l  from Table 3.5. Substitute in the frequency equation to get 

1 2.715 kHzf  ; 2 7.485 kHzf  ; 3 14.674 kHzf   

4 24.256 kHzf   

Only the first four frequencies are in the bandwidth of interest (1-30 kHz). The next frequency, 

5 36.234 kHzf  , is outside the bandwidth of interest. 

Double the width 
241.60 mmA  ; 423.43 mmI  ; 24.687 NmEI  ; 0.322 kg/mm   

Get the values of l  from Table 3.5. Substitute in the frequency equation to get 

1 1.358 kHzf  ; 2 3.742 kHzf  ; 3 7.337 kHzf   

4 12.128 kHzf  ; 5 18.117 kHzf  ; 6 25.304 kHzf   

Only the first six frequencies are in the bandwidth of interest (1-30 kHz). The next frequency, 

7 33.689 kHzf  , is outside the bandwidth of interest. Note that the situation is similar with the 

original situation since doubling the width does not change the frequencies, as shown in problem 
11. 

18
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Double the thickness and the with 
283.2 mmA  ; 4187.48 mmI  ; 237.495 NmEI  ; 0.645 kg/mm   

Get the values of l  from Table 3.5. Substitute in the frequency equation to get 

1 2.715 kHzf  ; 2 7.485 kHzf  ; 3 14.674 kHzf   

4 24.256 kHzf   

Only the first four frequencies are in the bandwidth of interest (1-30 kHz). The next frequency, 

5 36.234 kHzf  , is outside the bandwidth of interest. Note that the situation is similar with the 

double the thickness situation since only the thickness influences the frequencies, as shown in 
Problem 11. 

------------------------------------- 
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L3 10.9956078
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f
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 f
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h 2 h1 b b1

A b h I
b h

3


12
 EI E I m  A

A 41.600 10
6

 I 93.74 10
12

 EI 18.748 m 0.322

f
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2 
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2.715

7.485
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PROBLEM 3.12 SOLUTION
ORIGIN 1

h1 2.6 10
3

 b1 8 10
3

 L 100 10
3

 E 200 10
9

  7750

h h1 b b1

A b h I
b h

3


12
 EI E I m  A

A 20.800 10
6

 I 11.717 10
12

 EI 2.343 m 0.161

j 1 7 LL j( ) 2 j 1( )


2


L1 4.73004074 L2 7.85320462

20
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2 
Lj 2
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m L
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m 0.645EI 37.495I 187.48 10
12

A 83.200 10
6



m  AEI E II
b h

3


12
A b h

b 2 b1h 2 h1

--------------------------

f

1.358

3.742

7.337

12.128

18.117

25.304

33.689
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f
j

1

2 
Lj 2

EI

m L
4




m 0.322EI 4.687I 23.43 10
12

A 41.600 10
6



m  AEI E II
b h

3


12
A b h

b 2 b1h h1

----------------------------
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Problem 13: Consider SH vibration of a steel strip of thickness 1 2.6 mmh  , width 1 8 mmb  , 

length 100 mml  , elastic modulus 200 GPaE  , Poisson ratio 0.29  mass density 
37,750 kg/m  . The strip is in free-free boundary conditions. Find the first, second, and third 

natural frequencies of SH vibration. Sketch the modeshapes. Next, consider double the thickness 
( 2 5.2 mmh  ), wider width ( 2 19.6 mmb  ), and then both. Recalculate the frequencies for these 

other combinations of thickness and width. Discuss your results 

Solution 

Recall Eq. (3.509), i.e., 
1

2j

GA
f j

l m
 ,   j = 1,2,3.  

Use geometric dimensions and material properties to calculate 
220.8 mmA  ; 1.612 MNGA  ; 0.161 kg/mm   

Substitute in the frequency equation to get 

1 15.8 kHzf  ; 2 31.6 kHzf  ; 3 47.4 kHzf   

Double the thickness 
241.6 mmA  ; 3.225 MNGA  ; 0.322 kg/mm   

Substitute in the frequency equation to get 

1 15.8 kHzf  ; 2 31.6 kHzf  ; 3 47.4 kHzf   

The frequencies do not change because the changes in EA are compensated by the changes in m. 

Double the width 
241.6 mmA  ; 3.225 MNGA  ; 0.322 kg/mm   

Substitute in the frequency equation to get 

1 15.8 kHzf  ; 2 31.6 kHzf  ; 3 47.4 kHzf   

The frequencies do not change because the changes in EA are compensated by the changes in m. 

Double the thickness and the width 
283.2 mmA  ; 6.450 MNGA  ; 0.645 kg/mm   

Substitute in the frequency equation to get 

1 15.8 kHzf  ; 2 31.6 kHzf  ; 3 47.4 kHzf   

The frequencies do not change because the changes in EA are compensated by the changes in m. 

 

The modeshapes are given by Eq. (3.515), i.e.,  
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2
( ) cosj jV x x

ml
 ,    1,2,3,...j        (3.515) 

The first, second, and third modeshapes are sketched below. 

 

1st modeshape for 1 15.8 kHzf   

2nd modeshape for 2 31.6 kHzf   

3rd modeshape for 3 47.4 kHzf   
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Problem 14: Consider a steel bar of thickness 2.6 mmh  , width 8 mmb  , length 100 mml 
, elastic modulus 200 GPaE  , mass density 37,750 kg/m  . The bar is excited by a pair of 

self-equilibrating harmonic forces of amplitude ˆ 100 NF   placed at A 40 mmx   and 

B 47 mmx  ; the forces act on the neutral axis, as shown in Figure 3.22. The excitation 

frequency varies in the range 0 ... 100 kHzf   (consider 401 equally spaced values). Consider 

1%  modal damping in all modes. Find the index uN  of the axial frequency that brackets the 

frequency range of interest. Find and plot the response amplitudes of the displacements at Ax  

and Bx , i.e., A ( )u  , B( )u   as well as the difference B A( ) ( ) ( )u u u     . Use the four-

quads plotting format of Figure 3.8 on page 70. 

 

 

Figure 3.22 Bar undergoing axial vibration under the excitation of a pair of self-equilibrating 
axial forces 

 

SOLUTION  

The excitation forces acting upon the bar neutral axis are ˆ( ) i t
AF t Fe   , ˆ( ) i t

BF t Fe   (Figure 

3.22). The corresponding distributed excitation axial force is expressed as 

  ˆ ˆ( , ) ( ) ( ) ( )i t i t
e e A Bf x t f x e F x x x x e            (axial force excitation) (1) 

where  is Dirac’s delta function. Recall from Chapter 3, Section 3.3.3 the equation of motion for 
forced axial vibration 

 ( , ) ( , ) ( , )eA u x t EA u x t f x t    (2) 

Following the modal expansion method of Chapter 3, Section 3.3.3, we assume 

  
1

, ( ) 



uN

i t
j j

j

u x t U x e  (3) 

where uN  is the number of modes needed to bracket the frequency range of interest 

0 ... 100 kHzf  . The coefficients j  are the modal participation factors and the functions ( )jU x  

are length-normalized orthonormal axial modes that satisfy the relation  
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0

l

p q pqU U dx   (4) 

with pq  being the Kronecker delta with the property 1pq   for p q , and 0 otherwise.  

For free-free beams, the length-normalized axial modeshapes can be calculated with the 
formulae given in Chapter 3, Section 3.3.2.1, Eqs. (3.256), (3.259), i.e., 

( ) cos( )j j jU x A x ,     
2

jA
l

,    
 j

j

l
,     


j j

E
,    1,2,3,...j  (5) 

According to Chapter 3, Section 3.3.3.3, Eq. (3.295), the response by modal expansion is  

   i
2 2

1

1
, ( )

2


     


  

uN
j t

j
j j j j

f
u x t U x e

A i
 (6) 

where jf  is the modal excitation calculated as 

 
0

ˆ ( ) ( )
l

j jf f x U x dx  ,    1, 2,3,...n   (7) 

Substitution of Eq. (1) into Eq. (7) yields 

  
0

ˆ ˆ( ) ( ) ( ) ( ) ( )           
l

j PWAS A B j PWAS j A j Bf F x x x x U x dx F U x U x  (8) 

In resolving Eq. (8), the localization property of the Dirac delta function was used, i.e.,  

 0 0( ) ( ) ( )x x f x dx f x    (9) 

Substitution of Eq. (7) into Eq. (6) yields the modal participation factor as 

 
   

2 2

ˆ

2
j B j A

j
j j j

U x U xF

A i


     




  
,    1, 2, 3, ...j N  (10) 

Substitution of Eq. (10) into Eq. (3) followed by evaluation at Ax  and Bx  gives the amplitudes 

    
1

ˆ( ) ;  


 
uN

A A j j A
j

u u x U x  (11) 

    
1

ˆ ( ) ;  


 
uN

B B j j B
j

u u x U x  (12) 

    ( ) B Au u u      (13) 

Note that substitution of Eqs. (10), (11), (12) into Eq. (13) and rearrangement yields 
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2 2
1

2

2 2
1

ˆ
( )

2

ˆ

2

  
     

     






        

   
  





u

u

N
j B j A

B A j B j A
j j j j

N
j A j B

j j j j

U x U xF
u u u U x U x

A i

U x U xF

A i

 (14) 

 

 

 

The numerical results are as follows:  

The index uN  of the axial frequency that brackets the frequency range of interest is 4uN  . The 

four axial frequencies that bracket the range 0 ... 100 kHzf   are 25.4, 50.8, 76.2, 101.6 kHz. 

The four axial modes are shown below 

 

 

The response amplitudes of the displacements at Ax  and Bx , i.e., A ( )u  , B( )u   as well as the 

difference B A( ) ( ) ( )u u u      are given in the next three plots. 
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Problem 15: Consider a steel beam of thickness 2.6 mmh  , width 8 mmb  , length 

100 mml  , elastic modulus 200 GPaE  , mass density 37,750 kg/m  . The beam is excited 

by a pair of self-equilibrating harmonic moments of amplitude ˆ 100 N mM    placed at 

A 40 mmx   and B 47 mmx  , as shown in Figure 3.23. The excitation frequency varies in the 

range 0 ... 40 kHzf   (consider 401 equally spaced values). Consider 1%  modal damping in all 

modes. Find the index wN  of the flexural frequency that brackets the frequency range of interest. 

Find and plot the response amplitudes for displacements and slopes at Ax  and Bx , i.e., A ( )w  , 

A ( )w  ; B( )w  , B( )w  ; as well as the differences B A( ) ( ) ( )w w w     , 

B A( ) ( ) ( )w w w       . Use the four-quads plotting format of Figure 3.8 on page 70. 

 

 
Figure 3.23 Beam undergoing flexural vibration under the excitation of a pair of self-

equilibrating bending moments 

 

SOLUTION 

The excitation moments acting upon the beam are ˆ( ) i t
AM t Me  , ˆ( ) i t

BM t Me    (Figure 

3.23). The corresponding distributed excitation moment is expressed as 

  ˆˆ( , ) ( ) ( ) ( )i t i t
e e A Bm x t m x e M x x x x e            (moment excitation) (15) 

Recall from Chapter 3, Section 3.4.3.4, Eq. (3.461) the equation of motion for forced flexural 
vibration of a beam under distributed moment excitation, i.e., 

 ( , ) ( , ) ( , )eA w x t EI w x t m x t      (16) 

Assume the modal expansion 

 
1

( , ) ( ) 



wN

i t
j j

j

w x t W x e  (17) 

where N  is the number of modes needed to bracket the frequency range of interest 
0 ... 100 kHzf  . The coefficients j  are the modal participation factors and the functions 

( )jW x  are length-normalized orthonormal flexural modes that satisfy the relation  
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0

l

p q pqW W dx   (18) 

For free-free beams, the length-normalized flexural modeshapes can be calculated with the 
formulae given in Chapter 3, Section 3.4.2.1, Eqs. (3.409), (3.410) that dealt with vibration 
analysis, i.e., 

    1
( ) cosh cos sinh sinj j j j j jW x x x x x

l
           (19) 

 j
j

z

l
   ,      2

j j
EI

A
 


  ,       1,2,3,...j   (20) 

with the eigenvalues jz  and the modeshape factors j  being given in Chapter 3, Table 3.5. 

According to Chapter 3, Section 3.4.3.4, Eqs. (3.463), (3.464), the response by modal expansion 
is 

   i
2 2

1

1
, ( )

2
j t

j
j j j j

f
w x t W x e

A i


     






    (21) 

where the modal excitation jf  is given by 

 
0

ˆ ( ) ( )
l

j e jf m x W x dx  ,    1,2,3,...j  (22) 

Substitution of Eq. (15) into (22) gives 

  
0 0

ˆˆ ( ) ( ) ( ) ( ) ( )
l l

j e j A B jf m x W x dx M x x x x W x dx            (23) 

The r.h.s. of Eq. (23) can be simplified through integration by parts, i.e., 

    0 0 00

l l

j jx x W dx x x W        0 00
( )

l

j jx x W dx W x       (24) 

Hence, 

    
0

( ) ( )
l

A B j j A j Bx x x x W dx W x W x             (25) 

Substitution of Eq. (25) into Eq. (23) yields 

 ˆ ( ) ( )j j A j Bf M W x W x         (26) 

Substitution of Eq. (26) into Eq. (21) yields the modal participation factor as 

 
2 2

ˆ ( ) ( )

2

j B j A
j

j j j

W x W xM

A i


     

 
 

  
 (27) 

Substitution of Eq. (27) into Eq. (17) followed by evaluation at Ax  and Bx  gives the amplitudes 
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1

ˆ( ) ; ( )  


  
wN

A A j j A
j

w w x W x  (28) 

  
1

ˆ( ) ; ( )  


  
wN

B B j j B
j

w w x W x  (29) 

 ( ) ( ) ( )B Aw w w      (30) 

Differentiation of Eq. (17) w.r.t. x  gives the amplitude ˆ ( )w x  as 

 
1

ˆ ( ) ( )


 
wN

j j
j

w x W x  (31) 

Evaluation of Eq. (31) at Ax  and Bx  yields 

  
1

ˆ( ) ; ( )  


    
wN

A A j j A
j

w w x W x  (32) 

  
1

ˆ( ) ; ( )  


    
wN

B B j j B
j

w w x W x  (33) 

 ( ) ( ) ( )B Aw w w        (34) 

Note that substitution of Eqs. (27), (32), (33) into Eq. (34) and rearrangement yields 

 
2 2

1

2

2 2
1

ˆ ( ) ( )
( ) ( ) ( ) ( ) ( )

2

ˆ ( ) ( )

2

  
     

     





 
             

    
  





w

w

N
j B j A

B A j B j A
j j j j

N
j B j A

j j j j

W x W xM
w w w W x W x

A i

W x W xM

A i

 (35) 

 

The numerical results are as follows:  

The index wN  of the axial frequency that brackets the frequency range of interest is 13wN  . The 

13 flexural frequencies that bracket the range 0 ... 100 kHzf   are 1.358, 3.75, 7.34, 12.13, 18.12, 
25.3, 33.7, 43.3, 54.1, 66.0, 79.2,   93.6, 109.2 kHz. 
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The thirteen flexural modes are shown below 

 

 

 

 

The response amplitudes for displacements and slopes at Ax  and Bx , i.e., A ( )w  , A ( )w  ; 

B( )w  , B( )w  ; as well as the differences B A( ) ( ) ( )w w w     , B A( ) ( ) ( )w w w        

are given in the next six plots. 
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Problem 16: Consider a steel beam of thickness 2.6 mmh  , width 8 mmb  , length 

100 mml  , elastic modulus 200 GPaE  , mass density 37,750 kg/m  . The beam is excited 

by a pair of self-equilibrating harmonic forces of amplitude ˆ 100 NF   placed at A 40 mmx   

and B 47 mmx  . The forces act on the beam surface as shown in Figure 3.24. The excitation 

frequency varies in the range 0 ... 100 kHzf   (consider 401 equally spaced values). Consider 

1%  modal damping in all modes. Find the index uN  of the axial frequency and the index wN  of 

the flexural frequency that bracket the frequency range of interest. Find and plot the surface 
response displacements A ( )u   at Ax ; B( )u   at Bx , and B A( ) ( ) ( )u u u     . Use the four-

quads plotting format of Figure 3.8 on page 70. Hint: surface displacement u  is calculated 
kinematically using the axial displacement 0u  and the flexural slope w  of the neutral axis, i.e., 

0 2

h
u u w  . 

 

(a)  

(b) 

 
2( ) ( )h

B B Bu u x w x 2( ) ( )h
A A Au u x w x 

A B

 

 

Figure 3.24 Beam undergoing combined axial and flexural vibration under the excitation of a 
pair of self-equilibrating forces place on the beam surface. The combined axial and 
flexural effect is created by the fact that the forces are offset from the neutral axis: 
(a) loading diagram; (b) surface displacements diagram 
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SOLUTION  

The excitation forces acting upon the beam surface can be reduced at the neutral axis into a pair 
of axial forces ˆ( ) i t

AF t Fe   , ˆ( ) i t
BF t Fe   and a pair of bending moments ˆ( ) i t

AM t Me  , 
ˆ( ) i t

BM t Me    where  

 ˆ ˆ
2

h
M F  (36) 

The corresponding distributed excitation axial force and bending moment are expressed as 

  ˆ ˆ( , ) ( ) ( ) ( )i t i t
e e PWAS A Bf x t f x e F x x x x e            (axial force excitation) (37) 

  ˆˆ( , ) ( ) ( ) ( )i t i t
e e A Bm x t m x e M x x x x e            (moment excitation) (38) 

where  is Dirac’s delta function. As shown in Figure 3.24b, the neutral axis displacements 
ˆ( )Au x , ˆ( )Bu x  and ˆ ( )Aw x , ˆ ( )Bw x  combine to give the surface displacements Au , Bu  according 

to the kinematic formula 

 
ˆ ˆ( ) ( )

2

ˆ ˆ( ) ( )
2

A A A

B B B

h
u u x w x

h
u u x w x

 

 
 (39) 

The modal participation factors for axial and flexural motions are calculated by substituting Eqs. 
(36), (37), (38) into Eqs. (10), (27) to get 

 
   

2 2

ˆ

2
u u

u

u u u

j B j A
j

j j j

U x U xF

A i


     




  
,    1, 2, 3, ...u uj N  (40) 

 
2 2

ˆ ( ) ( )

2 2
w w

w

w w w

j B j A
j

j j j

W x W xh F

A i


     

 
 

  
,    1, 2, 3, ...w wj N  (41) 

where the subscripts u  and w  signify axial and flexural modes, respectively. Substitution of Eqs. 
(40), (41) into Eq. (39) gives 

  
1 1

( )
2

u w

u u w w

u w

N N

A j j A j j A
j j

h
u U x W x 

 

    (42) 

  
1 1

( )
2

u w

u u w w

u w

N N

B j j B j j B
j j

h
u U x W x 

 

    (43) 

Substitution of Eqs. (11), (12),(32), (33) into Eqs. (42), (43) yields 

   
 

2

2 2 2 2
1 1

ˆ ˆ ( ) ( )
( )

22 2

u w
u u w w

u w

u wu u u w w w

N N
j B j A j A j B

A j A j A
j jj j j j j j

U x U x W x W xF h F
u U x W x

A Ai i           

              
   (44) 
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2

2 2 2 2
1 1

ˆ ˆ ( ) ( )
( )

22 2

u w
u u w w

u w

u wu u u w w w

N N
j B j A j A j B

B j B j B
j jj j j j j j

U x U x W x W xF h F
u U x W x

A Ai i           

              
   (45) 

Subtraction of Eq. (44) from Eq. (45) yields 

 

   
   2 2

1

2

2 2
1

ˆ

2

ˆ ( ) ( )
( ) ( )

2 2

u
u u

u u

u u u u

w
w w

w w

w w w w

N
j A j B

B A j B j A
j j j j

N
j A j B

j B j A
j j j j

U x U xF
u u u U x U x

A i

W x W xh F
W x W x

A i

     

     





 
        

             




 (46) 

Upon rearrangement, Eq. (46) yields 

 
   

2 2
2

2 2 2 2
1 1

( ) ( )ˆ
( )

22 2

u w
u u w w

u wu u u w w w

N N
j B j A j B j A

j jj j j j j j

U x U x W x W xF h
u

A i i


           

                       
   (47) 

 

 

The numerical results are as follows:  

The indices uN  of the axial frequency and wN  of the flexural frequency that bracket the 

frequency range of interest are 4uN   and 13wN  . 

The surface response displacements A ( )u   at Ax ; B( )u   at Bx , and B A( ) ( ) ( )u u u      

are given in the next three plots. 
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