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CHAPTER 5 PROBLEMS AND EXERCISES 
 
 

Problem 1: Consider the 1-D wave equation 2c u u    and recall the D’Alembert solution. (a) 
Verify by direct substitution that the functions ( )f x ct  and ( )g x ct  of the D’Alembert 
solution satisfy the wave equation. (b) Find the expressions of f  and g  for the following initial 

conditions at 0t  , 0( ,0) ( )u x u x , ( ,0) 0u x  . (c) Sketch the behavior of ( )f x ct  and 

( )g x ct  for various times 0t   and identify the forward wave and which is the backward 
wave. 
 

  

Solution 

(a) Assume ( , ) ( )u x t f x ct  . Then 

 ( , ) ( )u x t f x ct
x

  


,   
2

2
( , ) ( )u x t f x ct

x

  


 (1) 

 ( , ) ( )u x t cf x ct
t

   


    
2

2

2
( , ) ( )u x t c f x ct

t

   


 (2) 

Recall the wave equation 2c u u  and write it explicitly as 

 
2 2

2
2 2

c u u
x t

 


 
 (3) 

Substitution of Eqs. (1), (2) into Eq. (3) yields 

  22 2( ) ( ) ( )       c f x ct c f x ct c f x ct  (4) 

Equation. (4) proves that the function ( )f x ct  satisfies the wave equation! 

By a similar argument, if we assume ( , ) ( )u x t g x ct  , then we get 

 ( , ) ( )u x t g x ct
x

  


,   
2

2
( , ) ( )u x t g x ct

x

  


 (5) 

( , ) ( )u x t cg x ct
t

  


   
2

2
2

( , ) ( )u x t c g x ct
t

  


 (6) 

Substitution into Eq. (3) yields 

 2 2( ) ( )c g x ct c g x ct     (7) 
Equation (7) proves that the function ( )g x ct  satisfies the wave equation. QED 

================= 

(b) Recall Eq. (5.20) representing the general expression of the D’Alembert solution, i.e.,  

 ( , ) ( ) ( )u x t g x ct f x ct     (8) 
Correspondingly,  
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 ( , ) ( ) ( ) ( )u x t cg x ct c f x ct       (9) 

Substitution in the initial conditions 0( ,0) ( )u x u x , ( ,0) 0u x   yields 

 0( ,0) ( ) ( ) ( )u x g x f x u x    (10) 

 ( ,0) ( ) ( ) 0u x cg x cf x     (11) 
Equation (11) yields 

 ( ) ( )g x f x   (12) 
 

Upon integration, 

 ( ) ( )g x f x C   (13) 
where C is an arbitrary constant. Substitution of Eq. (13) into Eq. (10) yields 

 02 ( ) ( )f x C u x   (14) 

Upon solution,  

 1 1
02 2( ) ( )f x u x C   (15) 

Substitution of Eq. (8) into Eq. (6) gives 

 1 1
02 2( ) ( )g x u x C   (16) 

To keep the discussion generic, we use the unspecified variable z and write 

 
1 1

02 2

1 1
02 2

( ) ( )

( ) ( )

f z u z C

g z u z C

 

 
 (17) 

Equation (17) gives the general form of functions  f  and  g . When substituting Eq. (17) 

into Eq. (8), we will make z x ct   for  f  and z x ct   for  g ; hence, 

 
1 1

02 2( , ) ( )u x t u x ct C   1 1
02 2( )u x ct C  

1 1
0 02 2( ) ( )u x ct u x ct   

 (18) 

Thus, the answer to the problem is 

 1
02( , ) ( ) f x t u x ct  (19) 

 1
02( , ) ( ) g x t u x ct  (20) 

================== 
 
(c)The sketch of the behavior of ( )f x ct  for various times 0t   is given in Figure 1. It is 
apparent that ( )f x ct  is moving forward, i.e., it is a forward wave. A similar exercise can be 
done for the backward wave ( )g x ct  
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Figure 1 Sketch explaining the traveling nature of the forward wave ( )f x ct ; A similar 

sketch can be done for the backward wave ( )g x ct  

------------------ 
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Problem 2: Verify the alternative forms of the d’Alembert solution given by Eqs. (5.21), (5.22), 
(5.23) 
 
Solution 
Recall Eqs. (5.21), (5.22), (5.23), i.e., 
 1( , ) ( ) ( )   u x t g ct x f ct x  (5.21) 

 2( , )
         
   

x x
u x t g t f t

c c
  (5.22) 

 3( , )
         
   

x x
u x t g t f t

c c
  (5.23) 

Recall the wave equation, i.e., 
 2c u u    (1) 
Write the derivatives of Eqs. (5.21), i.e., 

1

1

( , ) ( ) ( )

( , ) ( ) ( )

     
     

u x t g ct x f ct x

u x t g ct x f ct x
           

1

2 2
1

( , ) ( ) ( )

( , ) ( ) ( )

    

    





u x t cg ct x cf ct x

u x t c g ct x c f ct x
 (2) 

Substitution of Eq. (2) into Eq. (1) yields 
  2 2 2 2

1 1( , ) ( ) ( ) ( ) ( ) ( , )             c u x t c g ct x f ct x c g ct x c f ct x u x t  (3) 

Write the derivatives of Eqs. (5.22), i.e., 

2

2 2 2

1 1
( , )

1 1
( , )

           
   
           
   

x x
u x t g t f t

c c c c

x x
u x t g t f t

c cc c

          
2

2

( , )

( , )

          
   
          
   





x x
u x t g t f t

c c

x x
u x t g t f t

c c

 (4) 

Substitution of Eq. (4) into Eq. (1) yields 

 

2 2
1 2 2

1

1 1
( , )

( , )

                 
           
   



x x
c u x t c g t f t

c c c c

x x
g t f t u x t

c c

 (5) 

Write the derivatives of Eqs. (5.23), i.e., 

3

3 2 2

1 1
( , )

1 1
( , )

           
   
           
   

x x
u x t g t f t

c c c c

x x
u x t g t f t

c cc c

           
3

3

( , )

( , )

          
   
          
   





x x
u x t g t f t

c c

x x
u x t g t f t

c c

 (6) 

Substitution of Eq. (6) into Eq. (1) yields 

 

2 2
1 2 2

1

1 1
( , )

( , )

                 
           
   



x x
c u x t c g t f t

c c c c

x x
g t f t u x t

c c

 (7) 

------------ 
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Problem 3: For each material given in Table 5.3, find: (a) the wave speed. How long does it take 
the wave to travel 10 m? (b) the pressure wave amplitude (expressed in absolute value and as 
percentage of yield stress) needed to achieve a maximum strain of 1000 Is this feasible? (c) 
the acoustic impedance; (d) the particle velocity for a pressure wave with amplitude 1

2maxp Y . 

Comment on the result. (e) the pressure wave amplitude (expressed in absolute value and as 
percentage of yield stress) needed to achieve a maximum particle velocity of 20 m/s. Is this 
feasible? (f) the displacement wave amplitude for a 100 kHz harmonic pressure wave with 
amplitude 1

2maxp Y .  

Table 5.3 Typical material properties of aluminum and steel 
 Aluminum 

(7075 T6) 
Steel 

(AISI 4340 normalized) 
Modulus, E 70 GPa 200 GPa 
Poisson ratio 0.33 0.3 
Density,  2700 kg/m3 7750 kg/m3 
Yield stress, Y 500 MPa 860 MPa 

 

 
Solution 

(a) Recall Eq. (5.10) giving the wave speed as /c E  . Upon substitution, 

5092 m/sAlc  , 5080 m/sSteelc   

The time to travel 10 m  is 1.964 msAlt  , 1.969 msSteelt  ; the times are comparable because 

the wavespeeds are comparable. 
 
(b) Recall the stress-strain relation E  . The stress corresponding to 1000    is: 

70 MPa = 14% of Al Y  , 200 MPa = 23% of Steel Y  .  

The stresses are feasible because they do not exceed the yield values 
 

(c) Recall Eq. (5.46) giving the expression of the acoustic impedance, i.e., /Z c E E c    . 

Upon calculation, -113.75 MPa m sAlZ    , -139.4 MPa m sAlZ    .  

Comment: the aluminum acoustic impedance is significantly lower than that of steel because 
aluminum has a lower density while having almost the same wavespeed. 
 
(d) Recall Eq. (5.45) giving the relation between stress and particle velocity amplitudes, i.e., 
 max maxc u    (1) 

 Recalling from item (c) above that c Z  , it follows that  

 max maxZ u    (2) 

Upon solution, Eq. (2) yields 
 max maxu Z  (3) 

                                                 
1 1  = 1 micro-strain = 10-6 units of strain 
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For a pressure wave with amplitude 1
2max Y  , we get max 18.18 m/sAlu  , max 10.92 m/sSteelu   

Comment: For the same stress level relative to yield stress, the particle velocity in aluminum is 
significantly higher than in steel because aluminum has a lower acoustic impedance. 
 
(e) Recall again Eq. (5.45) max max maxc u Z u     and calculate the stress amplitude 

corresponding to particle velocity amplitude of 25 m/s. Upon calculation, we get 
344 MPa = 69% of Alp Y , 984 MPa = 114% of Steelp Y  

Comment:  
(i) To achieve the same particle velocity one has to apply stress levels in steel that are 

almost double those required in aluminum.  
(ii) The stress level in steel would exceed the yield value, hence the linear analysis used 

here would no longer apply. 
 
(f) the displacement wave amplitude for a 100 kHz harmonic pressure wave with amplitude 

1
2maxp Y  is calculated as follows. Recall Eq. (3) and express it in terms of amplitudes 

 ˆ ˆu Z  (4) 
To calculate displacement wave amplitude, recall Eq. (5.61) giving the expression of a harmonic 
wave, i.e., 

   ( )ˆ( , ) i x tu x t ue  (5.61) (5) 

The particle velocity is obtained by differentiation of Eq. (5) w.r.t. time t , i.e.,  

        
   


 ( ) ( ) ( )ˆˆ ˆ( , ) i x t i x t i x tu x t ue i ue ue
t

 (6) 

It is apparent from examination of Eq. (6) that the particle velocity amplitude û  is 

  ̂ ˆu i u       (particle velocity amplitude) (7) 

Upon solution, Eq. (7) yields 
  ̂û iu       (displacement amplitude in terms of particle velocity amplitude) (8) 

Equations (4),(8) give 

 ˆ ˆˆ ˆu iu u Z        (9) 

where 2 f  . For 1
2maxp Y , i.e., 1

2ˆ Y   , 1
2ˆ Y  , Eq. (9) yields: 

ˆ 28.9μmAlu  , ˆ 17.4μmSteelu   

 
============== 
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(b) the pressure wave amplituder (expressed in absolute value and as percentage of yield) 
needed to achieve a maximum strain of 1000 is calculated as follows 

 1000  _al E_al  _al 70.0 MPa Y_al 500 MPa
_al

Y_al
14 %

_st E_st  _st 200.0 MPa Y_st 860 MPa
_st

Y_st
23 %

========================

(c) the acoustic impedance is calculated as follows 

Z_al _al c_al Z_al 13.75 MPa m
1

 s

Z_st _st c_st Z_st 39.37 MPa m
1

 s

========================

(d) the particle velocity is calculated as follows

_max_al
Y_al

2
 u_dot_al

_max_al

Z_al
 u_dot_al 18.18

m

s


_max_st
Y_st

2
 u_dot_st

_max_st

Z_st
 u_dot_st 10.92

m

s


========================

Units: GPa 10
9
Pa MPa 10

6
Pa ms 10

3
s  10

6
 kHz 10

3
Hz m 10

6
m

For each material in Table 5.3: 

(a) Find the wave speed 

aluminum E_al 70GPa _al 2700kg m
3

 c_al
E_al

_al
 c_al 5092

m

s


steel E_st 200GPa _st 7750kg m
3

 c_st
E_st

_st
 c_st 5080

m

s


How long does it take the wave to travel 10 m? L 10 m
L

c_al
1.964 ms aluminum 

L

c_st
1.969 ms steel 

========================
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Dr. G
Typewritten Text
PROBLEM 5.3 SOLUTION



u_hat_st m_hat_st MPau_hat_st
_hat_st

 Z_st
_hat_st

Y_st

2


u_hat_al m_hat_al MPau_hat_al
_hat_al

 Z_al
_hat_al

Y_al

2



rad

s
 2  ff 100 kHz

(f) the displacement wave amplitude for a 100 kHz harmonic pressure wave with amplitude p=Y/2 

1_st

Y_st
%1_st MPa1_st Z_st u_dot

1_al

Y_al
69 %1_al 344 MPa1_al Z_al u_dot

u_dot 25
m

s


(e) the pressure wave amplitude needed to achieve 25 m/s is calculated as follows 
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Problem 4: Consider a semi-infinite slender bar subjected to end displacement excitation 0( )u t  

of the form: 0(0, ) ( ) exp( / )  u t u t bt t , 0t  , where 50 ms  , 410b c , and c  is the wave 

speed in the bar. The bar is made of aluminum (Table). The cross sectional area is 225 mmA  . 
Plot the value of 0u  at 1 ms intervals up to 10maxt  . Predict the value of time when the 

maximum value of u0 occurs and verify this value on the plot. Find the solution  ,u t x . Follow 

the wave propagation up to max 10x c . Sketch the solution at times

 0.1 ,  0.5 ,  1 ,  2 ,  3 ,  4 ,  6 ,  8t         . Present results in the form of subsequent plots, one below 
the other. Describe what you see. 
 
Solution 
 
 

 
 
 (a) Consider the expression 

 0 ( )
t

u t bte 


  (1) 

Calculate max 10 500 mst    and use appropriate software to obtain the plot in Figure 2 below. 

 
Figure 2 Plot of 0( )u t  indicating the maximum value and its position in time. 

=========== 
 
 (b) To obtain the maximum value, differentiate 0 ( )u t  and set the result to zero, i.e., 

E, , A 

u0(t) 

0 100 200 300 400 500

2

4

6

8

10

t, ms

u0
, m

m
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 0

1 1
( ) 1 0

t t t

u t be bt e b t e  

 
             

   
  (2) 

Hence, 
 

0 max 50 msut    ,       1
0max 0 ( ) 9.366 mmu u b e      (3) 

=========== 
 
(c) Refer to Section 5.3.2 and assume that the solution has the general expression  
 
 ( , ) ( )u x t f ct x   (4) 
Impose boundary condition 
 0(0, ) ( ) ( )u t f ct u t   (5) 

i.e., 

  
 

( )
ct

cb
f ct ct e

c



  (6) 

This means that the general form of  f  is  

 ( )
z

c
b

f z ze
c




  (7) 

Substitute z ct x   into Eq. (7) to get 

 ( , ) ( ) ( )
ct x

c
b

u x t f ct x ct x e
c





     (8) 

 

(d) Calculate the material wave speed / 5092 m/sc E   . Then, calculate 

max 10 2546 mx c  . Substitute these values in Eq. (8) and set the time to the values t = 0.1, 
0.5, 1, 2, 3, 4, 6, 8. and max max /t x c . The resulting plots are show in Figure 3. 

 

 

(Figure 3 continued)f 
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(Figure 3 continued) 
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Figure 3 Plot of ( , )u x t  at various times 

 
 
Discussion: We see how the wave progresses inside the bar. We see the wave emerging from the 
excitation end and propagating forward. Note that the plotting on the time axis and on the space 
axis are reversed in shape. The wave shape in the space domain is flipped in comparison with the 
wave shape in the time domain (i.e., the wave shape corresponding to smaller times progresses 
first into the material bar.) This is OK, since the head of the wave must correspond to small time 
values. 
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0 100 200 300 400 500

5

10

t, ms

u0
, m

m

t tmin tmin dt( ) tmaxtmax 10 dt 0.01mstmin 0 

 Ch5-4(a)

 Find:
u0 t( ) b t e

t




b 0.509
m

s
c 5092

m

s


b 10
4
cc

E




 50msA 25mm 2700kg m
3

E 70GPaGiven

ms 10
3
sGPa 10

9
PaUnits:

PROBLEM 5.4 SOLUTION
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0 500 1000 1500 2000 2500 3000

5

10

x, m

u(
t,x

),
 m

m

u 0.5 x( ) 10
3

x

0 500 1000 1500 2000 2500 3000

2

4
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b 509 10

3


m

s


tmax
xmax

c
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Problem 5: Consider the split Hopkinson bar. A long and slender aluminum bar (

1 3 12 mmr r  ) is split at the center and a steel piece ( 2 10 mmr  ) is inserted in between as 

shown in Figure 24 (here, Figure 4). The contact at the two interfaces is assumed perfect. 
Assume that an incident compressive stress wave pulse of 400 MPa is traveling forward in bar 
#1. At the interface with bar #2 (the steel piece), some of the wave will be transmitted, and some 
will be reflected. The transmitted wave will hit the second interface. Again, part of the incident 
wave will be reflected and part will be transmitted. 
 

 
Figure 4 Split Hopkinson bar  

Find: (a) the amplitude of the waves transmitted into bars #2 and #3. Comment on the stress 
values in comparison with the yield stress of the materials and explain what this means. (b) The 
amplitude of the waves reflected at the 1-2 and 2-3 interfaces. Comment on negative stress 
values (if they appear) and explain what this means. (c) What radius should the steel piece have 
such that no reflection occurs at the two interfaces, and the amplitude of the wave transmitted in 
bar #3 is the same as that of the incident wave in bar #1. After finding the value, verify that 
indeed no reflection takes place.. 
 
 
 
 
Solution 
The problem is solved using the theory of wave propagation at interfaces discussed in Section 
5.3.10. In particular, one uses Eq. (5.143), i.e.,   

 

1 2

1 1 2 2

1 1 2 2

1 1 2 2

2
t i

r i

A Z

A Z A Z

A Z A Z

A Z A Z

 

 





 


 (5.143) (1) 

where Z is the acoustic impedance, Z c .  
 
To solve Eq. (1), one first calculates the following numerical values: 

 
-1 2

-1 2

5092 m/s,  =13.75 MPa m s,  =452 mm

5080 m/s,  =39.37 MPa m s,  =314 mm   

Al Al Al

St St St

c Z A

c Z A

  

  
 (2) 

 
  

#2

Steel 
E2, 2, A2 

Aluminum
E3, 3, A3

Aluminum 
E1, 1, A1 

#1 #3 

17
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(a) The amplitudes of the stress waves transmitted in bars #2 and #3 for an input stress wave 

1 400 MPa   in bar #1 are calculated as 

 
The stress in steel bar #2 is at 89% of yield, whereas the stress in the aluminum bar #3 is at 71% 
of yield 
 
(b) The amplitudes of the stress waves reflected at the 1-2 and 2-3 interfaces are calculated as 

 
The negative stress values of 12 132 MPar    indicates that the incident stress 

2 767 MPa    did not change sign upon reflection at the 12 interface. The positive stress value 

of 23 254 MPar   signifies that the incident stress 3 356 MPa    changed sign upon 

reflection at the 23 interface. These facts illustrate the difference between the two interfaces. 
 
 
 
(c) has two parts, (c1) and (c2) as follows: 
(c1) To find the radius of the steel piece that would produce no reflection at the interfaces we set 
the condition that the denominator in the expression for r  in Eq. (1) is zero. This is obtained 

when 1 1 2 2 0A Z A Z  , i.e., the area of the second bar is related to the area of the first bar by the 

expression  

 
1

2 1
2

Z
A A

Z
   (3) 

Upon calculation, one finds 22 158 mmA   . Hence, the radius of the second bar should be  

 
 
  

2
2A1 Z2

A1 Z1 A2 Z2
1 3

2A2 Z3

A2 Z2 A3 Z3
2

2 767 MPa 3 356 MPa

r12
A1 Z1 A2 Z2

A1 Z1 A2 Z2
 1 r23

A2 Z2 A3 Z3

A2 Z2 A3 Z3
 2

r12 132 MPa r23 254MPa

r2'
A2'


 r2' 7.09mm

18
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(c2) After finding the value, we now verify that indeed no reflection takes place and the full 
wave amplitude is recovered in bar #3. The amplitudes of the wave transmitted in bar #2 and #3 
are 

 
It is apparent that the wave transmitted in bar #3 is the same as that of the incident wave in bar 
#1. Under this interface matching conditions, the steel bar #2 is not visible as far as wave 
propagation is concerned.  
 
The amplitude of the stress waves reflected at the two interfaces are  

 
Indeed, no reflections take place under the interface matching conditions. 
 
 

2'
2A1 Z2

A1 Z1 A2' Z2
1 3'

2A2' Z3

A2' Z2 A3 Z3
2'

2' 1145 MPa 3' 400 MPa

r12'
A1 Z1 A2' Z2

A1 Z1 A2' Z2
 1 r23'

A2' Z2 A3 Z3

A2' Z2 A3 Z3
 2'

r12' 0MPa r23' 0MPa

19



2 _st c2 c_st Z2 Z_st A2 A_st

E3 E1 3 1 c3 c1 Z3 Z_al A3 A1

Transmitted waves 2
2A1 Z2

A1 Z1 A2 Z2
1 3

2A2 Z3

A2 Z2 A3 Z3
2

2 767 MPa 3 356 MPa

2

Y_st
89 %

3

Y_al
71 %

Reflected waves r12
A1 Z1 A2 Z2

A1 Z1 A2 Z2
 1 r23

A2 Z2 A3 Z3

A2 Z2 A3 Z3
 2

r12 132 MPa r23 254 MPa

A2'
Z1

Z2
A1 A2' 158 mm

2
 r2'

A2'


 r2' 7.09 mm

Verify that the reflected waves are zero

Transmitted waves 2'
2A1 Z2

A1 Z1 A2' Z2
1 3'

2A2' Z3

A2' Z2 A3 Z3
2'

2' 1145 MPa 3' 400 MPa

PROBLEM 5.5 SOLUTION

Units: GPa 10
9
Pa MPa 10

6
Pa ms 10

3
s

E_al 70GPa _al 2700kg m
3

 c_al
E_al

_al
 c_al 5092

m

s
 Z_al _al c_al Z_al 13.75 MPa m

1
 s

E_st 200GPa _st 7750kg m
3

 c_st
E_st

_st
 c_st 5080

m

s
 Z_st _st c_st Z_st 39.37 MPa m

1
 s

Y_al 500 MPa

Y_st 860 MPa

r_al 12mm A_al  r_al
2

 A_al 452 mm
2



r_st 10mm A_st  r_st
2

 A_st 314 mm
2



1 400 MPa

E1 E_al 1 _al c1 c_al Z1 Z_al A1 A_al

E2 E_st
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r12'
A1 Z1 A2' Z2

A1 Z1 A2' Z2
 1 r23'

A2' Z2 A3 Z3

A2' Z2 A3 Z3
 2'

Reflected waves r12' 0 MPa r23' 0 MPa
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Problem 6: Consider a semi-infinite aluminum bar starting at 0x  . A rectangular pressure 
pulse is applied at the 0x   end, 0( )p t p  for 0 t T  ; ( ) 0p t   otherwise. The bar has the 

cross sectional area 210 mmA  and material properties listed in Table 5.3. The pressure pulse 
has 0 /2p Y  , 10 msT  . Find: (a) stress wave expression and its maximum value; (b) particle 

velocity expression and its maximum value; (c) power flow in the bar (expression and maximum 
value); kinetic, elastic, and total energy density per unit length of the bar (expression and 
maximum value) 
 
 
 

Solution 

A sketch of the problem setup is shown in Figure 5. The expression of the pressure pulse is  

 0 , 0
( )

0,    otherwise

p t T
p t

 
 


 (1) 

where 0 /2 250 MPap Y  , 10 msT  . 

 

 
Figure 5 Pressure pulse applied to the 0x   end of an elastic bar 

 
(a) The general solution is given by Eq. (5.20) in the form ( , ) ( ) ( )u x t f x ct g x ct    . 
However, the backward wave ( )g ct x  cannot propagate because there is no physical medium 
for 0x   since the bar only exists for 0 x . This is the radiation condition, which indicates that 
radiation of the wave is not possible in the direction where the physical medium is missing. For 
this reason, we disregard the term ( )g x ct  and assume the solution in the form 

 ( , ) ( )u x t f x ct   (2) 
The boundary condition imposed at the 0x   end is given in the form 

 (0, ) ( )t p t    (3) 
Using Eqs. (5.4) and (5.5) from the textbook and Eq. (2) above, we calculate the stress as 

 ( , ) ( , ) ( )x t Eu x t Ef x ct      (4) 
Substitution of Eq. (4) into Eq. (3) yields 

 (0, ) (0, ) (0 ) ( )t Eu t Ef ct p t        (5) 
Upon rearrangement, Eq. (5) becomes 

 
1

( ) ( / )f z p z c
E

     (6) 

x

( )p t

0x 

22
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Substituting z ct x  , Eq. (6) becomes 

 
1

( )
x

f x ct p t
E c

      
 

 (7) 

Substitution of Eq. (7) into Eq. (4) yields the solution 

 ( , )
x

x t p t
c

     
 

 (8) 

Equation (9) indicates that the stress wave follows the shape of the pressure pulse, i.e., 

 0 , 0
( , )

0,    otherwise

x
p t T

x t c
    


 (9) 

The maximum absolute value of the pressure wave is max 0 250 MPap    compression. 

 
(b) The particle velocity is calculated with Eq. (5.43), i.e., 

 ( , ) ( , )x t cu x t     (5.43) (10) 
Upon solution, Eq. (10) gives 

 
1

( , ) ( , )u x t x t
c



   (11) 

Substitution of Eq. (8) into Eq. (11) yields the particle velocity in the form 

 
1

( , )
x

u x t p t
c c

   
 

  (12) 

i.e., 

 
0 , 0

( , )

0,    otherwise

p x
t T

c cu t x 
    


  (13) 

Maximum value of the particle velocity is 0
max

p
u

c
 , i.e., max 18.18  m/su  . 

 
(c) Power flow in the bar (expression and maximum value) is calculated in accordance with 
Section 5.3.9.2, Eq. (5.82), i.e., 

 3 2( , ) ( )P x t mc f x ct   = 
2

3 1 x
A c p t

E c
       

 = 21 x
A p t

c c
  
 

 (14) 

 
2
0 , 0

( , )

0,    otherwise

A x
p t T

c cP t x 
    


 (15) 

Maximum value is given by 2
max 0

A
P p

c
 , i.e., max 45.5 kWP   

 
  

23



 16 

Kinetic, elastic, and total energy density per unit length of the bar (expression and maximum 
value) are calculated in accordance with Section 5.3.9.1, Eqs. (5.79), (5.80), i.e., 

 
2

2 2 2 21 1 1
( , ) ( , ) ( )

2 2

x A x
k t x v t x mc f x ct A c p t p t

E c E c
                   

 (16) 

 
2

2 2 2 21
( , ) ( )

x A x
e t x mc f x ct A c p t p t

E c E c
                  

 (17) 

Maximum values are given by 2
max max 0

1

2

A
k v p

E
  , i.e., max max 4.46 J/mk v  , and 2

max 0

A
e p

E
 , 

i.e., max 8.83 J/me   
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e 8.93
J

m
e

A

E
p0

2


k 4.46
J

m
k

1

2

A

E
 p0

2


P 45.5 kWP
A

 c
p0

2
(c)  

u_dot 18.18
m

s
u_dot



 c
(b) 

 250 MPa p0(a)

p0 250 MPap0
Y

2


Y 500 MPaA 10 mm
2



c 5.092 10
3


m

s
c

E


 2700kg m

3
E 70GPa

ms 10
3
sMPa 10

6
PaGPa 10

9
PaUnits:

PROBLEM 5.6 SOLUTION
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Problem 7: Consider a semi-infinite aluminum bar subjected to 100 kHz harmonic pressure 

excitation at one end. The bar has cross sectional area 210 mmA  and material properties listed 
in Table 5.3. The pressure amplitude is 0 /2p Y  . Find: (a) Stress and particle displacement 

wave expressions and its maximum values. Phase relation between stress and displacement: (b) 
Particle velocity expression and numerical value of its amplitude. Phase relation between stress 
and particle velocity; (c) The power flow in the bar (expression and numerical value of its 
amplitude); (d) The kinetic, elastic, and total energy density per unit length of the bar (expression 
and numerical value of its amplitude) 
 
 

Solution 

The problem definition is sketched in Figure 6.  

 
Figure 6 Harmonic pressure applied to the 0x   end of an elastic bar 

 
The pressure amplitude is 0 / 2 250 MPap Y   and the angular frequency is 2 100 kHz   . 

(a) The general solution for harmonic waves is given by Eq. (5.59) in the form 
( ) ( )( , ) i x t i x tu x t Ae Be       . However, the backward wave ( )i x tAe     cannot propagate 

because there is no physical medium for 0x   since the bar only exists for 0 x . This is the 
radiation condition, which indicates that radiation of the wave is not possible in the direction 
where the physical medium is missing. For this reason, we disregard the term ( )i x tAe     and 
assume the solution in the form 

 ( )( , ) i x tu x t Be    (1) 
The boundary condition is given by 

 0(0, ) i tt p e     (2) 

Using Eqs. (5.4) and (5.5) from the textbook and Eq. (1) above, we calculate the stress as 

 ( )( , ) ( , ) ( ) i x tx t Eu x t E i Be       (3) 
Substitution of Eq. (3) into Eq. (2) gives 

 0(0, ) ( ) i t i tt E i Be p e        (4) 

Upon solution, Eq. (4) yields 

 20 0 0 02 2
i i ip p p p

B e e e
iE E E c

  

    

  
 

     (5) 

(a1) Stress wave expression is calculated by substitution of Eq. (5) into Eq. (3); the result is  

x

0( ) i tp t pe 

0x 
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 ( )( , ) i x tx t iE Be i E     0p

E
( ) ( ) ( )2

0 0

i i x t i x t i x te e p e p e


             (6) 

The stress-wave amplitude is  

 0ˆ 250 MPap    (7) 

(a2) Displacement wave expression is calculated by substitution of Eq. (5) into Eq. (1); the result 
is 

 
( )

0 2( , )
i x tp

u x t e
c

 

 
 

  (8) 

The displacement-wave amplitude is  

 0ˆ
p

u
c 

  (9) 

Upon calculation, ˆ 28.9 μmu  . 
 Comparison of Eqs. (8) and (6) indicates that the phases of the stress and displacement waves 
are different by /2 . This means that the stress and displacement waves are in quadrature. 

 

(b) The particle velocity expression is calculated with Eq. (5.43), i.e., 

 
1

( , ) ( , )u x t x t
c



   (10) 

Upon substitution of Eq. (6) into Eq. (10) we get 

 ( )0( , ) i x tp
u x t e

c
 


  (11) 

The displacement wave amplitude is 0ˆ p
u

c
 ,  i.e.,  ˆ 18.2  m/su  . Comparison of expressions 

(11) and (6) indicates that the particle velocity is in antiphase with the stress. 

 

(c) The power flow in the bar is calculated with Eq. (5.102), i.e.,  

2 2 2 2 2 2 2
0 02 2

1
ˆ( , ) sin ( ) sin ( ) sin ( )

A
P x t mc u x t Ac p x t p x t

c c
       

 
       (12) 

The power amplitude is  

 2
0

ˆ A
P p

c
              ˆ 45.5 kWP   (13) 

The time-averaged power is calculated with Eq. (5.107) using Eq. (5.103), i.e., 

 2 21 1 ˆˆ
2 2

P mc u P           22.75 kWP   (14) 

 
 (d) The kinetic, elastic, and total energy densities per unit length of the bar (expression and 
numerical value of its amplitude) are calculated using Eqs. (5.96) and (5.97), i.e., 
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 2 2 21
2

ˆ( , ) ( , ) sin ( )v x t k x t m u x t      (15) 

 2 2 2ˆ( , ) ( , ) ( , ) sin ( )e x t k x t v x t m u x t       (16) 
Substituting Eq. (9) into Eqs. (15) and (16) yields  

 

2 2 21
ˆ( , ) ( , ) sin ( )

2

1

2

v x t k x t m u x t  



  

 2A
2
0

2

p

 2 2c 
2 2 2

02

1
sin ( ) sin ( )

2

A
x t p x t

c
   


  

 (17) 

 2 2
02

( , ) 2 ( , ) sin ( )
A

e x t v x t p x t
c

 


    (18) 

The amplitude of the kinetic, elastic, and total energy densities are 

 2
02

1ˆˆ
2

A
v k p

c
  ,    1ˆˆ 4.465 J mv k    (19) 

 2
02

ˆ
A

e p
c

 ,    1ˆ 8.929 J me   (20) 

The time-averaged total energy density is calculated with Eq. (5.101), i.e.,  

2
2 2 2 201

02 2 2 2 2

1 1
ˆ

2 2

p A
e m u m p

c c
 

  
   ,  i.e., 14.465 J me   (21) 

The time-averaged kinetic and elastic energy densities are calculated by simply taking half of Eq. 
(21), i.e.,  

 2
02

1

4

A
v k p

c
  ,  12.232 J mv k    (22) 
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 p0  250 MPa

u
p0

 c 
 u 28.942m

(b) u_dot


 c
 u_dot 18.185

m

s


(c) P
A

 c
p0

2
 P 45.5 kW

P

2
22.7 kW

(d) k
1

2

A

 c
2


 p0

2
 k 4.464

J

m


k

2
2.232

J

m


e
A

 c
2


p0

2
 e 8.929

J

m


e

2
4.464

J

m


PROBLEM 5.7 SOLUTION

Units: GPa 10
9
Pa MPa 10

6
Pa ms 10

3
s kHz 10

3
Hz m 10

6
m

E 70GPa  2700kg m
3

 c
E


 c 5.092 10

3


m

s


A 10 mm
2

 Y 500 MPa f 100 kHz  2  f

p0
Y

2
 p0 250 MPa

(a) 
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Problem 8: Consider elastic waves in a finite slender bar of length L with free ends generated by 
a harmonic pressure excitation applied at the left hand end. Analyze the wave reflection process 
in the bar (boundary condition at 0x  ; the reflection at x L ).Analyze the resonance condition 
and calculate the eigenvalues, eigen frequencies, eigen lengths. Calculate the resonance solution 
in the bar: (a) the stress wave solution; sketch first, second, and third modeshapes; (b) the 
displacement wave solution; sketch first, second, and third mode shapes 
 

Solution 

 
The problem definition is sketched in Figure 7 

 
Figure 7 Finite-length bar under the action of a harmonic pressure excitation at the 0x   end  

The material properties are given in Table 5.3. 
 
Incident wave ( , )iu x t  is generated at 0x   and travels towards x L  where is reflected and 

travels back as the reflected wave ( , )ru x t . Since the excitation ( )p t  is continuous, the process is 

steady-state and both the incident and the reflected waves coexist in the bar. 
 ( )( , ) i x t

iu x t Be    (1) 

 ( )( , ) i x t
ru x t Ae     (2) 

The total wave in the bar results from the superposition of the incident and reflected waves, i.e.,  
 ( ) ( )( , ) ( , ) ( , ) i x t i x t

i ru x t u x t u x t Ae Be          (3) 

Differentiation of Eq. (3) w.r.t. x, and multiplication by the elastic modulus E yields the stress 
wave 
  ( ) ( )( , ) i x t i x tx t E i Ae i Be          (4) 

Imposing the free boundary condition at x L , we write 

  ( ) ( )( , ) 0i L t i L tL t E i Ae i Be           (5) 

or 
   0i L i L i ti Ae i Be e       (6) 

Upon solution, Eq. (6) yields 
 2i LA Be   (7) 
and 
  2 ( ) ( )( , ) i L i x t i x tx t i E B e e e           (8) 

Imposing now the boundary condition at 0x   gives 

    2 2
0(0, ) 1i L i t i t i t i L i tt i E B e e e i E Be e p e                 (9) 

Upon solution, Eq. (9) gives 
 

x

0( ) i tp t pe 

x L0x 

30
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 0 0
2 2

1 1

1 1i L i L

p p
B i

i E e E e  


 
 

 (10) 

Substitution of Eq. (10) into Eq. (8) yields 

 

     

   

2 ( ) ( ) 2 ( ) ( )0
2

2 ( ) ( )
0 2

1
( , )

1

1

1

i L i x t i x t i L i x t i x t

i L

i L i x t i x t

i L

p
x t i E B e e e i Ei e e e

E e

p e e e
e

         


    


  


     

  

   


 


 (11) 

Upon simplification, the stress wave solution becomes 

  (2 )0
2

( , )
1

i L x i x i t
i L

p
x t e e e

e
  

   


         (stress wave solution) (12) 

The first factor in Eq. (12) is the amplitude; the second factor is the spatial variation; while the 
third factor is the temporal variation. 
 Correspondingly, the displacement wave solution is obtain by substituting Eqs. (7), (10) into 
Eq. (3), i.e., 

    

( ) ( ) 2 ( ) ( )

(2 ) (2 )0
2

( , )

1

1

i x t i x t i L i x t i x t

i L x i x i t i L x i x i t
i L

u x t Ae Be Be e Be

p
B e e e i e e e

E e

        

     


     

   

   

    


 (13) 

Equation (13) indicates that the displacement wave solution is 

  (2 )0
2

1
( , )

1
i L x i x i t

i L

p
u x t i e e e

E e
  


   


      (displacement wave solution) (14) 

 
Resonance occurs when the wave amplitude becomes very large. Examination of Eqs. (12), (13) 
indicates that very large amplitudes are obtained as the denominator tends towards zero. Hence 
the resonance condition can be expressed as 
 21 0i Le   , or  2 1i Le    (15) 
Solution of Eq. (15) yields the eigenvalues. Note that  

 2 4 6 i21 ...i i i je e e e                 i= 1       1,2,3...j   (16) 
Substitution of Eq. (16) into Eq. (15) yields the eigenvalues 
 2 2L j   (17) 
i.e., 
   , ,3 ,...

j
L j        (18) 

To calculate the eigen frequencies, recall that / c   and 2 f  ; hence 

 
2 f

L L
c

             i.e.,             
2j j

c
f L

L



  (19) 

Substitution of Eq. (18) into Eq. (19) yields the eigen frequencies 

 
2 3

, , ,...
2 2 2 2 2j

c c c c c
f j j

L L L L L



    (20) 

For example, if 100 mmL  , then 1 25.5 kHzf  , 2 50.9 kHzf  , 3 76.4 kHzf  . 

 
(c) To calculate the eigen lengths, assume the frequency is constant  and hence the wavelength is 
fixed to the value 
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c

cT
f

   ,    (21) 

The wavenumber can be expressed in terms of the wavelength as  

 
2


  (22) 

Substitution of Eq. (22) into Eq. (18) yields 

 
2

, ,3 ,...jL j
    


    (23) 

or 

 ,2 ,3 ,...
2 2 2 2jL j
   

   (24) 

For 50 kHzf  , 101.8 mm   and 1 50.9 mmL  2 101.8 mmL  , 3 153 mmL  . 

 
(a) The stress wave solution at resonance is calculated as follows. At resonance, Eq. (15) is 
satisfied, i.e., 2 1i Le   , and hence the amplitude in becomes infinity. In practice, material 
damping prevents the amplitude from going to infinity; however it is very large when resonance 
conditions happen. Now, recall Eq. (12), i.e.,  

  (2 )0
2

( , )
1

i L x i x i t
i L

p
x t e e e

e
  

   


 (25) 

Consider the part of Eq. (25) that represents the spatial variation, i.e.,  (2 )i L x i xe e   . At 

resonance, 2 1i Le   , and hence this part simplifies as follows:  

  (2 ) 2i L x i x i Le e e       
2 1

2 sin
i L

i x i x i x i x

e
e e e e i x



     


       (26) 

The factor -2i  may be absorbed into the amplitude term; the remaining spatial variation sin x  
is the modeshape, denoted by 
 ( ) sinx x        (stress modeshape) (27) 
The first, second, and third modeshapes are calculated with Eq. (27) by giving to   the 
corresponding values from Eq. (18), i.e., 

 1( ) sin
x

x
L

              2 ( ) sin 2
x

x
L

                3( ) sin3
x

x
L

   (28) 

Sketches of the first three stress wave modeshapes are shown in Figure 8. 
 

                  
Figure 8 First, second, and third stress modeshapes of a free bar 
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(b) The displacement wave solution at resonance is calculated as follows. Recall the 
displacement wave solution of Eq. (14), i.e., 

  (2 )0
2

1
( , )

1
i L x i x i t

i L

p
u x t i e e e

E e
  


   


 (29) 

At resonance, Eq. (15) is satisfied, i.e., 2 1i Le   , and the space varying term in Eq. (29) becomes 

  (2 ) 2i L x i x i Le e e        
2 1

2cos
i L

i x i x i x i x

e
e e e e x



     


       (30) 

The factor 2  is absorbed into the amplitude term, and the remaining spatial variation is the 
modeshape 
 ( ) cosu x x  (31) 
The first, second, and third modeshapes are calculated with Eq. (31) by giving to   the 
corresponding values from Eq. (18), i.e., 

 

1

2

3

( ) cos

( ) cos 2

( ) cos3

x
u x

L
x

u x
L
x

u x
L













 (32) 

Sketches of the first three stress wave modeshapes are shown in Figure 9. 
 

 

 

 
Figure 9 First, second, and third displacement modeshapes of a free bar 
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L3 152.8 mmL3 3


2


L2 101.8 mmL2 2


2


L1 50.9 mmL1


2


3 

2
152.8 mm



2
50.9 mm 101.8 mm

c

f


 2  ff 50 kHz

f
n

25.5

50.9

76.4

kHz

f
n

c

2  L
n 

n 1 3

c  cp0 250 MPap0
Y

2


L 100 mmY 500 MPaA 10 mm
2



c 5.092 10
3


m

s
c

E


 2700kg m

3
E 70GPa

kHz 10
3

Hzms 10
3
sMPa 10

6
PaGPa 10

9
PaUnits:

PROBLEM 5.8 SOLUTION
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j 1 3 dx 0.001 x 0 dx 1

U j x( ) sin  j x 
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V j x( ) cos  j x 
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Problem 9: Consider harmonic elastic waves in an infinite slender bar. (a) Derive the expression 
for standing waves considering the superposition of two identical harmonic waves traveling in 
opposite directions; accompany your derivation with the appropriate sketches. (b) Determine the 
expression for the bar length L, such that will permit the generation of standing waves of a given 
frequency, f; consider the following cases: fundamental; overtone; second overtone. (c) 
Determine and expression for the frequency that will generate standing waves in a bar of a given 
length, L; consider the following cases: fundamental; overtone; second overtone. 
 
 
Solution 

The solution to this problem can be found in textbook Chapter 5, Section 5.3.8 and need not be 
repeated here. 

--------------- 
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Problem 10: The wave speed (phase velocity) for flexural waves in a plate is given by 

Fc a   where   1/ 4
2 2/ 3 1a Ed      . (a) Show that the group velocity is twice the wave 

speed, i.e., 2gF Fc c . (b) Calculate the energy velocity. 

 
 

Solution 

(a) To calculate the group velocity, recall the definition of group velocity given in the textbook 
Eq. (5.214) in the form 

 g

d
c

d




  (1) 

To express  as function of , recall the definition of wavenumber given in the textbook by Eq. 
(3.172), i.e.,  

 
c

   (2) 

In our case, the generic notation c is replaced by the specific notation cF where 

 Fc a   (3) 

and   1/ 4
2 2/ 3 1a Ed      . Substitution of Eq. (3) into Eq. (2) yields 

 
1

c aa

  


    (4) 

Use Eq. (4) to express  as function of , i.e., 

 2 2a   (5) 

Differentiate Eq. (5) w.r.t.  to get 

 22
d

a
d

 

  (6) 

Substitute Eqs. (4) and (6) into Eq. (1) and get 

 2 2 1
2 2 2gF

d
c a a a

d a

   


     (7) 

Substitute Eq. (3) into Eq. (7) to get, as required,  

 ( ) 2 ( )gF Fc c   (8) 

(b) To calculate the energy velocity, recall the definition of energy velocity given in the textbook 
Eq. (5.243) which indicates that the energy velocity is equal to the group velocity. Hence, the 
answer to this question is 

 2e gF Fc c c   (9) 

============ 
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Problem 11: Consider straight-crested SH waves in an aluminum plate with material properties 
given in Table 5.3. Calculate the speed of propagation of the SH wave front. Sketch on the same 
picture the particle motion and wave velocity vectors. How is the particle motion of the straight-
crested SH waves different from the particle motion of the straight-crested axial waves in a 
plate? 
 
 
 
Solution 
(a) The SH wave front propagates with the wavespeed of the SH waves, which is the shear wave 
speed given by 

 S
G

c


       (shear wave speed) (1) 

where the shear modulus G  is calculated with the formula 

 26.3 GPa
2(1 )

E
G


 


      (shear modulus) (2) 

Upon calculation, Eq. (1) yields 

 m3122 sS
G

c


        (shear wave speed) (3) 

 
(b) Figure 10 shows the particle motion 


SHu  and wavefront normal 


SHn  for an SH wave in a 

strip. The wave velocity vector is parallel to the wavefront normal n


.  
 SH S SHv c n

 
      (wave velocity vector) (4) 

 

 
Figure 10 Particle motion 


SHu  and wavefront normal 


SHn  for an SH wave in a strip. The wave 

velocity vector SH S SHv c n
 

 is parallel to the wavefront normal n


. 

 
(c) The particle motion of the SH wave is perpendicular to the wave velocity vector whereas the 
particle motion of the axial wave is parallel to the wave velocity vector. 
 
=========== 
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c 3122
m

s
c

G




wave speed

G 26.3 GPaG
E

2 1  
 0.33 2700kg m

3
E 70GPa

Aluminum material properties from Table 5.3: 

m 10
6

mkHz 10
3

Hz 10
6

ms 10
3
sMPa 10

6
PaGPa 10

9
PaUnits:

PROBLEM 5.11 SOLUTION
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Problem 12: Consider the properties of aluminum and steel show in Table 5.3. (a) Write the 
expressions for the elastic constants   and bulk modulus, B ; calculate their values. (b) 
Calculate the following wave speeds values:  2 /Pc      (3-D pressure wave); /Sc    

(shear wave);  /c E   (1-D pressure wave);  2/ (1 )Lc E     (axial waves in plates). 

Comment on why c  and Pc  have different values, while both are “pressure” wave speeds. 

 
 
Solution 

(a) 

 Aluminum Steel 
 51.1 GPa 107.1 GPa 
 26.3 GPa 77.5GPa 
Bulk modulus, B  68.6 GPa 158.7 GPa 

 
 
(b) 

 Aluminum Steel 
2

Pc
 



  (3-D pressure wave) 
6175 m/s 5778 m/s 

Sc



  (Shear wave) 
3110 m/s 3142 m/s 

E
c


  (1-D pressure wave) 

5073 m/s 5048 m/s 

2(1 )
L

E
c

 



 (Axial waves in plates) 

5374 m/s 5274 m/s 

 
The reason that c  and Pc  are different while both are “pressure” wave speeds is that the 

corresponding “pressure” waves propagate in different ways. The wave speed c corresponds to a 
very simplified pressure wave that propagates in a 1-dimensional slender rod. The wave speed 

Pc  corresponds to the true pressure wave that propagates in an infinite 3-dimensional medium. 

========== 
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cL 5394
m

s
cL

E

 1 
2

 



c 5092
m

s
c

E




cS 3122
m

s
cS






cP 6198
m

s
cP

 2  




 0.33


2   


EE 70 GPaEE
 3  2  

 


B 68.6 GPaB
3  2 

3


 26.3 GPa
1

2 1  
E

 51.1 GPa


1   1 2  
E

 2700
kg

m
3

 0.33E 70 GPa

 Aluminum 

GPa 10
9

Pa
PROBLEM 5.12 SOLUTION
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cL 5325 HzcL
E

 1 
2

 



c 5080 Hzc
E




cS 3150 HzcS





cP 5894 HzcP
 2  




 0.3


2   


EE 200 GPaEE
 3  2  

 


 76.9 GPa


1

2 1  
E

 115.4 GPa


1   1 2  
E

 7750
kg

m
 0.3E 200 GPa

 Steel 
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Problem 13: Consider a 3-D plane wave traveling with speed c along an arbitrary direction n


. 
State the general expression of the particle motion, u


. Substitute it into the Navier equations and 

deduce the characteristic equation for the wave speed c. Solve the characteristic equation. 
Explain how many types of waves can travel in the 3-D material. Give the appropriate wave 
speeds. Sketch the particle motion for each wave type. 
 
Solution 

Solution to this problem can be found in the textbook Chapter 5, sections 5.10, 5.10.1, 5.10.2 and 
Figure 5.26. 

 

========== 
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Problem 14: Consider the z-invariant 3-D conditions. Explain the meaning of the “z-invariant” 
condition and write out all the related conditions that apply. Derive the expressions of strains in 
terms of displacements for the z-invariant case starting from the general 3-D strain-displacement 
relations. Derive the stress-strain expressions for the z-invariant case starting from the general 
stress-strain expressions (use expressions in terms of Lame constants). Using these results, derive 
the expressions of stress in terms of displacements for the z-invariant case. 
 
 
Solution 

The meaning of the “z-invariant” condition is explained in the textbook Chapter 5, Section 
5.10.6. 

(a) The derivation of strains in terms of displacements for the z-invariant case starting from the 
general 3-D strain-displacement relations is as follows: Recall the strain-displacement relation 
from Appendix B, Eq. (B.19), i.e., 

 

x
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x
u

y

u

z









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
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
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x z







 
    

 
    

     

 (1) 

Recall the z-invariant condition, i.e., 

 0
z





 (2) 

Substitution of Eq. (2) into Eq. (1) gives 
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    



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2
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2

z z

z x
zx

u u

y y

u u

x z


  
     

 
 

 
1

2
zu

x

  
   

 (3) 

 
(b) The derivation of stress-strain expressions for the z-invariant case starting from the general 
stress-strain expressions is done as follows: Recall the stress-strain expressions in terms of Lame 
constants, i.e.,  

 

( 2 )

( 2 )

( 2 )

xx xx yy zz

yy xx yy zz

zz xx yy zz

     

     

     

   

   

   

              

2

2

2

xy xy

yz yz

zx zx

 

 

 







  (4) 

Substitution of Eq. (3) into Eq. (4) yields 
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( 2 )xx xx yy zz          ( 2 )

( 2 )

xx yy

yy xx yy zz

   

      

  

    ( 2 )

( 2 )

xx yy

zz xx yy zz

   

     

  

    xx yy  

              

2

2

2

xy xy

yz yz

zx zx

 

 

 







  (5) 

 
(c) The derivation of stress in terms of displacements for the z-invariant case proceeds as 
follows: substitute Eq. (3) into Eq. (5) to get 

( 2 ) ( 2 )

( 2 ) ( 2 )

yx
xx xx yy

yx
yy xx yy

yx
zz xx yy

uu
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uu
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       

       
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 
      

              

2

2

2

yx
xy xy

z
yz yz

z
zx zx

uu

y x

u

y

u

x

  

  

  

 
     


 




 


  (6) 

 
============ 
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Problem 15: Consider 3-D plane wave traveling in a direction n Oz


. Assume the motion z-
invariant. State the general solution of wave propagation in a 3-D medium using  and H



potentials. Particularize the general solution to the case of z-invariant plane waves. State what 
type of plane waves can travel in the 3-D material under the z-invariance assumption. Give the 
expressions for the particle motion and stresses for each of these wave types in terms of the  
and H


potentials




Solution

(a) Particularization of the general solution to the case of z-invariant plane waves is done as 
follows. Recall the general solution of wave propagation in a 3-D medium using  and H



potentials is 

 u H  
  

 (1) 
where x x y y z zH H e H e H e  

   
. The potentials , , ,x y zH H H  satisfy the wave equations and 

the uniqueness condition, i.e., 

 2 2
Pc                

2 2

2 2

2 2

S x x

S y y

S z z

c H H

c H H

c H H

  


 


 





      (wave equations) (2) 

 0yx z
HH H

x y z

 
  

  
         (uniqueness condition) (3) 

The z-invariant condition is 

 0
z





 (4) 

When the z-invariant condition applies, the differential operators 


 and 2  becomes 

 
x y ze e e

x y z

  
   

  

   

2 2 2
2

2 2 2

x ye e
x y

x y z

 
 

 

  
   

  

 

2 2

2 2x y

 
 
 

 (5) 

Substitution of Eq. (5) into Eq. (2) yields 

2 2
2 2 2

2 2P Pc c
x y

    
        

                 

2 2
2 2 2

2 2

2 2
2 2 2

2 2

2 2
2 2 2

2 2

x x
S x S x

y y
S y S y

z z
S z S z

H H
c H c H

x y

H H
c H c H

x y

H H
c H c H

x y

   
       

             
           







 (6) 

It is apparent that all three types of plane waves (pressure, P; shear vertical, SV; shear horizontal, 
SH) can travel in the 3-D material under the z-invariant assumption.  
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(b) The expression of the particle motion is obtained by substitution of Eq. (5) into Eq. (1), i.e., 
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u e e e e H e H e H e
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 (7) 

Equation (7) yields the displacement components 

 

z
x

z
y

y x
z

H
u

x y

H
u

y x

H H
u

x y


 
 


 
 
 

 
 

 (8) 

Examinations of Eq. (8) indicates that it is possible to partition the solution into two parts:  

(i) a solution for zu  which depends only on the two potentials, xH  and yH  

(ii) a separate solution for xu  and 
yu  which depend on the other two potentials,   and zH . 

The first solution, which accepts only the uz displacement, will be a shear motion polarized in the 
horizontal plane Oxz , i.e., a shear-horizontal wave, SH. This SH motion is described in terms of 

the two potentials, xH  and yH . The second solution, which accepts xu  and 
yu  displacements, 

will be the combination of a pressure wave P represented by the potential , and a shear vertical 

wave SV represented by the potential zH . This second solution is denoted P+SV. Note that the 

particle motion of this second solution is constrained to the vertical plane; hence, the associated 
shear wave is a shear vertical wave, SV. The two solutions are treated separately. 
 For SH waves, the motion is contained in the horizontal plane and the relevant potentials are 

xH  and yH , i.e., 

 0x yu u  ,    0zu   ,     xH  and yH  only            (SH waves) (9) 

To calculate the stresses, recall the stress-displacement relation of Problem 14, i.e., 
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Substitution of Eq. (9) into Eq. (10) yields 
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             (SH waves) (11) 

Examination of Eq. (11) reveals that the only nonzero stresses are ,xz yz  , i.e., 
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For P+SV waves, the motion is contained in the vertical plane, and the relevant potentials are  

and zH , i.e.,  

 0,    0x yu u  ,    0zu  ,      0
z





,        and zH  only    (P+SV waves) (13) 

The non-zero ,x yu u  displacements and their derivatives are 
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 (14) 

To calculate the stresses, recall the stress-displacement relation of Eq. (10), i.e.,  
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Substitution of Eq. (13) into Eq. (15) yields 
2 2 2 2 2 2 2
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Problem 16: Consider the definition of group velocity in the form d / dgc   . Prove the 

following equivalent formulae for calculating group velocity: (a) 
d

dg

c
c c 


  ; 

(b) 2 d

dg

c
c c c 


   
 

 and 2 d
dg

c
c c c f

f

 
  

 
;       (c)    

2 d
dg

c
c c c fd

fd

 
  

 
 

 
Solution 
 
 
Recall Eq. (5.214) in textbook Chapter 5, Section 5.4.3.1 giving the definition of group velocity 
as 

 
d

dgc



  (1) 

(a) Write 

 

c

d d d c d c
c c

d d d d

 
   
   



     (2) 

Comparing Eqs. (1) and (2) it becomes apparent that  

 g

d c
c c

d



   (3) 

 
(b) Recall 

 1c
c

     (4) 

Upon differentiation, we write 

 
 1 1 1 2

2

( 1)
d d d d c

c c c c
d d d d

d c
c c

d

   
   




   



    

   
 

 (5) 

Recall Eq. (1) and express it as 

 
1

d d

d dgc
 
 


    
 

 (6) 

Substituting Eq. (5) into Eq. (6) gives the required expression 

 
1 2

2
g

d c c
c c c

d cd c
d


 




            

 

 (7) 

Substituting 2 f   into Eq. (7) yields 
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2

g

c
c

d c
c f

df


 

 
 

 (8) 

 
(c) Note that 

    
d d

d d

c c
f fd

f fd
  (9) 

Substituting Eq. (9) into Eq. (8) gives 

 

   

2

d

d

g

c
c

c
c fd

fd


 

 
 

 (10) 

Eq. (10) is useful in calculating the group velocity in terms of the fd product. 
 
 
================= 
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Problem 17: Consider a generic spherical wave, (r, t), of energy E0 emanating from a point 
source. At r = r0, the wave amplitude is A(r0) = A0. Starting with the generic wave equation 

2 2c    , deduce: (a) the form of the wave equation that applies to this situation; (b) the 
D’Alembert solution for (r, t); (c) the wave amplitude expression, A(r), as function of r and A0; 
(d) the wave energy density expression, e(r), as function of r and E0 
 
 
Solution 
Refer to textbook Chapter 5, Section 5.9.2. Consider the wave equation in a 3-D medium in the 
generic form 

 2 2c     (1) 

where 2  is the Laplacian in 3-D coordinates. In order to analyze a spherical wave emanating 
from a point source, we will choose a spherical coordinate system with the origin in the wave 
source (Figure 11). 

 
Figure 11 Generic spherical wave propagating outwards from a point source at origin  

(a) Due to spherical symmetry, the spatial dependence of the spherical wave is restricted to only 
the radial coordinate, r. Hence, a spherical wave will have the general expression 
 ( , )r t    (2) 
According to the Appendix, the Laplacian in spherical coordinates has the expression 

 
2

2 2
2 2 2 2 2

1 1 1
sin

sin sin
r

r r r r r


    
                      

 (3) 

However, by virtue of spherical symmetry, the derivatives with respect to  and  vanish, and 
Equation (3) becomes 

 2 2
2

1
r

r r r

        
 (4) 

Equation (4) can be also expressed in the more convenient form  

 
 2

2
2

1 r

r r

 
  


 (5) 

Proof: Expand each equation and show that one arrives at the same expression. Expansion of Eq. 
(4) gives 

 
2 2

2 2
2 2 2 2

1 1 2
2r r r

r r r r r r r r r

                       
 (6) 
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Whereas expansion of Eq. (5) gives 

  
2 2 2

2 2 2

1 1 1 2
r r r

r r r r r r r r r r r r

                                  
 (7) 

Since Eqs. (6) and(7) give the same result, it follows that Eq. (5) holds. Substitution of Eq. (5) 
into Eq. (1) yields 

 
 22

2
2 2

1 r
c

t r r

  


 
 (8) 

Since r is independent of t, we can rewrite Eq. (8) in the form 

 
   2 2

2
2 2

r r
c

t r

   


 
 (9) 

 
(b) Equation (9) is a 1-D wave equation in the function r  and accepts the D’Alembert solution 

 ( , )
r r

r r t f t g t
c c

          
   

 (10) 

where 

 
r

f t
c

  
 

 is a diverging spherical wave emanating from origin 

 
r

g t
c

  
 

 is a converging spherical wave sinking into the origin 

For our case of a point source at the origin, only the emanating solution  /f t r c  applies. This 

is the radiation condition in spherical coordinates. Hence, Eq. (10) gives 

 
1

( , )
r

r t f t
r c

    
 

 (11) 

The function in Eq. (11) is singular at 0r  . However, the function exists for all 0r  .  
Assume the function  f t  represents a generic disturbance as shown in Figure 12. Then, ( , )r t  

will have the same shape, but scaled by 1/ r .  
 

 
Figure 12 Generic disturbance  

 
(c) Assume that the wave amplitude at a location 0r  is 0A . Then, in virtue of Eq. (11), the wave 

amplitude at any other location r is given by 

 0
0( )

r
A r A

r
  (12) 
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It is apparent from Eq. (12) that the amplitude of a spherical wave is inverse proportional with 
the radial distance from the source and that the wave decreases as it propagates outwards. For 
illustration, consider three points in space at increasing distance from the origin, i.e., 1 2 3r r r 
,specifically 1 2 3,  2 , 3r R r R r R   , as indicated in Figure 13. The corresponding amplitudes 

are 1 0 2 0 3 0,   / 2,   / 3A A A A A A   . 

 
Figure 13 Amplitude decrease with radial distance 

(d) The wave energy density is calculated as follows. Recall from textbook Eq. (5.94) that the 
wave energy density is proportional to the square of the wave amplitude, i.e.,  

 2( ) ( )e r K A r  (13) 

where K is an arbitrary constant. As before, assume that at a reference location 0r  the wave 

amplitude is 0A ; the corresponding energy density is 2
0 0e KA . The total energy contained in the 

wavefront is the product between the energy density and the area of the wavefront. One gets 

 2 2 2
0 0 0 0 04 4E r e r K A    (14) 

Solving Eq. (14) for K and substituting in Eq. (13) one gets 

 0
2 2

0 04

E
K

r A
 , and 

2
0

2 2
0 0

( )
( )

4

E A r
e r

r A
  (15) 

Recalling Eq. (12), one writes the second part of Eq. (15) as 

 0
2

( )
4

E
e r

r
  (16) 

Equation (16) indicates that the energy density diminishes proportional with 2r . In fact, Eq. (16) 
states the law of energy conservation: during the propagation of a spherical wave, the energy 
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contained in the wavefront is being smeared thinner and thinner over an ever increasing spherical 
wavefront area, which is proportional with 2r  (see  

 
Figure 14). 
 

 
Figure 14 Propagation of a spherical wave 
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Problem 18: Consider a generic circular wave, (r, t), of energy E0 emanating from a point 
source. At r = r0, the wave amplitude is A(r0) = A0. Consider the problem to be 2-D. Starting with 
the generic wave equation 2 2c    , deduce: (a) the form of the wave equation that applies to 
this situation; (b) the D’Alembert solution for (r, t); (c) the wave amplitude expression, A(r), as 
function of r and A0; (d) the wave energy density expression, e(r), as function of r and E0 
 
Solution 
 
This problem is similar with the previous problem 14, only that the propagation takes place in a 
2-D medium. Consider the wave equation in a 3-D medium in the generic form 

 2 2c     (1) 

where 2  is the Laplacian in 2-D coordinates. In order to analyze a circular wave emanating 
from a point source, we will choose a polar coordinate system with the origin in the wave source 
(Figure 15). 
 

 
Figure 15 Generic circular wave propagating outwards from a point source at origin  

(a) Due to polar symmetry, the spatial dependence of the circular wave is restricted to only the 
radial coordinate, r. Hence, a spherical wave will have the general expression 
 ( , )r t    (2) 
According to the Appendix, the Laplacian in polar coordinates has the expression 

 
2 2

2
2 2 2

1 1

r r r r 
    

    
  

 (3) 

However, by virtue of spherical symmetry, the derivatives with respect to  vanish, and Eq. (3) 
becomes 

 
2

2
2

1

r r r

  
   

 
 (4) 

Equation (4) can be also expressed in the more convenient form  

 
 2

2
2 2

1 1

4

r

r rr

 
    


 (5) 

Proof: Expand each equation and show that one arrives at the same expression. Expansion of Eq. 
(5) gives 

 
   1/ 2

1/ 2 1/ 21

2

r r
r r

r r r


    
  

  
 (6) 

57



 42 

 
 2 2

1/ 2 1/ 2 1/ 2
2 2 2

1 1 1
...

2 4

r
r r r

r r r r r r r


                       
 (7) 

Substitution of Eq. (7) into Eq. (5) yields Eq. (4). However, Eq. (5) does not readily accept 
closed form solution. But, at large values of r, the second term in Eq. (5) vanishes 

2

1
0 as 

4
r

r
   
 

, and hence  

 
 2

2
2 2

1 1

4

r

r rr

 
    


 for r   (8) 

Equation (8) accepts closed-form D’Alembert solutions in the form 

 1/ 2 ( , )
r r

r r t f t g t
c c

          
   

 (9) 

where 

 
r

f t
c

  
 

 is a diverging spherical wave emanating from origin 

 
r

g t
c

  
 

 is a converging spherical wave sinking into the origin 

For our case of a point source at the origin, only the emanating solution  /f t r c  applies. This 

is the radiation condition in spherical coordinates. Hence, Eq. (10) gives 

 
1

( , )
r

r t f t
cr

    
 

 (10) 

The function in Eq. (11) is singular at 0r  . However, the function exists for all 0r  .  
Assume the function  f t  represents a generic disturbance as shown in Figure 12. Then, ( , )r t  

will have the same shape, but scaled by 1/ r .  
(c) Assume that the wave amplitude at a location 0r  is 0A . Then, in virtue of Eq. (11), the wave 

amplitude at any other location r is given by 

 0
0( )

r
A r A

r
  (11) 

It is apparent from Eq. (12) that the amplitude of a circular wave is inverse proportional with the 
square root of the radial distance from the source and that the wave decreases as it propagates 
outwards. For illustration, consider three points in space at increasing distance from the origin, 
i.e., 1 2 3r r r  ,specifically 1 2 3,  2 , 3r R r R r R   , as indicated in Figure 16. The corresponding 

amplitudes are 1 0 2 0 3 0,   / 2,   / 3A A A A A A   . 
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Figure 16 Propagation of a circular wave 

(d) The wave energy density is calculated as follows. Recall from textbook Eq. (5.94) that the 
wave energy density is proportional to the square of the wave amplitude, i.e.,  

 2( ) ( )e r K A r  (12) 

where K is an arbitrary constant. As before, assume that at a reference location 0r  the wave 

amplitude is 0A ; the corresponding energy density is 2
0 0e KA . The total energy contained in the 

wavefront is the product between the energy density and the circumferential length of the 
wavefront. One gets 

 2
0 0 0 0 02 2E r e r K A    (13) 

Solving Eq. (14) for K and substituting in Eq. (13) one gets 

 0
2

0 02

E
K

r A
 , and 

2
0

2
0 0

( )
( )

2

E A r
e r

r A
  (14) 

Recalling Eq. (12), one writes the second part of Eq. (15) as 

 0( )
2

E
e r

r
  (15) 

Equation (16) indicates that the energy density diminishes proportional with r . In fact, Eq. (16) 
states the law of energy conservation: during the propagation of a circular wave, the energy 
contained in the wavefront is being smeared thinner and thinner over an ever increasing circular 
wavefront length, which is proportional with r. 
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